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Abstract

Monozygotic and dizygotic twin studies investigating the relative roles of host genetics and

environmental factors in shaping gut microbiota composition have produced conflicting re-

sults. In this study, we investigated the gut microbiota composition of a healthy dichorionic

triplet set. The dichorionic triplet set contained a pair of monozygotic twins and a fraternal

sibling, with similar pre- and post-natal environmental conditions including feeding regime.

V4 16S rRNA and rpoB amplicon pyrosequencing was employed to investigate microbiota

composition, and the species and strain diversity of the culturable bifidobacterial population

was also examined. At month 1, the monozygotic pair shared a similar microbiota distinct to

the fraternal sibling. By month 12 however, the profile was more uniform between the three

infants. Principal coordinate analysis (PCoA) of the microbiota composition revealed strong

clustering of the monozygotic pair at month 1 and a separation of the fraternal infant. At

months 2 and 3 the phylogenetic distance between the monozygotic pair and the fraternal

sibling has greatly reduced and by month 12 the monozygotic pair no longer clustered sepa-

rately from the fraternal infant. Pulse field gel electrophoresis (PFGE) analysis of the bifido-

bacterial population revealed a lack of strain diversity, with identical strains identified in all

three infants at month 1 and 12. The microbiota of two antibiotic-treated dichorionic triplet

sets was also investigated. Not surprisingly, in both triplet sets early life antibiotic adminis-

tration appeared to be a major determinant of microbiota composition at month 1, irrespec-

tive of zygosity. By month 12, early antibiotic administration appeared to no longer exert

such a strong influence on gut microbiota composition. We hypothesize that initially host ge-

netics play a significant role in the composition of an individual’s gut microbiota, unless an

antibiotic intervention is given, but by month 12 environmental factors are the

major determinant.
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Introduction

Microbial colonization of the infant gut is an essential process since microbiota-host interac-

tions play a key role in host health. The gut microbiota have been shown to play important

roles in the development and maturation of the immune system, metabolic pathways and in

the bi-directional communication between the GI tract and the central nervous system (CNS),

the so called gut-brain axis [1–5]. Early life perturbations in the microbiota can alter suscepti-

bility to various gastrointestinal, immunological and neurological disorders [2, 4]

The idea that the foetus resides in a sterile environment in utero and that microbial coloni-

zation of the new-born begins at birth has been widely accepted. However, recent studies are

challenging this with evidence for maternal microbial transmission to foetuses in utero in ani-

mals and reports of the placenta and meconium harbouring a microbial community [6–9].

However this remains a contentious area as it is difficult to completely rule out the possibility

of external bacterial contamination. Shortly after birth, facultative anaerobic bacteria such as

Enterobacteriaceae initially colonise the infant gastrointestinal tract, lowering redox potential

and creating a suitable environment for the strict anaerobes who follow, mainly Clostridium,

Bacteroides and Bifidobacterium [10]. The gut microbiota generally evolves from an immature

and unstable state in infancy to a more complex, diverse and stable ecosystem by three years

age and remaining so throughout adulthood [5, 11].

Several factors influence the composition and diversity of the neonatal intestinal microbiota

including mode of delivery (vaginal vs. caesarean), feeding (breast vs. formula), hospital and

home environment and antibiotic administration [12–15]. In addition to environmental fac-

tors, host genetics are also thought to play an important role in shaping the microbiota [16,

17].

Studies in monozygotic and dizygotic twins investigating the relative roles of host genetics

and environmental effects in shaping gut microbiota composition have produced conflicting

results. Many early twin studies report significantly higher similarity in related individuals

compared with unrelated and with monozygotic twin pairs compared with dizygotic twins [18,

19]. In contrast, Turnbaugh et al showed that while genetically related individuals tend to share

more of their gut microbiota than unrelated individuals, monozygotic twins were not signifi-

cantly more similar than dizygotic twins[16, 20].

