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ABSTRACT
◥

We report on a comprehensive analysis of the gut micro-
biomes of patients with gastrointestinal (GI) cancer receiving
anti–PD-1/PD-L1 treatment. The human gut microbiota has
been associated with clinical responses to anti–PD-1/PD-L1
immunotherapy in melanoma, non–small cell lung cancer, and
renal cell carcinoma. We aimed to investigate this association in GI
cancers. We also identified bacterial taxa with patient stratification
potential. We recruited 74 patients with advanced-stage GI cancer
receiving anti–PD-1/PD-L1 treatment and collected their fecal
samples prior to and during immunotherapy, along with clinical
evaluations. Our 16S rRNA taxonomy survey on the fecal samples
revealed an elevation of the Prevotella/Bacteroides ratio in patients,
with a preferred response to anti–PD-1/PD-L1 treatment, and a
particular subgroup of responders harboring a significantly higher
abundance of Prevotella, Ruminococcaceae, and Lachnospiraceae.

The shotgun metagenomes of the same samples showed that
patients exhibiting different responses had differential abundance
of pathways related to nucleoside and nucleotide biosynthesis, lipid
biosynthesis, sugar metabolism, and fermentation to short-chain
fatty acids (SCFA). Gut bacteria that were capable of SCFA produc-
tion, including Eubacterium, Lactobacillus, and Streptococcus, were
positively associated with anti–PD-1/PD-L1 response across differ-
ent GI cancer types. We further demonstrated that the identified
bacterial taxa were predictive of patient stratification in both our
cohort and melanoma patients from two previously published
studies. Our results thus highlight the impact of gut microbiomes
on anti–PD-1/PD-L1 outcomes, at least in a subset of patients with
GI cancer, and suggest the potential of the microbiome as a marker
for immune-checkpoint blockade responses.

See articles by Tomita et al., p. 1236, and Hakozaki et al., p. 1243

Introduction
Gastrointestinal (GI) cancers are the most common cancers in the

world. Despite improvements in therapeutic approaches in the last
decade, themortality of GI cancers is still among the highest, especially
in gastric, esophageal, and colorectal cancers. The 5-year overall
survival (OS) rate is only 20% to 30% for gastric cancer (1), whereas
colorectal cancer–related deaths account for 16% of all deaths in the
United States (2). Anti–PD-1/PD-L1 immune-checkpoint inhibitor
(ICI) treatment has achieved a clinical breakthrough in many cancers,
including advanced-stage melanoma, non–small cell lung cancer
(NSCLC), and renal cell cancer (RCC; ref. 3). The FDA approved
pembrolizumab to treat certain patients with recurrent locally or

metastasis gastric or gastroesophageal junction adenocarcinoma in
2017 (4). Many ongoing clinical trials aim to evaluate the safety and
efficacy of anti–PD-1/PD-L1 immunotherapy inGI cancers (2). Only a
small fraction of patients benefit from ICI therapy (10%–40%;
refs. 5–7). The link between the human gut microbiota and clinical
responses to anti–PD-1/PD-L1 treatment has begun to emerge in recent
years. Accumulated evidence suggests a critical role of the gut micro-
biota in assisting ICI treatment (8, 9) in advanced melanoma, NSCLC,
RCC, and urothelial cancer. In healthy individuals, the gut microbiota
help maintain the gut barrier, along with the immune homeostasis, and
may also promote anticancer immune surveillance through tumor
antigenicity and adjuvanticity (10). The gut microbiota or its products
canmimic tumor antigens and cause T cells to be primed locally before
migrating to remote lymph nodes (11). It can also trigger systemic
innate immune responses via pattern recognition receptors (PRR;
ref. 12), which activate host responses against tumor cells.

Identification of bacteria taxa that directly or indirectly induce
antitumor activities is critical to developing microbiome-based com-
binatory treatment that can improve the overall response rate of
anti–PD-1/PD-L1 treatment. A few bacteria genus/species are found
to be enriched in patients with preferred clinical outcomes, including
Akkermansia [NSCLC, RCC (9) and hepatocellular carcinoma (13)],
Clostridiales (melanoma; ref. 14), Ruminococcaceae [melanoma (14)
and hepatocellular carcinoma (13)], Faecalibacterium (melanoma;
ref. 14), Bifidobacterium (melanoma; ref. 15), Collinsella (melanoma;
ref. 15),Enterococcus (melanoma; ref. 15),Alistipes putredinis (NSCLC;
ref. 16), Bifidobacterium longum (NSCLC; ref. 16), and Prevotella copri
(NSCLC; ref. 16). However, the list of gut bacteria clinically beneficial
for ICI therapy is far from complete, and the prevalence of candidate
taxa in responders and nonresponders often contradicts in different
patient cohorts, even within the same cancer type.
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Here, we report on gut microbiomes from patients with GI cancer
receiving anti–PD-1/PD-L1 therapy. The gut microbiotas from our
cohort, regardless of their clinical responses, predominantly consisted
of Bacteroidetes and Firmicutes, with a 2.5-fold elevation of the
Prevotella/Bacteroides ratio in patients with favorable outcomes, and
a subgroup of responders showed a higher abundance of Prevotella.
Metagenomics analysis indicated that pathways related to nucleoside
and nucleotide biosynthesis, lipid biosynthesis, sugar metabolism, and
fermentation to short-chain fatty acids (SCFA) dictated the observed
differences in the gut microbiota functionality among patients exhi-
biting different clinical outcomes. We further identified microbial
biomarkers demonstrating reasonable performance on patient strat-
ification within both our cohort and independent melanoma cohorts.

