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Abstract

We investigated the guinea pig, Cavia porcellus, as a model for Alzheimer’s disease (AD), both in terms of the conservation
of genes involved in AD and the regulatory responses of these to a known AD risk factor - high cholesterol intake. Unlike
rats and mice, guinea pigs possess an Ab peptide sequence identical to human Ab. Consistent with the commonality
between cardiovascular and AD risk factors in humans, we saw that a high cholesterol diet leads to up-regulation of BACE1
(b-secretase) transcription and down-regulation of ADAM10 (a-secretase) transcription which should increase release of Ab
from APP. Significantly, guinea pigs possess isoforms of AD-related genes found in humans but not present in mice or rats.
For example, we discovered that the truncated PS2V isoform of human PSEN2, that is found at raised levels in AD brains and
that increases c-secretase activity and Ab synthesis, is not uniquely human or aberrant as previously believed. We show that
PS2V formation is up-regulated by hypoxia and a high-cholesterol diet while, consistent with observations in humans, Ab
concentrations are raised in some brain regions but not others. Also like humans, but unlike mice, the guinea pig gene
encoding tau, MAPT, encodes isoforms with both three and four microtubule binding domains, and cholesterol alters the
ratio of these isoforms. We conclude that AD-related genes are highly conserved and more similar to human than the rat or
mouse. Guinea pigs represent a superior rodent model for analysis of the impact of dietary factors such as cholesterol on
the regulation of AD-related genes.
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Introduction

Murine models of Alzheimer’s disease (AD) have played an

important role in providing significant insight into mechanisms

underlying disease pathogenesis and are still currently the most

commonly used for pre-clinical drug screening. Rodent models

themselves are poor natural models of AD and do not exhibit

pathological hallmarks of the disease [deposition of beta amyloid

(Ab) and aggregation of tau as neurofibrillary tangles], partly due

to differences in Ab and tau species and aggregation states of these

proteins. Thus, transgenic models, expressing familial AD (FAD)

associated mutations in key components of Ab metabolism [i.e.

amyloid precursor protein- APP and/or presenilins (PS) genes) and

tau (MAPT)] have been developed [reviewed in [1]]. The

relevance of these models to the more common late onset AD

(LOAD) which is associated with a complex aetiology, maybe

questioned. Further, limitations of the murine models associated

with transgene expression [2], differences in genetic background

[3] and confounding issues with the presence of both human and

endogenous murine Ab and tau [4], has prompted growing

interest in further investigating non-transgenic animal models,

such as the guinea pig (Cavia porcellus).

To date, the presence of neurofibrillary tangles or compact

senile plaques has not been reported in the guinea pig brain. A

recent report has showed that the closely related Octodon degus

exhibits an age dependent accumulation of these neuropatholog-

ical markers of AD [5], suggesting that guinea pigs may show

similar age related changes, however comprehensive ageing

studies in guinea pig are lacking. Nevertheless, studies revealing

that APP in guinea pig is highly conserved with that of humans

and that the Ab sequence is identical [6], [7] prompted the use of
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this rodent model in assessing amyloid lowering therapeutics [8],

[9], [10], [11] and hormonal regulation of Ab metabolism [12],

[13], [14].

Guinea pigs are also an excellent non-transgenic animal model

in which to study the mechanism underlying the effects of

cardiovascular risk factors, nutrition and drug interventions on

AD-like pathology as they are the only small animal model that

closely mimics human lipoprotein and cholesterol metabolism

[15]. In contrast to other rodents and most species used for

studying lipid metabolism, guinea pigs carry the majority of their

plasma cholesterol in LDL, the atherogenic lipoprotein, similar to

humans making them a unique animal model with which to study

cholesterol and lipoprotein metabolism [15]. They are also

excellent models to evaluate dietary interventions as they show

aortic plaque accumulation when challenged with a hypercholes-

terolemic diet [15], [16], [17].

The guinea pig has not been widely used to assess the impact of

dietary interventions on AD related pathology, such as Ab
accumulation. One possible reason for the guinea pig not being

widely used in such studies is that apart from APP and Ab, the
conservation of AD-related genes and their regulatory responses to

major risk factors involved in AD, has not been thoroughly

explored. Considering this we investigated whether certain AD

genes, particularly those involved in APP and Ab metabolism, are

conserved in guinea pigs and we assessed the regulation of these

genes under conditions of the major risk factor - high dietary

cholesterol intake.

Methods

Ethics Statement
This study was carried out in strict accordance with the

recommendations in the Australian code of practice for the care

and use of animals for scientific purposes of the National Health

and medical research Council (NHMR&C). The protocol was

approved by the Committee on the Ethics of Animal Experiments

of Edith Cowan University (Approval number 05-A17). The

guinea pigs were anaesthetised with isoflurane prior to euthanasia.

All efforts were made to minimise suffering.

Sequence Alignments of AD-related Genes
To analyse the sequential similarity of AD-related genes in

human and rodent models, blastp analysis was performed, using

the NCBI blast engine (http://blast.ncbi.nlm.nih.gov/Blast.cgi?).

Default parameters were used, with the exception that a gap

existence penalty of 10 and a gap extension penalty of 1 were

applied. The Sequence Similarity Score was calculated as shown

at http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.

html and was the main parameter used to judge conservation

between the human AD-related genes and their orthologues in

rodent models.

