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Abstract

Islet autoimmunity in children who later progress to type 1 diabetes is preceded by dysregulated serum metabolite profiles,
but the origin of these metabolic changes is unknown. The gut microbiota affects host metabolism and changes in its
composition contribute to several immune-mediated diseases; however, it is not known whether the gut microbiota is
involved in the early metabolic disturbances in progression to type 1 diabetes. We rederived non-obese diabetic (NOD) mice
as germ free to explore the potential role of the gut microbiota in the development of diabetic autoimmunity and to
directly investigate whether the metabolic profiles associated with the development of type 1 diabetes can be modulated
by the gut microbiota. The absence of a gut microbiota in NOD mice did not affect the overall diabetes incidence but
resulted in increased insulitis and levels of interferon gamma and interleukin 12; these changes were counterbalanced by
improved peripheral glucose metabolism. Furthermore, we observed a markedly increased variation in blood glucose levels
in the absence of a microbiota in NOD mice that did not progress to diabetes. Additionally, germ-free NOD mice had a
metabolite profile similar to that of pre-diabetic children. Our data suggest that germ-free NOD mice have reduced
glycaemic control and dysregulated immunologic and metabolic responses.
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Introduction

Type 1 diabetes is an autoimmune disorder characterized by the

specific destruction of insulin-producing beta cells in the pancreas

[1]. The incidence of type 1 diabetes among children and

adolescents has increased markedly in western countries in recent

decades [2]. In contrast to other autoimmune diseases with a clear

female bias, type 1 diabetes has no clear gender separation in

children and has a male bias in young adults [3]. Genetic risk

factors affect disease incidence; however, less than 10% of the

individuals carrying human leukocyte antigen (HLA) risk alleles

develop diabetes and the concordance between monozygotic twins

is less than 40%, suggesting that environmental factors are

important for disease development [4,5]. Infections as well as

dietary factors have been implicated as triggers of autoimmunity

and disease progression [6] and, according to the hygiene

hypothesis, infections early in life could prevent allergic diseases

[7]. Despite promising results in rodent models, clinical trials to

treat type 1 diabetes using immunotherapy such as anti-CD3

monoclonal antibodies or cytotoxic T lymphocyte antigen-

immunoglobulin (CTLA4-Ig) have only shown a partial improve-

ment of the disease [8–10]. Recent trials using haematopoietic

stem cell transplantation as a treatment of type 1 diabetes have

shown promising results but it is still unclear whether it can safely

be used to treat all patients [8]. Thus, there is still a need to

identify new factors that trigger type 1 diabetes that may be

targeted in treatment of the disease.

The gut microbiota is a complex microbial ecosystem that is

considered to be a major driving force in immunological

maturation [11]. Its profound role in regulating host metabolism

has become evident in recent years [12] and emerging evidence

indicates that it is a possible modulator of diabetes. Several reports

have demonstrated that an altered microbiota is associated with

risk of developing type 2 diabetes [13,14] and both preclinical and

clinical type 1 diabetes [15,16]. Furthermore, maternal use of

phenoxymethyl or quinolone antimicrobials before pregnancy is

associated with an increased risk of type 1 diabetes in the offspring

[17,18]. Studies in non-obese diabetic (NOD) mice suggest a direct

involvement of the gut microbiota in the development of

autoimmune diabetes [19,20]. However, the mechanisms that
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link the microbiota with autoimmune disease remain to be

determined.

A recent report suggested that microbially driven increases in

testosterone levels can explain the relative protection against

diabetes observed in male NOD mice [21]. However, because

puberty does not confer protection against type 1 diabetes in men

[3], it is unclear whether this microbially derived effect is present

in humans and suggests that there are additional effects of the

microbiota on type 1 diabetes development that are not gender

dependent.

Changes in the microbiota have been shown to affect the

metabolome of the host and our previous metabolomics study

revealed that metabolic abnormalities precede islet autoimmunity

in children who later progress to type 1 diabetes independent of

HLA-associated genetic risk [22]. We also showed that lipidomic

profiles of children who progress to type 1 diabetes are similar to

those of female NOD mice [23]. Here we rederived NOD mice as

germ free (GF) to investigate the microbial influence on diabetic

autoimmunity and to directly investigate whether the metabolic

profiles associated with the development of type 1 diabetes can be

modulated by the gut microbiota.