In this study, the gut microbiota in three dichorionic triplet sets were investigated. Dichorio-

nic triplet sets contain a pair of monozygotic twins and a fraternal sibling. High-throughput se-

quencing was employed using 16S rRNA amplicons to compare the intestinal microbiota of

the monozygotic pair to that of the fraternal triplet. The bifidobacterial population was also as-

sessed using rpoB targeted pyrosequencing and species and strain diversity were analysed.

Materials and Methods

Participants and Sample Collection

Approval for this study was obtained from the Clinical Research Ethics Committee of the Cork

Teaching Hospitals, Cork, Ireland. Informed written consent was obtained from the parents of

each infant enrolled in the study. Three dichorionic triplet sets born by elective caesarean sec-

tion at the Cork University Maternity Hospital were recruited (Table 1). Infants were excluded

if they required oral antibiotics, required surgery, or had congenital abnormalities. Antibiotic

administration occurred in two of the three triplet sets recruited, therefore, the healthy triplet

set, set A, became the primary focus of this study. All infants were fed in the same manner; a

mixture of expressed breast milk and formula (Table 1). Faecal samples were collected into a

sterile container and stored at 4°C until delivery to laboratory; average processing time was
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within 12 hours of sampling. Samples were collected at 1, 2, 3 and 12 months of age in triplet

set A and at 1 and 12 months in sets B and C.

16S rRNA amplicon generation for 454 pyrosequencing

0.20g of fecal sample collected from triplet sets A, B and C at each time-point was transferred

to a 2-mL screw-cap tube containing 0.25 g of a 1:1 mix of 0.1 mm and 1.5 mm diameter sterile

zirconia beads plus a single 2.5mm diameter bead (BioSpec Products, Bartlesville, USA). Cells

were mechanically disrupted using a Mini-Beadbeater-16 (BioSpec Products) for 2 mins at

room temperature. DNA was purified using the QIAamp DNA Stool Mini Kit (Qiagen, Sussex,

UK) according to manufacturer’s instructions. The microbiota composition of the samples was

established by amplicon sequencing of the V4 region using universal 16S rRNA primers pre-

dicted to bind to 94.6% of all 16S rRNA genes as previously outlined by Claesson et al [21]. A

forward primer 520f (5’-AYTGGGYDTAAAGNG) containing a distinct multiple identifier tag

(MID) for each sample and a combination of four reverse primers R1 (5’-TACCRGGGTHTC

TAAAGNG), R2 (TACCAGAGTATCTAATTC), R3 (5’-CTACDSRGGTMTCTAATC) and

R4 (5’-TACNVGGGTATCTAATC) were utilised. PCR’s were performed under the following

conditions: 94°C for 2 min followed by 35 cycles of 94°C for 1 min, 52°C for 1 min and 72°C

for 1 min followed by 72°C for 2 min. PCR’s had a final volume of 50μl made up of 25 μl of Bio-

mix Red (Bioline,Medical Supply Company, Dublin, Ireland), 1 μl forward primer (final con-

centration 0.15μM), 1 μl reverse primer (0.15μM), template DNA and sterile PCR grade water

(Bioline). A negative control was included for each forward primer with a distinct MID, with

template DNA being replaced with PCR-grade water. The Agencourt AMPure XP system

(Beckman Coulter, Labplan, Co Kildare, Ireland) was used to clean the amplicons before quan-

tification with the Quant-It Picogreen quantification kit (Bio-Sciences, Dublin, Ireland) and

pooling for sequencing on a 454 Genome Sequencer FLX platform (Roche Diagnostics, West

Sussex, UK) at the Teagasc Moorepark high throughput sequencing centre. DNA sequence

reads from this study are available from the Sequence Read Archive (accession number

PRJEB8333).

rpoB amplicon generation for 454 pyrosequencing

DNA was purified from month 1 and month 12 stool samples from triplet sets A, B and C as

outlined above. The highly conserved nature of the 16S V4 region makes it unsuitable for dif-

ferentiating species of Bifidobacterium. A set of primers amplifying a 351bp region of the RNA

polymerase β-subunit (rpoB) gene which have previously been successfully used for the differ-

entiation of species of Bifidobacterium were utilised [15, 22]. Samples were amplified under the

following conditions: 94°C for 2 min followed by 35 cycles of 94°C for 1 min, 60°C for 1 min

and 72°C for 1 min followed by 72°C for 2 min. Subsequent steps were completed as outlined

above for V4 amplicons.