Animals
Sixteen male Hartley guinea pigs weighing 500 to 600 g were

obtained from the Biological Sciences Animal Unit at the

University of Western Australia (Perth, WA, Australia). At the

beginning of the study, animals were randomly assigned to one of

two experimental groups, a control diet, and a high-cholesterol

diet for 12 weeks.

Guinea pigs were housed in a controlled environment at 22uC

on a 12 hour day/night cycle (light from 0700 to 1900 h). Diet and

water were consumed ad libitum. The guinea pigs were weighed

before and during each week of the study to monitor their health.

Compared to animals fed the control diet, no significant changes

were observed in food consumption or body weight of animals fed

the cholesterol diet (Figure S1).

For analysis of the response of PS2V to a hypoxia mimetic in

guinea pig brains, brains from three culled adult guinea pigs were

collected from the colony maintained by the Veterinary Services

Division of IMVS Pathology in Adelaide. Brains were divided into

left and right halves before cutting into small (#1 mm diameter)

pieces and incubation for 6 hours in either DMEM medium plus

FCS or this medium containing 100 mM NaN3 followed by

mRNA extraction and qPCR (see below). The same procedure

was used to test for PS2V formation in an adult mouse brain

collected from another research project at The University of

Adelaide.

Diets
The research diets were prepared and pelleted by Specialty

Feeds (Glen Forrest, WA, Australia). The control diet consisted of

0.25% cholesterol, 34% fat, 25% protein and 41% carbohydrate

(Table S1). This cholesterol diet has commonly been used in

guinea pigs to cause hypercholesterolemia and induce atheroscle-

rotic plaque accumulation [16], [17], [18], [19]. This amount of

dietary cholesterol corresponds to an absorbed amount equal to

1.5 times the daily cholesterol synthesis rate in guinea pigs [18]

and is the equivalent to 1,875 mg cholesterol per day in the

human situation. The control diet used consisted of 0.01%

cholesterol, 34% fat, 25% protein and 41% carbohydrate. Both

the cholesterol and control diets contained the same macronutri-

ent composition and differed only in the cholesterol content. The

experimental diets were weighed daily to monitor food intake.

Tissue Collection and Sample Preparation
Guinea pigs were euthanized under isoflurane vapours and

blood was obtained via cardiac puncture. Serum and cerebrospi-

nal fluid (CSF) samples were collected and stored at 280uC for

subsequent analysis of CSF and serum cholesterol. Animals were

transcardially perfused with phosphate-buffered saline (PBS) with

heparin (10 IU/mL) and the brains collected and snap frozen in

liquid nitrogen. The dissected brain sections for protein analysis

were homogenized in 1:3 in PBS, pH 7.4 containing protease

inhibitor cocktail tablets (Roche Diagnostics, Castle Hill, NSW,

Australia) as described previously [20]. Protein concentrations

were determined using a bicinchoninic acid (BCA) protein assay

kit (Pierce, Rockford, IL, USA).

Measurement of Ab by ELISA
A sensitive double-antibody sandwich ELISA was used for the

detection and measurement of brain and CSF Ab. Brain

homogenates were diluted 1:10 with tissue homogenisation buffer,

pH 7.4 (250 mM sucrose, 20 mM Tris-HCl, 1 mM EDTA,

1 mM EGTA) and Ab extracted from brain homogenates with

0.4% diethylamine (DEA), 100 mM NaCl [21]. CSF samples were

also diluted 1:10 with PBS, prior to analysis. The Ab ELISA assay

was performed as previously described by Mehta et al. [22].

Briefly, brain and CSF Ab levels were measured in prepared

samples (100 mL) using monoclonal antibody WO2 as the capture

antibody, with rabbit antiserum R208 (specific for Ab40), kindly

provided by Dr. Pankaj Mehta (NYS Institute for Basic Research,

Staten Island, NY, USA) used as the detection antibody.

Cholesterol Analysis
Serum cholesterol concentrations were determined using the

Amplex Red Cholesterol kit (Molecular Probes, Leiden, Nether-

lands). Serum samples were assayed in duplicate using black 96-
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well plates. Plates were incubated in the dark for 30 min at 37uC

and read using a FLUOstar OPTIMA multi-detection microplate

reader (BMG Labtech Inc, Offenburg, Germany) at an absorp-

tion/emission spectrum of 560 nm/615 nm. The cholesterol

concentrations of the samples were calculated from a cholesterol

standard curve.

Quantitative RT-PCR Analysis of ADAM10, BACE1 and
PS2V Transcripts
Total RNA was extracted from frozen Guinea pig brain tissues,

using Qiagen RNeasy Lipid Tissue Mini Kit (Cat No. 74804). The

quality of extracted total RNA was assessed on 1% agarose gel and

the quantity was determined spectrophotometrically using the

Nano-spectrum instrument (Thermo Fisher Scientific). First strand

cDNA was synthesised following the production manual, using

Bioline cDNA synthesize Kit (Cat No. Bio-65025), and was stored

at 220uC for future PCR.

The relative standard curve method for quantification was used

to determine the expression of experimental samples compared to

a basis sample. For experimental samples, target quantity was

determined from the standard curve and then compared to the

basis sample to determine fold changes in expression. Gene

specific primers were designed for amplification of target cDNA

(Table 1) and the cDNA from the ubiquitously expressed control

gene RPS-16. The reaction mixture consisted of 50 ng/ml of

cDNA, 18 mM of forward and reverse primers and Power SYBR

green master mix PCR solution (Applied Biosystems, Foster City,

USA).

