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The human microbiota has a fundamental role in host physiology and pathology. Gut

microbial alteration, also known as dysbiosis, is a condition associated not only with

gastrointestinal disorders but also with diseases affecting other distal organs. Recently it

became evident that the intestinal bacteria can affect the central nervous system (CNS)

physiology and inflammation. The nervous system and the gastrointestinal tract are

communicating through a bidirectional network of signaling pathways called the gut-

brain axis, which consists of multiple connections, including the vagus nerve, the immune

system, and bacterial metabolites and products. During dysbiosis, these pathways are

dysregulated and associated with altered permeability of the blood-brain barrier (BBB)

and neuroinflammation. However, numerous mechanisms behind the impact of the gut

microbiota in neuro-development and -pathogenesis remain poorly understood. There are

several immune pathways involved in CNS homeostasis and inflammation. Among those,

the inflammasome pathway has been linked to neuroinflammatory conditions such as

multiple sclerosis, Alzheimer’s and Parkinson’s diseases, but also anxiety and depressive-

like disorders. The inflammasome complex assembles upon cell activation due to

exposure to microbes, danger signals, or stress and lead to the production of pro-

inflammatory cytokines (interleukin-1b and interleukin-18) and to pyroptosis. Evidences

suggest that there is a reciprocal influence of microbiota and inflammasome activation in

the brain. However, how this influence is precisely working is yet to be discovered. Herein,

we discuss the status of the knowledge and the open questions in the field focusing on the

function of intestinal microbial metabolites or products on CNS cells during healthy and

inflammatory conditions, such as multiple sclerosis, Alzheimer’s and Parkinson’s

diseases, and also neuropsychiatric disorders. In particular, we focus on the innate

inflammasome pathway as immune mechanism that can be involved in several of these

conditions, upon exposure to certain microbes.
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INTRODUCTION

The mammalian intestinal microbiota comprises bacteria,
viruses, fungi, yeasts, and bacteriophages. This community
starts to develop at birth and continues for two–three years, in
humans, until it reaches a stable composition (1). However, it
continues to be influenced by different environmental and
lifestyle factors throughout the lifetime. Therefore, the
microbiota composition differs remarkably even between
healthy individuals (2). Under healthy conditions, the
microbiota influences numerous physiological processes within
the host, such as protection against pathogens, nutrient digestion
and absorption, development, and education of multiple host
organs and the immune system (3–6).

In the last decade, different studies revealed strong
associations between changes in the microbiota composition (a
situation called “dysbiosis”) and various host diseases (4, 5, 7).
Interestingly, among those, there are also diseases affecting
host organs in physical distance from the gut (8, 9), like the
central nervous system (CNS) (7, 10–22). Moreover, a relevant
contribution of gut microbiota is not only restricted to
neuroinflammatory and psychiatric disorders (23–32) but also
to brain development (13).

The CNS has long been considered an immune-privileged
organ. The blood vessels that vascularize the brain are formed by
endothelial cells firmly held together with tight junctions
building the blood-brain barrier (BBB). The BBB allows to
strictly regulate the movements of molecules, ions, and cells
between the periphery and the brain (33). Importantly, the
BBB protects the brain from pathogens and unwanted
immune reactions that could damage the neurons and their
connections (34). However, the idea that the CNS is an immune
privileged organ has been reconsidered, as the functional
immune cells can enter the CNS through the BBB, the choroid

plexus, and the lymphatic vessels and have been described
beyond neuropathological conditions (26, 35–47). Among the
molecules that can pass the BBB are also bacterial products and
metabolites shaping not only the CNS development and
functions (6, 15) but also the genesis of certain diseases (33–42).

The communication between the CNS, the intestine, and the
microbiota happens through the so called Gut-Brain Axis (GBA), a
complex bidirectional communication network between the
intestine and the CNS (10, 48). This axis involves different
pathways such as the autonomic and enteric nervous system, the
endocrine system, the hypothalamic-pituitary-adrenal axis (HPA),
the immune system, and the microbiota and its metabolites (8, 31,
32). Several neurotransmitters (11, 49) and metabolites such as
essential vitamins, secondary bile acids, amino acids, and short-
chain fatty acids (SCFAs) (43, 46–51), modulate many immune
system pathways (50–56) that in turn influence behavior,
memory, learning, locomotion, and neurodegenerative disorders
(45, 52–55). Among those pathways, researchers showed that the
inflammasome plays a role in depressive- and anxiety-like
behaviors, and locomotor activity (57). A potential role of
dysbiosis has been suggested as cause of these mood and
behavioral defects (55), however, the exact mechanism behind
these phenomena still needs to be understood.

Despite growing evidence, a significant gap of knowledge still
exists in understanding the exact mechanisms involved in the
communication between gut and brain during health and
disease. In this review, we provide an overview of the current
state of research about the effect of microbiota on the GBA in
homeostasis and disease states, with a particular interest in the
different bacterial metabolites involved. We further discuss the
potential contribution of inflammasomes on the GBA,
highlighting the critical open questions that remain in the field.

HOST-MICROBIAL MUTUALISM IN THE
GUT-BRAIN AXIS: ROLE OF BACTERIAL
MOLECULES AND METABOLITES IN
DEVELOPMENT AND HEALTH

The microbiota is a community of commensal and symbiotic
microorganisms that reach a density of more than 1012 cells/g of
content in the human large intestine (16). 500 to 1,000 different
bacterial species populate the mammalian gut, belonging to the
four dominant bacterial phyla Firmicutes, Bacteroidetes,
Actinobacteria, and Proteobacteria. A well-balanced beneficial
interaction between the host and its microbiota is an essential
requirement for intestinal health and the body as a whole. Under
healthy conditions, the mucosal microbiota plays a vital role in
food digestion, vitamin synthesis, angiogenesis, epithelial cell
maturation, development, education of the host immune system,
and protection against pathogens (58–66). Notably, the
microbiota orchestrates the local immune system in the
intestine (67), and shapes immune and non-immune cells
located in distal sites and acting systemically (68, 69).

Colonization of the intestine with a unique microbial
community starts at birth through the exposure of the infant

Abbreviations: CNS, Central nervous system; BBB, Blood-brain barrier; GBA,
Gut-Brain Axis; HPA, Hypothalamic-pituitary-adrenal axis; SCFAs, Short-chain
fatty acids; SPF, Specific pathogen-free; GF, Germ-free; 5-HT, 5-
hydroxytryptophan; PSD-95, Postsynaptic density protein 95; GI, Gastro-
intestinal; Ahr, Aryl hydrocarbon receptor; SFB, Segmented Filamentous

Bacterium; ASF, Altered Schaedler Flora; MS, Multiple sclerosis; AD,
Alzheimer’s disease; PD, Parkinson’s disease; NPS, Neuropsychiatric disorders;
FMT, Fecal microbiota transplantations; EAE, Experimental autoimmune
encephalomyelitis; PSA, Polysaccharide A; Treg, T regulatory; Th, T helper;
Trp, Tryptophan; I3S, Indoxyl-3-sulfate; IPA, Indole-3-propionic acid; IAld,
Indole-3- aldehyde; Ab, Beta-amyloid protein; APP, Amyloid precursor protein;
FAD, Familial Alzheimer’s Disease; ASO, Overexpressing a-synuclein under
Thy1 promoter; a-syn, a-synuclein; MDD, Major depressive disorder; ASD,
Autism spectrum disorder; OTUs, Operational taxonomy units; 5-AV, 5-
aminovaler ic acid ; MIA, Maternal immune act ivat ion; 4EPS, 4-
ethylphenylsulfate; PRRs, Pattern-recognition receptors; NLRs, NOD-like
receptors; TLR, Toll-like receptors; ASC, Apoptosis-associated speck-like
protein; PAMPS/DAMPS, Pathogen- or danger-associated molecular patterns;
SlrP, Salmonella leucine-rich repeat protein; PBMCs, Peripheral blood
mononuclear cells; CSF, Cerebrospinal fluid; PTX, Pertussis toxin; HSV-1,
Herpes simplex virus type 1; hiNSC, Human-induced neural stem cell; PINK1,
Mitochondrial serine/threonine protein kinase; MPTP, 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine; SSD, Schizophrenia spectrum disorders; OCD,
Obsessive-compulsive disorder; NSSID, Non-suicidal self-injury disorder;
BMI, Body mass index; BHB, Beta-hydroxybutyrate; TCR, T cell-receptor;
MOG, Myelin-oligodendrocyte glycoprotein.
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to the microflora of the vaginal tract and the mother’s skin. The
microbiota develops and gets stable by the age of 2 to 3 years in
humans (65) and within 3 to 4 weeks of life in mice (70). This
early life window corresponds to a period in which several organs
of the body go through critical phases of development and
growth (71). During this period, the infant’s immune system
develops and the host microbiota matures and stabilizes. The
microbiota first gets into contact with the immune system on the
mucosal sites, shaping the immune tolerance to commensal
microbes and establishing mucosal integrity at the same time.
Together with these events, also distal organs get affected. The
brain, in particular, undergoes dramatic changes within the early
life period. Within the first three months of life in humans, its
size increases more than 50% from the time of birth, reaching
90% of the size of the adult organ within the first five years of life
(72). In this period, neuronal development takes place (73) and it
is supported and shaped by maternal microbiota (74–79).

The influence of the intestinal microbiota in neurodevelopment
was known since early 2000s. Early experiments using germ-free
(GF) or specific pathogen-free (SPF) mice treated with antibiotics,
to reduce the microbial diversity within the intestine, showed that
several neurological problems occur inmice with reduced or lack of
proper mature gut microbiota (7, 10, 14, 15, 34, 80, 81). In details,
compared to colonized mice, GF mice showed exaggerated
hypothalamic–pituitary–adrenal (HPA) restrain stress reaction
(10), impared social behaviors (12, 15, 82), reduced anxiety-like
behavior (7, 81–83) and increased motor and rearing activity (80,
84). Consistently, certain altered brain developments and behaviors
observed in GF mice could be resolved/improved when new born
animals were reconstituted with a diverse and intact flora (73, 82,
83). Antibiotic treatment results in reduced expression of the tight-
junction forming proteins, occludin, and claudin-5, in the brain,
increased BBB permeability, reduced anxiety-like behaviors, and
elevated exploratory behavior and home-cage activity (35). The
altered behavioral phenotype was associated with dysregulation of
genes and metabolites known to be involved in motor control and
anxiety-like behavior pathways, like adrenaline, dopamine, 5-
hydroxytryptophan (5-HT), postsynaptic density protein 95
(PSD-95), and synaptophysin (80).