Materials and Methods
Patient cohort

Eighty-nine patients with stage III or stage IV GI cancer were
enrolled in the study at the Beijing Cancer Hospital between February
2017 and January 2018 under Institutional Review Board (IRB)–
approved protocols (2018KT66). Four patients not suitable for
anti–PD-1/PD-L1 treatment thus were excluded. Eleven patients who
received combined chemotherapy and anti–PD-1/PD-L1 immuno-
therapy were also excluded. The study was conducted in accordance
with the Declaration of Helsinki. Signed voluntary informed consent
was obtained from participating patients. All patients received or were
scheduled to receive anti–PD-1/PD-L1 immune-checkpoint blockade
therapy at the time being recruited. Fourteen patients also received
anti–CTLA-4 in combination with the anti–PD-1/PD-L1 treatment.
Patients received ICI therapy intravenously every 2 or 3 weeks until
disease progression or intolerable toxicity. Responses to the therapy
were assessed according to the patients' treatment plan following the
Response Evaluation Criteria in Solid Tumors (RECIST) v1.1 stan-
dard. Clinical information including age, gender, diagnosis, micro-
satellite instability (MSI), allergy, and medication was collected from
the medical records and is summarized in Table 1.

Fecal sample collection and DNA extraction
Patient fecal samples were collected at various time points through-

out their immunotherapy treatment, as indicated in Fig. 1. Fecal
samples were collected using the Wehealthgene Fecal Microlution
TM Collection kit (catalog No. ML-001A, Wehealthgene) and trans-
ported to the laboratory within 3 days. TheWehealthgene kit is known
to stabilize fecal samples under room temperature for up to 30 days.
Fecal DNA was extracted according to the protocol provided by
QIAamp PowerFecal DNA Kit Handbook (catalog No. 12830-50,
Qiagen). The extracted DNA was stored at �20�C and transported
to the sequencing facility on dry ice.

Bacterial 16S rRNA sequencing and taxonomic profiling
The extracted fecal DNA was used as the template for amplicon

sequencing with barcoded primers (341F: 50-CCTAYGGGRBGCAS-
CAG-30) and 806R: 50-GGACTACNNGGGTATCTAAT-30) flanking
the V3–V4 hypervariable region of the bacterial 16S rRNA gene.
Approximately 200 ngDNA/sample was used for library construction.
Sequencing was performed on the Illumina HiSeq 2500 platform
(Novo Gene) according to the manufacturer's protocol on 250 bp
�2 paired-end reads. Raw reads from all samples were quality filtered
and denoised with DADA2 (17) to generate amplicon sequencing
variants (ASV), which are essentially operational taxonomic units
(OTU) with 100% identity. For ease of readability, we refer to these

ASVs as OTUs. We selected the reverse reads as input for DADA2 to
ensure consistency when comparing with other studies. Taxonomy
assignment of each unique OTU was performed with the pretrained
Ribosomal Database Project classifiers (implemented in DADA2)
using the SILVA (18) v132 reference database. OTUs with a total
read count of less than 1,000 across all samples were considered
belonging to rare microbes and were removed from all downstream
analyses. The genus-level relative abundance was calculated by sum-
ming up the relative abundance of OTUs belonging to each genus on
the phylogenetic tree. All the sequencing data were deposited at NCBI
with accession number PRJNA615114.

Phylogenetic diversity of the gut microbiome
Alpha and beta diversity was computed using the R package

phyloseq (19). For alpha diversity, the inverse Simpson index was
calculated to represent the richness and evenness of each microbiome
sample. To measure the distance between patients (beta diversity),
principal coordinate analysis (PCoA) was performed based on pair-
wise Bray–Curtis dissimilarity. The statistical differences of alpha
diversity across cancer types were calculated with the Wilcoxon test.

Identification of differentially abundant OTUs
We selected the first available fecal sample to represent the gut

microbiome profile for each patient. Differentially abundant OTUs
were identified using an omnibus method (20) that jointly tests the

Table 1. Patient statistics.

