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Abstract

The gut microbiota has an important role in animal health and performance, but its contribution is difficult to determine, in

particular given the effects of host genetic factors. Here, whole-genome sequencing of the hosts and 16S rRNA gene

sequencing of the microbiota were performed to separate the effects between host genetics and the microbiota in the

duodenum, jejunum, ileum, caecum and faeces on fat deposition in 206 yellow broilers reared under identical conditions.

Despite the notable spatial variation in the diversity, composition and potential function of the gut microbiota, host genetics

exerted limited effects on the gut microbial community. The duodenal and caecal microbiota made greater contributions to

fat deposition and could separately account for 24% and 21% of the variance in the abdominal fat mass after correcting for

host genetic effects. We further identified two caecal microbial taxa, Methanobrevibacter and Mucispirillum schaedleri,

which were significantly correlated with fat deposition. Chickens with a lower Methanobrevibacter abundance had

significantly lower abdominal fat content than those with a higher abundance ofMethanobrevibacter (35.51 vs. 55.59 g), and

the body weights of these chickens did not notably differ. Chickens with a higher M. schaedleri abundance exhibited lower

abdominal fat accumulation (39.88 vs. 55.06 g) and body weight (2.23 vs. 2.41 kg) than those with a lower abundance of this

species. These findings may aid the development of strategies for altering the gut microbiota to control fat deposition during

broiler production.

Introduction

With the increasing world population, ensuring an adequate

supply of safe and high-quality food has rapidly become a

major global concern [1]. Broiler chickens, as an indispensable

source of animal protein for human growth and development

without any religious taboos, are the most commonly farmed

animals in the world [2] and serve as powerful experimental

model for basic and applied research. However, the rapid

growth of modern broilers has led to a series of developmental

and metabolic disorders [3, 4]. In particular, excessive

abdominal fat deposition is a widespread problem in poultry

production, because it not only reduces feed efficiency and

the yield of edible carcasses [3] but also results in consumer

dissatisfaction [5]. More than 65 billion chickens are pro-

duced annually (FAO 2016) and ~2% of the live body

weight (BW) of broilers is abdominal fat [5]. Based on these

values, ~3 million tons of abdominal fat are produced by

broilers and discarded during processing each year world-

wide. Thus, the economic losses associated with this pro-

blem are estimated to be over $2.7 billion.
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Despite substantial heritability (h2, 0.40 ~ 0.53) [6, 7],

genetic progress in abdominal fat deposition has been slow

due to the difficulty and cost of measuring this phenotype in

a non-invasive manner [8]. In addition, the genetic selection

against fatness is hindered by the high positive correlation

between BW and abdominal fat content [9]. Therefore,

another effective approach for modulating fat deposition in

broiler chickens is urgently needed. In addition to breeding

and selection, fat accumulation may also be decreased

through the regulation of the gut microbiota, which has an

important role in detoxification, immune function, food

digestion, nutrient and energy acquisition [10–12]. In par-

ticular, microbial fermentation is most active in the chicken

caecum and can produce energy-rich short-chain fatty acids

(SCFAs) [13].

The composition of the gut microbiota is influenced by

multiple environmental factors, such as diet [14, 15] and

medication [16], thereby offering opportunities to improve

host physiological status by modulating gut microbial

communities. Accumulating and emerging lines of evidence

from humans [17–20], mice [15, 21–23] and farm animals

[24–26] have revealed a strong association between the gut

microbiota and adiposity. Furthermore, the gut microbiota

can modulate obesity, as demonstrated by the transplanta-

tion of two specific species (Bacteroides thetaiotaomicron

and Methanobrevibacter smithii) [21], the caecal contents

of mice [22, 23] or the faecal microbiota from obese and

lean humans [19, 27] into germ-free mice. Notably, the

colonization of germ-free mice with ‘obese microbiota’

resulted in a significantly greater increase in total body fat

than the colonization with ‘lean microbiota’ [22, 27].

However, to the best of our knowledge, the vast majority of

the published studies in this field were based on rodent or

human models, which may not be suitable for poultry,

owing to the unique digestive system and gut microbiota

composition of birds. Lacking teeth and jaw muscles, birds

grind and mash feed with their gizzard and primarily digest

and absorb nutrients in their small intestine (SI, including

the duodenum, jejunum and ileum) [28]. The shared core

microbiota of the SI is dominated by Firmicutes and Pro-

teobacteria, with lower abundances of Bacteroidetes and

Actinobacteria [29]. The pair of caeca is a unique feature of

the chicken gastrointestinal tract (GIT) and constitutes an

important site for the fermentation of undigested nutrients

(such as cellulose and starch) [13], with Bacteroidetes and

Firmicutes being the dominant phyla in the caecum [2]. As

the avian colon is very short and located in such proximity

to the cloaca, few nutrients are absorbed there.

Although there is clear evidence demonstrating the effect

of the gut microbiota on host phenotypes, the degree to

which host genetics can modulate the microbial composi-

tion remains an open question. Although several previous

studies for candidate genes found that the gut microbiota is

associated with host genetic variations [30–33], many

recent studies have not observed strong evidence for this

correlation [18, 34, 35].

Therefore, in this study, we performed whole-genome

sequencing on 206 yellow broilers and 16S rRNA gene

sequencing on 1026 samples from multiple gut segments to

explore the extent to which host genetics shape the gut

microbial composition. The single-nucleotide polymorph-

ism (SNP) and microbiota data were then used to system-

atically evaluate the contribution of the gut microbial

community to fat deposition using a linear mixed model

(LMM). We further aimed to identify specific microorgan-

isms whose abundances are significantly associated with fat

accumulation. The findings of this study will provide

insights into the microbial communities in different gut

sections and their association with fatness.

