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Abstract
Intel Software Guard Extensions (SGX) isolate security-
critical code inside a protected memory area called
enclave. Previous research on SGX has demonstrated
that memory corruption vulnerabilities within enclave
code can be exploited to extract secret keys and bypass
remote attestation. However, these attacks require kernel
privileges, and rely on frequently probing enclave code
which results in many enclave crashes. Further, they
assume a constant, not randomized memory layout.

In this paper, we present novel exploitation techniques
against SGX that do not require any enclave crashes and
work in the presence of existing SGX randomization
approaches such as SGX-Shield. A key contribution
of our attacks is that they work under weak adversarial
assumptions, e.g., not requiring kernel privileges. In fact,
they can be applied to any enclave that is developed with
the standard Intel SGX SDK on either Linux or Windows.

1 Introduction
Intel recently introduced Software Guard Extensions

(SGX), which aim at strongly isolating sensitive code
and data from the operating system, hypervisor, BIOS,
and other applications. In addition, SGX also features
sophisticated memory protection techniques that prevent
memory snooping attacks: SGX code and data is always
encrypted and integrity-protected as soon as it leaves the
CPU chip, e.g., when it is stored in main memory. SGX is
especially useful in cloud scenarios as it ensures isolated
execution of code and data within an untrusted computing
environment.

SGX was designed to allow developers to protect
small parts of their application that handle sensitive data,
e.g., cryptographic keys, inside SGX containers called
enclaves. An enclave is a strongly isolated execution
environment that can be dynamically created while the
main application, known as host, is running. The host
can invoke specific functions in an SGX enclave by

using one of the pre-defined entry points. The enclave
can subsequently perform sensitive computations, call
pre-defined functions in the host, and return to the caller.

In the ideal scenario, the enclave code only includes
minimal carefully-inspected code, which could be
formally proven to be free of vulnerabilities. However,
legacy applications can be adapted as well to run inside
SGX enclaves with relatively minor modifications.
Formally verifying or manually inspecting such complex
legacy software is not feasible, meaning that the same
memory-corruption vulnerabilities that plague legacy
software are also very likely to occur in those complex
enclaves.

However, previous research on SGX has been mainly
focused on side-channel attacks [31, 29, 6] and de-
fenses [28, 12, 5]. Only recently, Lee et al. [19] presented
the first memory-corruption attack against SGX. Their
attack, called Dark-ROP, is based on several oracles and
return-oriented programming (ROP) [27]. The oracles
inform the attacker about the internal status of the enclave
execution, whereas ROP maliciously re-uses benign code
snippets (called gadgets) to undermine non-executable
memory protection. In particular, Dark-ROP requires
kernel privileges and is based on principles of blind
ROP [3]: if an application is not randomized, or it is not
re-randomized after crashing, crashes can and do leak
useful information to the attacker. This allows Dark-ROP
to extract secret code and data, as well as undermine
remote attestation. However, Dark-ROP requires a
constant, non-randomized memory layout as the oracles
frequently crash enclaves. Hence, to address the Dark-
ROP attack, Seo et al. demonstrated an implementation
of SGX randomization called SGX-Shield [26], since
this attack is not effective if the SGX code is randomized.
Dark-ROP relies on running the target enclave multiple
times to test multiple addresses, so randomizing the
memory layout at initialization time makes previous
results useless for new invocations.

However, SGX-Shield does not randomize the part of
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the SGX SDK [14, 15] that handles transitions between
host code and enclave code. Thus, the location of this
code, which contains a number of very interesting gadgets
to mount ROP attacks, is known to the attacker. This
paper demonstrates that this interface code is enough
to mount powerful run-time attacks and bypass SGX-
Shield without requiring kernel privileges. Extending
the randomization to this interface code would be very
technically involved due to its low-level nature and the
architectural need to have a fixed entry point, as we
discuss in Section 8. Moreover, even a finely-randomized
interface code would be vulnerable to side-channel
attacks. Finally, architectural limitations in SGX1 force
randomized code to be executed from writable pages,
thus allowing simpler code-injection.

Goals and Contributions. We show that even fine-
grained code randomization for SGX can be bypassed
by exploiting parts of the SDK code, and point out
the need for more advanced approaches to mitigate
run-time attacks on SGX enclaves. In summary, our main
contributions are:

• We propose two new code-reuse attacks against
enclaves built on top of the Intel SGX SDK. By
abusing preexisting SDK mechanisms, these attacks
provide full control of the CPU’s general-purpose
registers to an attacker able to exploit a memory
corruption vulnerability (Section 6). We also
reverse-engineered and describe the internals of
the ECALL, OCALL and exception handling
mechanisms of the Intel SGX SDK (Section 4).

• To demonstrate that our new attacks are powerful,
we show that they are effective and practical against
SGX-Shield [26], a state-of-the-art fine-grained ran-
domization solution for SGX enclaves (Section 7).
Moreover, we highlight several discrepancies be-
tween the SGX-Shield paper and the proposed open
source implementation.

• We discuss possible countermeasures and mitiga-
tions to prevent our attacks from two perspectives:
hardening the enclave itself, and hardening the SDK
(Section 8).

2 Related Work
Side-channel attacks. Multiple works have shown that
SGX is vulnerable to micro-architectural side-channel
attacks since untrusted code and enclave code share the
same processor. Side-channel attacks can leak critical
secrets from the enclave, such as cryptographic keys.

1 In the current version of SGX, memory permissions cannot be
changed after initialization. This limitation will be lifted in SGX2 [22];
however, no available processor currently supports this new version.

Controlled-channel attacks [31] employ a malicious ker-
nel to infer memory access patterns at the granularity of
pages by triggering page faults in the enclave. They show
how the strong adversary model of SGX can introduce
new kinds of attacks. Cache-based side channels have
been widely studied and exploit the caching mechanisms
of the processor, as unrelated processes can share cache
resources [13, 17, 21, 32]. Software Grand Exposure [6]
and CacheZoom [23] further show how cache side chan-
nels are especially powerful within the strong adversary
model of SGX. Another micro-architectural component
that has been exploited is the branch predictor. Lee et
al. [20] abuse collisions within the branch predictor to
infer whether a branch inside the enclave has been taken.
They demonstrate their attack by monitoring an RSA
exponentiation routine to recover the key. All these
side-channel attacks require frequent interruption of the
enclave. Therefore, defenses such as T-SGX [28] and
Déjá Vu [7] are based on avoiding or detecting enclave
interruptions forced by a malicious kernel. In response,
Van Bulck et al. [29] proposed an attack that can monitor
memory accesses at page granularity without interrupting
the enclave. A different mitigation strategy is making the
location of data unpredictable to stop the attacker from
extracting information from memory access patterns. On
this note, DR. SGX [5] performs fine-grained randomiza-
tion of data by permuting it at cache line granularity.