To generate the standard curve cDNA was serially diluted

(100 ng, 50 ng, 25 ng, 12.5 ng). Each sample and standard curve

reaction was performed in triplicate for the RPS-16 gene and

experimental genes. Amplification conditions were 2 min at 50 uC

followed by 10 min at 95 uC and then 40–45 cycles of 15 s at 95

uC and 1 min at 60 uC. Amplification was performed on an ABI

7000 Sequence Detection System (Applied Biosystems, Foster city,

USA) using 96 well plates. Cycle thresholds obtained from each

triplicate were averaged and normalized against the expression of

RPS-16. Each experimental sample was then compared to the

basis sample to determine fold changes of expression. Each

experiment was conducted three times and triplicate PCRs were

performed for each sample.

Sequence Prediction of Guinea pig Mapt and Subsequent
RT-PCR Analysis
To predict the full sequence of guinea pig Mapt, tblastn analysis

against guinea pig ESTs and genomes was performed, using

human Mapt protein sequence as a query. The resulting fragments

were then assembled based on overlapping sequence and their

genomic location guided by information in the guinea pig Ensembl

genome browser (http://www.ensembl.org/). RT-PCR was per-

formed to identify 3R and 4R or 0N, 1N and 2N transcripts of

Mapt using primer pairs outlined in table 1. The PCR products

were then examined on 1% agarose gel and sequenced.

Statistical Analyses
Means and standard deviations were calculated for all variables

using conventional methods. A students t-test was used to evaluate

significant differences among the two groups of animals for the Ab

levels in the CSF and brain, levels of BACE1, ADAM10 and,

PSEN2 and PS2V transcripts and serum cholesterol levels. Raw p

values, degrees of freedom and t values are shown within the figure

and figure legend. All values represent mean 6 SEM of 8 animals

per group. A criterion alpha level of P,0.05 was used for all

statistical comparisons. All data were analysed using SPSS version

15.0 (SPSS, Chicago,IL).

Results

Sequence Similarities of AD-related Genes between
Human, Mice Rats and Guinea Pig
Although, the sequence identity of guinea pig Ab to that of

human has been well established [(Figure 1, [7], [6])], genetic

similarities with other AD related proteins have not been well

documented. Therefore, we investigated the similarities of AD-

related proteins between common rodent models (i.e. guinea pigs,

mice and rats) and humans. These included, the Ab parent

molecule, APP and its processing enzymes, b-APP CLEAVING

ENZYME 1 (BACE1) and A DISINTERGRIN AND METAL-

LOPROTEINASE 10 (ADAM10); two critical components of the

mutli-subunit c-secretase enzyme, PRESENILIN1 (PSEN1), and

PRESENILIN2 (PSEN2), Ab clearance proteins APOLIPOPRO-

TEN E (APOE) and INSULIN DEGRADING ENZYME (IDE)

and the component of neurofibrillary tangles, MICROTUBULE

Table 1. Forward and reverse primers used for the qRT-PCR of ADAM10, BACE1, PSEN2, PS2V and MAPT transcripts.

Gene Forward Primer Reverse Primer

RPS16 59-AGACAGCTACAGCCGTGGCACAT-39 59-CAGAAGCAGAACAGGCTCCAGTAACTT-39

ADAM10 59-GTGATCGCCCAGATATCCAGT-39 59-GAACCCCATCATCAAAGTCTCG-39

BACE1 59-GAGATCGCCAGGCTCTGTG-39 59-CCACGATGCTCTTGTCATAGTTG-39

PS2V (RT-PCR) 59-ACGGTCAGCTTCATCCAG-39 (in Psen2 exon 3) 59-TCAGGAAGAGCGTGGGGTAA-39 (in Psen2 exon 7)

PSEN2 (qPCR) 59-CCGCTGCTACAAGTTCATCCA-39 59-CCACGTTGTAGGTCTTGAGCACT-39

PS2V (qPCR) 59-GCTTTCATCCACGGCTG-39 (spans Psen2 exon 4/6
junction)

59-CCGAGGTAGATGTAGGTGAAC-39 (in Psen2 exon 6)

MAPT (RT-PCR for 3R and 4R) (59-ACTCCACCCAAATCACCCTCCTC-39) (59-TTGATGCTGCCAGTGGAAGAGAC-39)

MAPT (RT-PCR for 0N, 1N and 2N) (59- TTCTCCTCCACTGTCCTCTTCTG-39) (59- GTGTCTCCAATGCCTGCTTCTTC-39)

MAPT (qPCR for full length) 59-TCCACCGAGAACCTGAAGCA-39 59-GATGTTGCCTAGCGAGCGG-39

MAPT (qPCR for 3R) 59-GGAAGGTGCAAATAGTCTACAAACC-39 59-CGCTCGCTAGGCAACATCTC-39

MAPT (qPCR for 4R) 59-TAGCAACGTCCAGTCCAAGTGT-39 59-CGCTCGCTAGGCAACATCTC-39

Note that guinea pig exon designations are according to the cognate exons in human since annotation of the guinea pig genome sequence is currently rudimentary.
doi:10.1371/journal.pone.0066235.t001
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ASSOCIATED PROTEIN TAU (MAPT). For each protein, a

‘‘pblast’’ test was performed to compare sequence similarities

between guinea pigs, mice or rats and humans. The ‘‘Sequence

Similarity Score’’ was used as the main parameter to determine

the level of sequence similarity. Results from the analysis are

shown in Table 2. As expected, all three rodents mostly show very

similar levels of sequence similarity of AD-related genes to their

human orthologues (See Table 2). However, this is not the case for

Psen1 where guinea pig Psen1 shows 96% identity to human

PSEN1 but the mouse and rat proteins show 92% and 93%,

respectively. PSEN1 is the major FAD locus in humans and over

200 mutations are known to affect different amino acid residues

(aa). For this reason up to a 4% difference in sequence identity for

this 467 aa protein may well be significant in terms of function.