Materials and methods

Animals, phenotypic data and sample collection

The yellow broiler from Wen’s Nanfang Poultry Breeding,

Co., Ltd. (Xinxing County, Guangdong Province, China)

was used in this study; this broiler is characterized by yel-

low feathers and excellent meat quality, and their mean age

at slaughter is 78 days. All male broilers (n= 206) were

hatched on the same day and reared in a poultry facility

under standardized conditions of a 20:4 h light:dark cycle at

19–28 °C, with free access to water and corn-soybean-based

diets (containing 2900 kcal/kg metabolizable energy and

190 g/kg crude protein). The birds included in our study

were not administered any antibiotics or other veterinary

drugs. The individual BW and feed intake were con-

tinuously recorded by the automatic feeder, during the fast-

growing period from 56 to 76 days of age (see Supple-

mentary Figure S1). The feed conversion ratio (FCR) was

then calculated for each broiler.

At the age of 78 days, the BW was measured using an

electronic scale (to the nearest 5 g). Whole blood was

obtained from the wing vein and stored at −20 °C. Each

bird was then euthanized by cervical dislocation followed

by decapitation. After the abdomen was opened, the

abdominal fat tissue (surrounding the gizzard, cloaca and

adjacent abdominal muscles) was carefully dissected and

weighed promptly using an electronic balance with a pre-

cision of 0.1 g. Moreover, as the gut microbiota, including

that from the digesta and mucosa, may contribute to host

interactions with respect to nutrient metabolism and

immunity [36], the luminal content and mucosal surfaces of

each gut segment (including the duodenum, jejunum, ileum

and caecum) were collected and droppings were gathered

from the cloaca (Fig. 1a). All the samples were snap-frozen
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in liquid nitrogen, transported to the laboratory and stored at

−80 °C for subsequent studies. The abdominal fat percen-

tage (AFP) was calculated based on the BW and abdominal

fat weight (AFW).

Extraction of host and gut microbial DNA

Host DNA was isolated from each blood sample using a

Tiangen DNA Extraction Kit (Tiangen Biotech, Beijing,

China) according to the manufacturer’s instructions. The

gut (digesta and mucosa) and faecal samples were sepa-

rately thawed on ice and homogenized, and ~200 mg of

each sample was used for extraction of microbial genome

DNA using the QIAamp DNA Stool Mini Kit (Qiagen,

Hilden, Germany) in strict accordance to the manufacturer’s

standard protocol. To ensure successful DNA isolation, the

concentration and purity of the DNA extract was measured

using a Nanodrop instrument (Thermo Fisher Scientific,

Waltham, MA, USA) and the completeness of the DNA

sample was then assessed by 1% agarose gel electrophor-

esis. Four faecal samples were excluded due to an insuffi-

cient stool amount.

Whole-genome sequencing and data processing

The host DNAs were sheared by sonication and the frag-

mented DNA was then end-repaired, dA-tailed, ligated to

Illumina paired-end adaptors and amplified using PCR with

500 bp inserts for library construction. After PCR amplifi-

cation and purification, resequencing was performed using

Fig. 1 Spatial variation in microbial diversity and community com-
position in diverse gut segments in chickens. a Spatial structure of the
digestive tract of chickens and our five sampling sites. b ɑ-Diversity
comparison based on the Shannon diversity index, using ANOVA to
determine significant differences (**p < 0.01). The plots are a com-
bination of violin plots and box plots, with the box plots showing the
median and the 25% and 75% quantiles. The centre red point indicates
the mean value in the corresponding group and the data are expressed
as the means ± SD. c Principal coordinate analysis plot generated using

OTU metrics based on the Bray–Curtis dissimilarities. Each point
represents a sample. Differences were assessed by ANOSIM and
significance was established at p < 0.05. An R-value close to ‘1’
suggests dissimilarity between groups, whereas an R-value close to ‘0’
suggests an even distribution of high and low ranks within and
between groups. d Relative abundance of the dominant microbial
phyla in different segments. e Relative abundance of microbiota in the
five gut sites at the genus level. Only genera with an abundance of
>1.0% in any of the sites are plotted
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the Illumina HiSeq 2500 Sequencer (Illumina, Inc., San

Diego, CA, USA) to generate 150 bp paired-end reads. To

minimize mapping errors, low-quality reads were removed

using FastQC software (http://www.bioinformatics.babraha

m.ac.uk/projects/fastqc/) with the parameters supplied by

Yan et al. [37]. The clean reads from each bird were aligned

to the chicken reference genome (galGal5, http://hgdownloa

d.cse.ucsc.edu/goldenPath/galGal5/bigZips/) using the

Burrows–Wheeler Alignment tool (BWA ver 0.7.15) [38],

with the default parameters. We subsequently used the

Picard toolkit (ver 1.119, http://broadinstitute.github.io/pica

rd/) to sort the alignment results and remove potential PCR

duplicate reads. The resulting alignments were indexed

using SAMtools (ver 1.6) [39] and processed according to

the best practices for the Genome Analysis Toolkit (GATK,

ver 3.7) [40]. To obtain high-quality SNPs, we set a mini-

mum quality score of 20 for both bases and mapped reads to

call variants [41]. Finally, the SNPs of each individual bird

were combined to obtain a common set of SNP data and the

resulting dataset was subjected to filtering based on the

following rigorous criteria using the GATK VariantFiltra-

tion module as follows: (a) quality by depth > 10.0; (b)

mapping quality score > 40.0; (c) FS < 60.0; (d) MQRank-

Sum >−12.5; and (e) ReadPosRankSum >−8.0. In addi-

tion, if more than three SNPs were clustered in a 10 bp

window, they were all regarded as false positives and were

removed [41].

Subsequently, only biallelic variants were used to

achieve more robust quality control (QC) using PLINK (ver

1.9) [42] with the following parameters: sample call rate >

90%, SNP call rate > 95%, minor allele frequencies > 1%

and Hardy–Weinberg equilibrium p-value < 10−5. The

remaining SNPs and individuals were used for imputation

in BEAGLE (ver 4.0) [43], and the PLINK analysis was re-

performed using the same above-described criteria. After

these steps, a total of 10,902,776 SNPs distributed across 34

chromosomes and 205 birds were obtained for subsequent

analyses.