Lately, it is becoming more evident that microbes can
produce neuroactive molecules that directly contribute to the
communication between the gut and the brain (Figure 1).
Neurotransmitters, such as acetylcholine, GABA, and
serotonin, produced by bacteria belonging to Lactobacillus,
Bifidobacteria, Enterococcus, and Streptococcus species, can
influence brain cell physiology directly and indirectly (11, 85,
86). Strikingly, 90% of serotonin required for mood, behavior,
sleep, and several other functions within the CNS and
gastrointestinal (GI) tract is produced in the gut (87). Binding
of serotonin to 5-HT receptors on microglia induces the release
of cytokine-carrying exosomes, providing another mechanism
for gut-induced modulation of neuroinflammation (88). Another
microbial metabolite that influences microglia activity is
tryptophan, a serotonin precursor (89). Bacterial metabolites
derived from dietary tryptophan could control the
CNS inflammation through an aryl hydrocarbon receptor

(Ahr)-mediated mechanism acting on microglial activation and
the transcriptional program of astrocytes (89). The importance
of tryptophan metabolism in maintaining CNS homeostasis was
already known a few years earlier, since male GF animals have
significantly higher levels of 5-hydroxytryptamine and 5-
hydroxyindoleacetic acid in the hippocampus and the serum,
compared with conventionally colonized control animals (7).
These findings suggest that the systemic circulation could be the
route through which the microbiota influences CNS serotonergic
neurotransmission. Interestingly, colonizing GF animals post-
weaning was sufficient to restore the levels of tryptophan in the
periphery and to reduce anxiety in GF animals, but was
insufficient to reverse the CNS neurochemical consequences
present in adult GF animals (7). This approach highlighted
once more the importance of an intact and diverse microbiota
from birth on. More recently, it has also been reported that
metabolism of tryptophan by activated microglia produces the
neurotoxin quinolinic acid, an N-methyl-D-aspartate agonist,
implicated in several neurological conditions, including
Huntington’s disease and depression (90). Recolonizing GF
mice with particular bacteria belonging to the Clostridia
family, such as Clostridium tyrobutyricum, known to colonize
the intestinal mucus layer, regulates immune and gut barrier
homeostasis through the production of anti-inflammatory
metabolites (e.g. butyrate), induces elevation of occludin and
claudin-5 levels in brains of GF mice and restores their BBB
integrity to the level of SPF mice (91). Furthermore, probiotic
supplementations, as Lactobacillus rhamnosus (JB-1), in already
colonized mice, reduced anxiety- and depression-like behavior in
steady-state conditions (92, 93). In 2019, Artis D.’s group showed
that SPF mice treated with a cocktail of broad-spectrum
antibiotics, GF mice, GF mice recolonized after weaning age
with a simple microbiota or a complex microbiota, have defects
in fear extinction learning, compared to SPF mice or GF mice
colonized with SPF flora at the time of birth (29). Fear extinction
learning is a reaction that happens after experiencing an
environmental danger and has been implicated in multiple
neuropsychiatric disorders, including anxiety disorders like
post-traumatic stress disorder (29). The reasons for this altered
behavioral response in the absence of a diverse and intact
microbiota were reconducted to alterations in pathways
involved in synapse formation and calcium signaling at the
level of mainly neuronal and microglial cells (29). The
researchers showed that the microbiota-mediated changes in
synapse formation and fear extinction behavior were not the
results of the hypothalamic-pituitary-adrenal axis but of the
reduced level of potential neuroactive metabolites (phenyl
sulfate, pyrocatechol sulfate, 3-(3-sulfooxyphenyl)propanoic
acid, and indoxyl sulfate) in the cerebrospinal fluid, serum and
in fecal samples of GF mice compared to SPF mice (29).
However, the types of cells (host or bacterial) producing these
metabolites are still undiscovered.

From an immunological and metabolomic point of view, GF,
SPF mice treated with antibiotics, or gnotobiotic mice with
limited microbiome diversity (colonized with ASF for example)
showed impaired microglia maturation and immune response
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upon bacterial stimuli, compared to SPF mice (94). Moreover,
the treatment of mice with E. coli, isolated from colitic mice,
caused colitis and brain memory impairment (95, 96). In
contrast, the treatment with L. johnsonii restored a healthy gut
microbiota composition and attenuated both colitis and E. coli-
induced memory impairment (95, 96). In addition, bacterial
fermentation of indigestible dietary fibers produces among the
SCFAs, butyrate, propionate, and acetate in the colon (97).
SCFAs maintain gut health by promoting intestinal barrier
integrity, mucus production, and supporting a tolerogenic
response over inflammation (49, 50, 98, 99). However, their
activity is not restricted only to the intestine. A small fraction
reaches the systemic circulation and can cross the tightly
regulated BBB using their own transporters located on brain
vascular epithelial cells (100, 101). SCFAs are, in fact, detectable
in low amounts in the human brain under physiological
conditions (102). Additionally, they also affect the BBB itself;
the colonization of adult GF mice with a complex microbiota or
only with SCFAs-producing bacterial strains restores the
integrity of the BBB (91). Remarkably, treating GF mice with
the oral application of a mixture of the three major SCFAs
acetate, propionate, and butyrate, was also sufficient to restore
the normal maturation process of the microglia (94). Moreover,
SCFAs can modulate neurotransmitters, like glutamate,

glutamine, GABA, and neurotrophic factors (103). Propionate
and butyrate can influence the cell signaling system via
modification of the intracellular potassium levels (104), and they
regulate the expression levels of tryptophan 5-hydroxylase 1,
involved in the synthesis of serotonin, and tyrosine hydroxylase,
which is involved in the biosynthesis of dopamine, adrenaline, and
noradrenaline (105).

Several other immune pathways have been shown to affect
behavior, memory, learning, and locomotion (41, 57, 106–108).
Among those, we will discuss the role of the inflammasome
pathway in the GBA in more details later on.

NEUROLOGICAL DISEASES: MICROBIAL
EFFECT ON THE HOST IMMUNE AND
NERVOUS SYSTEM

Several poorly understood environmental factors, including dietary
and habit factors, have been linked to susceptibility to neurological
disorders and alterations in the gut microbiota (30, 109, 110). The
microbiota composition differs significantly between healthy
controls and patients affected by neurodegenerative disorders
(such as multiple sclerosis (MS), Alzheimer’s (AD) and

FIGURE 1 | Gut-brain axis mechanisms under physiological conditions highlighting microbial products and the inflammasome pathway.
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Parkinson’s (PD) diseases) (20, 22, 23, 32, 111–115), and
neuropsychiatric disorders (NPS) (30), like major depressive and
mood disorders. Of extreme relevance, the altered microbiota of
patients could transfer the disease from a human host to a mouse
host (113, 116–120). Here, we present the mechanisms driven by
the bacteria that induce different neurological diseases (Figure 2).
We are at the initial phases of this discovery path, and for the
majority of the pathological conditions, we still do not know if the
dysbiosis is the cause or rather the consequence of it. Here, we focus
our attention on the works that suggested mechanisms of action by
bacteria in the etiology of certain CNS disorders.

Multiple Sclerosis
Multiple sclerosis (MS) is an autoimmune and neurodegenerative
disease affecting more than two million people worldwide. This
condition is characterized by neuroinflammation, infiltration of
lymphocytes into the CNS, demyelination, and axonal loss.
Clinical signs associated with MS include ataxia, loss of
coordination, hyperreflexia, spasticity, visual and sensory
impairment, fatigue and cognitive difficulties. Most of the patients
have a relapsing-remitting form of the disease, characterized by a
progressive relapse of the symptoms with increased severe
neurological deterioration over time (121). The majority of the

patients develop lesions in the brain or in both brain and spinal
cord, although few develop lesions in the spinal cord only (121). MS
is the cause of death in more than 50% of the affected patients (122).
Factors involved in the pathogenesis are both environmental and
genetic (123–131). Among the environmental factors, microbes
(and their secreted products or toxins) play a critical role in the
pathogenesis of MS (132, 133). Several relevant pioneer studies
showed that external microbial infections and intestinal commensal
bacteria can be involved in disease development.

First of all, the microbiota composition of MS patients is
different from the one of healthy individuals (104). Interestingly,
even MS patients with active disease have an altered microbiota
compared to patients in the remission phase, which in turn have
a microbiota more similar to healthy controls (25, 134–138).
Bacteria belonging to the Clostridia family contribute to the
suppression of pathological autoimmunity (134, 139–143).
Higher abundance of Firmicutes and the absence of
Fusobacteria were associated with a shorter time to relapse in
pediatric MS patients (144). Additionally, MS patients that were
treated with the antibiotic minocycline, a broad-spectrum
tetracycline, have reduced rate of relapses and amelioration of
several immunological parameters (such as IL-12p40,
metalloproteinase-9, and soluble vascular cell adhesion

