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The intestine and the intestinal immune system have evolved through a symbiotic
homeostasis under which a highly diverse microbial flora is maintained in the
gastrointestinal tract while pathogenic bacteria are recognized and eliminated. Disruption
of the balance between the immune system and the gut microbiota results in the
development of multiple pathologies in humans. Inflammatory bowel diseases (IBD) have
been associated with alterations in the composition of intestinal flora but whether these
changes are causal or result of inflammation is still under dispute. Various chemical
and genetic models of IBD have been developed and utilized to elucidate the complex
relationship between intestinal epithelium, immune system and the gut microbiota. In
this review we describe some of the most commonly used mouse models of colitis and
Crohn’s disease (CD) and summarize the current knowledge of how changes in microbiota
composition may affect intestinal disease pathogenesis. The pursuit of gut-microbiota
interactions will no doubt continue to provide invaluable insight into the complex biology
of IBD.

Keywords: microbiota, colitis, mouse models, IBD, Crohn’s disease

INTRODUCTION
The lower gastrointestinal tract of healthy adult humans contains
more than 100 trillion bacteria (Ley et al., 2008), termed the gut
“microbiota,” which are involved in complex interactions with
host mucosal epithelial and immune cells and shape fundamen-
tal physiological processes such as digestion, energy homeostasis,
and development of gut-associated lymphoid tissues (Bakhtiar
et al., 2013). Surface antigens and metabolic end-products of
gut microbiota modulate the activation of resident immune cells
and the production of cytokines which protect against potential
pathogens (Cario, 2013). However, this homeostatic relationship
is perturbed in inflammatory bowel diseases (IBD), a group of
chronic relapsing and remitting disorders of the gastrointesti-
nal tract manifesting as Crohn’s disease (CD) or ulcerative colitis
(UC). UC usually affects only the rectum and shows continuous
inflammation, whereas CD may occur anywhere along the gas-
trointestinal tract and is characterized by discontinuous lesions
in the intestinal wall.

One of the most important and devastating complications
of the long-standing inflammation in IBD is colorectal cancer
development. The first case of UC-associated carcinoma of the
intestine was reported by Crohn and Rosenberg (1925), and
CD was connected to cancer in 1945 (Warren and Sommers,
1948). Subsequent studies confirmed that patients with IBD,
especially UC, have increased risk for developing colorectal cancer
and this risk increases further with the severity of inflamma-
tion (reviewed in Danese and Mantovani, 2010; Rubin et al.,
2012).

The realization of the intimate relationship between the micro-
biota and intestinal homeostasis has spurred large collaborative
efforts aiming to identify and characterize the microorganisms
which associate with health and disease in humans. The European
MetaHIT [Metagenomics of the Human Intestinal Tract, (Qin
et al., 2010)] project and the Human Microbiome Project [HMP,
(Peterson et al., 2009)] explore multi-“omic” data to define the
role of human microbiome in health and disease along with the
development of a reference set of microbial genome sequences.
However, experimental model systems such as the mouse and
Drosophila continue to provide critical insight into how host-
microbiota homeostasis is established, maintained or perturbed
(Kostic et al., 2013).

Herein, we review the phenotypic, cellular, and molecular
characteristics of some of the most widely-used mouse models
of experimental IBD and colitis-associated cancer (CAC) and the
impact of microbiota on these pathologies (Figure 1).

CHEMICAL AND GENETIC MOUSE MODELS OF
INFLAMMATORY BOWEL DISEASE AND
COLITIS-ASSOCIATED COLON CANCER
DEXTRAN SODIUM SULFATE-INDUCED COLITIS
An established model of IBD employs the chemical Dextran
Sodium Sulfate (DSS). DSS administered to the drinking water
in repeated cycles triggers a state of chronic intestinal inflam-
mation by binding to medium-chain-length fatty acids present
in the mouse colon, inducing disruption of colonic epithe-
lial barrier (Laroui et al., 2012). The ensuing tissue damage
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FIGURE 1 | Schematic representation of known pathogenic events in

experimental IBD. Defective TLR and NOD signaling in Paneth epithelial
cells leads to reduced “sensing” of bacterial products (yellow and blue
circles) and reduced production of anti-microbial peptides. The ensuing
disruption of microbiota balance which may also be influenced by the
frequent use of antibiotics and/or diet stimulates inflammation that is largely
orchestrated by resident dendritic cells (DCs). Their activation by products of
pathogenic bacteria induces IL-23 which in turn engages innate lymphoid cells
(ILC) to produce IL-22 and IL-17. Inflammation also results in the recruitment of
inflammatory DCs which secrete IL-12 and TNF and increase IFNγ, TNF and