16S rRNA gene sequencing and analysis

The V4 region of the 16S rRNA gene was amplified using

the primer pair 520F/802R (5′-AYTGGGYDTAAAGNG-3′

and 5′-TACNVGGGTATCTAATCC-3′) [44] and the

amplicons were purified and quantified using Agencourt

AMPure Beads and the PicoGreen dsDNA Assay Kit

(Invitrogen, Carlsbad, CA, USA), respectively. After

quantification, the barcoded V4 amplicons were pooled and

subsequently sequenced using an Illumina MiSeq platform

to generate 300 bp paired-end reads. The paired-end reads

were assembled with FLASH [45]. The Quantitative

Insights Into Microbial Ecology (v1.8.0) pipeline [46] was

used for data QC and analyses. In brief, low-quality reads

that met the following criteria were discarded: (a) an aver-

age Phred quality score below 20; (b) read lengths shorter

than 150 bp; (c) sequence containing unknown bases or

primer mismatches; and (d) mononucleotide repeats

exceeding 8 bp. All remaining high-quality reads were

aligned and clustered into operational taxonomic units

(OTUs) at a similarity threshold of 97% using an open-

reference OTU picking protocol [47, 48] (http://qiime.org/

tutorials/open_reference_illumina_processing.html).

The SILVA 128 release [49] (https://www.arbsilva.de) was

used as the reference database and the UCLUST algorithm

[50] was used in the de novo clustering step. Afterward,

chimaeras and singletons were filtered from the dataset, and

OTUs with an average relative abundance < 10−6 were

removed from the analysis [51]. The OTU abundance of

each sample and the six-level taxonomic classification from

phylum to species were then obtained. To determine the

relationships among each microorganism in the five diverse

gut segments, the Spearman’s correlation for microbial

genera existing in at least 616 samples (60% of the total)

was calculated using the psych package in R (https://www.

r-project.org/).

Qualified OTU data were used to calculate ɑ-diversity

metrics of the Shannon index using the vegan package [52].

Bray–Curtis dissimilarities were produced as β-diversity

measures and then subjected to principal coordinate analysis

(PCoA) with the ape package [53]. The different sites were

statistically compared through analysis of similarity

(ANOSIM) with 10,000 permutations and Tax4fun [54]

was applied to predict the potential functional capabilities of

the microbial communities detected in each of the five

locations (duodenum, jejunum, ileum, caecum and faeces).

The Wilcoxon rank-sum test was used to investigate the

differences in KEGG (Kyoto Encyclopedia of Genes and

Genomes) pathways among the five sites. The p-values

were adjusted by the false discovery rate (FDR) using the

Benjamini–Hochberg (BH) method with the p.adjust func-

tion in R.

Construction of the microbial relationship matrix
and host genetic relatedness matrix

All OTUs from each site that passed QC were normal-

ized to have a zero mean and a unit variance, and then

used to construct the microbial relationship matrix

(MRM) [35, 55] with an R script based on the following

equation:

msij ¼
1

Ns

X

Ns

o¼1

ðxsio � xsoÞðxsjo � xsoÞ

σ
2
so

where msij represents the estimated microbial relationship in

site s between birds i and j; xsio and xsjo are the relative
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abundances of OTU o in site s in birds i and j, respectively;

xso is the average relative abundance of the OTU o in site s

in the population; σ2so is the variance of the abundance of

OTU o in site s; and Ns is the total number of OTUs in site s

used for the relatedness computation.

The eligible SNPs were further pruned to select inde-

pendent markers using the indep-pairwise command in

PLINK with the following parameters: window size of 50

kb, a step of 10 SNPs and a squared Pearson’s correlation

coefficient (r2) value of 0.2. Afterwards, the independent

dataset of 801,438 SNPs was used to estimate the principal

components (PCs) and genetic relatedness matrix (GRM)

[56] using GCTA (ver 1.91.1): [57]

gij ¼
1

N

XN

v¼1

ðxiv � 2pvÞðxjv � 2pvÞ

2pvð1� pvÞ

in which gij represents the estimated genetic relationship

between broilers i and j; xiv and xjv are the counts of the

reference alleles in birds i and j, respectively; pv is the

frequency of the reference allele in the population; and N is

the number of variants.

Analysis of the association between the gut
microbial community and host genetics

To explore the effects of the host genetics on the gut

microbiota in diverse locations, we first evaluated the cor-

relation between the GRM and Bray–Curtis distances

within each gut section through both Spearman’s and

Pearson’s correlation-based Mantel tests with 10,000 per-

mutations. The relationship between the GRM and the

MRM was also examined. In addition to investigating the

correlation between the GRM and the community structures

of the gut microbiota, we estimated the heritability at the

genus level. Before this analysis, we normalized the relative

abundances of the microorganisms that were detected in

≥ 60% of the samples from a specific segment through rank-

based inverse normal transformations using the GenABEL

package in R [58]. The microorganisms that were present in

< 60% but ≥ 30% of the samples were dichotomized as

present or absent [59] and the microorganisms that were

detected in < 30% of the samples were excluded from this

analysis.

Phenotype prediction based on host genetics and
gut microbial communities

We then analysed how well fat deposition can be inferred

from the gut microbial communities in comparison with the

host genetics. As the chickens used in this experiment had

no pedigree information, we estimate the SNP-based herit-

ability of the phenotypes (AFW and AFP) instead, using the

following model: [56]

y ¼ Kcþ gþ e A½ �

where y is an observation vector (AFW or AFP); c is a

vector of fixed covariates with the corresponding design

matrix K; e is the residual effect; and g is a vector of

aggregate effects of all SNPs with an ~N(0,Gσ
2
A), where G

and σ
2
A are the GRM and polygenetic variance (overall SNP

effects), respectively. The first five host genetic PCs

calculated as described above were considered covariates

in the model to account for population stratification.