Alignment of the PSEN1 protein sequence of rat, mouse and

guinea pig to that of human PSEN1 (Figure 2) reveals a number of

residues throughout the protein that are conserved in guinea pigs

but not rats or mice. These residues appear to be concentrated

within the N-terminus and large hydrophilic loop. Of the 100

residues in the PSEN1 protein in which FAD associated missense

mutations occur, only one residue (serine) is conserved in guinea

pigs but not conserved in, mice or rats. The mutation affecting this

residue, S212Y, occurs in transmembrane 4 and has recently been

identified in a family with FAD and shown to be associated with

increased brain amyloid load, brain hypometabolism and

increased Ab42 production [23].

The PS2V Marker of AD Pathogenesis is not Unique to
Humans
The analysis of overall sequence similarity shown in Table 2 can

conceal important differences in isoform formation generated by

alternative splicing. An example of this is the splice donor sites

present in exon 3 of human PSEN1 which result in variants that

differ in a four amino acid (VRSQ) motif [24]. The presence or

absence of this motif at the 39 end of exon 3 affects the binding of

the GDP dissociation inhibitor that recycle rab GTPases

important for vesicle trafficking [25]. The donor splice site is not

conserved in mice, resulting in the inability of the motif to be

alternatively spliced leading to only the longer isoform of PS1. The

imbalance of longer to shorter PSEN1 isoforms has been

speculated to lead to differences in Ab production [25].

This prompted us to investigate whether there are species

differences in isoforms of PSEN2, resulting from alternative

splicing. A normal truncated PSEN2 isoform ‘‘PS2V’’ was

identified by Sato and colleagues [26] and has implications in

AD, since it shows increased expression in AD brains and up-

regulates Ab production [27], [28]. Human neuronal cells under

oxidative stress induce expression of the HIGH MOBILITY

GROUP AT-HOOK 1 (HMGA1) protein [29], [30]. This binds

to specific sites within exon 5 of human PSEN2 transcripts leading

to exclusion of exon 5 and ligation of exon 4 and exon 6

sequences. The ligation of exon 4 to exon 6 sequences results in a

frameshift that terminates the open reading frame in exon 6 and

results in translation of a truncated PSEN2 protein isoform named

PS2V (Figure 3 A and B).

Sequence alignment analysis of the HMGA1 binding site on

PSEN2 in human, mouse, rat and guinea pig and other mammals

revealed that this sequence is completely conserved in guinea pigs

but not conserved in mice and rodents (Figure 3). Consistent with

this, we were unable to detect PS2V transcript formation in PC12

(rat pheochromocytoma) cells and mouse brain following treat-

ment with NaN3 to mimic hypoxia (see Materials and Methods,

data not shown), supporting that HMGA1a could not bind to the

PSEN2 transcripts of these rodents to cause alternative splicing. To

test for PS2V formation in guinea pigs we extracted mRNA from

guinea brains exposed to NaN3 and then RT-PCR was conducted

using primers amplifying cDNA spanning exons 3 and 7 of Psen2.

This revealed the presence of a smaller cDNA fragment predicted

from exclusion of exon 5 sequence (Figure 3D). qPCR using a

primer binding over the exon 4/6 junction (and so amplifying only

PS2V cDNA) showed that hypoxia mimicry significantly increases

PS2V transcript levels (Figure 3E).

PS2V is Up-regulated by the AD Risk Factor Cholesterol
Intake
Unlike rats and mice, guinea pigs metabolise cholesterol in very

similar manner to humans. Since high cholesterol intake is a risk

factor for AD and guinea pigs possess the AD marker PS2V, we

examined whether PS2V levels are affected in the presence of this

Figure 1. Amino acid residue sequence alignment of Ab in humans and that predicted for guinea pig, rat and mouse. Black shading
indicates identical residues. Red box represents residues from mouse and rat Ab that differ from those in human and guinea pig Ab sequences.
doi:10.1371/journal.pone.0066235.g001
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risk factor. Guinea pigs were fed a normal diet or a cholesterol diet

for 12 weeks. Serum cholesterol concentrations were significantly

increased in the cholesterol group compared to the control group

(7.164.9 vs. 3.661.4 mMol/L respectively, p = 0.0017) at the

completion of the 12 week intervention, confirming the effect of

the cholesterol diet. To examine relative full length PSEN2 and

PS2V levels we then extracted mRNA from the frontal cortex and

cerebellum for synthesis of cDNA followed by qPCR (Figure 4 A

and B). Compared to control, full length PSEN2 transcript levels

increased ,2 fold in both regions. The increase in PSEN2

expression is consistent with previous findings where human

neuroblastoma cells were exposed to LDL-cholesterol [31].

However, we show dramatic increases in PS2V levels were

observed where levels increased 4 fold and 6 fold in the frontal

cortex (A) and cerebellum (B), respectively compared to control fed

animals. The impact of cholesterol on PS2V levels was above that

seen for PSEN2 levels (p,0.01, and p,0.001 compared to PSEN2

levels in cholesterol fed animals).