Bioinformatic analysis

Raw sequence reads were quality trimmed using the QIIME suite of tools version 1.8.0 [23].

Raw 16S rRNA reads failing to reach the quality criteria of a minimum quality score of 25, of a

sequence length shorter than 200bps or not exact matches to barcode tags and primer se-

quences were discarded. Denoising, chimera detection and operational taxonomic unit (OTU)

grouping at 97% similarity were performed in QIIME using USEARCH v7 [24]. Taxonomic

ranks were assigned by alignment of OTUs using PyNAST [25]to the SILVA SSURef database

release 111 [26]. For all OTU-based analyses, the original OTU table was rarefied to depths of

1,000 bacterial sequences per sample, to minimize the effects of read number differences
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between samples. In the Bifidobacterium analysis, the raw rpoB reads were quality trimmed

using a locally installed version of the Ribosomal Database Project (RDP) Pyrosequencing

Pipeline with read-lengths above 300 bp being used. Trimmed FASTA sequences were BLAST-

ed against the NCBI non-redundant database using default parameters[27]. The resulting

BLAST output was parsed through MEGAN using default parameters to extract phylum, fami-

ly and genus counts[28]. In both cases alpha diversity indices were generated in QIIME and

beta diversities were calculated based on unweighted UniFrac matrices [29]. Principal coordi-

nate analysis (PCoA) were visualised using EMPeror v0.9.3-dev [30].

Isolation, enumeration of Bifidobacterium sp. and DNA isolation

One gram of each faecal sample was mixed with 9ml maximum recovery diluent (Oxoid, Fisher

Scientific, Dublin, Ireland) in a stomacher bag (Seward, VWR, Dublin, Ireland). Serial dilutions

and plating were performed in a Whitley A85 anaerobic workstation (DW Scientific, Shipley,

United Kingdom). For selective growth of bifidobacteria, 100 μl of dilutions were spread-plated

onto de Man, Rogosa, Sharpe agar (MRS; Difco, Becton-Dickinson Ltd, Dublin, Ireland) sup-

plemented with 0.05% (w/v) L-cysteine hydrochloride (Sigma-Aldrich, Dublin, Ireland),

100 μg ml-1 mupirocin (Oxoid) and 50U nystatin (Sigma Aldrich). Agar plates were incubated

in anaerobic jars with AnaerocultA gas packs (Merck Millipore Ltd, Cork, Ireland) at 37°C for

72 hours. Bacterial counts were recorded as colony forming units (CFU) per gram of faeces. Fif-

teen colonies from each sample were randomly selected to analyse the dominant Bifidobacter-

ium population and subcultured in MRS agar supplemented with 0.05% L-cysteine

hydrochloride and MRS broth for 24 to 48 hours. A bank of 360 putative Bifidobacterium iso-

lates was generated and maintained at –80°C in 40% glycerol (Sigma-Aldrich). DNA was ex-

tracted from each isolate using the GenElute Bacterial Genomic DNA kit (Sigma-Aldrich) and

stored at -20°C.

16S rRNA-internally transcribed spacer (ITS) sequence analysis

The identity of each putative Bifidobacterium isolate was confirmed by 16S rRNA-ITS se-

quence analysis. A 1.5-kb 16S rRNA gene-internally transcribed spacer (ITS) fragment was

generated using a previously described method [31]. DNA sequencing of both strands was car-

ried out by Beckman Coulter Genomics (Essex, UK) and strains were assigned to a particular

species following comparison of the 16S rRNA-ITS sequences using the NCBI BLAST database

(http://www.ncbi.nlm.nih.gov/BLAST/).

Pulsed Field Gel Electrophoresis

Genomic DNA was isolated from overnight cultures, lysed and digested with the restriction en-

zyme XbaI (New England Biolabs, Hitchin, UK) using a previously described method [32].