Memory corruption. Enclaves, just like normal
applications, can suffer from memory corruptions vul-
nerabilities. SGXBounds [18] offers protection against
out-of-bounds memory accesses. Dark-ROP [19] is
a code-reuse attack that makes return-oriented pro-
gramming (ROP) [27] possible against encrypted SGX
enclaves. Haven [1, 2] and VC3 [24] deploy a symmet-
rically encrypted enclave along with a loader which will
receive the key through remote attestation. Such enclaves
cannot be analyzed or reverse engineered, as the key is
only available within an enclave whose integrity has been
verified via attestation. Therefore, typical ROP attacks do
not work. Dark-ROP proposes a way to dynamically find
ROP gadgets by building a series of oracles [19]. Those
rely on being able to crash and reconstruct the enclave
multiple times while preserving the memory layout, and
possessing kernel privileges. Randomization schemes
such as SGX-Shield [26] challenge this assumption,
since the memory layout changes every time the enclave
is constructed. Further, SGX-Shield makes traditional
exploitation techniques extremely hard to apply because
it employs fine-grained randomization and non-readable
code. However, in this paper, we present exploits that
undermine these mitigation techniques under weak
adversarial assumptions.
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3 SGX Background

In this section, we recall selected background infor-
mation on SGX. For a more thorough analysis, we refer
to [8] and Intel’s official reference manual on SGX [16].

3.1 Enclave Entry and Exit

SGX enclaves run on the same x86 processor as
ordinary application code does. As such, mechanisms
are required to switch between untrusted and trusted
execution modes, as shown in Figure 1. The SGX
instructions to interact with enclaves are organized as leaf
functions under two real instructions: ENCLS and ENCLU.
The former is used for kernel-mode operations, while
the second for user-mode operations. SGX accomplishes
synchronous enclave entry by means of the EENTER leaf
function, which is invoked via the ENCLU instruction. The
entry point is specified in the Thread Control Structure
(TCS) for the relevant thread. Since EENTER does not
clear the CPU registers, the untrusted code can pass
additional information to the entry point. For instance, an
enclave may expose various operations to its client. The
untrusted code could pass a parameter that indicates what
operation it wants the enclave to perform. To return back
to untrusted code, the enclave uses the EEXIT leaf. Just
like EENTER, EEXIT does not clear CPU registers, thereby
allowing trusted code to pass data to untrusted code.
An enclave can be entered multiple times concurrently
within the same thread. The number of concurrent entries
in the same thread is limited by the number of State Save
Areas (SSAs) defined by the enclave. The SSA is used to
store enclave state during asynchronous exits, which are
described below. The number of SSAs (NSSA) field in the
TCS defines how many SSAs are present.

Untrusted
code

Trusted
code

AEX

ERESUME

EENTER

EEXIT

Untrusted mode

Trusted mode
(SGX)

Asynchronous
(on interrupt)

Synchronous
(on demand)

Figure 1: Enclave entry and exit mechanisms.

An enclave can also exit because of a hardware ex-
ception (such as an interrupt), which needs to be handled
by the kernel in untrusted mode. This event is known
as Asynchronous Enclave Exit (AEX). When an AEX
occurs, the current enclave state is saved in an available
SSA and the register values are replaced with a synthetic
state before handing control to the interrupt handler.
The synthetic state ensures the enclave’s opacity and
avoids leakage of secrets. Once the interrupt is dealt with,
enclave execution can be resumed with the ERESUME leaf,
which restores the previous state from the SSA.

4 SGX SDK Internals
In this section, we review selected internal mechanisms

of the official SGX SDK[14, 15] that are relevant to our
attack. In general, SGX software is developed based on
the official SGX SDK, as it abstracts away the underlying
complexity of SGX. Two SDK-provided libraries are
vital for our attack and the correct execution of SGX code:
the Trusted Runtime System (tRTS) and the Untrusted
Runtime System (uRTS). While tRTS is executing inside
an enclave, uRTS runs outside the enclave. The tRTS and
uRTS interact with each other to handle the transitions
between trusted and untrusted execution modes.

4.1 ECALLs
The ECALL mechanism allows untrusted code to call

functions inside an enclave. The enclave programmer can
arbitrarily select which functions are to be exposed for the
ECALL interface. ECALLs can also be nested: untrusted
code can execute an ECALL while handling an OCALL
(see Section 4.2). The programmer can choose which
ECALLs are allowed at the zero nesting level, and which
are allowed for each specific OCALL. Every defined
ECALL has an associated index. To perform an ECALL,
the application calls into the uRTS library, which exe-
cutes a synchronous enclave entry (EENTER), passing the
ECALL index in a register. We recall that EENTRY does
not clear the registers. The tRTS then checks whether an
ECALL with that index is defined, and if it is allowed at
the current nesting level. If the checks pass, it executes
the target function. Once the function returns, it performs
a synchronous exit (EEXIT) to give control back to the
uRTS. Passing and returning arbitrarily complex data
structures is possible because SGX enclaves can access
untrusted memory. An enclave must expose at least an
ECALL, otherwise there is no way to invoke enclave
code: from the programmer’s perspective, an enclave’s
code always executes in ECALL context.

4.2 OCALLs
The OCALL mechanism, shown in Figure 2, allows

trusted code to call untrusted functions defined by the host
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application. The need for OCALLs mainly stems from the
fact that system calls are not allowed inside an enclave.
Like ECALLs, each OCALL is identified by an index.
When the enclave code has to perform an OCALL, it calls
into the tRTS (step 1 of Figure 2). The tRTS first pushes an
OCALL frame onto the trusted thread stack, which stores
the current register state (step 2). Next, it performs a syn-
chronous enclave exit to return from the current ECALL,
passing the OCALL index back to the uRTS (step 3). The
uRTS recognizes that the exit is for an OCALL and exe-
cutes the target function (step 4). Thereafter, it executes a
special variant of ECALL known as ORET (step 5), which
will restore the context from the OCALL frame through
a function named asm oret, thus returning to the trusted
callsite (step 6). ORET is implemented in the tRTS. Like
ECALLs, data is passed via shared untrusted memory.