Ab and Genes Involved in Ab Synthesis are Up-regulated
by High Cholesterol Intake
Forced expression of PS2V in neuroblastoma cells increases c-

secretase activity and cleavage of Ab from APP [27]. Also,

increases in dietary cholesterol are known to correlate with higher

Ab cerebral load and changes in the APP processing enzymes

BACE1 and ADAM10 [32], [33], [34], [35], [36]. Therefore, we

tested whether increased cholesterol intake also affects the levels of

Ab, ADAM10 and BACE1 in guinea pig brains. Ab was assessed

by measuring levels in the cerebrospinal fluid (CSF), frontal cortex

and cerebellum. Analysis of CSF Ab40 levels showed a significant

increase in Ab40 in the cholesterol group compared to the control

group (Figure 5A). Analysis of cerebral Ab40 levels showed a

significant increase in the frontal cortex for the HC group

compared to the control group. There were no differences

observed in the cerebellum between groups (Figure 5B). Quanti-

tative RT-PCR (qRT-PCR) was used to assess BACE1 or

ADAM10 expression levels. Results show that BACE1 transcript

levels were significantly increased (Figure 6 A, B) and ADAM10

levels significantly reduced (Figure 6 C, D) in frontal cortex and

cerebellum from guinea pigs fed the HC diet compared to those

fed the control diet.

Overall, our findings indicate that cholesterol supplementation

to guinea pigs up-regulates, PS2V, BACE1 and down-regulates

ADAM10 expression, consistent with promoting Ab production.

Analysis of Mapt Transcripts in Guinea Pig Brain
Although NFTs are also present in other dementias, they are

still an important correlate of AD pathology and tau (MAPT) is a

component of a toxic triad thought to mediate Ab neurotoxicity

[37], [38]. The strict regulation of Mapt transcriptional splicing,

especially the maintenance of a 1:1 ratio of the 3R and 4R

isoforms (derived from the alternative splicing of Exon10 of the

human Mapt) has been considered to play an important role in

normal MAPT function. Disturbance of the 3R/4R ratio of

MAPT has been evident in neurodegenerative diseases such as

Frontotemporal dementia (FTD), Corticobasal degeneration

(CBD), Progressive supranuclear palsy (PSP) and AD. In human

brain, six MAPT isoforms are generated through alternative

splicing of Exon 2, 3 and 10 (Figure 7A). The alternative splicing

of exon 10 yields two groups of MAPT isoforms with either 3 or 4

microtubule-associate repeats on the C-termini of the protein.

Alternative splicing of exon 2 and 3 yields Mapt isoforms with 0

(0N), 29(1N) or 58 (2N) amino acids. Mapt expression in mouse is

notable for its lack of an isoform with 4 tubulin-binding repeats

(4R) indicating that simple protein aa identity may be a poor

indicator of conservation of protein function. Therefore, we sought

to analyse the isoforms that could be produced by the guinea pig

Mapt gene.

The number of tau (MAPT) isoforms present in guinea pig brain

has not been widely investigated, most likely due to the full

sequence of the Guinea Pig Mapt yet to be determined. For

sequence analysis we used the predicted sequence of Guinea pig

Mapt based on protein sequence alignments, using Guinea pig

ESTs (http://blast.ncbi.nlm.nih.gov) and the Ensembl database

(http://www.ensembl.org/) and Genome sequence database. As

this is a predicted sequence, the true similarity scores may not be

accurately reflected. The predicted guinea pig MAPT sequence

shows a similar degree of identity to human MAPT as do those of

the other rodents (Table 1). We investigated the presence of Mapt

transcripts in guinea pig brain by RT-PCR. Two primer pairs

were, Gtau0F/4R and Gtau10F/14R were designed, targeting the

corresponding region of human exon 2 and 3 and the tubulin-

binding repeats domains in Guinea Pig Mapt, respectively (see

Figure 7A). Using these primers in RT-PCR of mRNA isolated

from guinea pig brain, we observed the presence ,600 bp and

500 bp transcripts corresponding to 3R and 4R repeats (Figure 7B)

and a single transcript at ,300 bp, corresponding to the 1N

isoform.

Having identified the presence of MAPT transcripts in guinea

pig brain, the impact of cholesterol on total, 3R or 4R MAPT

transcripts was assessed. Quantitative PCR analysis of frontal

cortex, revealed ,5 fold increase in total MAPT levels in

cholesterol fed guinea pigs, compared to animals fed a normal

diet (Figure 8A). Transcript levels of MAPT3R significantly

increased (Figure 8B), whilst no change was observed for

MAPT4R transcripts (Figure 8C), resulting in an increase in the

3R/4R ratio (Figure 8D). Overall, the results show that although

guinea pigs do not contain all isoforms of MAPT, unlike mice,

[39], they contain 3R MAPT transcript which is up-regulated

under cholesterol fed conditions.

Table 2. Sequence Similarity Comparison of AD-related proteins, between Humans and species of rodent: Sequence Similarity
Scores and Sequence Identity (%) shown for each gene.