Electrophoresis was performed using a contour-clamped homogeneous electric field CHEF-DR

III pulsed field system (Bio-Rad Laboratories, Hertfordshire, UK). Fragments were resolved

with a linear ramp pulse time of 1- to 15-s for 18 h at 6 V/cm in a running buffer of 0.5X Tris-

Boric Acid-EDTA maintained at a temperature of 14°C. A low-range PFGE marker (New En-

gland Biolabs) was also included as a molecular-mass marker. Gels were stained in 0.5μg/ml of

ethidium bromide (Sigma-Aldrich) for 30 min, washed with distilled water for 5 x 20 minutes

and visualized using an AlphaImager 3400 imaging system (ProteinSimple, CA, USA). Macro-

restriction patterns were compared using the BioNumerics software version 6.5 (Applied

Maths, Belgium). Dendrograms were constructed using UPGMA cluster analysis based on the

Dice coefficient with 1.5% band tolerance. A cut-off at 90% similarity of the Dice coefficient

was used to indicate identical PFGE patterns.
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Results

Composition of the gut microbiota in the healthy dichorionic triplet set

454 pyrosequencing of V4 16S rRNA amplicons obtained from fecal samples from triplet set A

at month 1, 2, 3 and 12 of life was performed. A total of 299,837 reads were generated, ranging

from a minimum of 3,137 reads per sample to a maximum of 13,432 reads. Sequences were

binned according to a 97% sequence identity cut-off and were assigned to 255 operational taxo-

nomic units (OTU’s). Due to the inter-sample variation in read number, the OTU table was

rarefied to 1000 reads, to facilitate comparison between samples. Analysis of the intestinal

microbiota at month 1 revealed the presence of three phyla; Actinobacteria, Firmicutes and

Proteobacteria. Sequences from Actinobacteria were predominant, with Bifidobacterium de-

tected at a relative abundance of 71%% in 1-MZ, 40% in 3-MZ and 43% in the fraternal sibling,

2-DZ (Fig 1). Bacterial richness and diversity, as estimated by the Chao 1 metric and the Shan-

non index respectively, were observed to be highest in 2-DZ (Fig 2.). Bacterial diversity,

Fig 1. (A) Relative abundances of phylum level distributions of the fecal microbiota in triplet set A. (B)
Relative abundances of genus level distributions of the fecal microbiota in triplet set A. The average relative
abundance of phyla and genera in each infant was measured by the fraction of total 16S rRNA gene
sequences. Each color represents a phylum/genus. Only major taxonomic groups are shown. MZ represents
a monozygotic infant and DZ the dizygotic infant.

doi:10.1371/journal.pone.0122561.g001
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measured by the Simpson and the Shannon index, was also highest in 2-DZ. By month 2, Bifi-

dobacterium abundance was similar in all three infants; 58% for the monozygotic pair and 45%

in 2-DZ (Fig 1). Members of Enterobacteriaceae, such as Citrobacter and Klebsiella were de-

tected at a higher abundance in the fraternal triplet (Fig 1). At month 3, Bifidobacterium were

detected at 54% and 49% in the monozygotic pair and 46% in 2-DZ, and overall bacterial rich-

ness and diversity were also comparable in all infants (Figs 1 and 2). An increase in diversity

and richness from month 3 to month 12 was observed in all three infants. Phylum Firmicutes

was found to predominate and Bacteroidetes were detected in all three infants (Fig 1). At genus

level Bifidobacterium abundance had decreased in all infants and genera of the Lachnospiraceae

family increased in all infants and were the dominant detectable family in the fraternal triplet,

2-MZ (Fig 1).

Fig 3 represents principal coordinate analysis of the microbiota composition, based on un-

weighted UniFrac distances of the 16S rRNA sequences. Analysis at month 1 revealed a clear

clustering of the monozygotic pair, 1-MZ and 3-MZ and a separation of the fraternal sibling,

2-DZ (Fig 3). However at months 2 and 3, while the monozygotic pair are still clustered closest

together, the phylogenetic distance between the pair and the fraternal sibling was greatly re-

duced. By month 12, the separation of the fraternal infant from the monozygotic infants is no

longer observed.