4.3 Exception Handling
SDK enclaves can register handlers to catch exceptions

within the enclave. This exception handling mechanism
is shown in Figure 3. Upon an exception (e.g., invalid
memory access, division by zero) an asynchronous
enclave exit (AEX) occurs, which saves the faulting state
to the state save area (SSA). The resulting interrupt is
handled by the kernel, which delivers an exception to the
untrusted application by means of the usual exception
mechanism of the OS (e.g., signals in Linux-based
systems, structured exception handling in Windows).
An exception handler registered by the uRTS performs a
special ECALL to let the enclave handle the exception.
By default, SDK enclaves have two SSAs available
(specified in the NSSA field in the TCS). Hence, it is
possible to re-enter the enclave while an AEX is pending.
The tRTS then copies the faulting state from the SSA to an
exception information structure on the trusted stack, and
changes the SSA contents so that ERESUME will continue
at a second-phase handler in the tRTS, instead of exe-
cuting the faulting instruction again. Once the ECALL

uRTS tRTS

Untrusted
function

Trusted
code

2 Save state
to OCALL
frame

1
O

C
A

L
L

3 EEXIT

4
C

a
ll

5 EENTRY

(for ORET) 6 ORET
Restore state
from OCALL
frame

Untrusted
application

Trusted enclave

Figure 2: OCALL mechanism from the SGX SDK.

returns, the uRTS issues an ERESUME for the faulting
thread, which will resume at the second-phase handler.
This traverses the registered exception handlers, which
can then observe the exception information to determine
whether they can handle the exception. To handle the
exception, a handler can modify the CPU state contained
in the exception information. If a handler succeeds, the
tRTS uses a function named continue execution to
restore the CPU register context from the exception infor-
mation, thus resuming enclave execution. If the exception
cannot be handled, a default handler switches the enclave
to a crashed state, which prevents further operations on it.

5 Threat Model and Assumptions
Previous work on SGX [19, 26] has considered a very

strong adversarial model: the attacker has full control
over the machine, e.g., through a malicious kernel.
In this work, we consider a weaker attacker that has
compromised the application that hosts the enclave, e.g.,
by exploiting a vulnerability. In some cases, as discussed
below, an attacker might even be able to perform the
attack without any control over the host process.

Offensive capabilities. Our attacker has the following
capabilities:

• Memory corruption vulnerability. The attacker
has knowledge of a vulnerability in the enclave that
allows her to either corrupt stack memory (e.g.,
a stack overflow) or corrupt a function pointer on
the stack, heap, or other memory areas (e.g., heap
overflow, use-after-free or type confusion).

Kernel
interrupt
handler

Trusted
code

uRTS tRTS

Exception
handler

1 Exc.

5 Setup
2nd-phase
resume

2 AEX

3
S

ig
n

a
l

4 EENTRY

6 EEXIT

7 ERESUME

8 Find and
call handler

9 Continue
execution

Untrusted
mode

Trusted enclave

Figure 3: Exception handling mechanism from the SGX
SDK.
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• Ability to create fake structures. The attacker can
place arbitrary data at some memory location acces-
sible by the enclave. A malicious host process can
easily do this given the unrestricted access over its
own address space. An attacker could also possibly
achieve this via normal functionality, for example by
steering the application or the enclave into allocating
attacker-controlled data at predictable addresses.

• Knowledge of coarse-grained memory layout.
The attacker knows the victim enclave’s external
memory layout, i.e., its virtual address range. This
is known to the process hosting the enclave, as the
enclave virtual memory resides in its address space.
Alternatively, information leakage vulnerabilities
inside the enclave could provide this knowledge to
an attacker who is not in control of the process.

• Knowledge of the enclave’s binary. The attacker
has access to the victim enclave’s binary allowing
her to run static analysis on the binary.

Defensive capabilities. We make the following
assumptions about the victim enclave:

• SDK usage. The victim enclave is developed by
means of the official SGX SDK from Intel. The
SDK is used by almost all real-world enclaves, as it
is the development environment endorsed by Intel.
Furthermore, it has been used in various academic
works [26, 30].

• Randomized SGX memory. We also assume that
enclave code is additionally hardened by sophis-
ticated mitigation technologies such as address
space layout randomization (ASLR). That is, we
assume that the victim enclave is protected by
means of SGX-Shield [26], which is currently the
only available ASLR solution for SGX. Recall that
existing memory corruption attacks against SGX,
e.g., Dark-ROP [19], are mitigated by SGX-Shield.

6 The Guard’s Dilemma
We now present in detail our novel code-reuse attacks

against SGX. The techniques we propose are applicable
to a wide range of vulnerabilities, including stack over-
flows and corruption of function pointers. In particular,
the latter is common in modern object-oriented code.
Our ultimate attack goal is to execute a sequence (chain)
of gadgets, i.e., existing functions or short instruction
sequences, to perform a malicious activity of the at-
tacker’s choosing, without crashing the victim enclave.
This is along the lines of any other common code-reuse
attack such as return-oriented programming. However,
the advantage of our attack is to allow the attacker to
set all general-purpose CPU registers before executing

each gadget. Controlling registers is essential in any
code-reuse attack. For instance, they can prepare data for
subsequent gadgets or set arguments for function calls. In
contrast, existing code-reuse attacks on x86 require the
attacker to use specific register-setting gadgets (e.g., pop
gadgets) to set registers.

Not requiring those gadgets has two major benefits.
First, it reduces the amount of application code needed
for a successful code-reuse attack, which is helpful in
constrained environments, as we demonstrate in Sec-
tion 7 with an exploit against SGX-Shield [26]. Second,
it simplifies payload development since the attacker does
not need to find pop gadgets for all relevant registers. In
fact, our attacks allow the attacker to use whole functions
as building blocks instead of small gadgets, allowing her
to work on a higher level and making it easier to port the
exploit between different versions of a binary.

Our attacks abuse functionality in tRTS, a fundamental
library of the Intel SGX SDK, which most enclaves use
(Section 5). Hence, our attacks threaten a large amount of
existing enclave code. Here lies the dilemma: the SDK is
an important part in creating secure enclaves, but in this
case it is actually exposing them to attacks.

We devise two new exploitation primitives to launch
memory corruption attacks against SGX:

• The ORET primitive. Our first attack technique
allows the attacker to gain access to a critical set
of CPU registers by exploiting a stack overflow
vulnerability (cf. Section 5).

• The CONT primitive. Our second attack technique
is even more powerful as it allows the attacker to
gain access to all general-purpose registers. It only
requires control of a register (on x86 64, rdi).
In addition, this attack can be combined with the
ORET primitive to also apply it to controlled stack
situations.

6.1 Overview and Attack Workflow
In this section, we present a high-level description of

the exploitation primitives and the attack workflow.

6.1.1 Exploitation Primitives

In the following, we explain our exploitation primitives
and their preconditions.

ORET primitive. This primitive is based on abusing
the function asm oret from the tRTS library in the Intel
SGX SDK. Normally, this function is used to restore the
CPU context after an OCALL. The prerequisites for this
primitive are control of the instruction pointer (to hijack
execution to asm oret) and control of stack contents. For
instance, any common stack overflow vulnerability such
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as a buffer overflow or format string is sufficient to use
the ORET primitive. The ORET primitive gives control
of a subset of CPU registers, including the register that
holds the first function argument (rdi) and the instruction
pointer.