IL-17-producing Th1/Th17 cells. Cytokines secreted by ILCs and Th1/Th17 cells
promote both the recruitment of neutrophils that produce DNA-damaging
reactive oxygen species (ROS) and the survival of intestinal epithelial cells
(IEC) by the engagement of STAT3 signal transduction, eventually leading to
malignant transformation. Suppression of regulatory T cell (Treg) activity by
pro-inflammatory M1 macrophages which secrete high TNF and IL-1 but low
IL-10 levels unleashes inflammation and allows macrophages to produce
oxidative products and mutagens which are believed to contribute to
carcinogenesis. Reduced production of mucus by Goblet cells impacts on
microbial composition and gastrointestinal barrier function.

allows exposure of innate immune cells to commensal bacteria
accompanied by a robust Th1-type immune response to elimi-
nate infiltrating pathogens and promote tissue healing. Multiple
cell types participate in the pathogenesis of DSS-induced colitis
including gut epithelial cells, CD4+ and CD8+ T lymphocytes,
regulatory T cells, neutrophils and macrophages, resembling the
pathogenic events in human colitis. Mucosal macrophages may
prime the local inflammatory response through both phagocyto-
sis of DSS and activation by bacteria products. The contribution
of macrophage polarization phenotype to the development of
CAC has been described using this model including the demon-
stration that Akt2 deficient mice are partly protected from DSS-
induced colitis because of a macrophage phenotype shift from M1
to M2 in the colonic mucosa (Arranz et al., 2012).

Chronic inflammation induced by prolonged administra-
tion of DSS results in malignancy only in a small proportion
of animals (Okayasu et al., 1990, 1996) but adenocarcinoma
development readily occurs upon intraperitoneal injection of
the mutagen azoxymethane (AOM) followed by repeated DSS
cycles (reviewed in Wirtz et al., 2007; Chen and Huang, 2009).

AOM is metabolized in vivo to methylazoxymethanol (MAM) by
cytochrome P450 (Sohn et al., 2001). MAM and its derivatives
are direct DNA mutagens although tumor formation requires
additional cellular and molecular events associated with chronic
inflammatory imbalance. Indeed, the degree of inflammation
correlates with the development of dysplasia in minor lesion
aberrant crypt foci and is linked to the nuclear translocation
of β-catenin (Cooper et al., 2000). Impairment of indoleamine
2,3 dioxygenase-1 (IDO-1) activity, a molecule which catabo-
lizes tryptophan in the kynurenine pathway and is expressed
in inflamed and neoplastic intestinal epithelial cells, reduces
nuclear β-catenin and cell proliferation (Thaker et al., 2013).
Inflammatory cytokines such as TNF, IL-6, and IL-1α which have
been implicated in human IBD and IBD-associated colorectal
carcinogenesis, also largely dictate the outcome of AOM/DSS-
induced pathology (Becker et al., 2004; Van Hauwermeiren et al.,
2013; Bersudsky et al., in press). Interestingly, mice deficient in
myeloid translocation gene related-1 (MTGR1) are resistant to
AOM/DSS-induced CAC despite the preservation of an active
inflammatory infiltrate. Tumor resistance in these animals arises
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from increased malignant cell death and impaired wound-healing
(Barrett et al., 2011), suggesting that in addition to the severity
of inflammation, AOM/DSS-induced carcinogenesis depends on
apoptosis and wound-healing regulatory pathways.

Mutations in p53 are abundant in both sporadic and IBD-
associated colorectal cancer in humans, suggesting a pivotal
role for this tumor suppressor in intestinal disease pathogene-
sis. However, whereas p53 mutations are late genetic events in
sporadic CRC, they are observed in inflamed colonic tissue well
before neoplastic lesions become detectable (Hussain et al., 2000).
Thus, p53 mutations probably have an initiating role in human
IBD-associated cancer. In the mouse colon, AOM/DSS-induced
pathology is largely amplified by either mutations or loss of
WT p53. Knock-in mice carrying a germline mutated p53 allele
encoding p53R172H, the mouse equivalent of the human hot
spot mutant p53R175H (Lang et al., 2004), develop adenocarci-
nomas even in the absence of AOM treatment (Cooks et al., 2013).
The accelerated tumorigenesis in these animals results from a
combination of amplified and prolonged inflammation and aug-
mented capacity of mutated p53-containing epithelial cells to
evade apoptosis. P53-deficient or p53+/− mice also develop mul-
tiple tumors upon exposure to DSS without the requirement
of AOM administration (Fujii et al., 2004; Chang et al., 2007).
Therefore, AOM/DSS induces a state of chronic intestinal inflam-
mation which progresses to cancer with molecular, histopatho-
logical and phenotypic characteristics that resemble the human
disease.