Total R NR
Clinical factor (n ¼ 74) (n ¼ 45) (n ¼ 29) P value

Gender
Male 53 31 22 0.6029
Female 21 14 7

Cancer
Colorectal cancer 19 12 7 0.33
Esophageal cancer 14 8 6
Gastric cancer 23 15 8
Others 18 10 8

EBER
Positive 6 4 2 >0.9999
Negative 17 10 7

BMI
Normal 39 25 14 0.4739
Nonnormal 33 18 15

Allergy history
Yes 8 5 3 >0.9999
No 66 40 26

MSI
MSI-H 26 18 8 0.4305
Non–MSI-H 37 21 16

Prior treatment
≥3 9 4 5 0.3105
<3 65 41 24

Age
≤60 40 21 19 0.2373
>60 34 23 11

Treatment
Anti–PD-1 48 30 18 0.9415
Anti–PD-1 þ anti–CTLA-4 14 8 6
Anti–PD-L1 12 7 5

Abbreviations: BMI, body mass index; MSI-H, MSI high; N, nonresponders;
non–MSI-H, non–MSI high; R, responders.
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abundance, prevalence, and dispersion using a zero-inflated negative
binomial regression model that was developed for microbiome data.
For each taxon, the regression coefficient was tested using a likelihood
ratio test, which follows asymptotically x2 distribution. The P value
from such test essentially denoted whether taxa differed in any of the
following: abundance, prevalence, or dispersion between responders
and nonresponders. OTUswith a P values less than 0.05were reported.
To remove the effect of any confounding factors, we used MaAslin
(Multivariate Association with Linear models; ref. 21) to assess the
association between bacterial abundance and gender, diagnosis, batch,
body mass index (BMI), and MSI status.

Statistical analyses
The univariate survival analysis of the progression-free survival

(PFS) was estimated using the Kaplan–Meier method and compared
with the log-rank tests.We also performedKolmogorov–Smirnov tests
to examine the distribution of the Prevotella/Bacteroides ratio (defined
by the ratio of summed relative abundance of OTUs assigned to
Bacteroides and Prevotella, respectively) among our patients. Pearson
coefficient was calculated to examine the correlation of the relative
abundance of shared genera derived from 16S rRNA sequencing and
the metagenomics sequencing methods (described below). All statis-
tical analyses were performed in R.
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Figure 1.

Overview of the clinical samples and collection time by
cancer types. A total of 155 fecal samples from 85
patients with GI cancer were collected. Solid black dots
indicate sample collection time relative to the start of
anti–PD-1/L1 treatment; hollow shapes mark the weeks
when tumor progression is evaluated. Patients who
received chemotherapy along with anti–PD-1/PD-L1
treatment are marked with an asterisk. PD, progressive
disease; PR, partial response; SD, stable disease.
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Metagenomic whole-genome shotgun sequencing
The whole-genome shotgun sequencing allows for species-level

quantification of the gut microbiome and enables gene and functional
profiling. We selected a subset of patients whose fecal samples were
sufficient for the metagenomic analysis (Supplementary Table S1).
Individual DNA libraries were constructed from each sample and
loaded onto an Illumina NovoSeq 6000 (Novo Gene), yielding an
average of 6 GB 150 bp � 2 pair-ended reads per sample. Raw reads
were quality controlled (QCed) by KneadData (version 0.6.1), which
integrated several QC tools such as FastQC (22) and Trimmo-
matic (23). After trimming the low-quality portion of reads and
subsequently dropping reads less than 100 bp in length, we used
bowtie2 (24) to map the filtered reads to the human genome (hg19) to
remove host contaminants. The remaining high-quality reads were
loaded to the MetaPhlAn2 (ref. 25; version 2.2.0) pipeline for taxon-
omy profiling with default parameters.

Functional profiling of the metagenomes
Functional analyses were performed with HUMAnN2 (ref. 26;

version 0.11.2) using the UniRef90 reference database. Briefly, the
shotgun sequencing reads were mapped to the pangenomes of species
identified byMetaPhlAn2 (25) in previous steps. Themajority of reads
were mapped to these pangenomes harboring the coding sequences of
proteins annotated inUniRef90 (27). Unmapped reads were translated
to peptide sequences and mapped to UniRef90 by DIAMOND (28).
The gene-level abundance was calculated as reads per kilobase units, as
defined byHUMAnN2. The reads that failed tomap to known species/
genes were grouped as unclassified. The gene abundances were further
annotated according to the KEGG Orthology (29) and MetaCyc (30)
database, respectively.