CONT primitive. This primitive abuses the function
continue execution from the tRTS, which is meant to
restore the CPU context after an exception. This primitive
requires the ability to call that function with a controlled
rdi, which is achievable by exploiting a memory cor-
ruption vulnerability affecting a function pointer (not
necessarily located on the stack). This primitive yields
full control over all general-purpose CPU registers.

ORET+CONT loop. The basic idea behind our attack
is to use the CONT primitive repeatedly to invoke the
various gadgets with the correct register values. Thus, the
chain needs to have multiple CONT invocations. Recall
that CONT requires a specific value for rdi, which the
other gadgets might modify. An easy way to satisfy this
constraint is to use ORET invocations to set rdi and
invoke CONT, building an ORET+CONT loop. Each
iteration of this loop executes one gadget and is structured
as follows:

1. A CONT primitive manipulates the stack pointer
to hijack it into attacker-controlled memory and
executes a gadget.

2. Once the gadget completes, the previous stack
manipulation causes the execution of an ORET
primitive.

3. The ORET primitive triggers the CONT primitive
for the next gadget, continuing the cycle from the
first step.

6.1.2 Workflow

This section describes the workflow of our attack based
on Figure 4.

Step 1: Payload preparation. In preparation for
the exploit, the attacker performs static analysis on the
enclave binary to determine the gadgets she wants to
reuse. Our attack supports classic ROP gadgets, i.e.,
code sequences ending with a return instruction, and any
subroutine for function-reuse attacks. Note that, even if
the main enclave code is randomized, it is very difficult to
randomize all the enclave code (Section 8) and the non-
randomized code contains enough gadgets to successfully
mount an attack (Section 7). Next, the attacker constructs
a gadget chain consisting of a sequence of gadgets which
will perform the desired malicious activity, and defines
the register state that should be set before executing each

gadget. For instance, if the gadget is an entire function,
registers will hold the function arguments. According to
the threat model defined in Section 5, the attacker knows
the external memory layout of the enclave, including its
base address. Therefore, the attacker just needs to know
the static offset of a gadget in the enclave binary to find
its run-time address. In addition to the payload gadgets,
the attacker has to determine the offsets of asm oret and
continue execution (both in the tRTS) to apply our
attack.

Step 2: Fake structures preparation. Our primitives
work by abusing functions intended to restore CPU con-
texts by tricking them into restoring fake contexts, thus
gaining control of the registers. In contrast to a standard
ROP exploit, which is usually self-contained, our attacks
require a number of auxiliary memory structures to hold
these fake contexts and execute our primitives. Since
enclaves can access user memory outside the enclave, the
structures do not have to be within the trusted enclave
memory. They can be in any memory shared with the
enclave (e.g., in the host’s memory) as long as its position
is known. Specifically, our attack requires two kinds of
fake structures:

• Multiple fake exception information structures,
which contain register contexts for the CONT prim-
itives. One fake exception information structure is
required for each gadget, in order to set the registers
to the correct values and execute the gadget.

• A fake stack, which is a supporting structure for
the ORET+CONT loop that serves two purposes.
On the one hand, it is used to bring control back
to an ORET primitive after a gadget executes. On
the other hand, it contains fake contexts for the
transition from the ORET primitive to the CONT
primitive to continue the loop.

Step 3: Attack execution. Thanks to the way the fake
structures are set up, triggering the first CONT primitive
will start the ORET+CONT loop. Every cycle will
execute a gadget and advance the chain, thus running
the attacker’s payload. The only remaining aspect to
analyze is how the first CONT is triggered. The easiest
case is when the vulnerability already satisfies the CONT
preconditions (e.g., exploitation of an indirect function
call). In that case, the attacker can execute the first CONT
directly. Exploiting a stack overflow is also possible with
little additional effort. This kind of vulnerability allows
to run an ORET primitive. Since it can be used to set
the first function argument register and the instruction
pointer, the attacker now has the controlled function call
needed for CONT and can trigger the loop.
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Figure 4: Overview of the workflow of our attack.

6.2 Details
In this section, we describe the technical details

and interaction of our exploitation primitives to craft a
memory corruption attack against SGX.

6.2.1 ORET Primitive

Our ORET primitive abuses the asm oret function,
used in the OCALL/ORET mechanism to restore the
CPU context from the OCALL frame saved on the stack.
This function allows controlling parts of the CPU context,
and can be a stepping stone to the CONT primitive.

The prototype of the function is sgx status t

asm oret(uintptr t sp, void *ms). The first argu-
ment (sp) points to the OCALL frame, which contains the
partial CPU context to be restored, including saved values
for rbp, rdi, rsi, rbx and r12 to r15. Listing 1 shows
the layout of this structure. The second argument (ms) is
not relevant for our attack. An attacker able to control the
OCALL frame can set all the registers mentioned; more-
over, the new instruction pointer (rip) can also be set.
Since the attacker can controlrdi (which contains the first
argument) and the instruction pointer, she can execute the
CONT primitive from ORET. This capability is important
for the ORET+CONT loop, and additionally allows to
bootstrap our attack from a stack overflow vulnerability,
as will be shown towards the end of this section.

The exact values of rsp and rip after asm oret de-
pend on the SGX SDK version. For versions earlier than
2.0, the stack pointer is set to point to the ocall ret field
before issuing a ret instruction, which simply pops the
return address from the stack and loads it into the instruc-
tion pointer rip. Hence, the new instruction pointer will
be the value of ocall ret, and the new stack pointer will
point to the memory location immediately following the
OCALL frame. From version 2.0, a more traditional epi-
logue is used: the base pointer (rbp) is moved into rsp,

1 typedef struct _ocall_context_t {

2 /* ... */

3 uintptr_t r15;

4 uintptr_t r14;

5 uintptr_t r13;

6 uintptr_t r12;

7 uintptr_t xbp; // rbp

8 uintptr_t xdi; // rdi

9 uintptr_t xsi; // rsi

10 uintptr_t xbx; // rbx

11 /* ... */

12 uintptr_t ocall_ret;

13 } ocall_context_t;

Listing 1: Context structure for asm oret. Fields not
relevant to our attack are omitted.

then rbp is popped from the stack, and finally a ret is is-
sued. Therefore,rbp in the OCALL frame has to point to a
memory area containing two 64-bit words: the new value
for rbp, and the return address (i.e., the new instruction
pointer). After returning, rsp will point 16 bytes past the
rbp in the OCALL frame. Note that those addresses do
not necessarily have to point to stack memory, nor to en-
clave memory, as enclaves can access untrusted memory.