Fig 2. Comparison of diversity between samples from infants in triplet set A using different measures of alpha diversity. Alpha diversity indexes
were calculated in QIIME from rarefied samples using the Chao1 index and number of observed species for richness, and the Shannon index and Simpson
index for diversity and evenness.

doi:10.1371/journal.pone.0122561.g002
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Specific assessment of the bifidobacterial population in the healthy
dichorionic triplet set

454 Pyrosequencing of rpoB amplicons. 454 pyrosequencing was performed on rpoB

amplicons obtained from month 1 and 12 fecal samples from triplet set A. While the 16S rRNA

data presented above provides information on the relative abundances of the bifidobacteria

present in the gut microbiota of the triplets, the rpoB data provides more detailed insights.

High-throughput sequencing was again utilised but in this instance focused on the sequencing

of amplicons corresponding to a region of the Bifidobacterium sp. RNA polymerase β-subunit

gene, rpoB. The total number of reads obtained was 396,362 ranging from a minimum of

12,480 reads per sample to a maximum of 29,433 reads. This analysis revealed that the mono-

zygotic pair were almost entirely dominated by B. breve at month 1 (Fig 4). In contrast, the fra-

ternal infant, 2-DZ, exhibited greater diversity with B. longum, B. adolescentis and B. dentium

species detected in addition to B. breve. In the case of B. longum it should be noted that the

Fig 3. Unweighted UniFrac principal coordinates analysis (PCoA) plot. Unweighted UniFrac PCoA plot derived from 454 sequencing of V4 rRNA
sequences from triplet set A fecal samples at month 1, 2, 3 and 12 comparing the presence/absence of operational taxonomic units (OTUs) and their
phylogenetic relatedness.

doi:10.1371/journal.pone.0122561.g003

Fig 4. Relative abundances of bifidobacteria detected using rpoB amplicons in the healthy triplet set.
MZ =monozygotic infant, DZ = dizygotic infant.

doi:10.1371/journal.pone.0122561.g004
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rpoB primers utilised are unable to distinguish between B. longum subspecies longum and

infantis. By month 12 the species composition is similar across all three infants. Diversity has

increased in the monozygotic pair and B. breve and B. longum were the predominant species in

all three infants.

Enumeration and identification of culturable bifidobacterial species. Culturable bifido-

bacteria were detected in each infant at every sampling time point using mupirocin as a selec-

tive agent on solid media. The bifidobacterial counts at month 1 were highest for the

monozygotic pair, 1-MZ and 3-MZ, at 10.53 and 10.25 log CFU/g faeces, respectively, com-

pared with 2-DZ, at 9.81 log CFU/g faeces (Fig 5). At month 2 the highest bifidobacterial

counts were detected in the monozygotic pair, 10.11 and 10.30 log CFU/g faeces compared to

8.95 log CFU/g faeces in 2-DZ. Culturable bifidobacteria numbers at month 3 were highest in

1-MZ and 2-DZ, 8.0 log CFU/g faeces in both, versus 7.48 log CFU/g faeces in 3-MZ. At

month 12, the bifidobacterial counts had fallen in the fraternal triplet to 7.82 log CFU/g faeces

and increased in 1-MZ and 3-MZ to 8.95 and 7.64 log CFU/g faeces respectively. BLAST results

of each 16S rRNA gene – ITS sequence allowed species assignment of all isolates to four phylo-

genetic taxa, representing B. breve, B. longum, B. dentium, and B. adolescentis, correlating well

with the rpoB data above. No new bifidobacterial species were identified as all sequences ob-

tained showed more than 98% sequence identity to their nearest GenBank entry. The 16S-ITS

sequences generated in this study have been uploaded to GenBank under the accession num-

bers KP791904-KP791967.