FIGURE 2 | Gut-brain axis mechanisms under pathological conditions highlighting microbial products and the inflammasome pathway.
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molecule-1) (145, 146). However, the minocycline effect on the
patient microbiota composition was not addressed. In an
additional relevant study, three MS patients underwent
multiple fecal microbiota transplantations (FMT) to treat
severe constipation. This treatment reverted the intestinal
illness and improved the MS symptoms (147), proving the
existence of a gut-brain connection. Moreover, probiotics
supplementations have a therapeutic potential to ameliorate
MS, improving the disability status, the mental health, and
some inflammatory and metabolic parameters, compared to
the placebo group (148, 149). The seminal study by Berer K.
and colleagues highlighted the strong immunological in vivo
impact of the microbiota on MS pathogenesis (112). They
recruited a cohort of monozygotic twin couples in which one
individual was affected by MS and the other twin was healthy
(112). They reported that MS-twins had a higher abundance of
taxa like Akkermansia in their feces (112). However, the
remarkable finding was that transplanting the MS-twins’
intestinal microbes into GF animals, genetically susceptible to
developing experimental autoimmune encephalomyelitis (EAE)
was enough to promote the disease in vivo with a significantly
higher incidence than by transplanting the healthy twins’
microbes (112). Interestingly, the immune cells of murine
recipients of MS-derived samples produced less IL-10 than
cells from mice colonized with the microbiota derived from the
healthy twins (112). IL-10 is one of the master regulatory
cytokines, and its neutralization in mice colonized with healthy
fecal samples increased disease incidence (112). This significant
finding highlighted the potential of the human microbiota to
induce specific immune system alterations that might be the
cause or the effect of the development of MS. However, the exact
mechanisms that suppress the production of regulatory
cytokines in the hosts receiving certain microbes from MS
patients are still unclear. Several investigations in animals
started to elucidate these mechanisms. Kasper L.’s group
showed that oral but not systemic treatment with a classical
pool of broad-spectrum antibiotics (ampicillin, vancomycin,
neomycin, and metronidazole) ameliorated the development of
acute EAE, in two mouse models (on C57BL/6 and SJL
backgrounds) (18). The better disease outcome upon oral
antibiotic treatment was associated with a reduction of pro-
inflammatory cytokines and an increase in regulatory cytokines
like IL-10 (18). This effect suggested that the intestinal
microbiota was responsible for the disease severity and the
modulation of the adaptive immune response during disease
development (18).

One year later, the same laboratory showed how a single
bacterium could affect EAE pathogenesis. They used a similar
approach in mice by depleting the intestinal bacteria via oral
antibiotic treatment followed by the reconstitution only with B.
fragilis, either wild-type (WT) or deficient for the production of
the zwitterionic capsular polysaccharide A (DPSA) (116). Mice
treated with antibiotics alone or recolonized with the PSA-wild-
type strain of B. fragilis were protected against disease, whereas
the mice recolonized with DPSA B. fragilis and as well the
vehicle-treated control group developed the disease (116). The

authors also understood that B. fragilis induced EAE protection
through the generation of IL-10–producing T regulatory (Treg)
cells in a PSA-dependent manner (20). They then concluded that
oral treatment with PSA could cause protection from EAE in
mice, when used as both prophylactic and therapeutic approach,
via recruitment of CD103+ CD11chigh antigen-presenting cells
and priming of IL-10–producing Treg cells in the cervical lymph-
nodes (150). Thereafter, Lee Y. and colleagues showed for the
first time that GF mice were almost completely protected from
EAE compared to conventionally colonized mice (117). Again,
the protection was associated with a decrease of pro-
inflammatory cytokine levels, such as IFN-g and IL-17A, and
an increase in Treg cells in the peripheral organs, the gut and the
spinal cord (117). Strikingly, GF mice colonized with only a
single bacterium, the SFB, developed EAE, and a T helper (Th)-
17 pathogenic immune response in the gut and in the CNS (117).

In the recent milestone study from the groups of
Gommerman J. and Baranzini SE., IL-10- and IgA-producing
plasma cells have been suggested to have a role in ameliorating
EAE in mice and to correlate with relapse in MS patients (151).
Microbial specific IgA-secreting cells were shown to be present in
both the bone marrow and, in particular, in the brain of EAE-
affected mice but not in healthy animals. Remarkably, MS
patients during active relapse had less IgA specific for
intestinal bacteria compared to patients in remission,
suggesting the capacity of IgA-producing cells to migrate from
the gut to the central nervous system during disease relapses, as
in the mouse system (151). The authors also ruled out one of the
potential mechanisms mediated by IgA-secreting plasma cells to
suppress EAE. Briefly, commensal-reactive IgA-producing cells
expressed IL-10, and the production of IL-10 (partially together
with iNOS, but not IgA itself) was essential to ameliorate EAE
(151). Lately, in the classical acute EAE model, ampicillin
administration alone ameliorated the EAE development (152)
with a reduction of proliferating CD4+ autoreactive T cells.
Miyauchi E. and colleagues showed that the in vivo treatment
with ampicillin induced the complete depletion of Allobaculum
bacteria from the small bowel. Monocolonization with this
bacterium induced the generation of Th17 cells in the small
intestinal lamina propria and systemically, and increased severity
of EAE, compared to GF mice (152). However, the disease
development was less severe than under conventional hygiene
conditions. The authors focused then their attention on bacteria
homing to the small intestine that could favor the generation and
proliferation of autoreactive T cells via presentation of cross-
reactive antigens. Mice bearing a T cell-receptor (TCR) specific
for myelin-oligodendrocyte glycoprotein (MOG) (2D2 mice)
showed higher number of CD4+ T cells in the small intestinal
lamina propria compared to their wild-type counterpart (152).
Some candidate mimicry peptides, like UvrABC system protein
A (UvrA), were expressed by L. reuteri, and aminopeptidase
by strains of Allobaculum (152). Interestingly, L. reuteri
monocolonization did not affect the severity of EAE. However,
the bi-colonization with Allobaculum and L. reuteri together
activated MOG-specific T cells toward a pathogenic Th17
phenotype and worsened EAE, with demyelination and cell
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infiltration in the spinal cord (152). This study highlighted the
important synergistic potential of several intestinal bacteria,
along the entire intestinal tract and perhaps residing even in
close contact with the mucus layer, in mediating the disease
development through molecular mimicry.

Altogether, these breakthrough murine studies prove that
certain intestinal bacterial species profoundly affect EAE
pathogenesis, altering the balance between pro- and anti-
inflammatory immune responses via a direct effect of some
bacterial products. Treating mice that spontaneously develop
EAE with a cocktail of broad spectrum antibiotics resulted in
dramatically different outcomes, depending on whether the
antibiotics were given before or after the onset of the
autoimmune disease. Prophylactic antibiotic treatment (at 1–3
weeks before the clinical onset of the disease, starting from 2–4
weeks of age) led to a significant reduction of susceptibility to
spontaneous EAE, accompanied by altered intestinal microbial
composition and a decrease in Th-17 cell development (153). In
contrast, antibiotic treatment after the onset of the first signs of
spontaneous EAE did not affect the ongoing disease and CNS
inflammation (153). The supplementation of a cocktail of five
probiotics (IRT5) before or after the EAE onset in rodents is
associated with the delay of the disease onset or suppression of
the disease progression, respectively (154). The amelioration of the
disease upon probiotic treatment was associated with a higher
abundance of Treg cells, higher production of IL-10 by CD4+ T
cells, B cells, and CD11c+ cells, together with the suppression of the
pro-inflammatory Th-1/Th-17 response (154). These results
suggest that microbiota modulation in early life stages or
prophylactic treatments in subjects that are genetically prone to
develop certain autoimmunediseases, such asMS, could be efficient
approaches to ameliorate the disease susceptibility and/or to delay
the onset of the disease. Notably, only certain bacteria with specific
metabolicor structural characteristics appear effective inpreventing
or postponing the onset of certain conditions. Such as, oral
administration of SCFAs ameliorate EAE development and
disease severity (155, 156). Mechanistically, SCFAs favor the
enhancement of acetyl-CoA metabolism, histone acetylation,
preservation of spinal cord lipid content, suppression of
demyelination, oligodendrocyte maturation and differentiation
(157, 158). As also mentioned earlier, in the last years, Quintana
F.’s group provided an exceptional contribution to the field,
revealing the role of dietary tryptophan (Trp) metabolism in MS
pathogenesis (118). The gut microbiota metabolizes dietary
tryptophan into AhR agonists (119). Firstly, they showed that
treating mice with antibiotics or feeding them with a Trp-
deficient diet during the recovery phase of the EAE model
worsened the EAE scores (118). However, the disease was
ameliorated by supplementation of Trp metabolites (like indole,
indoxyl-3-sulfate (I3S), indole-3-propionic acid (IPA) and indole-
3-aldehyde (IAld)) or feeding with Trp-enriched diet (118). They
also found that in patients affected by MS, the circulating levels of
AhRagonists aredecreased. In conclusion, they suggested amodeof
action of Ahr agonists, via a direct effect on astrocytes to limit CNS
inflammation during EAE (118). A couple of years later, the same
group discovered that the microglia has a crucial role in this

mechanism of protection from EAE via the Trp-AhR pathway
(89). Briefly, Trp or I3S treatment ameliorated EAE scores in
control mice but not in mice lacking AhR expression on the
microglia fed with Trp-deficient diet (89). This treatment was
initiated 14 days after EAE induction and ameliorated the disease
via AhR engagement on astrocytes and microglia (89). Moreover,
using primary human microglia, they showed that the in vitro
stimulationwith I3S activated theAhRsignalingpathway leading to
the suppression of pro-inflammatory pathways (via TNF-a, IL-6,
IL-12A, NOS2, VEGF-b expression), and the promotion of anti-
inflammatory responses (such as IL-10 and TGF-a expression)
(89). Finally, they detected AhR, TGF-a, and VEGF-b expression
onmyeloid CD14+ cells in the demyelinated active and chronicMS
lesions of patients (89). These findings suggest that metabolites
derived from the digestion of tryptophan by the gut flora activate
AhR signaling in astrocytes and microglia and induce immune
protection mechanisms in the host that are important to suppress
CNS inflammation, in both animal models and perhaps also in
human patients. Altogether, these works suggest the efficacy of
different interventionsaimedtomodify themicrobiota composition
as prophylactic or therapeutic approaches. Therefore, the need of
studies that help to understand themechanismof action of different
microbial methods in different patients, bearing a diverse
microbiota, becomes a priority for future research in the field.