Another carcinogen used in combination with DSS is 1, 2-
dimethylhydrazine (DMH). DMH is metabolized in liver and its
derivatives induce the production of diazonium by gut epithe-
lial cells. The aforementioned metabolite exerts mutagenic effects
through oxidative stress and methylation events (Hamiza et al.,
2012).

TNBS-INDUCED INFLAMMATORY BOWEL DISEASE
Intrarectal administration of the contact sensitizing allergen
2,4,6-trinitrobenzenesulfonic acid (TNBS) initiates acute T cell-
mediated, IL-12 driven intestinal inflammation (Scheiffele and
Fuss, 2002; Neurath and Finotto, 2009). Ethanol is required to
disrupt the mucosal barrier, whereas TNBS is proposed to hapt-
enize microbiota or colonic autologous proteins rendering them
immunogenic. The overall phenotypic and histopathological fea-
tures of TNBS-induced colitis mostly resemble those characteriz-
ing CD. Recently, the TNBS model was used for the identification
of rVEGF164b, a VEGF-A isoform, as an inhibitory molecule
of angiogenesis in IBD (Cromer et al., 2013). Thus, TNBS is
considered as a suitable model to study both gut inflammation
and the mechanism involved in colonic healing in IBD. Using
this model we have recently described the efficacy of antisense
oligonucleotides targeting CD40, a TNF family receptor that trig-
gers Th1 and innate immune responses upon stimulation by its
ligand, in treating early stage and established colitis (Arranz et al.,
2013).

ADENOMATOUS POLYPOSIS COLI MUTATION-INDUCED ADENOMA
MODEL
Mutations in the Adenomatous polyposis coli (APC) gene in
humans are critically involved in familial adenomatous polyposis

(FAP) and represent an early genetic aberration in sporadic
colorectal cancer (Liang et al., 2013). The multiple intestinal neo-
plasia (Min) mouse, one of the first genetic models used to study
intestinal cancer in rodents, bears a point mutation in the Apc
gene (Apcmin /+) and develops numerous adenomas. Exposure
of Apcmin /+ mice to DSS alone mimics CAC and results in
accelerated tumorigenesis (Tanaka et al., 2006). In addition to
inflammation, Apcmin /+-induced carcinogenesis can be influ-
enced by oxidative stress. Thus, Cheung et al. (2012) showed
that ablation of nuclear factor-erythroid 2 related factor 2 (Nrf2)
attenuates anti-oxidative stress pathways and increases prolif-
eration in the intestinal crypts leading to enhanced intestinal
carcinogenesis in Apcmin /+ mice. This observation is pertinent
to the role of gut microbiome in disease pathogenesis, identify-
ing microbial metabolites as modulators of carcinogenesis in part
through induction of chronic oxidative stress (Arthur et al., 2012).

IKK-γ (NEMO) DEFICIENCY IN INTESTINAL EPITHELIAL CELLS
Intestinal epithelial-cell-specific inhibition of NF-κB through
conditional ablation of NEMO/IKKγ, the regulatory subunit of
the IKK signaling complex essential for NF-κB activation, spon-
taneously causes severe chronic intestinal inflammation in mice
(Nenci et al., 2007). Histological examination of colon sections
from these animals revealed extensive apoptosis of colonic epithe-
lial cells leading to disruption of epithelial integrity and translo-
cation of bacteria from the lumen into the mucosa. Notably, these
mice exhibit reduced expression of defensin-3, an antimicrobial
peptide primarily produced by specialized intestinal epithelial
cells, called Paneth. Low defensin copy number has been reported
to correlate with predisposition to IBD in humans (Wehkamp
et al., 2006) and unpublished data from our laboratory sug-
gest that defensin expression is higher in the proximal compared
to distal colon reflecting their differential susceptibility to DSS-
induced pathology (Gkouskou and Eliopoulos, in preparation).