PFGE strain discrimination of B. breve isolates. PFGE following genomic digestion with

the restriction enzyme XbaI has previously been shown to effectively discriminate between Bifi-

dobacterium species [32]. The 80 B. breve isolates identified were resolved into 5 distinct pulso-

types (A–E) using the Dice coefficient at 90% similarity (Table 2 and Fig 6). Pulsotype A was

the most dominant, accounting for 76% of isolates and persisted overtime, being detected at

month 1 in all infants and at month 12 in 1-MZ and the fraternal sibling, 2-DZ. Pulsotypes D

and E exhibited high similarity to A and differed by only 2 and 1 fragments respectively. These

differences could be explained by a chromosomal rearrangement surrounding the restriction

Fig 5. Levels of Bifidobacterium spp. triplet set A faecal samples. Bifidobacterium spp. were
enumerated, log cfu/gram faeces, from faecal samples collected from infants in triplet set A at month 1, 2, 3
and 12. MZ = monozygotic infant, DZ = dizygotic infant.

doi:10.1371/journal.pone.0122561.g005
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site in the case of D and the addition of a putative plasmid in E. Pulsotypes B and C were genet-

ically distinct from others but transient, being detected only at month 1.

Analysis of the antibiotic treated dichorionic triplet sets

In addition to the primary healthy triplet set, samples from the two antibiotic treated triplet

sets were also subject to 454 pyrosequencing at month 1 and month 12.

Set B. In this triplet set, only the fraternal sibling, 6-DZ, received antibiotic administration

in the first 24 hours of life (Table 1). At a phylum level, higher levels of Proteobacteria were de-

tected 6-DZ at month 1. Specifically, relative abundances of members of the Enterobacteriaceae

family; Citrobacter, Klebsiella and Escherichia- Shigella, were higher (Fig 7A). The relative

abundance of Bifidobacterium was lower in 6-DZ, 48%, compared with 65% and 61%. At

month 12, Bifidobacterium abundances have decreased in all three infants and overall diversity

has increased (Fig 7A). Principal coordinate analysis of the microbiota composition at month 1

is represented in Fig 7B. At month 1 the data points are quite disperse, though the monozygotic

pair cluster more closely together than the antibiotic treated infant, 6-DZ. At month 12, the in-

fants cluster tighter together and separation of the antibiotic treated infant is not observed.

rpoB amplicons were also pyrosequenced for this set and revealed that the monozygotic pair

were comprised entirely of B. breve sequences at month 1 (Fig 8A). In contrast to its healthy

siblings, B. breve represented only 1% of sequences in 6-DZ, while sequences representing B.

longum and B. adolescentis predominated. At month 12, B. dentium represented> 90% of se-

quences for all three infants.

Set C. In triplet set C, the fraternal sibling, 7-DZ, and one of the monozygotic pair, 8-MZ,

received antibiotic administration at day 24 and 21, respectively (Table 1). Actinobacteria levels

are dramatically reduced at month 1 in the treated infants; bifidobacteria represent 50% of se-

quences in 8-MZ compared to 73% in its healthy twin, 9-MZ. The most dramatic reduction is

observed in the antibiotic treated fraternal sibling, 7-DZ, where Bifidobacterium constitute

only 0.6% of the total relative abundance (Fig 9A). Relative abundances of members of the Pep-

tostreptococcaceae, Erysipelotrichaceae and Enterobacteriaceae families are higher in both anti-

biotic treated infants compared with the healthy triplet. At month 12, the microbiota

composition of all three infants are comparable, Bifidobacterium levels were low and the pre-

dominant species are members of the Lachnospiraceae family and the genera Bacteroides and

Subdoligranulum (Fig 9A). At month 1, the data-point in the principal coordinate analysis cor-

responding to the antibiotic treated monozygotic infant, 8-MZ, is equidistant from its monozy-

gotic twin, 9-MZ, and the antibiotic treated fraternal infant, 7-DZ (Fig 9B). At month 12 all

three infants cluster closely together.

Table 2. Frequency of pulsotypes representing 80 B. breve faecal isolates from dichorionic triplet set.