The first operation done by asm oret is shifting the
stack pointer to the sp argument, i.e., the top of the
OCALL frame. Subsequent references to the OCALL
frame are made through the stack pointer. As a result, an
attacker can jump to the code after the function prologue
that sets up the stack and let asm oret believe that the
OCALL frame is at the top of the current stack. On
SGX SDK versions earlier than 2.0, the stack pointer
is shifted with a single instruction, mov rsp, rdi, at
the beginning of asm oret. This can be easily skipped
by calling the second instruction instead of the real
beginning of asm oret. Starting with version 2.0 of the
SDK, the code is more complex, as it also handles other
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tasks (such as restoring the extended processor state)
before restoring the registers we are interested in. Simply
skipping the stack shifting instruction would cause a
crash because of other temporary registers that are set up
in the meantime. However, it is still possible to skip the
more complex first part and jump directly to the part that
restores registers without inducing any side-effects. As
such, it is always possible to abuse asm oret to restore
a fake OCALL frame at the top of the stack, without
the need to control the first argument, by jumping to an
appropriate instruction inside asm oret. In the rest of
this paper we will assume the attacker to always skip the
initial part when reusing asm oret.

An attacker who has control over the stack contents
can reuse asm oret to set the registers mentioned in
ocall context t. An example is depicted in Figure 5.
The application is vulnerable to a buffer overflow error
on the stack. The attacker exploits this to overwrite the
function’s return address with the address of asm oret,
properly adjusted to account for skipped instructions.
Moreover, she places a fake ocall context t immedi-
ately after the return address. Once the function returns,
control is transferred to asm oret with the fake OCALL
frame at the top of stack, since the return address has
been popped by the return instruction. Finally, asm oret

restores the fake context, thus granting control of those
registers to the attacker.

6.2.2 CONT Primitive

The CONT primitive is based on
continue execution, a function used in the ex-
ception handling mechanism to restore a CPU context
from an exception information structure, thus allowing
exception handlers to change CPU register values. As
such, it can be abused in a similar way to asm oret. In
comparison, continue execution provides more con-
trol than asm oret as the context it restores encompasses
all general-purpose CPU registers.

The prototype of this function is void

continue execution(sgx exception info t *info),

Buffer

Return addr.

· · ·

1 Before overflow

· · ·

&asm oret

Fake OCALL
context

2 After overflow

rsp before
return

rsp after
return

M
em

or
y

or
d

er

Figure 5: Stack layout when launching the ORET
primitive from a stack overflow.

where info is a pointer to the exception information
structure that contains the CPU context to restore.
The only field used by continue execution is
cpu context, of type sgx cpu context t, which
contains all sixteen general-purpose registers and the
instruction pointer. Listings 2 and 3 show the definitions
of those structures. continue execution is an ideal
target for a memory corruption attack as it grants control
of all CPU registers. Notably, the stack pointer (rsp) and
the instruction pointer (rip) are part of this context. Since
the attacker can control the stack pointer, she can hijack it
to attacker-controlled memory (the fake stack). The code
will now believe that the attacker-controlled memory is
the real stack, so the attacker gets control over the stack
contents. This technique is known as stack pivoting.
Since the attacker also controls the instruction pointer,
all the requirements for executing an ORET primitive are
met. Therefore, it is possible to chain the ORET primitive
to the CONT primitive. This is an essential ingredient for
our ORET+CONT loop.

We noticed an issue in continue execution on SDK
versions prior to 1.6, which results in registers r8-r15 not
being restored and rsi being restored with the value of

1 typedef struct _exception_info_t {

2 sgx_cpu_context_t cpu_context;

3 sgx_exception_vector_t

4 exception_vector;

5 sgx_exception_type_t

6 exception_type;

7 } sgx_exception_info_t;

Listing 2: Exception information structure for
continue execution.

1 typedef struct _cpu_context_t {

2 uint64_t rax;

3 uint64_t rcx;

4 uint64_t rdx;

5 uint64_t rbx;

6 uint64_t rsp;

7 uint64_t rbp;

8 uint64_t rsi;

9 uint64_t rdi;

10 uint64_t r8;

11 uint64_t r9;

12 uint64_t r10;

13 uint64_t r11;

14 uint64_t r12;

15 uint64_t r13;

16 uint64_t r14;

17 uint64_t r15;

18 uint64_t rflags;

19 uint64_t rip;

20 } sgx_cpu_context_t;

Listing 3: CPU context information structure for
continue execution.
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r15. Since rsi can be controlled anyway (through r15),
and r8-r15 are temporary registers that are not typically
of interest to an attacker, this issue does not reduce the
power of continue execution reuse significantly.

As an example, continue execution can be reused
by corrupting a function pointer and hijacking it to
point to continue execution. Moreover, the attacker
needs to control rdi or, equivalently, the memory
pointed to by rdi. Given those preconditions, the
attacker can call continue execution with a fake
sgx exception info t structure and gain full CPU
context control.

In another scenario, the attacker only has stack control,
for example because of a stack overflow vulnerability. In
that case, she can apply the ORET primitive first. Since
that primitive grants control of rdi and of the instruction
pointer, the attacker can chain continue execution to
get full register control.

6.2.3 Putting the Pieces Together

In this section, we finally put the primitives together
to create the ORET+CONT loop to mount a code-reuse
attack. The loop workflow is depicted in Figure 6. The
steps of an iteration are as follows:

1. The CONT primitive is used to pivot the stack
pointer into the fake stack and execute the gadget
with controlled registers.

2. When the gadget returns, it will do so through the
fake stack. Hence, the gadget returns to asm oret,
launching an ORET primitive.

3. The ORET primitive restores the context from the
fake stack. The context is crafted to launch a CONT
primitive for the next gadget to continue the loop.

Using the ORET+CONT combination is necessary
because the attacker might want to control rdi, or the
gadget might corrupt it; therefore, chaining CONT to
CONT directly might not be possible. We discuss this
aspect further in Section 6.2.4.

We now describe in detail the fake structures that
the attacker needs to set up beforehand. Those can be
constructed anywhere in memory, as long as they are
accessible to the enclave and located at known locations.

Fake stack. The fake stack is used to chain CONT to
ORET. It is composed of a sequence of frames. Each
frame consists of the address of asm oret (properly
adjusted) followed by an ocall context t structure.
The CONT in the loop invokes a gadget with the stack
pointer set to the top of a frame in the fake stack. Just
before the gadget returns, the address of asm oret

will be at the top of the stack and will be used as the

return address. The gadget will return to asm oret,
launching an ORET primitive that will restore the context
from the frame, which is at the top of the stack after
returning. The situation is very similar to the stack layout
in Figure 5, except that stack control is achieved with
pivoting instead of a stack overflow. The context is set up
so that rdi points to the exception information structure
for the next gadget’s CONT, and the instruction pointer
is set to continue execution. This will result in a
call to continue execution which will execute the
next gadget. Note that from SDK version 2.0, the ORET
context has to set rbp properly as detailed in Section 6.2.1
to control the instruction pointer.