APP PSEN1 PSEN2 BACE1 ADAM10 APOE IDE MAPT*

Guinea Pig 1269 (97%) 759 (96%) 761 (96%) 1001 (97%) 1316 (96%) 416 (70%) 1880 (97%) 655 (90%)

Mouse 1261 (97%) 740 (93%) 764 (96%) 1009 (96%) 1308 (96%) 442 (71%) 1848 (96%) 652 (89%)

Rat 1269 (97%) 743 (92%) 745 (95%) 1010 (96%) 1313 (96%) 410 (70%) 1849 (96%) 660 (90%)

*The MAPT sequence of guinea pig was predicted.
doi:10.1371/journal.pone.0066235.t002

The Guinea Pig as a Model for AD

PLOS ONE | www.plosone.org 5 June 2013 | Volume 8 | Issue 6 | e66235



Discussion

Guinea Pigs Show Closer Sequence and Isoform Similarity
of AD Genes to Humans, than do mice and Rats
In the current study, in addition to comparing the sequence

homology of APP and Ab in human and the rodent species, mice,

rats and guinea pigs, analysis was extended to other AD genes or

genes that have been implicated in Ab metabolism and clearance.

All three rodents showed very similar levels of sequence similarity

of APP to their human orthologue (97%). Analysis of IDE,

ADAM10 and BACE1 also showed similar levels of sequence

identity (96/97%), whereas APOE showed only 70% identity.

Analysis of PSEN1 revealed that guinea pig PSEN1 showed 96%

identity to human PSEN1 but the mouse and rat proteins showed

92% or 93%, respectively. The up to 4% difference in sequence

identity between human and rodent may have significant

implications in presenilins function and AD related neurodegen-

eration. This is highlighted by a recent study that analysed the

human and mouse brain transcriptome and identified significant

differences in transcriptional patterns in AD related genes between

human and rodents [40]. Of particular note in that study was that

PSEN1 was highly correlated with oligodendrocyte markers only

in human brain tissue [40]. Oligodendrocytes are important in

axon myelination, where a dysfunction of these cells leads to

disruptions in neuronal communication network and neuronal

degeneration. This close association of human PSEN1 with

oligodendrocyte function may help to explain, in part, significant

differences in neurodegeneration observed in human AD brain

compared to those observed in mouse models.

A comparison of human PSEN1 sequence with that of rat, mice

and guinea pig showed that this sequence divergence was mainly

within the N-terminus and the hydrophilic loop. The residues

within the transmembrane domains remain relatively conserved

amongst guinea pigs, rats and mice. This is not surprising as these

domains have been shown to be important in c-secretase activity

[41], [42], [43], [44], [45]. However, the N-terminal domain and

the hydrophilic loop also exhibit important functions. The large

hydrophilic loop has been shown to differentially regulate c-
secretase activity on APP and Notch [46] and is also important for

c-secretase-independent functions of the presenilins by interacting

with proteins involved in intracellular trafficking [Rab11, [47]],

cell-cell adhesion [48], anchoring of membrane proteins to the

cytoskeleton [actin-binding protein 280, [49]] and synaptic activity

[syntaxin 1A, [50]]. The N-terminal domain has been shown to be

important in the formation of PS1 isoforms as a result of

alternative splicing, which can impact on activity [25]. The

interactions and activities of these domains and the formation of

alternative protein isoforms are most likely to be conserved in

those species showing greater sequence identity.

In contrast to PSEN1, analysis of PSEN2 revealed similar levels

of sequence identity between human PSEN2 and the PSEN2

genes of mice, rats and guinea pigs. For the first time we

demonstrate the presence of transcripts of the PS2V isoform in the

guinea pig brain. As discussed below, this has important

implications in AD as evidence is mounting that PS2V may play

an important role in modulating Ab metabolism under conditions

of hypoxia/oxidative stress.

Guinea Pigs, a more Suitable Small Animal Modelling the
Impact of Cholesterol Loading on AD Related Proteins
Studies utilising animal models of AD, including rabbits [32],

[33] and transgenic mice, [34], [35], [51] have all shown a strong

correlation between serum cholesterol levels and cerebral Ab
production. Our results demonstrate a similar correlation in

Figure 2. Amino acid residue sequence alignment of human
PSEN1 and that predicted for guinea pig, rat and mouse.
Residues that are conserved in human and guinea pig but not in the rat,
mouse or both are shaded in blue. Rodent residues not conserved in
humans are shaded in black. Residues known to be mutated in FAD in
human PSEN1 are shown in red text. Only one residue is conserved in
guniea pigs (but not mice and/or rats) that is mutated in FAD (S212Y).
doi:10.1371/journal.pone.0066235.g002
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guinea pig brain. We showed that, in guinea pigs, cholesterol up-

regulates BACE1 and down-regulates ADAM10 expression, which

would contribute to the promotion of amyloidogenic processing of

APP to generate Ab. This mirrors previous findings where

modulating cholesterol (either through supplementation or deple-

tion) alters the expression BACE1 and ADAM10 in vitro [52] and

in vivo in rat, transgenic mice, dog and rabbit models [32], [33],

[34], [35], [53], [36]. This further establishes the suitability of

guinea pig as an alternative model to undertake such dietary

intervention studies.

Interestingly, the expression profile of PS2V, BACE1 and

ADAM10 did not correlate with Ab40 levels observed in the

cerebellum of cholesterol fed animals. Increases in dietary

cholesterol have been shown previously in rabbits to increase Ab
levels in the frontal cortex but not in cerebellum [54]. Although

APP processing enzymes are expressed in the cortical and limbic

areas that develop significant Ab deposition, high expression is also

seen in the cerebellum [55], which does not exhibit significant Ab
pathology. A number of studies have shown that expression of

these enzymes is not related to age or regional neuritic plaque

burden [55], [56], [57], [58] and suggest that other factors such as

Ab catabolism/clearance may influence the accumulation of Ab in

certain brain regions.