Pulsotype 1-MZ 2-DZ 3-MZ 1-MZ 2-DZ 3-MZ

Month 1 Month 12

A 15 4 13 12 11 15

B 1

C 2

D 3

E 4

Values represent the number of isolates matching a particular pulsotype.

doi:10.1371/journal.pone.0122561.t002
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Analysis of the rpoB amplicons for this set revealed higher diversity in the antibiotic treated

infants at month 1 with B. breve, B. dentium, B. adolescentis and B. longum species identified

(Fig 8B). B. longum and B. dentium were also identified in the healthy infant however B. breve

predominated. A similar profile was observed in all three infants at month 12, with B. breve the

dominant species in all three.

Fig 6. PFGE ofB. breve isolates from triplet set A. PFGEmacro-restriction patterns following genomic
DNA digestion with the restriction enzyme XbaI of B. breve isolates. Lane 1 = Lowmolecular weight marker,
Lane 2 = Pulsotype D, Lane 3 = Pulsotype A, Lane 4 = Pulsotype E, Lane 5 = Pulsotype B, Lane
6 = Pulsotype C.

doi:10.1371/journal.pone.0122561.g006
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Discussion

To examine the roles of environmental versus host genetic factors in shaping gut microbiota

composition, dichorionic triplet sets were investigated. Dichorionic triplets pose a unique in-

formative study design as they contain monozygotic twins and a fraternal sibling with similar

pre- and post-natal environmental factors, thus serving as an ideal control. To our knowledge

this is the first time such an approach using multiple dichorionic triplet sets has been used to

explore the effects of environment and genetics factors on microbiota development.

A limitation of the study is the small sample size; this is due to the difficulty in recruiting

dichorionic triplet sets. The incidence of triplet births in 2012 at the Cork University Maternity

Hospital was 13 sets (0.05% of total births), of which 5 were dichorionic triplets. Antibiotic ad-

ministration is very common in these infants as they are typically preterm and caesarean sec-

tion-delivered with an increased risk of infection. Two of the three triplet sets recruited

received antibiotic administration within the first 24 hours of life. Therefore, the primary focus

of this study became the healthy triplet set to provide a deeper insight into the effects of envi-

ronmental and genetic factors on the development of the microbiota using pyrosequencing

technology and culture dependent methods. For comparative purposes the microbiota of the

antibiotic treated triplet sets was also assessed as an exploratory analysis.

In the healthy triplet set, pyrosequencing of the V4 region revealed greater similarity in the

microbiota profile of the monozygotic pair compared with the fraternal sibling at month 1. By

month 12 the profile was more uniform between the three infants. There is a transition from

communities enriched with earlier colonisers such as Bifidobacterium to a more diverse

Fig 7. A) Relative abundances of genus level distributions of the fecal microbiota in the antibiotic treated triplet set B.MZ =monozygotic;
DZ = dizygotic infant; an asterisks (*) next to a circle denotes the antibiotic treated infant. B) Unweighted UniFrac Principal coordinate analysis (PCoA) of V4
sequences from antibiotic treated triplet set B.

doi:10.1371/journal.pone.0122561.g007
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microbiota. The strong clustering of the monozygotic pair at month 1 and the separation of the

fraternal sibling as revealed by PCoA analysis is striking. At months 2 and 3 the phylogenetic

distance between the monozygotic pair and the fraternal sibling has greatly reduced. By month

12 the microbiota composition has evolved further and the monozygotic pair no longer sepa-

rate from the fraternal infant.

To specifically assess the bifidobacteria population, Bifidobacterium species diversity was

analysed using rpoB targeted pyrosequencing. At month 1, the monozygotic pair were almost

entirely dominated by B. breve, with greater species diversity detected in the fraternal sibling.