Centered log-ratio transformation
Centered log-ratio (CLR) transformation addresses the constraints

of microbial compositional data (31, 32). The CLR transformation
Zij

(k) of microbiome relative abundance Xij
(k) is defined as

Z kð Þ
ij ¼ log

X kð Þ
ij

Qp
j¼1 X

kð Þ
ij

� �1=p

0
B@

1
CA; i ¼ 1; ::; nk; j ¼ 1; :::; p; k ¼ 1; 2

ðAÞ

where i denotes samples, j denotes OTUs with at least one sequencing
read, and k represents groups (responders vs. nonresponders). In order
to avoid the zero-relative abundance in Equation (A), we replaced zero
counts by a pseudo-count of 0.5 before performing the relative
abundance normalization and CLR transformation. The CLR trans-
formation maps composition data in the D-part Aitchison-simplex
isometrically to a D-dimensional Euclidean vector subspace. Conse-
quently, CLR transformation is not injective; the resulting covariance
matrices are always singular.

Machine learning models and comparison with published
melanoma data sets

The 16S rRNA sequencing data and metadata were retrieved from
Matson and colleagues (15) andGopalakrishnan and colleagues (14) as
described in the original publications. For fair comparison, we pro-
cessed the raw reads using the same workflow of our analysis. Both
studies sequenced the V4 hypervariable region of the 16S rRNA gene;
thus, we restricted the comparison to include only the reverse reads in
our samples. Forty-two subjects (16 responders and 26 nonrespon-
ders) and 40 subjects (29 responders and 11 nonresponders) were kept
from Matson and colleagues and Gopalakrishnan and colleagues,
respectively, for subsequent comparison.

To predict the response status (responder/nonresponder) using
the 16S-rRNA–derived microbiome profiles, we used the absolute
abundance of 90 shared genera present in all three data sets as
features for binary classification. We first trained several classifi-
cation models [random forest, extra trees, support vector machine
(SVM), elastic net, and k-nearest neighbors] on our GI data set
using 5-fold cross-validation with exhaustive grid search to find
optimal parameters for each model. For SVM, candidate values for
the C penalty and kernel types were [0.1, 1.0, 5.0, 10.0, 50.0] and
[“rbf,” “poly,” “sigmoid,” “linear”]. Default parameters were used
for other models. The train-validation splits were stratified with
regard to the responder/nonresponder ratio. Within the validation
folds, accuracy was used as the evaluation metrics to select the
optimal parameters for each model. Two baseline models based on
simple rules were included: (1) baseline-stratified makes random
predictions with the probabilities based on the observed responder/
nonresponder ratio and (2) baseline-prior always predicts the
majority class from the training set. We also transformed the
original genus-level features with polynomial transformation fol-
lowed by univariate feature selection by ANOVA F-values to couple
with SVM and elastic net classifiers. All classification models were
implemented in the Scikit-learn Python package. We evaluated the
classification models on independent holdout test sets constructed
in various comparison scenarios.

Results
Our Chinese cohort includes 19 patients with colorectal cancer, 34

patients with gastric cancer, 14 patients with esophageal carcinoma,
and 18 patients of other GI cancer types (N¼ 85; Table 1). The cohort
was predominantly male, with a small proportion having allergy
history. One hundred fifty-five samples were collected from these
patients before and/or during anti–PD-1/PD-L1 treatment (Fig. 1;
Supplementary Fig. S1). Eleven patients with gastric cancer who
received chemotherapy in addition to the standard anti–PD-1/PD-L1
therapy were excluded from subsequent analysis. Fourteen patients
who received anti–CTLA-4 treatment in combination with the
anti–PD-1/PD-L1 therapy were included, as no significant associations

Figure 2.
The taxonomy composition of the gut microbiome is associated with clinical responses to anti–PD-1/PD-L1 treatment. A, Phylogenetic composition (from 16S rRNA
sequencing) of common bacterial taxa at the family level, ordered by themost abundant taxa (Bacteroidaceae) across the cohort (n¼ 74).B, The ratio of the relative
abundance ofPrevotella andBacteroides in responders and nonresponders.Wilcoxon test was performedon the log10-transformed ratio. The box represents the first
(lower line) and third (upper line) quartiles aswell asmedian (the linewithin the box).C,Kaplan–Meier survival analysis of patientswith high versus low abundance of
Prevotella (left) and Bacteroides (right). Eighteen and 56 patients showed high and low abundance of Prevotella, respectively; 37 and 37 patients exhibited high and
low abundance of Bacteroides, respectively. P values were calculated with the log-rank sum test. D, Alpha diversity of patients with favorable and less favorable
response to anti–PD-1/PD-L1 therapy. Inverse Simpson index was used to calculate alpha diversity with the relative abundance of OTUs from 16S rRNA sequencing,
and the statistical differencewas assessedwith theWilcoxon test. E,PCoAof fecal samples (n¼ 74, including 45 responders and 29 nonresponders) by response and
diagnosis using Bray–Curtis dissimilarity. The x- and y-axes show the first and second principal coordinates, alongwith the percentage of variance explained on each
dimension. NR, nonresponders; R, responders.
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of the gut microbiome or response were observed with the choice of
treatment (Table 1), and the downstream conclusions did not change
when excluding these patients. Clinical responses including partial
response (PR), stable disease (SD), and progressive disease (PD) were
evaluated according to theRECIST1.1 standard.Wedefined apatient as
a responder if the patient achieved an objective response (PR/SD)
lasting at least 3 months upon treatment start, or a nonresponder (PD
observed within 3 months of treatment start). The response rate was
comparablewith previous studies (Supplementary Table S2; ref. 33).No
significant differences were found in age, drug, gender, EBER status,
BMI, allergy history, MSI, or prior treatment between responders and
nonresponders (Table 1; Supplementary Tables S2–S4).