Alzheimer’s Disease
Alzheimer’s disease (AD) is the most common cause of
progressive dementia that affects nearly 50 million people
worldwide. Symptoms affecting memory and thinking become,
with time, critically severe compromising even the simplest daily
life tasks. Until today, neither a therapeutic nor a prophylactic
strategy exists against this devastating neurodegenerative
disorder (159). AD is caused by the formation of aggregates of
polymerized forms of b-amyloid precursor protein (Ab) in
soluble multimeric and/or insoluble amyloid deposits in the
brain, that trigger a cascade of pathological events leading to
neurofibrillary tangles, aggregates of hyperphosphorylated tau
proteins, formation of neurofibrillary lesions, and ultimately
dementia (159). Several microbial factors have been linked to
the AD pathogenesis (140, 141), and a few studies suggested
alteration in the commensal microbiota and pathogenic
infections as potential causes of AD (142).

Stool microbial profile of AD patients display decreased
numbers of Firmicutes and Actinobacteria, and increased
Bacteroidetes compared to controls. Within the Firmicutes, the
families Ruminococcaceae, Turicibacteraceae, and Clostridiaceae
were all less abundant in AD patient (160).

APP/PS1 double transgenic mice, which express special neurons
in theCNSwith a chimericmouse/humanamyloidprecursorprotein
(APP) and a mutant human presenilin 1 (PS1), show a remarkable
shift in the gut microbiota composition compared to healthy wild-
typemice (161). FewerFirmicutes (Akkermansia andRikenellaceaea)
but more Bacteroidetes (S24-7) were identified in conventionally-
raised APP/PS1 mice compared to wild-type littermate controls
(161). Importantly, GF-APP/PS1 transgenic mice have reduced Ab
levels in the brain and blood and reduced amyloid load compared to

Rutsch et al. Gut-Brain Axis, Microbiota, Inflammasome

Frontiers in Immunology | www.frontiersin.org December 2020 | Volume 11 | Article 6041797

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


conventionally-raised APP/PS1 mice (161). Fecal transplantation
from conventionally-raised APP/PS1 mice into GF APP/PS1 hosts
dramatically increased cerebral Ab pathology in the hosts (161).
Altogether, these results strongly supported a microbiota
involvement in the development of AD in AD-susceptible animal
models (161). Additionally, 5xFAD mice (over-expressing in the
brain themutanthumanAPPcarryingSwedish, Florida, andLondon
Familial Alzheimer’s Disease (FAD) mutations along with human
PS1 harboring two FAD mutations) recapitulate significant AD
and fecal microbial composition features that evolve with age (162,
163). At the age of two–threemonths, whenAb plaque deposition in
the cortex and hippocampus starts, Bacteroides, Firmicutes, and
Verrucomicrobia were the most abundant bacterial phyla (163). At
the age of seven months, when the signs of synaptic degeneration
appear, Firmicutes became the predominant phylum, with amarked
decrease in abundance of Bacteroidetes andVerrucomicrobia. These
variationsover timewereabsent inwild-typemice,whichhadamuch
more stablemicrobiota throughout the lifespan (163). These changes
inmicrobiota composition were associated with neuroinflammatory
markers. In fact, at 2 to 3months of age, both pro-inflammatory and
anti-inflammatory microglia expanded, while in the following
months, only the first subset continued to grow, along with the
recruitment of Th-1 CD4+ proinflammatory cells, reaching a peak at
seven-nine months. On the other hand, the anti-inflammatory
microglia declined from three to five months and maintained at
low levels after that. Importantly, this was the first time that changes
in the microbiota composition have been monitored during a
neurological disease development suggesting that the bacterial
changes could be happening together or before the immunological
and neurological changes. The neuroinflammatory modifications
were, in fact, strikingly dependent on the microbiota ones, and the
depletion of intestinal microbes via antibiotic treatment ameliorated
the recruitment andprimingof anti-inflammatorymicroglia andTh-
1 cells (163). Co-housing or FMT experiments showed that
neuroinflammation and cognitive impairments could be
transferred from 5xFAD mice to wild-type counterparts (163). The
usage of a sodium oligomannate, with known cognition
improvement effect in humans, suppressed neuroinflammation, Ab
plaque deposition, and cognition impairment (164). However, from
the microbiota point of view, the most striking result of this
therapeutic approach comes from the FMT experiments from
oligomannate-treated 5xFAD mice into WT hosts that were pre-
treated with Ab aggregate injections to induce AD development
(163). The feces isolated from oligomannate-treated 5xFAD mice
transferred protection from neuroinflammatory events in recipient
animals (163). Metabolomic analyses on the feces of these animals
revealed significant changes in amino acid–related metabolism, in
particular for the phenylalanine- and isoleucine-related pathways.
Phenylalanine and isoleucine can be uptaken by adaptive immune
cells, like Th-1 cells (163). In addition, the intestinal microbiota
diversity was altered and the levels of SCFAs were reduced in AD
mice compared to wild-type control mice. Therefore, modifications
of the intestinal flora impact several metabolic pathways in AD
mouse models, that could be leading to cognitive defects,
amyloid deposition, and intestinal abnormalities (165). Similarly, a
recent work showed that ADLPAPT mice present community

level-alterations in the microbiota compared to wild-type animals
(166). The ADLPAPT mice carry six human mutations affecting
amyloid precursor protein, presenilin-1, and tau protein, and
develop an AD-like pathology with amyloid and neurofibrillary
tangles (167). Upon fecal microbial transplantations from WT
animals into ADLPAPT mice, formation of amyloid b plaques and
neurofibrillary tangles, glial reactivity and cognitive impairmentwere
ameliorated in the recipients mice (166). Together, these findings
highlight the role of gut microbes in the promotion of
neuroinflammation in AD progression through alteration in
metabolic and immunological pathways.

Probiotics supplementation has been taken into consideration
also for AD (168, 169). The human isolate Bifidobacterium longum
(NK46) was orally administered in 5xFAD mice and induced
anti-inflammatory effects (decrease in lipopolysaccharide (LPS)
levels, NF-kB activation, and TNF-a expression), changes in
the intestinal microbiota composition of the recipients (increase
in Bacteroides and reduction in Firmicutes and Proteobacteria
phyla), and suppression of Ab accumulation in the
hippocampus (170).

To conclude, an intriguing and relevant role of the oral
pathogen Porphyromonas gingivalis, the causing agent of
chronic periodontitis, has been elucidated in the etiology of
AD (120). We think that the mechanisms adopted by this
bacterium could be relevant to study as also some commensals
could have a similar mode of action. Dominy SS. and colleagues
identified Porphyromonas gingivalis and the gingipains, the toxic
proteases produced by this bacterium, in the brain of AD patients
but not in the brain of control patients with no history of any
neurological abnormality or condition (120). Gingipains co-
localized with neurons and astrocytes and also tau tangles and
intraneuronal Ab in the tissue of AD patients (120). P. gingivalis
16S rRNA was detected in both the cerebrospinal fluid and in the
cerebral cortex of AD patients (120). The oral P. gingivalis
infection in mice that are not genetically susceptible to develop
AD resulted in the detection of P. gingivalis DNA in the brain
and remarkably increased production of Ab deposits (120). On
the other hand, mice that received gingipains-deficient P.
gingivalis or synthetic gingipains inhibitors had significantly
less P. gingivalis DNA detectable in the brain, less Ab
production, reduced neuroinflammation, and increased
number of healthy neurons in the hippocampus (120). For the
first time, some bacterial molecules, as gingipains, have been
identified as neurotoxic and having a critical role in the
generation of an Ab response in vivo (120). These findings also
suggest gingipain inhibitors as valuable instrument for treating P.
gingivalis brain colonization and potentially even the
neurodegeneration in AD (120). This breakthrough study also
suggested that some bacteria could impact the physiology of the
brain or other tissues by reaching them alive, if specific barriers
are leaking or certain conditions will happen, or dead, or by
releasing soluble factors. More studies are needed to address the
exact mechanism through which this is happening and under
which circumstances. It could be relevant to study if mechanisms
adopted by this bacterium in the oral cavity are similar to the
ones used by commensals in other sites.
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Parkinson’s Disease
Parkinson’s disease (PD) is the second most common
neurodegenerative disorder, affecting ten million people
worldwide (171). It is a progressive nervous system disorder that
affects movement. Symptoms start gradually, from a very mild and
hardly recognized tremor in one hand, to reach stiffness or slowing
of movements, difficulties in walking, accompanied by cognitive and
behavior defects (172). PD affects predominantly dopaminergic
neurons in the substantia nigra of the brain, leading to a loss in
control and coordination of the movements (172). Both genetic and
environmental factors have been linked to the etiology of the
disease. Genetically, toxic protofibrils formation, consisting of
soluble oligomers of a-synuclein, a presynaptic protein, has been
involved in the disruption of synaptic functions and in neuronal
death. Targeting a-synuclein (a-syn) has been taken into
consideration to develop therapeutic strategies in PD and other
synucleinopathies (173). However, still nowadays, there is no cure
for this neurodegenerative disorder.