The phenotypic variance explained by the gut microbial

variance was estimated as
σ
2
m

σ
2
p
, where σ

2
p and σ

2
m are the

phenotypic variance and gut microbial variance, respec-

tively. This fraction has been termed ‘microbiability’ (m2)

in animals [55, 60, 61] and ‘microbiome-association index’

in humans [35]. The LMM was calculated as follows:

y ¼ Kcþ ms þ e B½ �

where the model parameters are as described in model [A]

except ms, which is the random effect of the gut microbiota

in site s following the multinomial distribution ms ~ N(0,M

σ
2
m) and M is the MRM. We estimated the m2 using GCTA.

Instead of the GRM, which is usually used in GCTA, we

used MRM, which was constructed as described above. To

adjust for host genetic factors, all valid individuals and

SNPs were used in a genome-wide association analysis

(GWAS) with a univariate LMM, which was performed

using GEMMA [62]. The likelihood ratio test p-value was

selected as a criterion for examining the significance of the

association between SNPs and host phenotypes. The

genome-wide significant threshold was determined using a

modified Bonferroni correction as previously described

[63]. Using this approach, the genome-wide significance

and suggestive significance were calculated as 9.17 × 10−8

(0.05/545,351) and 1.83 × 10−6 (1/545,351), respectively.

We then extracted these SNPs with significant or suggestive

significant effects on both the AFW and AFP, and

calculated the PCs using PLINK. The first two PCs and

the top five host genetic PCs were then considered

covariates in model [B] to account for host genetics.

Identification of fatness-related microbiota

For the detection of microorganisms that are significantly

associated with fat accumulation, we excluded the taxa that

were presented in < 30% of samples from one gut section.

The remaining microorganisms were regarded as quantita-

tive traits. All the samples were then successively sorted by

host phenotypes (AFW and AFP) and the abundance of

each microorganism. The lowest 20% and highest 20% of

the ranked birds were considered two distinct groups, and a

1426 C. Wen et al.



statistical comparison of all the traits was then performed

between the two groups using the Wilcoxon rank-sum test.

We subsequently extracted the p-value from each test to

construct the following matrix:

p1�1 p2�1 � � �

p1�2 p2�2 � � �

.

.

.

.

.

.

.

.

.

pi�1 � � � pn�1

pi�2 � � � pn�1

.

.

.

.

.

.

.

.

.

p1�j p2�j � � �

.

.

.

.

.

.

.

.

.

p1�n p2�n � � �

pi�j � � � pn�j

.

.

.

.

.

.

.

.

.

pi�n � � � pn�n

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

where element pi–j represents the p-value obtained from the

Wilcoxon rank-sum test of trait j between the 20% lowest-

and 20% highest-ranked birds based on trait i. The

microorganism m was considered to have a potential

relationship with fat deposition if pAFW–m, pm–AFW, pAFP–m
and pm–AFP were all < 0.05, and the association was

considered significant if FDR < 0.05.

We subsequently characterized the spatial distribution of

the fatness-associated microbiota at multiple sites. Further-

more, we calculated the Spearman’s and Pearson’s corre-

lations between the fatness-associated microbiota and other

microbial genera (detected in at least 30% of the samples of

any of the five gut sites) using the psych package in R and

adjusted the p-value using the BH method.

Results

Characterization of host phenotypes and
sequencing output

The descriptive statistics of the host phenotypes are sum-

marized in Supplementary Table S1. All phenotypic

observations in our study, with the exception of FCR, fit a

normal distribution (Shapiro–Wilk test, p > 0.05). The cor-

relations of FCR with AFW and AFP were negligible,

whereas the correlation between AFW and BW was 0.53

(p < 0.001), and these two fat deposition-related traits (AFW

and AFP) exhibited a high phenotypic correlation (r= 0.98,

p < 0.001, Supplementary Figure S2).

To obtain sets of host genomic information, we gener-

ated 2.26 Tb of clean reads from 206 birds. The sequence

data for each individual reached a 9.22-fold depth and

95.25% genome coverage, which allowed us to call variants

with high confidence. After stringent QC, a final set of

10,902,776 SNPs (10.73 SNPs per kb) was obtained

(Supplementary Table S2). With respect to the gut micro-

bial community, the 16S rRNA gene sequencing analysis

produced a total of 58,959,487 quality-filtered sequences

from 1026 samples with an average of 57,465 reads

(Supplementary Table S3), and 3,039 OTUs were then

clustered with 97% sequence identity. We subsequently

classified the OTUs into 536 species, 464 genera, 271

families, 151 orders, 83 classes and 33 phyla (Supplemen-

tary Figure S3).

Spatial changes in the diversity, composition and
potential function of the gut microbiota

The ɑ-diversity of the microbiota in the caecum was sig-

nificantly higher than the diversity in the other four sites

(Fig. 1b). A PCoA was then conducted to visualize the

differences in taxa composition among the diverse sites. The

PCoA score plot showed an obvious separation among the

SI, caecum and faeces (Fig. 1c), and the ANOSIM enhanced

this separation or dissimilarity (R > 0.75, p < 10–4). In addi-

tion, an obvious discrepancy was also detected in the three

sections of the SI (p < 10–4), even though the R-value was

close to zero (R= 0.08).

At the phyla level, the three segments of the SI had

similar dominant microorganism communities, which

included Proteobacteria, Firmicutes, Actinobacteria and

Bacteroidetes. However, visible differences were detected

among the SI, caecum and faeces (Fig. 1d). For instance,

Firmicutes and Bacteroidetes were two dominant phyla in

the SI, with a total combined abundance of 37%, whereas

the abundance of Firmicutes in the faeces and Bacteroidetes

in the caecum accounted for ~60% and 48% of the total

abundance, respectively.