Gut microbiome profile of patients with GI cancer on anti–PD-1
immunotherapy

We identified 3,852 OTUs at the 100% sequence similarity cutoff
using the Silva database. We retained 319 OTUs for subsequent
analyses after removing extremely low abundant OTUs (see Materials
andMethods for details), as they are susceptible to randomvariation or
false detection. The number of OTUs in each cancer type is shown in
the Venn diagram in Supplementary Fig. S2. In brief, 306 of 319 OTUs
were identified in all 74 patients. We found 308, 317, and 314 OTUs in
all fecal samples of patients with colorectal cancer, esophageal carci-
noma, and gastric cancer, respectively.

From 16S rRNA sequencing results, we observed a higher relative
abundance of Prevotellaceae in the responder group, with a decreasing
presence of Bacteroidaceae (Fig. 2A), at the family level. Indeed, the
relative abundance of the Bacteroides genus was significantly lower in
nonresponders (Supplementary Fig. S3). On the other hand, Prevo-
tellaceae is predominantly represented by the genusPrevotella_9 in our
samples. Although its relative abundance is not significantly elevated
in responders (Supplementary Fig. S3), the ratio of Prevotella/Bacter-
oides is significantly different between responders and nonresponders
(Fig. 2B; Wilcoxon test, P ¼ 0.032). We observed this trend in
colorectal cancer and esophageal carcinoma but not in gastric cancer
(Supplementary Fig. S4).We assigned all 74 patients into high and low
abundance groups according to themedian relative abundance of these
two taxa (cutoff¼ 0.08 forPrevotella and 0.27 forBacteroides). Survival
analysis showed the high-Prevotella group was more likely to achieve
PFS within 12 weeks of treatment start compared with those with low-
Prevotella abundance (P ¼ 0.032; Fig. 2C, left). On the contrary, the
abundance of Bacteroides was negatively associated with PFS in this
cohort (P ¼ 0.014; Fig. 2C, right). Akkermansia and Lactobacillus are
reported in previous studies to be positively associated with favorable
outcomes of anti–PD-1 treatment in melanoma (9, 14). Our associ-
ation analysis suggested that patients with a higher abundance of
Akkermansia (P¼ 0.031), but not Lactobacillus (P¼ 0.56), were likely
to benefit from anti–PD-1/PD-L1 therapy in our GI cancer cohort
(Supplementary Fig. S5).

Phylogenetic diversity of the gut microbiome
Although a highly diverse gut microbiome has been associated with

healthy state or preferred clinical response in several diseases (34–37),
we found no significant difference in the alpha diversity between
responders and nonresponders in our cohort (Fig. 2D; P ¼ 0.61),
regardless of cancer type (Supplementary Fig. S6). One melanoma
study (14) reports decreased alpha diversity in a less favorable group of
patients receiving anti–PD-1 immunotherapy. However, similar pat-
terns have not been observed in other independent studies of mela-
noma and renal cell carcinoma (9, 15). In our study, a subgroup
consisting of predominantly responders was clearly separated from

other patients (Fig. 2E). We further identified the observed variance
was mainly driven by the differential abundance of Prevotella and was
not associated with other clinical characteristics.