As with most of the diseases, PD patients have a different
microbiota composition compared to healthy controls or
patients affected by other neurological disorders (174–176).
Remarkably, PD patients harbored an intestinal flora
depleted in SCFAs (mainly butyrate)-producing bacteria, like
taxa from Lachnospiraceae family (175, 177–179), and
Faecalibacterium prausnitzii (175, 180), those with known
anti-inflammatory properties. Those butyrate-producing
bacteria are also associated with a decrease in the dopamine
metabolite and lower quality of life and signs of depression (22).
This finding suggests that a PD-typical microbiota composition
could be associated with less dopamine production and PD.
Another important characteristic of the disease is a disrupted
intestinal barrier, which leads to the systemic dissemination of
microbial products like LPS and an increase in expression of
intestinal pro-inflammatory genes (181). An essential role of the
microbiota in PD pathogenesis has been shown in animal
models. GF mice colonized with microbiota from PD patients
display physical impairments compared to GF mice colonized
with microbiota from healthy human donors (111). Importantly,
ASO (overexpressing a-synuclein under Thy1 promoter) mouse
model of PD develops progressive deficits in motor function as
well as in gut motility (182, 183). ASO GF mice show reduced
signs of PD and diminished a-synuclein aggregates in the frontal
cortex, but not in the cerebellum, compared to their SPF
counterparts (103). Antibiotic treatment of SPF ASO mice
induced very mild a-syn-dependent motor dysfunction, like in
mice born under GF conditions (103). Moreover, colonization of
ASO GF animals with SPF flora at five-six weeks of age
recapitulated the significant motor dysfunction observed in
ASO SPF mice (103). Importantly, the microglia phenotype
and also the gastrointestinal function (measured as fecal
output) were significantly improved in antibiotic-treated
animals but diminished in GF mice recolonized with SPF flora
(103). Remarkably, ASO-GF mice treated with SCFAs mixture
showed again mature microglia, formation of a-syn-aggregates,
GI deficits, and significantly impaired performance in several
motor tasks, as ASO-SPF mice (103). Host exposure to dead

bacteria was not sufficient to induce the pathogenesis in the
ASO-GF mice (103). Moreover, the simple treatment with
minocycline was adequate to reduce inflammation, a-syn-
aggregates, and improve motor function (103). Altogether, this
work suggests that only live bacteria, producing active
metabolites, such as SCFAs, could promote inflammation and
development of the disease in the ASO model. These findings
highlight the fact that the same bacterial metabolite could have a
protective effect on specific disease models and a devastating
impact on different ones. Therefore, it is vital to understand how
these substances work in different conditions. Transferring PD
patient-derived feces to GF mice was of high relevance. The
differences in the microbiome profile, in SCFAs amount, and
motor dysfunctions (increase in propionate and butyrate) were
transferred and maintained in vivo too (111). In a different PD
animal model, the pesticide rotenone-induced mouse model,
researchers reported significant changes in the composition of
caecum mucosal-associated and luminal microbiota, with a
decrease in abundance of Bifidobacterium genus. These
differences were associated with alterations in the metabolic
pathways expressed by the commensal bacteria (184). In the
end, in a differently induced model of PD, the repeated oral
administration of Proteus mirabilis or its derived LPS to 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated or young
mice was sufficient to induce a PD-like phenotype with motor
deficit, loss of dopaminergic neurons in the nigra, brain and gut
inflammation with disruption of the intestinal epithelial barrier,
and formation of a-syn inclusions in the brain and in the
colon (185).

Neuropsychiatric Disorders
Neuropsychiatric disorders consist of cognitive, mental, and
behavior disorders, such as schizophrenia, depression, anxiety,
stress and bipolar disorders, autism, eating disorders, and
epilepsy. In the last decades, the incidence of these conditions
increased dramatically, reaching a percentage close to 40% of
affected people worldwide. These patients have impaired health
and ability to conduct a healthy life, to learn and work, which
implies enormous health and economic effort from society. The
etiology of these conditions includes genetic predisposition,
injuries, infections, and environmental factors, such as
the microbiota.

Patients suffering from major depressive disorder (MDD) had
increased fecal a-diversity (increased levels of Enterobacteriaceae
and Alistipes but reduced levels of Faecalibacterium) compared
to drug-responders-MDD patients and healthy controls. The
authors, therefore, reported a negative correlation between
Faecalibacterium and the severity of depressive symptoms
(186). An additional study suggested that the administration of
probiotics (Lactobacillus acidophilus, Lactobacillus casei, and
Bifidobacterium bifidum) to MDD patients significantly
reduced depressive symptoms compared to placebo (187).
From a large microbiome study on a Flemish population
cohort, some bacteria have been associated with high quality of
life, such as butyrate-producing Faecalibacterium, Coprococcus
bacteria, and others with low quality of life and signs of
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depression, such as Bacteroides enterotype 2 (22). From fecal
metagenomic data, the bacterial capacity to synthesize 3,4-
dihydroxyphenylacetic acid, a dopamine metabolite, correlates
positively with mental quality of life and suggests a potential role
of microbes to produce different neuroactive molecules during
depression than during healthy conditions (22).

Patients affected by schizophrenia have also an altered and
less rich gut microbiota composition with 77 differently
expressed operational taxonomy units (OTUs) compared to
healthy individuals (23). The fecal samples derived from
these patients were transplanted into GF rodents and could
transfer schizophrenic-associated behaviors, such as locomotor
hyperactivity and decreased anxiety- and depressive-like
behaviors, in the recipients (23). The mice that received
fecal samples from schizophrenic patients showed several
differentially regulated metabolic pathways in the feces, serum,
and hippocampus (23). In particular, glutamine and GABA were
elevated in the hippocampus (23). Glutamate was decreased in
the stool and hippocampus of these mice, compared to mice
transplanted with healthy patient’s feces (23).

Regarding human autism spectrum disorder (ASD), studies
showing the importance of the microbiota in the pathogenesis are
few and mostly inconsistent, with some exceptions concerning the
differences observed for bacteria, such as Prevotella, Firmicutes,
Clostridiales, like Clostridium perfringens, and Bifidobacterium
species (188), between the ASD patients and the controls.
Colonizing GF mice with fecal microbiota from patients affected
by ASD was sufficient to promote ASD-like behaviors in the
animals (113). This approach seemed to be due to a deficit in the
production of two bacterial metabolites, 5-aminovaleric acid (5-
AV) and taurine, both being weak GABAA agonists, in ASD
individuals compared to controls (113). Maternal immune
activation (MIA) is a situation in which the maternal immune
system gets activated by infections or infections-like stimuli, like
LPS, and it features ASD in the offspring. In MIA animal models,
scientists highlighted the importance of specific commensal bacteria
in ASD protection. Interestingly, offspring coming fromMIA dams
showed intestinal microbial dysbiosis with 67 different OTUs
compared to the control group, dysregulation of the intestinal
barrier integrity with increased permeability, as reported already
in children affected by ASD (189), and alteration in their
metabolomic profile (20). The pure administration of two
bacterial strains as probiotic treatment, such as Bacteroides fragilis
(and Bacteroides thetaiotaomicron but not Enterococcus faecalis),
could improve the gut dysbiosis, intestinal barrier integrity, the
metabolic profile of the animals, and the communicative, repetitive,
anxiety-like, and sensorimotor behaviors in the MIA model (20).
Concerning the metabolites that could be induced by the intestinal
bacteria under certain pathological conditions, in the MIA model,
4-ethylphenylsulfate (4EPS), indole pyruvate, serotonin, glycolate,
imidazole propionate, and N-acetylserine were enormously
increased in the serum of MIA offspring and entirely restored by
the single B. fragilis treatment (20). Remarkably, the injection of the
only 4EPS metabolite in the naïve healthy animals was sufficient to
induce anxiety-like behaviors similar to the ones showed by the
MIA offspring (20).

ROLE OF INFLAMMASOMES IN THE GUT-
BRAIN AXIS: UNDER PHYSIOLOGICAL
CONDITIONS

As mentioned earlier, in mice, the genetic deficiency of caspase-
1, the effector molecule of the inflammasome, is associated with a
decrease of innate and stress-induced depressive- and anxiety-
like behaviors and affects chronic restraint stress response with a
possible involvement of the intestinal microbiota (190).

The inflammasome is an innate immune signaling complex
that is activated and assembled in response to the presence of
pathogens or danger signals. Once activated, it leads to the
production of active pro-inflammatory cytokines, such as IL-18
and IL-1b. There are several different inflammasomes. All consist
of a “receptor” protein (such as pattern-recognition receptors
(PRRs), like NLRs (NOD-like receptors) or TLR (Toll-like
receptors), an adaptor molecule called apoptosis-associated
speck-like protein (ASC or Pycard), and of the effector molecule
pro-caspase-1. Additionally, inflammasome activation can initiate
pyroptosis, a fast and pro-inflammatory form of cell death (106,
190, 191). In general, two signals initiate a successful
inflammasome activation. The first signal comes from pathogen-
or danger-associated molecular patterns (PAMPS/DAMPS) from
outside of the cell and induces the transcription of genes encoding
for inflammasome components and products. The second signal
comes from intracellular danger signals, such as adenosine
triphosphate, uric acid, fatty substances that can induce
lysosomal damage, or nicotinamide adenine dinucleotide
phosphate oxidase- or mitochondria-driven reactive oxygen
species production. These processes result in the assembly and
activation of inflammasomes (191–193).

In the CNS, inflammasome activation has been mainly linked
to neuroinflammatory conditions. As example, it has an essential
role in the progression of several neurological disorders like MS,
AD, PPD, and NPS (132, 193–197). However, in the work of
Wong ML et al., caspase-1–deficient mice were subjected to
different behavioral tests, such as forced swim test, elevated plus
maze, novelty suppressed feeding test, marble burying test, and
open field test (190). Caspase-1–deficient mice, compared to
wild-type mice, showed decreased floating time in the forced
swim test, decreased anxiety-like behavior as measured by the
unaltered open/closed arms time ratio in the elevated plus-maze
(190). Latency to feed decreased after 16 hsec of fasting in the
novelty suppressed feeding test (190). Caspase-1–deficient mice
buried fewer marbles in the marble-burying test (190). In the
open field test, the knock-out mice produced less fecal pellets,
showed increased locomotion, and performed faster at the
rotarod test (190). Upon treating the mice with either the
minocycline antibiotic, which suppresses inflammasome
activation and alters the microbiota composition, or after
chronic restraint stress experiment for 21 consecutive days, the
gut microbiota composition of these mice changed, compared
with mice which do not undergo these procedures (190). The
differences in microbiota composition resemble the ones
reported in caspase-1–deficient mice, such as an increase in the
relative abundance of Lachnospiraceae (198).
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However, we would like to emphasize the fact that the
influence of the host inflammasome pathways on the intestinal
microbiota composition has been extensively discussed by
colleagues and us (194, 199, 200). In fact, in different facilities,
mice lacking ASC, NLRP6 (199), or NLRP3 (200) fail to show
any detectable differences in the composition of their fecal flora
compared to wild-type controlled littermates (199), either co-
housed or individually housed, contrary to what has been
described in other facilities (194). Instead, the maternal-
microbiota inheritance or the cage effect had a much more
substantial impact on the intestinal bacteria composition than
the host inflammasome expression in our conditions (58). In
conclusion, additional analyses are needed to understand in
which particular hygiene conditions, mice lacking a functional
inflammasome show remarkable microbiota alteration that could
affect the health of the host. Moreover, IL-1b and IL-18 also have
essential roles for physiological functions in the CNS, as they
participate in processes of cognition, learning, and memory
(201). Especially in the hippocampus and hypothalamus, high
abundance of IL-1b has been described in steady-state in rats
already in 1990, in regions of the brain conducting essential and
conserved brain functions as memory and learning processes
(202). In 1998, Schneider H. et al. could show that expression of
IL-1b increases during long-term potentiation in neurons, which
consists in a synaptic strengthening process implicated in
learning and memory (203). However, in a study from 2004,
IL-1b administration into the hippocampus induced memory
impairments in a conditioning learning task in rats (204). This
discrepancy underlies the complex role of inflammasomes and
IL-1b in the CNS. Recently, AIM2 inflammasome has been
shown to have a role in the normal brain development. It gets
activated in presence of DNA damage that occurs at high levels
during infections, trauma, but also neurodevelopment upon
massive cell death (205). Under physiological conditions,
AIM2 inflammasome is activated during neurodevelopment
and contributes to CNS physiology acting through gasdermin-
D regulation, and not through IL-1b and IL-18 production (205).