Materials and Methods

Mice
GF NOD mice were rederived at Taconic farms and were

thereafter maintained in flexible plastic film isolators under a strict

12-h light cycle (lights on at 06:00 h) at the University of

Gothenburg. GF status was verified regularly by anaerobic

culturing in addition to PCR for bacterial 16S rDNA. Both GF

and conventionally raised (CONV-R) NOD mice were fed

autoclaved chow diet (Labdiet) ad libitum. Diabetes incidence

was determined by monitoring blood glucose levels weekly by

sampling of a small volume of blood from the tail vein. Mice were

considered diabetic when values exceeded 18 mM for two

consecutive weeks or 25 mM for one week. Blood for metabo-

lomics and cytokine analyses was collected from the vena cava at

the termination of the experiment under deep isoflurane

anesthesia after a 4 h fast, unless otherwise stated. This study

was carried out in accordance with the recommendations for

Laboratory Animals in Sweden. The protocol was approved by the

Committee on the Ethics of Animal Experiments at the University

of Gothenburg (Permit Number: 338–2012). All efforts were made

to minimize animal suffering.

Insulitis and beta cell area
Sections 200–300 mm apart from the pancreas of 4-, 9- and 23-

week-old mice were stained with haematoxylin and eosin and

scored according to the following criteria: no infiltration (0); peri-

insulitis (1); #50% destruction of islet (2); $50% destruction of

islet (3). We scored 100 (at 4 and 9 weeks) and 50 (at 23 weeks)

islets per mouse. For beta cell area, sections 300 mm apart through

the whole pancreas were stained with guinea pig anti-insulin

(Dako), visualized using VECTASTAIN ABC and Vulcan Fast

Red Chromogen Kit 2 (Histolab), and counterstained with

haematoxylin. The area stained for insulin was compared with

the total area of the tissue using Biopix software.

Insulin autoantibodies
Serum insulin autoantibodies (IAA) were analysed using a

competitive radiobinding assay as previously described [15]. The

results were expressed in relative units (RU) based on standard

curves run on each plate. The cut-off value for mouse IAA

positivity was set at the mean+3SDS in 29 BALB-mice, i.e. 0.88

RU.

Cytokine measurements
Serum from mice at 15 and 23 weeks was analysed with

Mesoscale 9-plex cytokine assay according to the manufacturer’s

instructions.

Oral glucose tolerance test (OGTT) and insulin
measurements
Mice aged 17–18 weeks were fasted for 4 h and orally gavaged

with 20% D-glucose (2 g/kg). Blood was drawn from the tail vein

at 0, 15, 30, 60, 90 and 120 min and blood glucose levels were

measured using a HemoCue glucometer. Insulin levels were

measured at 0, 15 and 30 min after gavage. In mice that did not

progress to diabetes by 30 weeks of age, insulin levels were

measured after a 4 h fast. Insulin was measured using insulin

ELISA-kit (Crystal Chem).

Analysis of polar metabolites by GC6GC-TOFMS
An established metabolomics platform using two dimensional

gas chromatography coupled to time-of-flight mass spectrometry

(GC6GC-TOFMS) was used to analyse polar metabolites in

serum [24]. Serum samples (30 ml) were combined with 10 ml of an

internal standard, labelled palmitic acid (16:0–16,16,16d3;

500 mg/l), and 400 ml of methanol, vortexed for 2 min and

incubated for 30 min at room temperature. The supernatant was

separated by centrifugation at 5590 g for 5 min at room

temperature. The sample was dried under a constant flow of

nitrogen. Twenty-five ml of 2% methoxyamine hydrochloride in

pyridine was added to the dried sample and incubated at 45uC for

1 h and then derivatized with 25 ml of N-methyl-N-(trimethylsilyl)-

trifluoroacetamide by incubating at 45uC for 1 h. Five ml of

retention index standard mixture with five alkanes (400 mg/l) was

added to the metabolite mixture. Sample order for analysis was

established by randomization. The samples were analysed on a

Leco Pegasus 4D GC6GC-TOF mass spectrometer with Agilent

technologies 6890N GC and Combi PAL autosampler. Data were

processed using the Guineu software [24].

Analysis of molecular lipids by UPLC-MS
An established platform based on Acquity Ultra Performance

LC coupled to time-of-flight mass spectrometry (UPLC-MS) was

used to analyse the molecular lipids in aliquots (10 ml) of serum

samples [25]. The data were processed using MZmine 2 software

[26] and the lipid identification was based on an internal spectral

library or on de novo identification using tandem MS [25].

Statistical analysis
Data were analysed by Student’s t test and presented as mean6

SEM or SD. Survival curves were analysed with log-rank (Mantel-

Cox) test. IAA positivity was analysed by Fisher’s exact test.

Univariate statistical analysis of metabolomics data used MA-

TLAB r2012a. Clustering was performed and visualized using the

MeV software [27].

Results

Colonization status affects insulitis and the presence of
IAA in NOD mice
To investigate the potential role of the gut microbiota in the

development of type 1 diabetes, we rederived NOD mice as GF.