INTERLEUKIN-10 (IL-10)-DEPENDENT INFLAMMATORY BOWEL
DISEASE
Genome-wide association studies have identified SNPs flanking
the IL-10 gene to be linked to UC (Franke et al., 2008). IL-10-
deficient mice exhibit intolerance to their intestinal microbiota,
have altered responses to inflammatory or autoimmune stim-
uli and develop spontaneous enterocolitis and adenocarcinoma
(Sturlan et al., 2001). A similar intestinal phenotype was observed
in mice with a T cell specific IL-10 deficiency, underscoring the
importance of T cell derived IL-10 and IL-10-dependent regu-
latory T-cells in the regulation of mucosal T cell responses and
disease pathogenesis (Erdman et al., 2003).

T CELL ADOPTIVE TRANSFER MODEL
Initially developed by the group of Fiona Powrie (Powrie et al.,
1994), mouse CD4+ T lymphocytes which express high CD45RB
(CD4+CD45RBHi) can be adoptively transferred into immun-
odeficient SCID or RAG1/2−/− mice, where they traffic to the
intestine and induce gut inflammation. Recipient mice repopu-
lated with CD4+CD45RBLo T cells or total CD4+ T lymphocytes
do not develop colitis, despite their ability to colonize the host
gut. This phenomenon is attributed to the presence of CD25+
FoxP3+ regulatory T cells within the CD4+CD45RBLo
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population (Read et al., 2000) and adoptive transfer of
CD4+CD25− T cells has thus been proposed as the most
suitable T cell transfer model of enterocolitis (Kjellev et al.,
2006). IL-10 appears to have an important role in the pathogene-
sis of the disease in this model as SCID mice administered both
CD4+CD45RBHi and regulatory T cells together with anti-IL-10
receptor antibodies develop colitis (Kjellev et al., 2006).

THE GUT MICROBIOTA IN MOUSE MODELS OF IBD
Several lines of evidence support a role for the microbiota in
experimental colitis. Early studies reported a significant increase
in members of Bacteroidaceae and Clostridium spp. families, in
particular Bacteroides distasonis and Clostridium ramosum, in
the intestines of mice exposed to DSS (Okayasu et al., 1990)
(Table 1). Subsequent reports showed elevated 16S rRNA gene
copy numbers of the mucin-degrading Gram-negative bacterium
Akkermansia muciniphila and of Enterobacteriaceae to correlate
with disease activity in mice administered DSS (Hakansson et al.,
2014). A breakthrough in appreciating the major impact of gut
microbiota on disease pathogenesis came by the observations
that treatment with antibiotics or germ-free breeding of vari-
ous mouse models of IBD is associated with significantly less
severe bowel inflammation and carcinogenesis. Thus, Dove and
colleagues showed that ApcMin/+ mice housed in germ-free envi-
ronment display more than 50% reduction in tumor develop-
ment compared to the same animals housed in standard specific
pathogen-free (SPF) conditions (Dove et al., 1997). IL-10 defi-
cient mice were also found to be resistant to spontaneous colitis
when kept in germ-free environment (Sellon et al., 1998).

Analysis of different classes of antibiotics indicated differen-
tial and localized roles of bacteria species in the establishment
and perpetuation of colitis in IL-10−/− mice after colonization
with SPF bacteria. Ciprofloxacin was found to be most effective in
caecal inflammation by controlling aerobic organisms, including
E. coli and E. faecalis, whereas metronidazole was preferentially
active in the colon and selectively decreased anaerobic bacteria
and Bacteroides spp. (Hoentjen et al., 2003). Interestingly, whereas
induction of colitis in IL-10−/− mice born under SPF condi-
tions and in mice exposed to DSS is prevented by ciprofloxacin

and metronidazole respectively, these antibiotics have minimal
effect after the onset of colitis (Hans et al., 2000; Madsen et al.,
2000). In contrast, vancomycin-imipenem reduces total lumi-
nal bacteria, eliminates specific aerobic and anaerobic organisms
and effectively treats established disease (Hoentjen et al., 2003).
These results suggest that some intestinal bacteria species may
orchestrate the initiation of inflammation whereas other subsets
may have a role in perpetuating colitis (Rath et al., 2001). In
line with this notion, colonic polyps developed in Apc�468/IL-
10−/− mice are significantly enriched in two genera of the phylum
Bacteroidetes, namely Bacteroides and Porphyromonas as com-
pared with uninvolved tissue (Dennis et al., 2013) (Table 1).
The interplay between oncogenes and microbiota species in the
development of gut pathologies is also highlighted by stud-
ies in Drosophila which have demonstrated that the human
pathogen Pseudomonas aeruginosa synergizes with the RasV12
oncogene to induce intestinal dysplasia and metastasis-like phe-
notype (Apidianakis et al., 2009; Bangi et al., 2012).