We could then speculate that in presence of certain infectious
agents, or intestinal bacteria, the dysregulation of these
physiological pathways could cause an overactivation of the
inflammasome also in the brain and therefore an alteration of the
homeostatic mechanisms. The disruption of these immune sensors
could then lead to CNS abnormalities and disease conditions.
Inflammasome signaling in the CNS has also been reported in the
microglia, the brain’s critical innate immune cells (206), in
astrocytes (207), perivascular brain-resident macrophages (208),
oligodendrocytes (209), endothelial cells (210), aswell as inneurons
(211). In the intestine, under physiological conditions, constant
stimulation of inflammasomes is happening due to the resident
trillions of microbes. It has been shown that released IL-18
importantly contributes to maintaining homeostasis in the gut
(193). Several microbial factors can activate the intestinal
inflammasome, which might have a distal effect on the brain.
However, we still need to link all the events together. An evidence
for intestinal inflammasome activation and its effects on the brain
comes from the discovery that Salmonella leucine-rich repeat

protein (SlrP) inhibits Salmonella virulence and the typical host
anorexic response induced by the infection (212). SlrP inhibits the
inflammasome activation and IL-1b production in the small
intestine, preventing the flux of IL-1b to the hypothalamus via
the vagus nerve and therefore the influence on the anorexic-feeding
program in theCNS (212). It also promotes survival of the host, and
from the microbial point of view microbial transmission to other
hosts (212). Several microbial metabolites, such as taurine,
spermine, and histamine, can affect the NLRP6 inflammasome
activation in the gut and play an important role, if properly
balanced, in host-microbial mutualism at the level of the intestine
(213). Also, bile acids could be sensed by the inflammasome
complex and induce their activation. Bile acids are produced in
the liver conjugatedwith taurineorglycineand released in theupper
small intestine during the digestion process. Once in the intestine,
they can be converted by gut microbiota and affect the host
metabolism and immune response. Researchers have identified
that an analogue of oxo-12S-hydroxylithocholic acid methyl ester
(BAA473), a microbiota-derived bile acid metabolite, the 11-12-
oxo-lithocholic acid (BAA485) can induce the production of IL-18,
in a pyrin-inflammasome-dependent manner (214). The group of
MacKay C. showed that consumption of high-fiber diet, that
inevitably has an effect on the host microbiota, or acetate-
treatment, induced increased levels of IL-18 (and not IL-1b) in
the serum of the animals via GPR43 and GPR109A receptors, that
are expressed on colonic epithelial cells and activate the K+ efflux
and hyperpolarization of the cells and the Ca2+mobilization, in an
NLRP3- but not NLRP6-dependent manner, under both steady-
state and inflammatory conditions (193).

These data show that intestinal inflammasome activation by
the microbiota might lead to the production of effector molecules
which have an effect in the CNS via the vagus nerve (212). This
could be one of the innate immune pathway activated by the
intestinal microbes with important distal effects also on the CNS,
potentially during both healthy and inflammatory conditions.

ROLE OF INFLAMMASOMES IN THE GUT-
BRAIN AXIS: UNDER PATHOLOGICAL
CONDITIONS

An exact and overall understanding of the functions of
inflammasome activation in physiologic and diseased states is
of very high importance, as its effects are guiding to both
situations and are tightly regulated. Following, we aim to
summarize the state of research on the role of inflammasome
activation in different CNS pathologies and what is known so far
in terms of bacterial influence on the inflammasome pathways
during CNS inflammation (Table 1).

Multiple Sclerosis
Inflammasome components and products have been shown to
have a relevant role in MS pathogenesis. Indeed, Caspase-1 and
ASC have recently been proposed as candidate biomarkers for
MS onset (215). IL-1b and IL-18 seem to contribute to the
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TABLE 1 | Inflammasome-dependent mechanisms in different neurological disorders.

Disorder/

Deficiency

Model Treatment/

Method/

Genetically

modified animals

Findings Mechanism References

Multiple sclerosis MS patients Analysis of serum
samples

ASC and caspase-1
(inflammasome proteins) are
potential biomarkers for
prediction of disease onset ASC
is a potential biomarker for
severity of the disease.

ASC and caspase-1 were found to be elevated in the
serum of MS patients compared to the control group.
IL-1b was found to be decreased. ASC levels were
higher in MS patients with moderate disease onset
compared to the mild group.

Keane et al.
(215)

Multiple sclerosis MS patients IL-1b, IL-18, Caspase-1↑ in
PBMCs and the CSF.

Inoue and
Shinohara
(216); Mamik
and Power
2017 (217)

EAE Mouse MOG-CFA
immunization with
pertussis toxin (PTX).
IL-1RI-/- mice

IL-1 is importantly involved in the
pathology of EAE by promoting
pathogenic autoantigenspecific
ThIL-17 cells, as IL-1RI-/- mice
showed a lower incidence of
EAE compared to wt mice after
immunization.

Sutton et al.
(218)

EAE Mouse MOG-CFA
immunization with
pertussis toxin (PTX)

Inflammasome activation in
microglia and border-associated
macrophages has a main
responsibility for the
development of EAE. Essential
bacterial influence on the release
of IL-1b.

Voet et al. (219)

EAE Mouse MOG-CFA
immunization with
enzymatically active
and inactive
pertussis toxin (PTX)

Inflammasome activation is
needed for PTX-induced
adhesion of neutrophils on
cerebral capillaries and trigger
encephalomyelitis in mice.

PTX activates TLR4 signaling in peritoneal myeloid
cells, this leads to pro-IL-1b expression and the
formation of a pyrin-dependent inflammasome, and
active IL-1b. IL-1b stimulated stromal cells to secrete
IL-6, which allows leukocyte adhesion on cerebral
capillaries. Caspase-1-, ASC- or pyrin-deficient mice
developed less severe EAE pathogenesis.

Dumas et al.
(220)

EAE Mouse MOG-CFA
immunization with
pertussis toxin
(PTX).Pycard-/- mice

Priming of encephalitogenic T
helper CD4+ T cell subset was
dependent on ASC-dependent
IL-1b production.

PTX induced recruitment of monocytes and neutrophils
into lymph nodes, where they produce IL-1b. This
primes encephalitogenic T helper CD4+ cells which are
responsible for the immune reaction and disease
development. Priming of these T cells happens in an
ASC-dependent production of IL-1b.

Ronchi et al.
(113)

Alzheimer's
Disease

AD patients IL-1B, IL-18↑ in neurons,
microglia and astrocytes
surrounding Ab plaques.

Griffin et al.
(221), Simard
et al. (222),
Ojala et al.
(223),
Malaguarnera
et al. (224),
Öztürk et al.
(225)

Alzheimer's
Disease

AD patients NLRP3, ASC, Caspase-1, -5, IL-
1b, -18↑ in PBMCs.

Malaguarnera
et al. (224),
Saresella et al.
(226), Bossù
et al. (227)

Alzheimer's
Disease

Primary mouse
cells and cell
lines for
microglia

In vitro stimulation
with Ab amyloids

Fibrillar Ab amyloids induced IL-
1b secretion from microglia via
NLRP3 inflammasomes

Halle et al.
(228)

(Continued)
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TABLE 1 | Continued

Disorder/

Deficiency

Model Treatment/

Method/

Genetically

modified animals

Findings Mechanism References

Alzheimer's
Disease

Primary
microglia

In vitro stimulation NLRP3 activity spreads Ab
pathology in a prion-like manner
promoting missfolded proteins
to aggregate and form plaques.

Extracellular release of ASC particles (=ASC specks)
from microglia cells function as danger signals. They
bind to Ab seeds which leads to further aggregation
and spreading of Ab plaques. ASC specks can also be
inter- nalized by macrophages where they induce
activation of caspase-1 and release of IL-1b.

Venegas et al.
(229)

Alzheimer's
Disease

Mouse APP/PS1 mice
deficient for
Caspase-1, ASC or
NLRP3

All these mice had reduced
hippocampal and cortical
amyloid plaques deposition with
ameliorated disease outcome.

ASC-induced seeding leads to Ab plaques aggregation
and spreading. These ASC specks are released after
immune activation of microglia.

Venegas et al.
(229), Heneka
et al. (230)

Alzheimer's
Disease

Mouse APP/PS1 mice.
Pharmacological
inhibition of NLRP3
inflammasome with
MCC950

Ab accumulation↓,
inflammasome and microglia
activation↓, neuroinflammation↓,
cognitive impairments↓,
phagocytotic function of
microglia↑.

Dempsey et al.
(231)

Alzheimer's
Disease

Ab accumulation activates
microglia and promotes
production of proinflammatory
mediators by them, and also
impairs their phagocytic function.

Sarlus and
Hedeka (232),
Shi and
Holtzmann
(233)

Alzheimer's
Disease

Rat IL-1b injection into
cerebral hemisphere

Ab-APP proteins overexpression
and dystrophic neurite formation
in the brain.