Female NOD mice developed diabetes at a higher rate and at an

Microbiota and T1D
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earlier time point than male NOD mice (Fig. 1A), in agreement

with a previous report [28]. Disease onset was earlier in GF

compared with CONV-R male NOD mice but no difference was

observed between female GF and CONV-R NOD mice (Fig. 1A).

There was no significant difference between diabetes progression

of GF and CONV-R NOD mice (both male and female) by 30

weeks (Fig. 1A).

To further investigate autoimmunity in the NOD mice, we

investigated the rate of islet infiltration (Fig. 1B). At 9 weeks, there

was a tendency towards enhanced insulitis in male GF NOD mice

and a significant increase in insulitis in female GF NOD mice

compared with their CONV-R NOD counterparts (Fig. 1C, D).

The difference in rate of infiltration was only transient since there

was no difference in insulitis score between GF and CONV-R

NOD mice that had not yet progressed to diabetes at 23 weeks

Figure 1. Diabetes incidence and insulitis in NOD mice. (A) Cumulative diabetes incidence in male and female GF and CONV-R mice. (B)
Representative images of islets in four insulitis categories: 0 (no infiltration); p.i. (peri-insulitis); ,50% destruction; .50% destruction. Scale bar
represents 100 mm. (C, D) Distribution of islet scores and average insulitis score in GF and CONVR male (C) and female (D) mice at 4, 9 and 23 weeks
(n = 6–7). Data are presented as mean 6 s.e.m. **p,0.01 determined by Student’s t-test.
doi:10.1371/journal.pone.0110359.g001
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(Fig. 1C, D). In addition, we did not observe any differences in

beta cell area of the pancreas in female NOD mice at 23 weeks

(Fig. S1).

We observed that GF NOD mice were significantly more likely

to be positive for IAA compared with CONV-R NOD mice at 4

weeks (Table 1) and autoantibody titers were higher in GF

compared with CONV-R NOD mice at 9 weeks (Fig. S2).

Colonization status affects serum cytokine levels
To analyse potential changes in immunological parameters in

response to the absence of microbiota, we analysed interleukin 10

(IL-10), interferon gamma (IFN-c) and interleukin 12 (IL-12). At

15 weeks, IL-10 levels were higher in GF versus CONV-R male

NOD mice, but no differences were noted for IFN-c and IL-12

(Fig. 2A–C). However, at 23 weeks, levels of IFN-c and IL-12

were significantly higher in male and female GF NOD mice

compared with their CONV-R counterparts (Fig. 2B, C) and IL-

10 levels were reduced in female CONV-R mice (Fig. 2A).

Improved peripheral glucose metabolism in GF NOD
mice
We hypothesized that peripheral glucose metabolism is

improved in NOD mice lacking a microbiota, which may partly

explain why we did not observe an increased rate of diabetes

incidence in GF NOD mice despite an increase in IAA and pro-

inflammatory cytokines compared with CONV-R NOD mice. At

30 weeks, fasting glucose levels were not different between GF and

CONV-R non-progressing male NOD mice, but fasting insulin

levels were lower in the GF mice (Fig. 3A, B), indicating an

improved peripheral glucose metabolism similar to GF wild-type

mice on different genetic backgrounds [29,30]. We also performed

an OGTT in GF and CONV-R NOD mice at 17–18 weeks of age

(in the total group, i.e. both non-progressors and progressors). We

observed a faster glucose clearance in GF versus CONV-R female

NOD mice and a tendency towards improved glucose tolerance in

GF versus CONV-R male NOD mice (Fig. S3). Insulin levels after

an OGTT were not different between GF and CONV-R NOD

mice (Fig. S3), indicating that the improved glucose clearance in

GF NOD mice was not due to enhanced insulin secretion.

Dysregulation of blood glucose in non-progressing GF
NOD mice
Although we did not see any difference in diabetes incidence

between GF and CONV-R NOD mice, we observed striking

differences when we analysed the non-fasting blood glucose levels

in the mice that did not progress to diabetes by 30 weeks of age

(Fig. 3C–H). At 12 weeks, blood glucose levels were lower in non-

progressing GF NOD male mice compared with their CONV-R

counterparts (Fig. 3C). However, from 20 weeks, blood glucose

levels were significantly higher in non-progressing GF compared

with CONV-R NOD mice (Fig. 3C, D). The mean blood glucose

levels and the percent relative standard deviation (%RSD) in blood

glucose levels per mouse from 12–30 weeks were higher in non-

progressing GF compared with CONV-R NOD mice (Fig. 3E–H),

Table 1. Proportion of insulin autoantibody (IAA)-positive mice in relation to age.