At the genus level, Ochrobactrum and Rhodococcus

were the two most abundant genera in the duodenum

(7.48% and 6.40%) and ileum (7.70% and 6.34%), whereas

unclassified Clostridiaceae exhibited the highest abundance

(6.58%) in the jejunum (Fig. 1e). In the caecal samples,

instead of the abovementioned genera, Bacteroides,

unclassified Bacteroidales and unclassified Clostridiales

constituted a notable fraction (51.38%), whereas unclassi-

fied Clostridiaceae, Lactobacillus and Gallibacterium

represented the majority of the genera in the faecal micro-

biota, with relative abundances of 27.33%, 20.15% and

9.55%, respectively. Furthermore, for the majority of

microorganisms, the relative abundance of a microorganism

in one gut segment was not associated with that in other

segments (Supplementary Figure S4). A limited number of

genera belonging to the Firmicutes and Proteobacteria phyla

showed significant and positive correlations among the

three sections of SI, but the correlations of two dominant

genera, Ochrobactrum and Rhodococcus, were not sig-

nificant between any two of the three SI segments.

A functional capacity analysis of the gut microbial

communities revealed that the top 50 pathways enriched in

each gut segment were mostly the same (shared/total: 43/50,

Fig. 2a) and primarily associated with metabolism. The
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abundances of those most common pathways showed dis-

tinct differences (FDR < 0.05) among the SI, caecum and

faeces (Fig. 2b and Supplementary Table S4). The com-

parison of the predicted microbial functions between the

faeces and gut samples revealed that the faecal microbiota

was significantly enriched in genetic information processing

pathways. The SI microbial community has important roles

in the metabolism of small-molecule nutrients, whereas the

caecal microbial community exhibits a stronger ability to

degrade macromolecules. Specifically, fatty acid biosynth-

esis and metabolism of pyruvate and butanoate were over-

represented in the SI in comparison with the caecum and

faeces, whereas carbohydrate and energy metabolism was

overrepresented in the caecal samples compared with the SI

and faeces. Of great significance, the abundance of methane

metabolism was significantly higher in the caecum.

Weak association between gut microbial
communities and host genetics

To explore the effects of host genetics on the gut microbial

community, we first examined the correlation between host

genetic kinship and microbial β-diversity (based on Bray–

Curtis dissimilarities) in diverse gut sites and found no

correlation (r2 < 0.02, Supplementary Table S5). We sub-

sequently tested the association between the GRM and

MRM, and obtained similar results: both Spearman’s and

Pearson’s correlation coefficients of the GRM with any of

the five MRMs were close to zero (Supplementary

Table S6). We then estimated the heritability of each

microorganism at the genus level, including 505 quantita-

tive traits (abundance as phenotype) and 334 binary traits

(presence/absence) (Fig. 3a). The sum of the relative

abundances of these microbial genera used for heritability

estimation (with over 30% detection rate) in the duodenal,

jejunal, ileal and faecal samples accounted for 93.42%,

95.30%, 92.28%, 99.85% and 98.54% of the total microbial

composition, respectively (Fig. 3b). Of the 839 microbial

genera, we found that five in the duodenum (accounting for

2.81% of the tested duodenal microbiota), 10 in the jejunum

(5.41%), 17 in the ileum (9.44%), 14 in the caecum

(15.05%) and 12 in the faeces (5.91%) exhibited significant

(p < 0.05) SNP-based heritability (Supplementary

Table S7). Most of these heritable bacteria belonged to the

Firmicutes and Proteobacteria phyla (Fig. 3c). The cumu-

lative abundance of these heritable bacteria was only 2.28%,

1.05%, 3.46%, 2.37% and 1.04% (p < 0.05) or, at most,

3.81%, 1.56%, 5.06%, 3.05% and 7.27% (p < 0.1) in the

duodenum, jejunum, ileum, caecum and faeces, respectively

(Fig. 3d). This result corroborated our aforementioned

results that host genetics play a minor role in the shaping of

the gut microbial composition.

Heritability and microbiability of abdominal fat
accumulation

As there was no firm evidence indicating an association

between host genetics and the gut microbiota, we con-

sidered the abdominal fat mass as the target trait and dis-

sected the contributions of host genetics and the microbiota

in different gut segments to this target trait. The relatively

high h2 for the AFW (0.33) and AFP (0.39) estimated in our

study (Supplementary Table S8) revealed that host genetics

have a substantial role in the determination of fat accumu-

lation. Thus, we performed a GWAS and obtained 19 fat

deposition-associated SNPs (Supplementary Figure S5 and

Supplementary Table S9), and we then used these SNPs as

additional covariates to correct for host genetic factors in

the m2 estimation. The m2 of the AFW estimated for the

duodenum (0.24) and caecum (0.21) was higher than that

Fig. 2 Comparison of the functional capacities of the gut microbial
communities in diverse segments. a Overlap of the top 50 predictions
among the five gut sections. b Heatmap showing the 43 shared

predictions with different abundances among the diverse gut locations
(see Supplementary Table S4). The heatmap is colour-coded based on
row z-scores
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estimated for other anatomical sites (0.06 for the jejunum,

0.03 for the ileum and 0.02 for the faeces). Similar results

were observed for the AFP (0.24 for the duodenum, 0.20 for

the caecum, 0.03 for the faeces and 0.10 for the jejunum)

and the m2 obtained for the ileum was close to zero (Sup-

plementary Table S10 and Fig. 4).

The genus Methanobrevibacter and Mucispirillum

are significantly associated with fat deposition

As noted above, the gut microbiota is involved in abdom-

inal fat deposition. We further screened which micro-

organisms are indeed associated with fat accumulation.

Given the high correlation between the AFW and the AFP

(0.98, see Fig. 5a and Supplementary Figure S2), only

microorganisms that exhibited a significant association with

both AFW and AFP were considered causal. A double-

divergent Wilcoxon rank-sum test with both AFW and AFP

identified 21 related microbial genera (Fig. 5b, c). Among

these, 16 and 17 genera were significantly associated with

the AFW and AFP, and 12 genera were associated with both

traits (Supplementary Table 11–13). Of the 12 shared

genera, 3, 2, 1 and 6 were located in the caecum, faeces,

ileum and jejunum, respectively. To visualize the relation-

ship between fat deposition and the gut microbiota, Pear-

son’s and Spearman’s correlation coefficients were

calculated for these two traits with the relative abundance of

the 12 shared microbial genera (Fig. 5d). Most micro-

organisms were negatively correlated with these two fat-

related traits (negative/positive: 10/2) and the correlations

among these microorganisms that were present in different

gut segments were not significant or weak. The micro-

organisms in the jejunum were positively and strongly

correlated with each other, which implied a strong sym-

biotic relationship.