Sheng et al.
(234)

Alzheimer's
Disease

Mouse APP/PS1 mice with
sustained IL-1b↑↑ in
the hippocampus

Plaques pathology↓ Shaftel (235)

Alzheimer's
Disease

in vitro hiNSC-
derived cell
lines

HSV-1 viral infection Induces gliosis and inflammation,
production of IL-6, IL-1b, IFN-g
! low-grade HSV-1 infection
induced an AD-like phenotype

Cairns et al.
(236)

Tautopathy Mouse Tau 22 mice.
Injection of brain
homogenates of wt
or APP/PS1 mice
into the
hippocampus of
Tau22 mice.

Cleaved Caspase-1, ASC↑ in the
brain at the age of 22 month
compared to 3 months old
Tau22 wt mice.

Ising et al.
(197)

Tautopathy Mouse Tau 22 mice
deficient for ASC or
NLRP3. Injection of
brain homogenates
of wt or APP/PS1
mice into the
hippocampus of
Tau22 mice.

Tau hyperphosphorylation in
CA1 region in Tau 22 wt mice
but not in their NLRP3-/- and
ASC-/- counterparts. ! NLRP3
activation is upstream of Ab-tau
cascade and pathology, in a IL-
1b-dependent manner.

Ising et al.
(197)

Tautopathy Mouse ASC-, Caspase-1-,
IL-1R-, Myd88-
deficient mice.
Injection of fibrillar
Ab into the
striatum.

NALP3 inflammasome and the
IL-1b pathway is essential for the
microglia activation upon Ab
deposition in the brain.

↓Recruitment and activation of microglia and
phagocytes to the Ab injection site in brain of these
mice compared to wt mice.

Halle et al.
(228)

(Continued)
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TABLE 1 | Continued

Disorder/

Deficiency

Model Treatment/

Method/

Genetically

modified animals

Findings Mechanism References

Parkinson's
Disease

PD patients IL-1b, Caspase-1↑ in the serum
and striatum

Mogi et al.
(237)

Parkinson's
Disease

PD patients
and rodents

Fibrillar form of a-synuclein
induced NLRP3- and caspase-
1-mediated IL-1b secretion in
monocytes and BV2 microglia,
or via TLR2-signaling in microglia

Codolo et al.
(238)

Parkinson's
Disease

PD patients
and mice

Patients with a
PARK2 mutation,
PARK2-/-, PINK1-/-
mice

Exacerbation of NLRP3
inflammasome activation in
microglia and macrophages in
PARK2-/- and PINK1-/- mice.
This was confirmed in blood-
derived macrophages of patients
with PARK2 mutation.

Mouton-Liger
et al. (239)

Parkinson's
Disease

Human
dopaminergic
neuroblastoma
cells

active caspase-1 cleaves a-
synuclein which then newly
forms a-synuclein aggregates.
Neuronal toxicity↑

Wang et al.
(240)

Parkinson's
Disease

Rat Intranigral injection of
IL-1b with
adenoviruses

Chronic expression of IL-1b in
substantia nigra induced
activation of astrocytes and
microglia and progressive death
of dopaminergic neurons !
motor impairments.

Ferrari et al.
(241)

Parkinson's
Disease

Rat LPS-induced and 6-
hydroxy-dopamine-
induced PD rats.
Injection of caspase-
1-inhibitor Ac-YVAD-
CMK

Inhibition of caspase-1 ! NLRP
inflammasome signaling
proteins↓ and improvment in the
number of dopaminergic
neurons.

Mao et al. (242)

Parkinson's
Disease

Mouse a-synuclein A53T
transgenic PD mice
deficient for
caspase-1

IL-1b levels in the midbrain↑.
Caspase-1-/- ! activation of
microglia↓

Fan et al. (243)

Parkinson's
Disease

Mouse MPTP-induced PD
mice deficient for
NLRP3

Dysregulation of NLRP3
inflammasome contributes to the
development of MPTP-induced
loss of nigral dopaminergic
neurons. Circulating dopamine is
a NLRP3 inflammasome
inhibitor.

NLRP3-/- mice are resistant to the loss of
dopaminergic neurons induced by MPTP. This was
associated with caspase-1-, IL-1b- and IL-18↓

Yan et al. (244)

Neuropsychiatric
disorders

Depressed,
bipolar, and
ASD patients

↑expression and activity of
NLRP3 inflammasome

Alcocer-Gómez
et al. (245)
Saresella et al.
(226)
Baroja-Mazo
et al. (246)

Neuropsychiatric
disorders

MDD patients ↑ NLRP3, caspase-1, IL-1b
mRNA and proteins in PBMC

Alcocer-Gómez
et al. (247)

Neuropsychiatric
disorders

SSD, ASD,
OCD, NSSID
patients

↑ NLRP3, caspase-1, ASC, IL-
1b, IL-1RN, TNF mRNA in
PBMC, ↑plasmitic levels of IL-1↑,
IL-18, IL-1Ra, TNFa, and IL-6

Hylén et al.
(248)

(Continued)
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pathophysiology of MS, as they are upregulated together with
caspase-1 in peripheral blood mononuclear cells (PBMCs) and
the cerebrospinal fluid (CSF) of MS patients (216, 217).

Evidences in animal models also revealed the importance of the
inflammasome signaling in microglia and border-associated
macrophages during EAE (219). Essential bacterial influence on the
release of IL-1b in the classical animal model of active induced EAE
was shownbyothers andusa fewyears ago (132, 218, 220). In fact, the
importanceof theusageof pertussis toxin (PTX) to induce thedisease
development in anmousemodel forMSstarted tobe elucidated.PTX
is the major virulence factor of Bordetella pertussis and needs to be
used in conjugation together with the antigen and the adjuvant
during immunization. Dumas A. and colleagues reported the effects
of PTX-induced IL-b in the recruitment of inflammatory leukocytes
into the brain upon upregulation of adhesion molecules on blood–
brain capillaries (220). Briefly, PTX, with its ADP-ribosyltransferase
active subunit, induced the activation of TLR4 signaling in peritoneal
myeloid cells (macrophages and neutrophils), pro-IL-1b expression,
and therefore the formation of a pyrin-dependent inflammasome
that releases active IL-1b (220). Subsequently, IL-1b stimulated the
stromal cells to secrete IL-6, which is known to induce vascular
changes required for leukocyte adhesion. In caspase-1-, ASC-, or
pyrin-deficient hosts, PTX did not induce neutrophil adhesion to
cerebral capillaries and therefore leads to a less severeEAEphenotype
(220). In addition, we showed that expression and production of IL-
1b (and not IL-18, IL-1a, IL-6, or IL-23) was transiently and shortly
increased post-PTX (and not PBS) injections, in the draining lymph-
nodes, during the priming phases of the disease model (132). This
happened earlier than the appearance of any clinical symptom (132).
The toxin induced the recruitment of inflammatory monocytes and
neutrophils in the draining lymph-nodes which were responsible of
the production of IL-1b in the tissue (132). IL-1b–producing
lymphoid myeloid cells were needed for the priming of
multifunctional encephalitogenic T cells, characterized by the
production of IL-17A, IFN-g, GM-CSF, and IL-22 (132). The
priming of this pathogenic subset of T helper CD4+ T cells was
dependent on ASC-dependent IL-1b production, and not on IL-
12p35 or IL-12p40 (132). Interestingly we have also shown that the
signaling of IL-1b both at the level of T andnon-T cells was necessary
to generate the immune reactions involved in the disease
development (132). We therefore suggested that environmental
(bacterial) factors can also affect the priming of autoreactive
pathogenic T cells providing new insights into the pathogenic
mechanisms of MS and other immune-mediated diseases,
including neurological disorders.

In summary, the infectious agent products could be crucial in
the activation of the inflammasome pathway in MS pathogenesis.
Hence, it would be intriguing to study if similar events could be
driven by mucosal commensal microbes in order to better
manipulate the microbiota and the immune mediated
disease pathogenesis.

Alzheimer’s Disease
Inflammasome and its products have been implicated in AD
pathogenesis since a higher expression of IL-1b and IL-18 has
been reported in the microglia, astrocytes, and neurons that
surround Ab plaques or in the plasma of AD patients (221–225).
The higher expression of NLRP3, ASC, caspase-1, caspase-5, IL-
1b, and IL-18 was additionally found in the PBMCs of
AD patients (224, 226, 227). In general, patients affected by
tauopathies showed elevated levels of cleaved caspase-1 and ASC
and mature IL-1b in the cortex (197). NLRP3 inflammasome-
mediated neuroinflammation has been importantly implicated in
pathogenesis and progression of AD. Fibrillar Ab amyloids can
induce the secretion of IL-1b from microglia, via the NLRP3
inflammasome (228, 249). In turn, NLRP3 inflammasome
activity leads to the extracellular release of ASC particles that
may function as danger signals (246). They were shown to
physically bind to Ab, seed, and then spread Ab pathology in a
prion-like manner by promoting misfolded proteins to aggregate
and form plaques (229).

Animal studies confirmed this significant involvement of
NLRP activation, as APP/PS1 mice, lacking the expression of
ASC, caspase-1, or NLRP3 had significantly reduced hippocampal
and cortical amyloid plaque deposition and ameliorated disease
outcome (229, 230). Also, Tau22 mice, another model of AD and
other tauopathies, had increased levels of cleaved caspase-1 and
ASC in their brain at the age of 11 months compared to their 3-
month-old counterparts. Consistent with this, Tau22 mice lacking
ASC or NLRP3 expression had lower levels of aggregated and
hyperphosphorylated tau in the hippocampus, and their typical
spatial memory deficits were rescued (197). Injecting brain
homogenates from APP/PS1 or wild-type mice into the
hippocampus of Tau22 mice, induced tau hyperphosphorylation
in the hippocampusofTau22wild-type but not Tau22/Pycard−/−or
Tau22/Nlrp3−/− deficientmice, suggesting that NLRP3 activation is
upstream the Ab-tau cascade and tau pathology (197). Moreover,
NLRP3 activation induces tau hyperphosphorylation and
aggregation in an IL-1b–dependent manner. Importantly,
researchers also found that ASC-, caspase-1-, IL-1 receptor-, and

TABLE 1 | Continued

Disorder/

Deficiency

Model Treatment/

Method/

Genetically

modified animals

Findings Mechanism References

Neuropsychiatric
disorders

MDD patients Antidepressant
drugs

Drugs have inhibitory effect on
NLRP3-inflammasome activation,
reduction in serum levels of IL-1b
and IL-18 and protein levels of
NLRP3 and IL-1b

Alcocer-Gómez
et al. (247)
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MyD88-deficient mice had less recruitment of microglia and
mononuclear phagocytes to Ab in the brain as compared to the
wild type control after the injection of Ab into the striatum (228).