Further evidence supporting the significance of microbes in
colitis development has been provided by studies describing a
communicable form of colitis induced by deficiency of T-bet in
cells of the innate immune system. T-bet is a transcription factor
with a pivotal role in the development of Th1 cells and in the reg-
ulation of adaptive and innate immune responses. Loss of T-bet in
mice lacking B and T cells (T-bet−/−/RAG-1−/−) results in spon-
taneous colitis which is transmissible to wild-type animals (which
express T-bet) upon cross-fostering or co-housing (Garrett et al.,
2007).

Nutrition plays an important role in the establishment of
microbial flora which in turn affects metabolism of several
macro- and micronutrients. For example, a high Firmicutes to
Bacteroidetes ratio and low microbial diversity is indicative of
a high-calorie diet and obesity in humans (Ley et al., 2006).
A telling example of how genetics, microbiota and the immune
system may interact to promote chronic gut inflammation is
highlighted by a recent study by Devkota et al. (2012) which
demonstrated that the ingestion of saturated fat by IL-10−/− mice
induces a more severe form of chronic colitis compared to the
disease that normally develops in these animals. This diet was

Table 1 | Microorganisms reported to associate with IBD in the mouse.

Type of disease or model Microorganisms Final effect References

DSS colitis Bacteroides distasonis, Clostridium
ramosum, Akkermansia muciniphila,
Enterobacteriaceae

Increased numbers correlate with
acute and chronic ulcerative colitis

Okayasu et al., 1990; Hakansson
et al., 2014

Colitis in IL-10 deficient mice Enterobacteriaceae and
adherent-invasive E. coli

Increased numbers correlate with
inflammation (Enterobacteriaceae)
and cancer (E. coli)

Arthur et al., 2012; Yang et al., 2013b

Colitis in Apc�468/IL-10−/− mice Bacteroides and Porphyromonas
genera

Increased numbers correlate with
inflammation and colon polyposis

Dennis et al., 2013

TNBS colitis Enterobacteriaceae, Bacteroides Increased numbers correlate with
inflammation

Ettreiki et al., 2012

Differences in intestinal microbiota composition due to different housing conditions have been reported (Yang et al., 2013b).
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shown to stimulate the formation of taurocholine-conjugated bile
acids leading to intestinal dysbiosis characterized by the over-
growth of the rare sulfate-reducing pathogenic bacteria Bilophilia
wadsworthia (Devkota et al., 2012). The modulation of micro-
biota species and density has also highlighted the important role
of bacteria in gut homeostasis and disease. Thus, administration
of VSL#3 probiotics, a mixture of Lactobacillus, Bifidobacterium
and Streptococcus salivarious strains, has shown to confer bene-
ficial effects on various mouse models of colitis and in humans
suffering from IBD (Isaacs and Herfarth, 2008). Intriguingly,
VSL#3 does not reduce colitis-associated colon cancer in the
mouse (Arthur et al., 2013).

Direct evidence for the role of pathogenic bacteria in IBD has
been provided by studies using the aerobic bacterium Helicobacter
hepaticus. Immunodeficient RAG−/− mice infected with H. hep-
aticus and treated with AOM develop invasive colon carcinoma
after 3–5 months, at the sites of highest inflammation in the colon
and cecum (Fox et al., 2011). This model has also assisted in the
identification of a genetic interval on the telomeric part of mouse
chromosome 3 designated Hiccs (Helicobacter hepaticus-induced
colitis and associated cancer susceptibility), which harbors 8 genes
and 5 micro RNAs and confers protection against H. hepaticus-
induced chronic colitis and inflammation-driven colon cancer
(Boulard et al., 2012).

What are the mechanisms by which bacteria dysbiosis trig-
gers inflammatory bowel disease? Several studies have highlighted
a prominent role for TLR and NOD family members as key
sensors of and responders to microbe-associated molecular pat-
terns. The effects of Nod2 mutations are of particular interest
because they have been implicated in human IBD and Nod2
knockout mice have diminished ability to prevent intestinal col-
onization of pathogenic bacteria (Petnicki-Ocwieja et al., 2009;
Couturier-Maillard et al., 2013). Impaired TLR and NOD func-
tion in Paneth epithelial cells affects their capacity to produce
antimicrobial factors which kill pathogenic bacteria, resulting
in a shift in the composition of gut microbiota (Figure 1).
Frequent use of antibiotics or personal habits, including diet may
also influence this shift. The concomitant release of ATP, other
metabolic products and DNA by microbia (Atarashi et al., 2008;
Hall et al., 2008) may lead to increased production of IL-23 by
resident monocytes, such as dendritic cells, which in turn stim-
ulates innate lymphoid cells to secrete IL-17, IL-22, and IFNγ