Guinea pigs are the only small animal model in which

generation of PS2V has been identified. The PS2V transcript

was previously observed in human neuroblastoma cells under

conditions of hypoxia-generated oxidative stress and in the brains

of individuals with sporadic, late onset AD [27], [28], [59]. Over-

expression of PS2V up-regulates Ab production in neuroblastoma

cells [27]. Our results show, for the first time, that an additional

stimulus, hypercholesterolemia, simulates PS2V production in

addition to up-regulating Ab synthesis.

The up-regulation of PS2V could be a contributing factor

modulating Ab in hypercholesterolemia. Hypercholesterolemia

can lead to vessel wall changes in the brain, leading to

hypoperfusion, ischemia and hypoxia [reviewed in ([60]] and

evidence indicates that this can contribute to AD pathogenesis.

Hypoxia induced by cerebrovascular hypoperfusion in rats lead to

accumulation of cerebral Ab and cognitive deficits [61] and

cardiac arrest can rapidly and massively upregulate plasma Ab

levels [62]. Hypoxia has also shown to up-regulate the genes

required for Ab production [63] [64] and here we have shown it to

up-regulate PS2V in guinea pig brain. Whether cholesterol up-

regulates PS2V, Ab and Ab generating genes via impacting on

cerebrovascualture, promoting ischemia or hypoxia could not be

determined from our data, but could be addressed in in vitro or

in vivo follow up studies by assessing vasculature/hypoxic markers

under cholesterol loading conditions. Our data indicate that

guinea pigs represent the best in vivo model for dissecting the

contribution of cholesterol to up-regulation of PS2V and Ab.

Figure 3. Formation of the PS2V Transcript. A) Presenilin structure in lipid bilayers: Arrowhead indicates boundary between protein sequences
derived from exon 4 and 5. Dashed line indicates sequence from exon 5. Arrow indicates endoproteolysis site. Filled circle indicates c-secretase
catalytic site. B) PS2V forms when HMGA1a is expressed and binds to exon 5 (lighter shading) of PSEN2 RNA causing ligation of exon 4 to exon 6 and
ORF termination. C) Nucleotide sequence alignment of the 39 end of exon 5 in human PSEN2 RNA (with corresponding encoded residues) and the
cognate exon of other species. Red boxes enclose sequences aligned with the HMGA1a-binding sites in human PSEN2 RNA. D) mRNA from guinea
brains exposed to control media or to media containing NaN3 followed by RT-PCR analysis using primers amplifying cDNA spanning exons 3 to 7 of
Psen2. In untreated samples a prominent ,420 bp band is observed. In NaN3 treated samples an additional ,350 bp band is evident representing
the cDNA fragment predicted from exclusion of the exon 5 sequence (PS2V). E) qPCR using a primer spanning the exon 4/6 junction PS2V cDNA
showed up-regulation of PS2V mRNA in samples treated with NaN3.
doi:10.1371/journal.pone.0066235.g003

Figure 4. PS2V is up-regulated under cholesterol-fed conditions. Quantitative PCR analysis shows that, in comparison to animals fed a
control diet, guinea pigs fed a cholesterol rich diet showed a significant increase in PSEN2 and PS2V transcripts in (A) frontal cortex (p= 0.004;
t = 3.429, d.f. = 14 and p,0.0001, t = 6.841, d.f. = 14, respectively) and (B) cerebellum (p,0.005; t= 4.484 and d.f.= 14 and p,0.003, t = 4.763, d.f. = 14,
respectively). The fold increase of PS2V levels in these regions was greater than the increase in full length PSEN2 levels [4 fold vs 2 fold in frontal
cortex (p=0.01, t=2.994, d.f.=14], and 6 fold vs 2 fold in the cerebellum (p= 0.002, t= 3.733, d.f.= 14)]. Data is represented as fold change from
control fed animals. Transcript levels were normalised against RPS16. Data represents 6 SEM.
doi:10.1371/journal.pone.0066235.g004
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Limitations of the Guinea Pig as a Model of AD
Despite the overall advantages over other rodent models, there

are limitations to the guinea pig in modelling all aspects of AD

pathology including neurofibrillary tangles. There is a distinct lack

of knowledge of the tau (MAPT) isoforms that exist and whether

they are hyperphosphorylated. In our attempts to identify MAPT

transcripts in guinea pig brain, a predicted sequence was obtained

through sequence alignments using Guinea pig ESTs and the

Ensembl database. This predicted sequence showed a similar

degree of identity to human MAPT and thus RT-PCR using

human primers was used to identify 3R and 4R repeats of MAPT.

However, isoforms possessing only one amino terminal insert (1N)

were identified while up to three isoforms at this site have been

found in human MAPT transcripts (0N, 1N and 2N). Only one

other study has investigated tau isoforms in guinea pig brain tissue.

That study used an antibody against human tau and only detected

the 1N isoform [65]. This supports the result of our RT-PCR

analysis in which we could only identify 1N transcripts. The

Takuma et al [65] study also identified differences in amino-

terminal inserts between mice and rats where 1N and 2N insert

types are dominant in rats, whilst 0N and 1N is dominant in mice.

The reasons for these species differences in amino-terminal

isoforms (and indeed their function) remain unclear. However

the dominance of the 1N isoform in human, mice, rats and guinea

pigs suggest a conserved role for tau containing this particular N-

terminal insert.

Despite the lack of all MAPT isoforms, we show that both 3R

and 4R MAPT transcript is present in guinea pig brain and that

the 3R/4R ratio was altered due to increases in the 3R transcript.