Fake exception information. For each gadget, the
attacker sets up a fake sgx exception info t structure
with the desired register values and the instruction pointer
set to the gadget’s address. The stack pointer is set
to the top of the next frame in the fake stack. After
continue execution is called, the gadget will be
executed with the desired register context. The return
instruction at the end of the gadget will transfer control
through the fake stack back to an ORET primitive, which
will in turn execute the next gadget’s CONT.

6.2.4 Optimizations

Gadget execution is handled by the CONT primitive,
while ORET just acts as glue to chain multiple CONTs.
However, it is possible to chain CONT to CONT directly,
without ORET, and obtain the same effect. To do this,
the attacker points rdi in the first CONT to the fake
exception information for the second CONT, and returns
to continue execution from the gadget via the fake
stack, as shown in Figure 7. The benefit is that ORETs
are no longer needed. The fake stack only contain
copies of the address of continue execution to use
them as return addresses for the gadgets. However, this
optimization ties up the rdi register: the gadget must not
use or corrupt it. Whether this optimization is applicable
depends on the gadgets that are used. For example, it
applies to the SGX-Shield exploit in Section 7.

On the other hand, if all registers needed by the gadgets
can be set via the ORET primitive, it is possible to chain
exclusively ORET primitives. In this case, the attacker
just sets up a fake stack which runs each gadget from
an ORET and makes each gadget return to asm oret.
Note that, as explained in Section 6.2.1, ORET might
or might not be able to pivot the stack depending on the
SDK version. In SDKs from 2.0 onwards, it is possible
to manipulate rsp through rbp. On earlier versions, the
stack pointer cannot be manipulated in a single call. This
is problematic when exploiting a buffer overflow: if the
stack cannot be pivoted, the whole fake stack has to be
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written to the real stack through a very large overflow.
It is still possible to pivot the stack with some additional
effort. For example, an attacker could use a single CONT
just to set rsp, and then proceed with chained ORETs.
Another strategy could be using the adjusted asm oret to
make a proper function call to the actual asm oret entry
point, which will restore the stack pointer from its first
argument.

7 Case Study: Attacking SGX-Shield
In this section, we present an attack against an enclave

hardened with SGX-Shield [26].

7.1 Overview on SGX-Shield
SGX-Shield is a hardening solution for SGX enclaves,

which integrates multiple mitigation technologies:

• Fine-grained randomization. The enclave code
is split up in 32- or 64-byte chunks, called random-

ization units, and each randomization unit is placed
at an independent, randomized memory position
aligned to its size. Randomization units are chained
by tail jumps, since they are no longer spatially
contiguous after randomization. Data objects, the
heap, and the stack are also finely randomized.

• Software DEP. Control transfers are instrumented
to enforce a W⊕X policy, i.e., writable memory
areas are not executable.

• Software Fault Isolation. Memory accesses are
instrumented to enforce an execute-only policy on
code, i.e., code cannot be read or written, but only
executed.

• Coarse-grained Control Flow Integrity. Control
transfers are instrumented to force them to target the
beginning of a randomization unit, so that checks
cannot be circumvented by jumping in the middle of
a randomization unit.

SGX does not support changing memory permissions
for memory mappings after enclave initialization. This
limitation will be lifted in SGX2 [22]. Because SGX-
Shield needs writable code pages during loading, the
enclave code will stay writable for the whole enclave’s
lifecycle. To protect against code injection, a software
DEP policy is implemented by sandboxing data accesses
inside a fixed boundary called NRW boundary.

7.2 Problems
Unfortunately, we identified significant differences

between the SGX-Shield paper [26] and the open source
implementation [25] (commit 04b09dd, 2017-09-27).
Further, there are several subtle implementation issues
that we discuss below.

According to the paper’s description, SGX-Shield
removes the loader code from memory after loading the
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guest enclave. However, this is not done in the imple-
mentation. At first sight, this problem could be dismissed
as trivial to solve. In fact, removing the code of the
loader itself is not an issue, and we pretended the loader
was erased while designing our attack. However, in the
current design, the loader supplies the tRTS for the guest
enclave. Specifically, OCALLs from the guest enclave
are supported by routing them through the loader’s tRTS.
As such, one cannot simply eliminate the loader’s tRTS.
Moreover, since the tRTS code is part of the loader and
not of the enclave, it is not randomized. Randomizing
the tRTS would require significant additional work (cf.
Section 8).

We also observed that the open source implementation
does not enforce backwards-edge CFI, i.e., the protection
of return instructions. The SGX-Shield paper describes
that backwards-edge CFI can be obtained by instrument-
ing return instructions and forcing the return address to
point to the beginning of a randomization unit. However,
without extra instrumentation, a call’s return address
will hardly be at a randomization unit boundary. If a
call is not the last instruction of a randomization unit,
then the return address will point to the middle of the
unit. On the other hand, if a call is the last instruction in
a randomization unit, then the return address will point
to the instruction immediately after the call: there is no
guarantee that such an address marks the beginning of a
unit. To achieve correctness, SGX-Shield would have to
terminate randomization units after calls, and replace the
call with a push of the address of the next randomization
unit and a jump to the call target. However, the paper does
not describe such an instrumentation for calls. As such,
we assume that backwards-edge CFI is not present.

Hence, for our exploits explained in the remainder
of this section, we do not consider backward-edge CFI
protection or the absence of the tRTS.

7.3 Exploit

We now detail the steps of our attack following the
workflow presented in Section 6.1.2. We assume that the
attacker has discovered a stack overflow vulnerability in
the hardened enclave. Moreover, we assume the SDK
version is 1.6, as this is the version targeted by the public
implementation of SGX-Shield that we consider. Note
that our attack also applies to newer SDKs as explained
in Section 6.2.1. The general idea is to use a multi-stage
exploit, i.e., utilize our new code-reuse techniques to
initiate a code-injection attack. This is possible since
SGX-Shield enclaves feature writable code pages. As
such, the exploit will be divided in two stages: the first
stage, based on code reuse, injects the second-stage
code, also known as shellcode. Once arbitrary code is
injected and executed, the attacker has full control over

the enclave. To demonstrate a proof-of-concept attack,
our shellcode extracts secret cryptographic keys from the
enclave which are used for the remote attestation process.