After adjusting the p-value with FDR < 0.05, two caecal

genera—Methanobrevibacter and Mucispirillum—showed

significant association with the AFW and AFP. Moreover,

we found that these two microorganisms were significantly

correlated with fat disposition at six levels, ranging from

Fig. 3 Limited effects of host genetics on gut microbiota. a Number of
identified microbial genera. Overall, 102, 99, 109, 79 and 116
microbial genera were detected in at least 60% of the duodenal,
jejunal, ileal, caecal and faecal samples, respectively. Overall, 76, 86,
71, 14 and 87 microbial genera were detected in < 60% but ≥ 30% of
the duodenal, jejunal, ileal, caecal and faecal samples, respectively.
The former 505 microorganisms were regarded as quantitative traits
and the latter 334 were dichotomized as present/absent for SNP

heritability estimates. The microorganisms with a detection rate < 30%
were excluded from further analysis. b The sum of the relative
abundances of microbial genera with different detection rates in spe-
cific segment. c The number of significantly heritable microorganisms
(p < 0.05) grouped by sampling site and phyla. d The cumulative
relative abundance of heritable microbial genera in each gut segment
(see Supplementary Table S7)
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species to phylum (Supplementary Table S14). Fortunately,

one was identified as Mucispirillum schaedleri. Fat

deposition was significantly lower in the 20% of birds with

the lowest Methanobrevibacter abundance compared with

the 20% of birds with the highest (the AFW was 35.51 vs.

55.59 g, FDR < 0.01; the AFP was 1.53 vs. 2.36%, FDR <

0.01; Fig. 6a, b) and no difference in BW was found

between these two groups (2.28 vs. 2.33 kg, FDR > 0.5;

Fig. 6c). The 20% of birds with the highest Mucispirillum

abundance exhibited a significantly lower fat mass than the

20% of birds with the lowest abundance of this micro-

organism (the AFW was 39.88 vs. 55.06 g, FDR < 0.05; the

AFP was 1.75 vs. 2.28%, FDR < 0.05; Fig. 6d, e), whereas

the group with the highest abundance showed a significantly

lower BW than the group with the lowest abundance (2.23

vs. 2.41 kg, FDR < 0.05; Fig. 6f).

Spatial distribution of the two adiposity-related
microorganism and their correlations with other
microorganisms and host genetics

We then characterized the spatial distribution of these two

fatness-associated microorganisms at multiple sites.

Methanobrevibacter and Mucispirillum were detected in

almost all caecal samples (Fig. 6g, h) and accounted for

0.024% and 0.622% of the total abundance, respectively.

However, the genus Methanobrevibacter was detected in

< 4.37%, 2.93%, 12.33% and 49.01% of the duodenal,

jejunal, ileal and faecal samples, respectively, and the genus

Mucispirillum was not detected in 61.65%, 61.17%, 39.81%

and 15.35% of the duodenal, jejunal, ileal and faecal sam-

ples, respectively. We also found that the abundances of

Methanobrevibacter in the five gut sections showed no

correlation with each other. The abundance of the genus

Mucispirillum in the caecum was only slightly correlated

with that in the ileum (0.26) and jejunum (0.15). These

results implied that these two microorganisms were present

in all gut segments but mainly thrived in the caecum. In

addition, these two microorganisms in the caecum showed

little to no association with the microorganisms in other gut

locations.

We subsequently focused on the relationships between

these two caecal microorganisms and other microorganisms,

and the effects of host genetics on these two microorgan-

isms. The majority of the Spearman’s correlations between

the genus Methanobrevibacter and other gut microorgan-

isms were negligible (Fig. 6i), and a similar result was

found for the genus Mucispirillum (Fig. 6j). Only nine

caecal microorganisms exhibited significant and positive

relationships with Methanobrevibacter after adjustment

(r= 0.22 ~ 0.40, both the Pearson’s and Spearman’s corre-

lations; Supplementary Table S15), and five caecal micro-

organisms were significantly correlated with Mucispirillum

(four positive values and one negative value, Supplemen-

tary Table S16). These results implied that the interactions

between these two microorganisms and other gut micro-

organisms were limited. Moreover, according to the afore-

mentioned heritability estimates, h2 was close to zero for

both of these microorganisms, which indicated that these

microorganisms were not influenced by host genetic

regulation.

Discussion

The chicken GIT harbours a diverse microbial community

that closely interacts with the host. The host provides a

niche and nutrients for microbial growth or proliferation,

and in return, the gut microbiota benefits the host in many

ways. In addition to having a role in the gut-associated

immune system, the microbiota aids in the breakdown and

digestion of feed [12]. Although the lumen of the GIT is a

contiguous space, the properties of the local micro-

environment drive variations in both the identity and

abundance of microbial taxa [64–66]. Oxygen gradients

[67], pH levels [68] and nutrient availability [69] are the

primary factors driving the spatial heterogeneity along the

length of the GIT. In our study, substantial variations in

Bacteroidetes, Firmicutes, Proteobacteria and Actino-

bacteria were observed among diverse gut sections. Oxygen

availability significantly decreased from the SI to the caeca,

because a fraction of the gut microbiota consumes oxygen

Fig. 4 The contribution of the gut microbial community and host
genetics to fat deposition. The results of abdominal fat weight (AFW)
and abdominal fat percentage (AFP) are shown in the right and left,
respectively. Dashed circles indicate the scale of microbiability or
heritability from 0.1 to 0.4 (see Supplementary Tables S8 and S10)
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[67]. In the SI, where transit occurs faster [70], the three

sections have qualitatively similar but quantitatively dif-

ferent microbial communities. In fact, the communities of

the SI are dominated by rapidly dividing aerobes, such as

Ochrobactrum, which has very little fermentative activity,

and is related to disease vulnerability [71], and Rhodo-

coccus, which contains a broad range of enzymes that can

degrade various toxic and xenobiotic compounds and

transform or synthesize valuable molecules [72]. In con-

trast, the flow is slower in the caeca [73] and the metabolism

favours the fermentation of cellulose, starch and resistant

polysaccharides [13], which results in higher microbial

diversity and dominance of the saccharolytic and anaerobic

orders of Bacteroides and Clostridiales.