Differential abundance of bacterial taxa in patients with
different clinical responses

An important aspect of studying the gut microbiome and its
relationship with the human host is to derive biomarkers for diagnosis
or prognostic prediction. Differential bacteria taxa between different
response groups can identify clinically relevant microbial species as
potential biomarkers. To remove confounding effects, we excluded any
genus that was significantly associated with one or more factors,
including age, gender, BMI, cancer types, MSI, and a few others, using
MaAslin2 (ref. 21; Supplementary Fig. S7). We first performed dif-
ferential analysis using DESeq2 (38), which failed to yield significantly
different taxa between responders and nonresponders (Supplementary
Table S5) due to its inability to count for excessive zeros in our
microbiome data set. This problem was overcome by using a novel
omnibus method that jointly tests the abundance, prevalence, and
dispersion using a zero-inflated negative binomial regression mod-
el (20). Our differential analysis identified 10 OTUs enriched in
responders and 6 OTUs enriched in nonresponders (Fig. 3A; Sup-
plementary Table S6). OTUs belonging to Ruminococcaceae,
Prevotella, and Lachnospiraceae were among the top enriched taxa
in responders, whereas Bacteroides, Catenibacterium, and Rumino-
coccaceae_NK4A214_group were overrepresented in nonresponders.
This is in line with previous studies in patients with melanoma,
NSCLC, and RCC receiving anti–PD-1 immunotherapy reporting the
diverse presence of Ruminococcaceae microbes between different
response groups (9, 15, 39). Routy and colleagues observed certain
Prevotella species enriched in responders of NSCLC and RCC (9),
whereas Gopalakrishnan and colleagues reported a higher abundance
of Prevotella histicola in nonresponders of melanoma (14).

We also examined the differentially abundant genera within eachGI
cancer type (Supplementary Tables S7–S9). We identified 23 differ-
ential OTUs in colorectal cancer, among which Lachnoclostridium,
Parabacteroides, Lachnospiraceae, Ruminococcaceae, Flavonifractor
(Eubacterium), andDialisterwere enriched in responders, and Bacter-
oides, Parabacteroides, Coprococcus, and Subdoligranulum were
enriched in nonresponders (Fig. 3B). Fusobacterium nucleatum is
reported to associate with colorectal cancer (40, 41). We did not
observe its enrichment in either group, which could be due to the
small sample size of our study. In esophageal carcinoma, a total
of 21 differential OTUs showed significantly different abundance,
with 11 enriched in responders and 10 enriched in nonresponders
(Fig. 3C). In patients with gastric cancer, 8 OTUs were significantly
enriched in responders, including Prevotealla, Bifidobacterium, and
Lachnospiraceae, and 6 OTUs were enriched in nonresponders
(Fig. 3D), including Megamonas, Butyricimonas, Lachnospira-
ceae_UCG-001, and Agathobacter. Bacteroides and Ruminococcaceae
were enriched in both response groups according to different cancer
types. These two taxa are among the most abundant gut microbes of
our patients; the observed inconsistency, thus, was likely caused by
different species belonging to the two taxa.

Metagenomics shotgun sequencing analysis of the gut
microbiome

We performed metagenomics shotgun sequencing in 40 of the
74 patients (25 responders and 15 nonresponders; Supplementary
Table S1) of whom the matching 16S rRNA sequencing data were
available. Among the 17 differentially abundant OTUs identified by
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16S rRNA-based analysis, OTUs belonging to Prevotella (Fig. 4A, top;
Pearson correlation, r ¼ 0.89) and Bacteroides (Fig. 4A, bottom;
Pearson correlation, r ¼ 0.92) demonstrated correlated abundance
with those from the metagenomic sequencing data. This correlation
confirmed the consistency between our 16S rRNA and metagenomics
sequencing results. Using a centered log-norm transformation of the
relative abundance, we identified, in the metagenomics sequencing
data, significantly differential species from the Eubacterium, Lacto-
bacillus, Akkermansia, Catenibacterium (also identified by 16S rRNA
analysis; Fig. 3A),Dialister, and Streptococcus genera between respon-
ders and nonresponders (Supplementary Table S10; Supplementary
Fig. S8; Mann–Whitney U test, P < 0.05). Eubacterium fermentates
fiber into SCFAs, including acetic acid, butyric acid, and propionic
acid, and Lactobacillus and Streptococcus are the main contributors of
lactic acid in the gut. A higher abundance of these genera in responders

may promote an intact intestinal environment with beneficial immune
activity.

Differential bacterial pathways indicate potential mechanisms
driving clinical responses

We used HUMAnN2 (26) to quantitatively identify the metabolic
and biological pathways in our metagenomics data. Hierarchical
clustering of differentially abundant (between responders and non-
responders) pathways divided patients into two major groups
(Fig. 4B), with response rates of 73% and 56%, respectively. The
separation was primarily driven by pathways involved in nucleoside
and nucleotide biosynthesis. Responders were enriched in pathways
involved in fermentation to SCFAs, unsaturated fatty acid biosynthe-
sis, vitamin and starch biosynthesis, whereas nonresponders showed
higher read abundance for lipopolysaccharide biosynthesis, sugar
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Differential abundance between response groups. Abundance in responders and nonresponders in all 74 patients (A), patients with colorectal cancer (B; n ¼ 19),
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degradation, and amino acid biosynthesis (Supplementary Table S11;
Mann–Whitney U test, P < 0.05). The majority of the 18 differential
pathways were contributed by a handful of species. For example,
Eubacterium rectale dominated the petroselinate biosynthesis pathway
among responders (Fig. 4C), and its abundance was significantly
higher in responders (Fig. 4D). Eubacterium rectale is known for its
ability to produce butyrate and has been associated with a fiber-rich
diet (42). It is one of the few species that harbor the cBirl antigen, which
contributes to the gut-reactive T-cell repertoire (43).