In addition, the pharmacological inhibition of the NLRP3
inflammasome reduced Ab deposition, neuroinflammation, and
cognitive impairment in the APP/PS1 AD mouse model (231).
Ab accumulation activates the microglia and promotes pro-
inflammatory mediators’ production and impairment of their
phagocytic function (232, 233). IL-1b injection into the cerebral
hemisphere increases Ab-APP proteins in wild-type rats (234).
All these evidences suggest that the inflammasome activation in
AD pathogenesis could be downstream the Ab deposits
formation, and it could then amplify the neuroinflammation
linked to the disease. However, IL-1b seems to have an intricate
role, since a sustained overexpression in the hippocampus in
APP/PS1 mice was shown to reduce plaque pathology (235). A
very recent study highlighted the casuality of Herpes simplex
virus type 1 (HSV-1) in the AD development (236). The authors
showed that infecting human-induced neural stem cell (hiNSC)
lines with HSV-1 in vitro induced gliosis and inflammation,
including the production of pro-inflammatory cytokines such as
IL-1b, IL-6, and IFN-g. This work, furthermore, showed that
low-grade HSV-1 infection induced an AD-like phenotype in
brain organoids derived from hiNSCs (236).

Parkinson’s Disease
Increased IL-1b and caspase-1 have been measured in the serum
and the striatum of PD patients (237). The fibrillar, but not
monomeric, form of a-synuclein induced NLRP3- and caspase-1–
mediated IL-1b secretion in human monocytes and BV2 microglial
cell line (238), or via TLR-2 signaling pathway in rodents microglial
cells (250). Additionally, early-onset PD patients with mutations in
two genes encoding for parkins (PARK2 and PARK2), or mice
lacking a mitochondrial serine/threonine protein kinase (PINK1)
showed an exacerbated NLRP3 inflammasome response in their
microglia and macrophages (239).

In animal models, active caspase-1 was shown to directly
cleave a-synuclein, which further promoted the aggregation and
neuronal toxicity for neurons of this newly-aggregated a-
synuclein (240). Moreover, the chronic expression of IL-1b in
substantia nigra of rats induced progressive death of
dopaminergic neurons and resulted in motor impairments
(241). Injection of the caspase-1 inhibitor Ac-YVAD-CMK was
shown to reduce the expression of NLRP inflammasome
signaling proteins and improve the number of dopaminergic
neurons in LPS- and 6-hydroxydopamine-induced PD in rats
(242). In the a-synuclein A53T transgenic mouse model of PD
(which overexpress the mutant human A53/a-synuclein),
elevated levels of IL-1b in midbrain were measured, but when
the mice lack the endogenous expression of caspase-1, this
significantly reduced the activation of microglia (243).
Moreover, NLRP3−/− mice were resistant to the loss of nigral
dopaminergic neurons induced by treatment with the neurotoxin
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and this
was associated with a reduction in caspase-1 activation and IL-1b

and IL-18 secretion (244). However, also for PD, it is very
unclear if any microbial insult could be the trigger of the
deposit formation that induce the inflammasome activation or
vice versa (251, 252).

Neuropsychiatric Disorders
Increased expression and activity of the NLRP3 inflammasome
machinery in circulating immune cells of patients affected by
depression (245), bipolar disorder (246), and ASD (226), have
been reported. However, works aimed to study how the host
system changes in these types of psychiatric disorders are still
lacking. A study involving a relatively small cohort of MDD
patients and healthy volunteers reported that NLRP3 mRNA and
protein levels are increased in peripheral blood mononuclear
cells in MDD patients, as caspase-1 and IL-1b, and normalized to
healthy levels upon antidepressant treatment (245). In a recent
work, involving 40 psychiatric patients affected by schizophrenia
spectrum disorders (SSD) (including psychotic disorder,
schizophrenia, and schizoaffective disorder), ASD, obsessive-
compulsive disorder (OCD), or non-suicidal self-injury
disorder (NSSID), expression of genes encoding for NLRP3,
caspase-1, ASC, IL-1b, IL-1RN, and TNF are significantly
increased in peripheral whole blood of psychiatric patients
compared to matched healthy controls (248). Also, at the
protein level, the amount of plasma IL-1b, IL-18, IL-1Ra, TNF-
a, and IL-6 were more elevated in the psychiatric patients
compared to the healthy controls (248). In details, patients
with SSD had higher levels in IL-18, IL-1Ra, TNF, and IL-6;
whereas OCD patients had higher levels of IL-18, IL-1Ra, and
TNF, compared to the healthy controls (248). Importantly, these
effects were not caused by the presence of functional mutations of
inflammasome components or products, which could lead to
increased inflammasome activity and cytokine release, neither by
the body mass index (BMI), age at disease onset, depression, or
treatment with psychotropic drugs (248). Antidepressant drugs
can have an inhibitory effect on inflammasome activation,
especially on NLRP3 inflammasome, as they reduce serum
levels of IL-1b and IL-18 and protein levels of NLRP3 and IL-
1b (247). Host metabolites have an inhibitory effect on NLRP3
inflammasome followed by anti-inflammatory cascade and
beneficial effect on the brain, with antidepressant action as
example. Specifically, the b-hydroxybutyrate (BHB), a
physiological ketone body produced by the liver in condition
of fasting, low blood sugar, or carbohydrate-free (like ketogenic)
diet consumption had an inhibitory effect on NLRP3-
inflammasome (253). In rats, repeated subcutaneous injections
of BHB attenuated stress-induced IL-1b and TNF-a expression
in the hippocampus. The release of IL-1b and TNF-a caused by
stress is tightly regulated by NLRP3 inflammasome (254). These
findings suggest that BHB exerts antidepressant-like effects,
possibly by anti-inflammatory mechanisms that inhibits or are
led by NLRP3-induced neuro-inflammation in the hippocampus
(255). This study could also suggest a possible future therapeutic
usage of metabolites like BHB to treat neuropsychiatric disorders
such as stress-related mood disorders.

Rutsch et al. Gut-Brain Axis, Microbiota, Inflammasome

Frontiers in Immunology | www.frontiersin.org December 2020 | Volume 11 | Article 60417916

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


SUMMARY AND OPEN QUESTIONS

Emerging data about the influence of intestinal inflammation on
the nervous system is extremely critical to connect the missing
dots between the two organs for better understanding the
synergistic communication within the GBA. This review aimed
to present how certain bacterial species could shape the host
GBA during healthy and disease conditions. Then, it centralized
the attention on the known mechanisms of action of bacteria
through the production of molecules that can influence the host’s
immune and nervous functions. However, in many cases, in both
patients and disease animal models, the exact mechanisms of
action and signaling pathways activated by the bacteria and their
products or metabolites are yet to be discovered. We also
presented how the innate immune inflammasome pathway
could act, in some cases, as communication tool between the
microbes and the CNS, however still many questions are
unanswered. Future studies aiming to dissect the exact
mechanisms of microbial action are of critical urgency in the
field. Translational approaches and more significant clinical
trials are utterly needed to understand the temporal and causal
relationships between gut microbiota and specific disease
development, to evaluate the suitability of the microbiome as a
biomarker of disease, and the efficacy of microbial interventions,
such as probiotics and FMT protocols, in the patients. Clinical
studies, coupled with animal experiments, are needed to precisely
dissect the molecular pathways behind the pathogenesis of
several disease conditions. This approach would be necessary
for examining the mechanisms behind a specific immunological
or neurological effect observed in the presence or absence of
particular bacterial species in certain pathogenic conditions. In
this case, this review highlights the necessity of studies aimed to
discover if and how individual bacterial molecules (products or
metabolites) are involved in disease progression or protection.
We believe that future research in the field must aim to reveal the
precise mechanisms behind the pro- and anti-inflammatory
responses induced by the microbes. Of crucial relevance will
also be to understand what specific bacterial molecules and
metabolites exactly do at the CNS level and how they reach the
CNS. It is vital to study on which cells they act, which signaling
pathways they activate or suppress, in which organ these
mechanisms are affected, and whether they affect both the
enteric and central nervous systems. Additionally, it will be
essential to address how alterations of the host immune or
nervous system will affect also the functions of the microbiota,
via inflammatory mediators and defensive molecules.

The inflammasome is a signaling pathway that might be
activated in the presence of certain bacteria and bacterial
molecules. As shown, it is involved in several neurological and
intestinal homeostatic and inflammatory conditions. Inflammasome
products are targets of several therapies used to treat some of the
disorders that we have presented here (256). In some cases, it is
involved in the pathogenesis of neurodegenerative diseases, such as
EAE, upon bacterial exposure (132). However, it is still obscure if
and how intestinal microbial alterations, which are associated with

every neurological disease, are upstream or downstream of the
immunological (like inflammasomes) and neurological
dysfunctions. It is necessary to dissect in which microbial
conditions specific mechanisms are activated and how. This
approach will allow to design more efficient therapies aimed to
modulate the microbiota or the host immune responses to
ameliorate or cure specific neurological pathologies.

Overall, we think that the exciting and important discoveries
here summarized suggest that bacteria, both pathogens and
commensals, have the capacity to stimulate the host intestinal
tissue and signal to the brain to promote several aspects of the
behaviors of the host and the neurological disease pathogenesis. It
is now historically the stage in which all the tools and instruments
to identify single bacteria and their products are available. It is
possible to then follow them in the various host tissues to
understand where they go, which cells they can affect, and which
pathways they can activate. This mechanistic approach is, at the
moment, utterly needed to better understand how the nervous
system is influenced by the intestine. We believe that this
knowledge will also lead to the understanding of how to develop
better interventions and more efficient and personalized
therapeutic strategies for patients affected not only by the
neurological disorders treated in this review.
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