Disturbance of the ratio of 4R to 3R is a feature of AD and

neurodegenerative tauopathies. The altered ratio is thought to be

due to increases in 4R or reductions in 3R tau levels [66], [67].

However, increased levels of 3R tau have been reported to play a

role in the progression of tau pathology particularly at mild-to

Figure 5. Increased Ab1-40 levels in the CNS of cholesterol fed guinea pigs. (A) CSF Ab1-40 levels (pg/mL) in the cholesterol and control fed
diet groups following 12 weeks of feeding. Value is significantly increased over those animals fed the control diet (p=0.011, t= 2.896, d.f.= 14). (B)
Cerebral Ab1-40 levels (nmol/g wet tissue) in frontal cortex and cerebellum homogenates from animals fed for 12 weeks on a high cholesterol or
control diet. Increases are observed in animals fed cholesterol diet in the frontal cortex (p= 0.04, t= 2.204, d.f.= 14) but not in the cerebellum
(p=0.501, t=0.684, d.f.= 14, ns). Values mean 6 SEM.
doi:10.1371/journal.pone.0066235.g005

Figure 6. Increased BACE1 RNA and reduced ADAM10 RNA expression levels in brain tissue from guinea pigs fed a high cholesterol
diet. Quantitative PCR analysis analysis for (A) ADAM10 and (B) BACE1 expression on total RNA extracted from the frontal cortex and cerebellum of
guinea pigs fed the control or cholesterol diets. Data is represented as relative expression to RPS16. Compared to animals fed the control diet,
ADAM10 expression is significantly decreased in the frontal cortex (p,0.0001, t=7.735, d.f.= 14) and cerebellum (p,0.0001, t=6.30, d.f.=14) from
animals fed cholesterol. In contrast BACE1 levels are significantly increased in the frontal cortex (p,0.0001, t= 8.196, d.f.= 14) and cerebellum
(p,0.0001, t= 8.196, d.f.= 14). Values represent 6 SEM.
doi:10.1371/journal.pone.0066235.g006
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Figure 7. Mapt isoforms in guinea pig brain. A) Schematic diagram of the alternative splicing pattern of human Mapt. Six Mapt isoforms (0N3R,
1N3R, 2N3R, 0N4R, 1N4R, 2N4R) are generated from alternative splicing of exon2, 3 and 10 of the solo Mapt gene. The alternative splicing of exon2 or/
and 3 (green boxes) yields Mapt isoforms with 0, 1 or 2 inserts of 29 amino acid residues in the N-termini; whereas, alternative splicing of exon 10
(purple) generates isoforms with either 3 or 4 tubulin-binding repeats in the C-termini. To analyse whether this splicing pattern is conserved in guinea
pig, two primer pairs, GTau0F/4R and GTau10F/14R were designed, targeting the corresponding region of the human exon2/3 and tubulin-binding
repeats domains respectively in guinea pig Mapt. B) RT-PCR Mapt, using primer pairs GTau10F/14R.c DNA was isolated from a brain sample from
guinea pig fed normal chow diet Two bands representing 3R and 4R Mapt were detected. C) RT-PCR of Guinea pig Mapt, using primer pairs GTau0F/
4R. A single band representing 1N Mapt was detected.
doi:10.1371/journal.pone.0066235.g007

Figure 8. TotalMAPT andMAPT3R transcripts are up-regulated under cholesterol fed conditions. Quantitative PCR analysis shows that, in
comparison to animals fed a control diet, guinea pigs fed a cholesterol rich diet showed a significant increase in (A) total MAPT (p= 0.031, t= 3.560,
d.f.=14) and (B) MAPT3R (p,0.0001, t= 6.468, d.f.= 14) transcripts but (C) no change was observed in MAPT4R transcripts (p= 0.1320, t= 1.60, d.f.=14,
ns). An increased 3R/4R ratio was observed (p= 0.0007, t= 4.326, d.f.= 14). Data is represented as fold change from control fed animals. Transcript
levels were normalised against RPS16. Data represents 6 SEM.
doi:10.1371/journal.pone.0066235.g008
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moderate stages of disease severity [68]; [69]. Further, increases in

3R tau, but not 4R tau were reported in brains of aged obese rats

that model the AD risk factor, type-2 diabetes, resulting in

increased intracytoplasmic aggregates (that were reactive with

antibodies against 3R) and synaptic degeneration [70]. We have

shown that another AD risk factor, cholesterol intake, increases 3R

transcripts, and although to be directly assessed, would most likely

result in increased protein levels.

Taken together with the guinea pig’s established role as a model

of human lipoprotein and cholesterol metabolism, our findings

provide further evidence that they are an alternative in vivo model

to mice and rats for studying the effects of AD risk factors such as

cholesterol on Ab metabolism and PS2V generation and for

evaluating dietary interventions that may have beneficial outcomes

in AD.

Supporting Information

Figure S1 Average animal weights (grams) (A) and Average food

consumption (grams/day) (B) between the cholesterol and control

diet groups over the 12 week experimental diet. Values mean 6

SEM.

(TIF)

Table S1 Dietary composition for the control and the

cholesterol diet groups. aThe oil mix contained 49% Copha

(solidified coconut oil), 27% safflower oil, and 24% olive oil, and

was high in lauric and myristic acids known to cause endogenous

hypercholesterolemia in guinea pigs. bMineral and vitamin mixes

(AIN_93_G) were formulated to meet the daily requirements for

guinea pigs.
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