7.4 First Stage
Step 1: Payload preparation. The attacker
starts by determining the offsets of asm oret and
continue execution. Since they are part of the loader,
which is not randomized (see Section 7.2), those offsets
will not change at runtime. Next, for the code-injection
attack, the attacker needs a gadget to write to memory.
In general, enclaves feature a function to copy memory
(e.g., memcpy). This can be abused to overwrite enclave
code with shellcode from untrusted memory. In the case
of SGX-Shield, such a function might be randomized, or
placed in SDK libraries that are not essential for the guest
enclave and could be erased. For this reason, we decided
to use a less convenient ROP gadget from tRTS, shown
in Listing 4, located in the do rdrand function. This
gadget writes the value in eax (32 lower bits of rax) to
the address in rcx, sets eax to 1, and returns. Our chain
repeatedly invokes this gadget to write the shellcode 4
bytes at a time, followed by invocation of the shellcode.
Since the only gadget we use preserves rdi, we can
use the simplification described in Section 6.2.4 to only
chain CONTs. This is done only for simplicity: we have
tested the exploit with the full ORET+CONT loop and
confirmed it works. The address to place the shellcode at
is taken from the writable SGX-Shield code pages. Since
the shellcode will be run from a CONT primitive, the
initial register values are controlled. Hence, the shellcode
can be simplified by omitting register initialization.

Step 2: Fake structures preparation. Before ex-
ploiting the stack overflow, the attacker needs to set up
the fake data structures that will be used in the exploit.
Since this exploit uses an optimized chain with only
CONTs, its data structure layout follows Figure 7. Those
structures can be within the enclave or in the untrusted
application, depending on what the attacker has control
over. The only requirement is that these addresses are
known. The attacker starts by creating a fake stack
that contains the address of continue execution

repeated n− 1 times, where n is the number of gadgets
in the chain. A sgx exception info t structure is
set up for the shellcode, with rip set to the shellcode’s

1 mov dword ptr [rcx], eax

2 mov eax , 1

3 ret

Listing 4: Memory write ROP gadget from do rdrand in
tRTS.
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address and the other registers at the attacker’s discretion.
For each 4-byte shellcode write, the attacker sets up a
sgx exception info t structure such that:

• rax is set to the 4 code bytes that will be written.

• rcx points to the destination address for the current
4-byte code write.

• rdi points to the next sgx exception info t

structure in the write sequence; if this is the last one,
rdi points to the fake exception information for the
shellcode.

• rsp for the i-th structure points to the i-th address in
the fake stack.

• rip points to the write gadget.

Step 3: Attack execution. The attacker now trig-
gers the stack overflow vulnerability in the enclave.
She overwrites a return address with the address of
asm oret, and places a fake ocall context t structure
immediately after it. This structure has rdi set to the
address of the fake sgx exception info t structure
for the first write gadget, and ocall ret set to the
address of continue execution. This will result in
continue execution being called on that first excep-
tion information structure, which starts the chain. When
continue execution is called, it will restore the reg-
isters from the attacker’s fake exception information and
then transfer control to the address specified in the rip

field. In this case, the write gadget will be executed with
the proper rax and rcx to place 4 bytes of the attacker’s
code at the proper location. The stack pointer in the excep-
tion information was pointed to one of the addresses in the
fake stack, which are all continue execution. There-
fore, when the write gadget returns, it will transfer control
back to continue execution. Since rdi was previ-
ously pointed to the next exception information structure,
the cycle will repeat and write the next 4 bytes of code.
Once all the writes are done, continue execution will
be called to execute the shellcode.

7.5 Second Stage
The shellcode has full control over the enclave. In

our case, we extract the cryptographic keys used during
the remote attestation process through the shellcode in
Listing 5 in Appendix A. Once an attacker is in possession
of those keys, she can impersonate the enclave when
communicating with the remote server.

The keys are obtained with the EGETKEY leaf function.
This instruction takes a KEYREQUEST structure as input,
which specifies which key has to be generated. While
most of the KEYREQUEST structure can be filled out by the
attacker, some fields are not known outside the enclave.

Therefore, the shellcode has to retrieve those values
and complete the KEYREQUEST structure. This is done
by generating an enclave report via the EREPORT leaf.
This leaf requires two structures, which can be filled by
the attacker: TARGETINFO and REPORTDATA. Both the
EREPORT and the EGETKEY leafs only operate on enclave
memory, so the shellcode has to take care of copying data
in and out of the enclave. To simplify the shellcode, we
use the final CONT to initialize various registers. The
shellcode workflow is as follows:

1. The filled TARGETINFO and REPORTDATA struc-
tures are copied from attacker-controlled memory
into enclave memory, along with a partially filled
KEYREQUEST.

2. A report is generated via the EREPORT leaf.

3. The KEYREQUEST structure is completed with the
information from the report.

4. The cryptographic key is generated with the
EGETKEY leaf.

5. The key is copied from enclave memory into
attacker-controlled memory for the attacker’s
consumption.

6. The enclave exits back to the attacker’s code.

8 Discussion

We have shown that our attack based on the ORET
and CONT primitives is highly practical and poses a
severe threat to SGX enclave code. Further, our attack is
even able to undermine SGX-Shield, a strong hardening
scheme for SGX enclaves. Our exploitation technique
can be applied to a wide range of memory corruption vul-
nerabilities and significantly eases SGX exploits develop-
ment. In addition, our attack is highly portable. Due to the
combination of the two exploitation primitives, our attack
is very modular and lends itself to various simplifications
and optimizations to better fit into the concrete attack
situation. Consequently, we believe future mitigation
schemes must take into serious consideration the implica-
tions of leaving SDK code easily accessible to attackers.

Our attack also draws a parallel to Sigreturn Ori-
ented Programming (SROP) [4] in the SGX world.
SROP abuses the UNIX signal mechanism through the
sigreturn function, which restores the CPU context
after an exception. The attacker can control the CPU
context and chain together multiple sigreturn calls
to build more complex payloads. In a similar vein, our
attack abuses context-restoring mechanisms, but in the
context of SGX enclaves.
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8.1 SDK Versions and Platforms
Throughout this paper we focused on the Linux SDK

since the SDK is open source. However, we also analyzed
the Windows SDK and recognized that its low-level de-
tails are very similar to the Linux SDK. Our experiments
show that only a very small adjustment is required on
Windows: when chaining CONT to ORET, we require a
jump to the continue execution callsite rather than the
function itself. This is because the exception context is
passed inrcxon Windows - a register which is not directly
controllable through ORET. However, at the callsite, rcx
is set based on values that can be controlled via ORET.

While analyzing the low-level internals of our prim-
itives in the Linux SDK, we also noticed several differ-
ences between SDK versions that influence our exploits:

• Setting the instruction pointer in asm oret differs
before and after version 2.0. However, the ORET
primitive is still usable in both cases.

• In SDK version from 2.0 onwards, asm oret per-
forms some additional operations before restoring
the registers. Thus, the instructions that have to be
skipped differ.

• In SDKs prior to 1.6, continue execution suffers
from a bug that results in registersr8 tor15not being
set properly. Those registers are not highly relevant
for executing our attack. Further, 1.6 (released in
2016) has been superseded by newer SDK versions.