Patient stratification with the gut bacteria
A few pioneer studies have identified various sets of commensal

bacteria enriched in patients with melanoma benefiting from the

anti–PD-1 immunotherapy (14, 15, 39). Nonetheless, which bac-
teria contribute to such differences are diverse according to the
patient cohorts. We, thus, attempted to identify the signature
bacterial taxa for responders in our cohort, followed by validation
in independent melanoma cohorts. The assumption was that the
commensal bacteria interplay with the host immune system in a
systematic fashion, regardless of tumor types. To assess the patients'
microbiome profiles immediately following anti–PD-1/PD-L1
treatment, we removed 13 patients with only pretreatment fecal
samples. For each of the remaining 61 patients (Supplementary
Table S1), the first posttreatment sample was used for all subsequent
analysis (referred to as GI cancer). We obtained 16S sequencing
data from two independent studies (refs. 14, 15; see Materials and
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Methods for details). The relative abundance of OTUs (belonging to
90 genera) that were observed across all three data sets was kept to
build classifiers (Fig. 5A). We built both parametric and nonpara-
metric machine learning models to dissect the predictive power of
these genera on patient responses (see Materials and Methods). All
but SVM-based models trained with GI cancer achieved over
0.9 accuracy in a holdout test set (Fig. 5B; 5-fold nested cross-
validation). We tested these GI cancer-trained models on patients in
the two melanoma studies. As expected, the accuracy on either or
combined data sets (mean accuracy ¼ 0.49) was much less than the
GI cancer test set (mean accuracy ¼ 0.86), with noticeable
better accuracy on patients in the Gopalakrishnan set (mean
accuracy ¼ 0.60; Fig. 5B, red bars).

In order to overcome unbalanced classes in the Gopalakrishnan
set (29 responders and 11 nonresponders), we further generated two
baseline models (see Materials and Methods). Only the ExtraTrees
model (randomized decision trees on various subsamples of the
training set) and elastic net-based models yielded better prediction
than the baseline models. The elastic net model without polynomial
features outperformed other nonparametric models [Fig. 5C; area
under the curve (AUC) ¼ 0.78], likely due to its ability to eliminate
features through regularization in the training stage. Among the top
20 predictive features ranked by the elastic net model (Supplemen-
tary Table S12), the majority (15 of 20) belonged to the Firmicutes
phylum. Ruminococcaceae, Lachnospiraceae, Bacteroides, and Cate-
nibacterium harbored the most predictive features, indicating they
might play a role in the response to anti–PD-1/PD-L1 therapy that
is independent of cancer types, at least in a subset of our patients
with GI cancer.

Discussion
We report a comprehensive analysis of the gut microbiomes of

patients with GI cancer receiving anti–PD-1/PD-L1 treatment. We
observed the ratio of the relative abundance of Prevotella and Bacter-
oides tends to be elevated in responders. The difference was primarily
driven by the bimodal distribution of this ratio, which is a recurrent
pattern in several large-scale population-based studies (44–46). Hence,
the observed divergence of Prevotella versus Bacteroides prevalence
may be an indicator of the enterotypes of our patients, possibly priming
their immune system into different conditions.

Several bacteria taxa enriched in responders in our cohort are also
reported in other anti–PD-1 clinical studies of other cancer types. For
example, Routy and colleagues found that the relative abundance of
Akkermansia muciniphila correlates with preferred clinical outcomes
in patients with NSCLC and RCC (9). Lactobacillus is more abundant
inmetastatic melanoma responders (15). Ametagenomics study on 39
patients with melanoma also identified the elevated presence of
Streptococcus in responding patients (39). Immediate conclusions on
the gut microbiome's role in anti–PD-1 therapy from these early
findings are still controversial due to limited data availability. We
plan to investigate the role of commensal bacteria in a larger patient
cohort, coupled with host immune assays and mechanistic animal
studies in the future.