Although high-throughput sequencing can be applied to

nearly any biological sample, the majority of studies on the

gut microbiota use stool samples as a material owing to

these samples being readily available and because multiple

samples can be obtained from the same individual at dif-

ferent times. In the present study, we evaluated the differ-

ences in the microbiota of the SI, caecum and faecal matter

of chickens. We observed that the faecal microbiota was

very different from the microbiota of the other segments

assayed. Our results support the notion that a single faecal

sample is unable to capture the variations in the structure,

diversity and function of the microbiota along the length of

the GIT [12, 64, 66, 74]. Moreover, the abundances of the

majority of microorganisms at different GIT segments did

not affect their abundances in faeces. This result further

corroborated the idea that focusing on measurements of

microbial abundance in faeces cannot account for their

spatial distributions.

Fig. 5 Adiposity-associated microorganisms. a Overlap analysis of the
shared individuals in both the abdominal fat weight (AFW) and
abdominal fat percentage (AFP) ranked groups of the highest 20%
(N= 40) and lowest 20% (N= 40), respectively. b Significant p-
values for each Wilcoxon rank-sum test (see methods). Displayed from
the outer to the inner circle are the gut segment, the significance test in
each microbial abundance between the highest- and lowest-AFP birds
(pAFP–m), the significance test in each microbial abundance between the
highest- and lowest-AFW birds (pAFW–m), the significance test in AFP
between the two groups with the highest and lowest microbial abun-
dance (pm–AFP), and the significance test in AFW between the two
groups with the highest and lowest microbial abundance (pm–AFW),
where p-values are plotted as −log2 (p-value); the blue dashed line

shows the significance threshold (p < 0.05). Each point represents a
microorganism and the red point indicates the p-value passed the
significance threshold. The grey dashed line indicates that the pAFW–m,
pm–AFW, pAFP–m and pm–AFP values for one microorganism are all
< 0.05. c The number of microbial genera associated with AFP and
AFW at p < 0.05 and their overlaps with each other. The 12 shared
microbial genera are considered potentially related to fat deposition.
d Pearson’s (upper diagonal) and Spearman’s (lower diagonal) cor-
relations among the AFW, AFP and the shared 12 microbial genera.
Red and blue tiles indicate positive and negative correlations,
respectively; significant R-values are filled in numerically (p < 0.05).
The diagonal shows the fatness traits or gut segments (C caecum, F
faeces, I ileum, J jejunum)

The gut microbiota is largely independent of host genetics in regulating fat deposition in chickens 1431



As mentioned above, microbial communities are highly

adapted to the environment of a particular gut location.

However, our results are in accordance with those obtained

in previous studies [18, 34] and suggest that host genetics

have relatively small effects on the gut microbial compo-

sition. Specifically, we found that the host genetic rela-

tionship matrix is not significantly associated with any of

the five different gut microbial relationship matrices or

Bray–Curtis dissimilarities. In addition, the sum of the

relative abundances of the heritable microbiota was rela-

tively small, in the range of 1.04–3.46%. A recent large-

scale study in humans further demonstrated that the gut

microbiome is predominantly shaped by environmental

factors [35]. Thus, the gut microbial community could be

altered to improve production performance of hosts with

diverse genetic backgrounds.

As our findings indicated that the spatial variations in the

microbiota structure are largely independent of host genet-

ics, we further evaluated the efficacy of predicting fat

deposition from host genetics and diverse gut microbiota.

Fat serves as the primary energy depot of the body [75]. The

most common problem encountered by the broiler industry

is that intensive selection for growth has resulted in the

over-deposition of fat in chickens. Abdominal fat, as a type

of adipose tissue, is recognized as the most important type

of fat associated with excessive fat accumulation [5]. Our

estimation of SNP-based h2 for the abdominal fat content

was moderate (0.33) and the value was slightly lower but

comparable to that obtained in previous estimates, which

reported pedigree-based h2 values ranging from 0.40 [6] to

0.53 [7]. Given the moderate correlation (0.53) between the

AFW and BW, we further assessed the heritability of the

AFP, which was adjusted by BW. The h2 of the AFP

remained moderate (0.39), indicating that the host genetics

have considerable effects on abdominal fat deposition.

Several previous studies have identified candidate genes for

fat deposition traits in chicken [76, 77]. Thus, we conducted

a GWAS to obtain adipose-associated SNPs and introduced

these SNPs as additional covariates in the model [B] to

adjust the effects of host genetics. It should be noted that the

accuracy of predicting abdominal fat deposition by gut

microbiota may be reduced if the host genetic factors are not

taken into consideration [35].

‘Microbiability’ estimates can be used as a tool to

quantify the effect of gut microbial abundance on host

phenotypes and are defined as the fraction of phenotypic

variance that can be inferred from the gut microbiota. This

concept was originally proposed by Difford et al. [60, 61].