8.2 SGX-Shield
Our attack against SGX-Shield exploits the lack of

randomization of the tRTS. We argue that simply random-
izing the SDK is not a trivial task for several reasons: first,
fine-grained randomization of the tRTS likely requires
manual intervention. Parts of the tRTS code are hand-
written assembly, which likely requires manual splitting
of the randomization units. The SDK should be made part
of the guest enclave, and randomized together with the
other guest’s code. The loader would have its own copy
of the SDK, as it is still a proper SGX enclave. The tRTS
in the SDK provides the entry point code, from which the
enclave starts executing when entered through EENTER.
Initially, the entry point would be from the loader’s
tRTS. After the guest is loaded, the entry point has to be
switched over to the guest’s tRTS. The entry point address
is specified in the TCS, which cannot be modified after
the enclave has been initialized. Thus, SGX-Shield would
have to patch its own entry point to act as a passthrough
for the guest’s entry point before wiping out the loader.
The guest’s SDK state would also need to be properly
initialized. The cost of those extensions would be a
slightly longer startup time, as they are just additions to

the loading phase. We expect the runtime overhead of the
extra entry point indirection to be completely negligible.

Our attack also exploits the backwards-edge CFI
issues in SGX-Shield to hijack the control flow. The
arms race between CFI defenses and attacks is still
ongoing [9, 10, 11]. Hence, we believe that even in the
presence of backward-edge CFI, a skilled attacker could
still be able to launch our exploit, although the reusable
code base has been reduced.

On another note, we argue that the current Software
Fault Isolation scheme deployed in SGX-Shield can
be undermined by our attack. SGX-Shield enforces an
execute-only policy on code by instrumenting memory
accesses. To do so, it keeps the so-called NRW boundary
between execute-only code and read-write data. Every
memory access is instrumented, so that code, which
is above the NRW boundary, cannot be accessed. The
boundary is kept in a fixed register (r15), initialized
before launching the guest enclave. Since our attack can
control this register, the NRW boundary can be shifted,
thus disabling SFI.

8.3 Countermeasures

We now propose two complimentary mitigations to
stop our attack. On the one hand, we suggest hardening
measures for the SDK. On the other hand, we discuss
considerations for designing hardening schemes.

The first avenue to mitigate our attack is hardening
the SDK. A common strategy to make crafting fake
structures harder is to integrate a secret value into the
structures. The secret is then checked at runtime before
performing any operation on the structure. Since the
attacker does not know the secret, she cannot craft valid
structures. This approach, however, can be defeated if the
attacker exploits an information leakage vulnerability to
read the secret from a valid structure. Moreover, in our
attack scenario, the developer has to be careful that the
check cannot be skipped by jumping over it. This method
is therefore weak and error-prone.

A better method is mangling the data within the
structure. The contents are stored combined with the
secret in a reversible way, e.g., via XOR. The attacker
would have to know the secret to craft data that, when the
mangling is reversed, produces a valid structure. Leaking
is also more difficult. For example, when using XOR,
the attacker not only has to leak the mangled data, but
also know the unmangled data to recover the secret. This
method is much stronger than just embedding a secret,
and its overhead would be negligible in our case, as the
structures we target are not accessed very often.

The second mitigation avenue is taking the SDK code
base into serious consideration when designing hard-
ening schemes. Specifically, we focus on the problems
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we raised with SGX-Shield. The first step would be
providing fine-grained randomization for the SDK and
solving the backwards-edge CFI issue (cf. Section 7.2).
Moreover, the NRW boundary has to be stored at a less
accessible location. We propose the thread-local storage.
This memory area is accessed via a segment selector,
which cannot be altered with our attack. However,
the performance implications of this choice have to be
evaluated, as it would cause an extra memory access for
each instrumented access.

9 Conclusion and Summary
Intel Software Guard Extensions (SGX) is a promising

processor technology providing hardware-based support
to strongly isolate security-critical code inside a trusted
execution environment called enclave. Previous research
has investigated side-channel attacks against SGX or
proposed sophisticated SGX-enabled security services.
However, to our surprise, memory corruption attacks
such as return-oriented programming (ROP) are not
yet well understood in the SGX threat model. In fact,
recently presented ROP attacks against SGX rely on a
strong adversarial setting: possessing kernel privileges,
frequently crashing enclaves, and assuming a constant
memory layout. In this paper, we systematically explore
the SGX attack surface for memory corruption attacks.
In particular, we present the first user-space memory
corruption attack against SGX. Our attack undermines
existing randomization schemes such as SGX-Shield
without requiring any enclave crashes. To do so, we
propose two new exploitation primitives that exploit
subtle intrinsics of SGX exception handling and the in-
teraction of enclave code to its untrusted host application.
Furthermore, given a memory corruption vulnerability,
our attacks apply to any enclave developed with the Linux
or Windows Intel SDK for SGX. As we argue, building
randomization-based defenses for SGX enclaves is
challenging as it requires careful support of SDK library
code and additional protection of SGX context data.
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Appendix A: Shellcode

1 ; Initial register state:

2 ; rax = 0 (EREPORT leaf)

3 ; rbx = EEXIT return address

4 ; rcx = 512+512+64

5 ; (total size of structures )

6 ; rdx = writable 512- byte aligned enclave

7 ; area for temporary data

8 ; rdi = writable 512- byte aligned enclave

9 ; area to copy structures into

10 ; rsi = address of attacker ’s KEYREQUEST +

11 ; TARGETINFO + REPORTDATA

12 ; rbp = address of attacker ’s key buffer

13 ; rsp = writable area for shellcode stack

14 push rbx

15 push rdi

16 ; Copy KEYREQUEST , TARGETINFO ,

17 ; REPORTDATA to enclave memory

18 rep movsb

19 ; EREPORT

20 lea rcx , [rdi -64]

21 lea rbx , [rcx -512]

22 enclu

23 ; Copy report ’s ISVSVN to KEYREQUEST

24 pop rbx

25 mov ax, [rdx +258]

26 mov [rbx+4], ax

27 ; Copy report ’s CPUSVN to KEYREQUEST

28 vmovdqa xmm0 , [rdx]

29 vmovdqu [rbx+8], xmm0

30 ; Copy report ’s KEYID to KEYREQUEST

31 vmovdqa ymm0 , [rdx +384]

32 vmovdqu [rbx+40], ymm0

33 ; EGETKEY

34 push rdx

35 pop rcx

36 mov al, 1

37 enclu

38 ; Copy key to attacker ’s memory

39 movdqa xmm0 , [rdx]

40 movdqu [rbp], xmm0

41 ; EEXIT to attacker ’s code

42 pop rbx

43 mov al, 4

44 enclu

Listing 5: Shellcode for cryptographic key extraction (74
bytes).
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