Although emerging evidence points to the positive association
between a diverse gut microbiota and preferred clinical outcomes of
anti–PD-1 treatment, it is unclear if the observed effect is consistent
across patient cohorts or cancer types. A study on a small cohort
of Chinese patients with NSCLC receiving nivolumab shows a
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significantly higher diversity of the gut microbiome in patients exhi-
biting PR or SD (16). Nevertheless, results from a handful clinical
studies on patients with advanced-stage melanoma show mixed find-
ings (14, 15, 39). In our reanalysis of Matson and colleagues (15), we
did not observe statistically significant differences in bacterial taxa
relative abundance between responders and nonresponders. The
variation in each study design, such as sample collection, inclusion/
exclusion criteria, treatment regimen, diet, and population differences,
as well as data analyses, may further complicate the interpretability of
findings on microbiome compositions in different response groups. It
is yet to be established whether a diverse gutmicrobiotamerely reflects
a patient's overall health prior to anti–PD-1/PD-L1 treatment, or that it
harbors species that cooperate with the immune system to promote a
positive response.

The mode of action of the cross-talk between gut microbes and
the host immune system is yet to be elucidated. Three categories of
possible mechanisms have been proposed (47): (i) through the T-cell
responses induced by microbial antigens, (ii) through the engagement
of pattern recognition receptors, and (iii) through small molecules
produced by microbial metabolism. Our findings of the responder-
enriched species that are capable of producing SCFAs (Eubacterium
rectale and Streptococcus) may provide additional evidence on the
proimmunotherapy effect of a subset of the commensal bacteria.
SCFAs are known to inhibit inflammation through regulating Tregs.
Although the exact molecular interplay remains to be determined, gut-
derived SCFAs are observed to have a negative impact on colorectal
carcinogenesis (48). Because SCFAs are the main fermentation pro-
ducts of dietary fiber, it is of particular interest to assess the impact of
diet on gut microbiota and immune manipulation in patients with
cancer.

Wedevelopedmachine learningmodels with the goal to evaluate the
usability of the gut microbiome as anti–PD-1/PD-L1 immunotherapy
biomarkers. We further tested our models on patients with melanoma
because (i) the small sample size of individual cancer types in our
cohort prohibited the development of a robust, generalizable model;
(ii) we reason that none of the possible mechanisms mentioned above
seems cancer dependent; and (iii) the 16S RNA sequencing data were
only available from patients with melanoma receiving anti–PD-1
therapy. In spite of the variation in study design, continent, diet, and
even cancer types, some of our models achieved unexpected encour-
aging performance in these independent melanoma data sets, indi-
cating that the gut microbiome affects host immune function in a
systematic fashion, and it may serve as a repertoire for novel biomar-
kers of anti–PD-1/PD-L1 immunotherapy. Gharaibeh and collea-
gues (49) previously reported classifiers that were trained with spe-
cies-level metagenomic profiles of patients with melanoma. They
suggest that the prediction could be improved when incorporating
KEGG orthologous features. In the same notion, we expect the
performance of our models can be further enhanced by adding
metagenome-derived features.

In 2017, the FDA approved the use of pembrolizumab in advanced
solid tumors in patients with the MSI-high/DNA mismatch-repair-
deficient tumors.We did not includeMSI status in ourmodels because
our study was not designed to evaluate the response rate of patients
with certain MSI status. The MSI status may introduce bias in the
machine learningmodels. Both the ratio ofMSI-high and the objective
response rate of our patients with colorectal and noncolorectal cancer
were consistent with published studies (33). It would be interesting to
further evaluate the predictive performance of gut microbiome and
MSI-based biomarkers or develop a combined marker set for poten-
tially improved performance.

Ourmodels were limited by the relatively small sample size (n¼ 61),
coupled with sparse, high-dimensional features which hinders the
prediction consistency. Besides, the imbalance between responders
and nonresponders in our cohort imposes bias toward predicting the
overrepresented class. It is of note that our primary results can only
stand with the selected patient set, and it may suffer from the
heterogeneity of where their tumor originated. Thus, an additional,
independent validation cohort is needed, preferably with the same
cancer type, to demonstrate the use of microbiome-based biomarkers
in predicting anti–PD-1/PD-L1 response. We observed a subset of
responders that exhibited clustering behavior across various analyses.
Hence, they may represent a clinically relevant patient subgroup.
Gopalakrishnan and colleagues identified similar subgrouping of
responders when clustering patients with melanoma with their clus-
ters-of-related-OTUs (crOTU) abundance (14). In either study, the
key microbial drivers of subgrouping were different, and the exact
mechanisms need further investigation in model systems.

In conclusion, we present data on gut microbiomes of patients with
GI cancer receiving anti–PD-1/PD-L1 immunotherapy. In responders,
we observed an elevated ratio of Prevotella/Bacteroides, along with
enrichment of Ruminococcaceae and Lachnospiraceae. Commensal
bacteria that produce SCFAs were overrepresented in patients with
favorable outcomes, including Eubacterium, Lactobacillus, and Strep-
tococcus. Using GI cancer–derived taxonomic features, we built
machine learning classifiers withmoderate performance on predicting
the anti–PD-1/PD-L1 response of both patients with GI cancer and
melanoma.
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