for dairy cattle and has been used to predict several complex

traits in pigs [55]. Larger m2 values indicate that the gut

Fig. 6 Effects of fatness-associated microbial genera on host pheno-
types. Spatial distribution of these related microbiota and its associa-
tions with other microbial genera. a–c Differences in the abdominal fat
weight (AFW), abdominal fat percentage (AFP) and body weight
(BW) between the two groups with the highest and lowest Methano-

brevibacter abundance. d–f Differences in the AFW, AFP and BW
between the two groups with the highest and lowest Mucispirillum

abundance. For a–f, the plots are a combination of violin plots and box
plots, with the box plots showing the median and the 25% and 75%
quantiles. The centre red point indicates the mean value in the corre-
sponding group, and data are expressed as the means ± SD. g Relative

abundance and detection rate of Methanobrevibacter in the diverse gut
segments. h Relative abundance and detection rate of Methano-

brevibacter in the diverse gut segments. For g and h, the red curve
denotes the average abundance, green bars indicate detection rate and
blue bars indicate the percentage of undetected Methanobrevibacter.
i Spearman’s correlation between Methanobrevibacter and other
microbial genera (detected in at least 30% of samples in any of the five
gut sites, see Supplementary Table S15). j Spearman’s correlation
between Mucispirillum and other microbial genera (see Supplementary
Table S16). For i and j, significance was established at an adjusted p <
0.05
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microbial community is more informative of the investi-

gated phenotype. A recent study in humans referred to this

fraction as the microbiome-association index and demon-

strated that it could be reliably estimated using sequence

data from only hundreds of individuals [35]. Based on our

m2 estimates, the duodenal and caecal microbial commu-

nities are more important predictors of fat deposition than

the other three gut sections, and these two sections made

contributions of ~24% and 21% to abdominal fat deposition

in broilers after correcting for host genetic effects,

respectively.

As the function of the duodenum is nutrient digestion

and absorption, it is likely to be that the microbiota in this

section may influence the health and nutrient utilization

efficiency of the gut and thus chicken performance. More

than 95% of fat is digested in the duodenum [78], and the

released products are largely absorbed by the distal duo-

denum and jejunum [78, 79] and directly deposited in adi-

pose tissues. A recent study in mice demonstrated that the

proximal SI microbiota and their mediators play an

important role in the regulation of host dietary fat metabo-

lism and absorption [11]. Although much of the actual

function of these microbial communities remains unclear,

several previous observations in chickens revealed that the

duodenal microbiota is significantly associated with energy

utilization [10, 80]. The caecum consists of paired long

anoxic blind pouches and the metabolic pathways in the

microbiota harboured in these pouches are dominated by

carbohydrate metabolism, with a lower occurrence of

respiration-related genes [28]. The findings of the present

study revealed that carbohydrate metabolism is more

abundant in the caecum microbiota. Most indigestible

residues enter the caeca and are fermented to produce

SCFAs (principally acetate and butyrate) by the abundant

microorganisms present [13]. These SCFAs are absorbed

transepithelially and serve as a source of energy for the host

[65]. Although their exact contribution in chickens has yet

to be determined, butyrate has been shown to drive gut

homoeostasis and improve growth performance in chickens

[81].

Our results showed that the gut microbiota was sig-

nificantly associated with fat accumulation, leading us to

investigate which microorganisms play crucial roles in this

association. We observed that the highly abundant species

M. schaedleri was significantly associated with a lower

abdominal fat mass and a lower BW of chickens. A recent

genome prediction showed that M. schaedleri uses mono-

saccharides, oligopeptides, amino acids and SCFAs as

substrates for its energy metabolism, whereas it has an

extremely limited capacity to degrade polysaccharides [82].

Thus, it is thus likely to be that this microorganism serves as

a consumer of breakdown products produced by hydrolytic

or fermentative microbiota. Moreover, the presence of M.

schaedleri could alter the expression of host immune-

related genes [82], suggesting that it may be a pathobiont

for certain diseases, such as murine colitis [83, 84].

Another fatness-related taxon identified in the present

study was the genus Methanobrevibacter. Significantly

lower fat deposition was observed in birds with lower

Methanobrevibacter abundance than in birds with high

Methanobrevibacter abundance, and the BW of these birds

was not obviously different, consistent with the results of

previous studies [21, 24]. Methanobrevibacter is a common

and important methanogenic archaeon that primarily inha-

bits the caecum of chickens [85]. Methane-producing

microorganisms can improve fermentation efficiency by

consuming any excess hydrogen and formate in the bowel,

which subsequently improves acetate production and allows

the body to absorb more nutrients and calories [86–88].

Gordon et al. [21] revealed that the co-inoculation of gno-

tobiotic mice with M. smithii and the polysaccharide-

fermenting bacterium B. thetaiotaomicron significantly

increased the amounts of caecal fermentation products (such

as acetate, propionate and butyrate), total liver triglycerides

and host fat stores without affecting the total BW. Several

previous studies showed that antimethanogenic compounds

(such as bromochloromethane) could effectively decrease

the abundance of methanogen populations and have no

effect on BW [89, 90]. In addition, our results demonstrated

that Methanobrevibacter had limited association with other

gut microbiota and was not influenced by host genetic

regulation. Thus, in modern broiler production, we may

develop approaches to reduce fat deposition by inhibiting

the caeca-associated genus Methanobrevibacter without

affecting the proportion of carcass meat and the gut

microbiota community. Although we noticed that methane-

producing microorganisms are correlated with fermentation

efficiency, we expect to further investigate the role of this

microorganism in chickens in the future experiments.

The microbial community in the duodenum was able to

explain 24% of fat deposition, but we did not identify any

duodenal microorganisms that were significantly associated

with AFP, primarily due to the stringent multiple testing

criteria used and the relatively modest sample size. The gut

microbial communities identified in our study were profiled

by 16S rRNA gene sequencing, which can reliably detect

microbial taxonomies and composition but exhibits limita-

tions with respect to the identification of specific species

and strains. With reductions in the cost of metagenome

sequencing, we expect to obtain further information

regarding the expression levels of genes of the chicken gut

microbiota in the future.

In summary, our results demonstrated that the gut

microbial community of chickens was largely independent

of host genetics, but the microbiota was highly adapted to

the environment of a particular gut location. A certain
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proportion of the variability in fat deposition was associated

with the duodenal and caecal microbiota in chickens. In

particular, the genusMethanobrevibacter and the speciesM.

schaedleri were strongly associated with fat deposition,

despite their low abundance. These findings provide

insights into the roles of the gut microbiota in complex traits

and contributes to the development of effective therapies for

reducing fat accumulation in broiler production.
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