(Buonocore et al., 2010). IL-17 is of particular relevance to col-
itis as it is linked to reduced regulatory T cell (Treg) activity.
Resident Treg produce IL-10 which inhibits Th1 cells and mono-
cyte effector functions associated with inflammation. Suppression
of Treg activity thereby unleashes inflammation, leading to a

switch in the differentiation program of Ly6Chi monocytes from
anti-inflammatory M2 macrophages to inflammatory dendritic
cells and M1 macrophages in the colon (Rivollier et al., 2012)
which produce a plethora of pro-inflammatory cytokines, oxida-
tive products and mutagens such as trans-4-hydroxy-2-nonenal
(4-HNE) (Yang et al., 2013a). Reactive oxygen species (ROS) gen-
erated by recruited neutrophils may also cause DNA damage in
epithelial cells.

The production by pathogenic bacteria of secondary bile
acids that have carcinogenic effects is believed to contribute

to the dysbiosis-inflammation-tumorigenesis axis (Sommer and
Backhed, 2013). Additional host genetic factors may influence the
cross-talk between microbiota and IBD. For example, produc-
tion of mucus by Goblet cells, especially mucin 2 (MUC2), has a
significant impact on microbial composition and gastrointestinal
barrier function. Altered MUC2 expression and/or glycosylation
leads to accompanying intestinal pathologies, including IBD and
colon cancer (Yang et al., 2008).

CONCLUSIONS AND FUTURE DIRECTIONS
In the intestine, the symbiotic relationship between the host
and the microbiota influences nutrition, metabolism, immune
system functions, development and normal physiology, as well
as susceptibility to IBD and CAC. Accumulating experimen-
tal, epidemiological, and clinical evidence highlights the poten-
tial of targeting the dysbiosis-inflammation-tumorigenesis axis
for the development of new therapeutic strategies for IBD and
colorectal cancer. Much of the current knowledge of the reg-
ulation of this axis comes from studies exploring the effects
of particular pathogenic bacteria using chemical or genetic
models of CAC. High-throughput human microbiome studies
confirm that the genetic make-up, environmental factors and
personal habits influence the bacteria communities among indi-
viduals; however, further studies are warranted to fully appreci-
ate how a particular microbiota is established and orchestrates
the immune responses toward the development of colitis and
CAC. The establishment of “humanized” gnotobiotic mice, ani-
mals that carry only human-derived gut microbes (Turnbaugh
et al., 2009) is expected to improve human disease model-
ing and provide further insight into how environmental fac-
tors, including diet, may influence the microbiota and shape
gut physiology and disease pathogenesis. Similarly, it would be
important to assess changes in the gut flora during aging and
evaluate their impact on IBD susceptibility. In line with this
notion, recent studies in Drosophila show that immunosenes-
cence associated with aging results in dysbiosis and triggers
an inflammatory response which promotes intestinal stem cell
over-proliferation and dysplasia (Guo et al., 2014). Further stud-
ies are also needed to determine whether changes in particular
microbiota species induced by inflammation may impact on
progression to cancer.

Future research could also lead to the development of benefi-
cial (probiotic) microbes or inhibitors of specific microbes and/or
their products which “normalize” the intestinal flora and can
improve human health. As the current repertoire of probiotics is
limited, further studies to explore the potential of fecal microbiota
transplantation (FMT) therapy, the infusion of fecal bacteria from
a healthy individual into a recipient patient, for the treatment
of intestinal disorders are warranted. FMT has demonstrated
tremendous efficacy in treating refractory Clostridium difficile
infection, and there are case reports of successful management of
UC using FMT in humans (Lemon et al., 2012). A more focused
approach requires the identification of species or bacterial prod-
ucts and metabolites which normalize the inflamed gut mucosa.
In this regard, the isolation of 17 human clostridia species and
the discovery of microbial-derived short-chain fatty acids that
can stimulate the expansion of Treg cells in mice (Atarashi et al.,
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2013; Smith et al., 2013) opens up new therapeutic options for the
treatment of IBD.

The microbiome plays an important role in immunity and
energy metabolism and will thus be important to determine if the
microbial gut ecology may also impact on non-gastrointestinal
diseases, including obesity, cancer and neurological disorders.
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