At month 12, the bifidobacterial population was similar in all three. Analysis of the strain di-

versity of the culturable B. breve population by PFGE revealed a lack of diversity. This lack of

strain diversity between the triplets is noteworthy. A recent study by our group investigated the

bifidobacterial strain diversity in 51 unrelated infants and found a high level of diversity, with

only one strain found in two different infants [33]. Here, the monozygotic pair were no more

similar to each other than the fraternal sibling suggesting an environmental influence. Evidence

for horizontal transmission in the environment has also been seen in a study of the Clostridium

perfringens PFGE profiles from elderly subjects. Unrelated subjects from the same residential

care location were reported to have identical strains [34].

Fig 8. A) Relative abundances of bifidobacteria detected using rpoB amplicons for 454
pyrosequencing in the antibiotic treated triplet set B.MZ =monozygotic; DZ = dizygotic triplet; an
asterisks (*) next to a circle denotes the antibiotic treated infant. B) Relative abundances of bifidobacteria
detected using rpoB amplicons for 454 pyrosequencing in the antibiotic treated triplet set C.
MZ = monozygotic; DZ = dizygotic triplet; an asterisks (*) next to a circle denotes the antibiotic treated infant.

doi:10.1371/journal.pone.0122561.g008
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Antibiotic exposure early in life, even short term, has been shown to significantly disrupt

microbiota development in infants [15]. In both of the antibiotic treated triplet sets investigated

here, decreased levels of Actinobacteria and increased Enterobacteriaceae were observed re-

gardless of zygosity at month 1. By month 12, early antibiotic exposure appears to no longer

exert such a strong influence on microbiota composition. The observation that the microbiota

profile is similar in all infants at month 12 is of importance as a number of studies have sug-

gested that exposure to antibiotics in early life may have long term effects on the microbiota

composition. Indeed early antibiotic use has been associated with the development of allergic

asthma, obesity and inflammatory bowel disease later in life [35–39]. A follow up with the trip-

let sets in this study later in life would be of benefit to investigate the impact of early antibiotic

use on the development of disease states.

Specific analysis of the bifidobacterial population in these antibiotic treated infants revealed

higher diversity and decreased levels of B. breve compared to their healthy siblings at month 1.

In a previous study we investigated the effect of short-term antibiotic administration on the in-

fant gut microbiota until 8 weeks of age and also found B. breve to be higher in control infants

compared to the antibiotic treated cohort [15].At month12, the bifidobacterial composition at

month 12 is similar in both healthy and antibiotic treated infants.

Other studies using dichorionic triplet sets to investigate shared factors in determining the

gut microbiota include a publication by Stewart et al, which explored the development of the

gut microbiome of preterm infants including that of a single dichorionic triplet set [40]. Here it

Fig 9. A) Relative abundances of bifidobacteria detected using rpoB amplicons for 454 pyrosequencing in the antibiotic treated triplet set B.
MZ =monozygotic; DZ = dizygotic triplet; an asterisks (*) next to a circle denotes the antibiotic treated infant. B) Relative abundances of bifidobacteria
detected using rpoB amplicons for 454 pyrosequencing in the antibiotic treated triplet set C. MZ = monozygotic; DZ = dizygotic triplet; an asterisks (*) next to
a circle denotes the antibiotic treated infant.

doi:10.1371/journal.pone.0122561.g009
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was reported that the microbiota composition was comparable between all infants in the triplet

set. It is important to note that each infant in that study received antibiotic administration

within 24 hours of life and much like the antibiotic treated infants in our study it is likely that

antibiotic administration was a major determinant of the community structure. Subramanian

et al. sampled the gut microbiomes of healthy and malnourished infants in Bangladesh includ-

ing a single dichorionic triplet set [41]. The maturity of the infants microbiota was measured

and the monozygotic pair were not more correlated than their fraternal sibling. As in the case

of Stewart et al, antibiotic use was also reported for these infants making the presence of a

healthy dichorionic triplet set in our study of particular value.

Our observations require confirmation with future studies of dichorionic triplet sets but the

data suggests that while initially host genetics play a major role in determining the microbial

community composition, by year one environmental factors are the major determinant in

healthy infants. In the case of early life antibiotic administration, this appears to be more of a

determinant of the community composition at month 1 than any other factor including

host genetics.
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