Age P value

GF CONV-R

4 weeks 76.5% (n = 17) 38.9% (n = 18) 0.041

9 weeks 92.9% (n = 14) 61.9% (n = 21) 0.056

23 weeks 90% (n = 20) 75% (n = 16) 0.374

Analysis of serum samples of germ-free (GF) and conventionally raised (CONV-R) NOD mice. Data were analyzed by Fisher’s exact test.
doi:10.1371/journal.pone.0110359.t001

Figure 2. Altered serum levels of pro- and anti-inflammatory
cytokines in GF NOD mice. Serum levels of IL-10 (A), interferon
gamma (B) and IL-12 (C) in male and female mice at 15 and 23 weeks.
Data are presented as mean 6 s.e.m. *p,0.05, **p,0.01, ***p,0.001
GF vs CONV-R mice determined by Student’s t-test. (Female: 15 weeks
n = 9; 23 weeks n = 5. Male: 15 weeks n= 6; 23 weeks n= 7.).
doi:10.1371/journal.pone.0110359.g002
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further demonstrating the decrease in blood glucose control in

both male and female GF NOD mice.

Colonization status affects the serum metabolic profile in
NOD mice
To investigate whether the early metabolic abnormalities

preceding islet autoimmunity in children who progressed to type

1 diabetes observed in a previous human study [22] might be

modulated by the gut microbiota, we performed global metabo-

lomic analysis of serum taken from GF and CONV-R NOD mice

(both non-progressors and progressors to autoimmune diabetes).

Two analytical platforms with broad analytical coverage were

applied to all samples: (1) a global lipidomics platform based on

UPLC-MS, which covers molecular lipids such as phospholipids,

sphingolipids, and neutral lipids; and (2) a platform for global

profiling of small polar metabolites based on comprehensive two-

dimensional GC6GC-TOFMS, which covers small molecules

such as amino acids, free fatty acids, keto-acids, various other

organic acids, sterols, and sugars. A total of 358 molecular lipids

and 195 polar metabolites were detected and included in the

analysis. When observing the significantly altered metabolites in

young mice, we found that the colonization status was the

dominant factor that affected the clustering of metabolic profiles

(Fig. 4), in agreement with recent findings by Markle et al. [21].

Figure 3. Altered blood glucose control in GF NODmice. (A,B) Fasting blood glucose (A) and insulin levels (B) in male non-progressing mice 30
weeks of age. (C,D) Non-fasting blood glucose levels in non-diabetic male (GF n= 12, CONV-R n= 14) (C) and female (GF n= 9, CONV-R n= 5) (D) mice
from 12–30 weeks. (E–H) Average blood glucose levels per mouse and percent relative standard deviation (RSD) of glucose values per mouse from
12–30 weeks in male (E,F) and female (G,H) mice. Data are presented as mean 6 s.e.m. (A, B, E–H) or mean 6 s.d. (C,D). *p,0.05, **p,0.01, ***p,
0.001 vs CONV-R mice determined by Student’s t-test.
doi:10.1371/journal.pone.0110359.g003
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Within the GF and CONV-R groups, we observed subclustering

by age and gender (Fig. 4).

The colonization status had a similar effect on metabolic profiles

of 4- and 9-week-old mice (r = 0.52, P,0.001, for the associations

of CONV-R/GF fold changes in 4- and 9-week old mice for the

156 significantly different metabolites). As expected, the metabo-

lites of similar structural class tended to co-cluster (Fig. 4), thus

allowing for comparison of metabolic profiles at the class level. GF

NOD mice had reduced levels of tricarboxylic acid (TCA) cycle

metabolites, sugar derivatives and triglycerides compared with

CONV-R mice (Fig. 4). Furthermore, branched chain amino

acids (BCAAs) were elevated at 9 and 23 weeks in male GF NOD

mice and at 4 and 9 weeks in female GF NOD mice (Figs. 4, 5).

There was also an elevated cluster of metabolites in the profile of

GF NOD mice that consisted primarily of amino acids including

glycine, phenylalanine, tyrosine and 2-hydroxybutyric acid

(Fig. 4).

We previously observed that differences between the cord serum

metabolomes of newborn infants who progress to type 1 diabetes

and their controls are similar to differences found between the 9-

week-old GF and CONV-R Swiss Webster mice [31]. To

determine whether these similarities were also observed in the

NOD mice, we compared previously acquired human data from

15 type 1 diabetes progressors and 24 controls [22] with the

metabolomics dataset from 9-week-old GF and CONV-R NOD

mice. Triglycerides were excluded from the comparison due to

high variability in the clinical dataset. A total of 53 lipids and 25

polar metabolites were matched across the datasets. We found that

the difference in the metabolome of type 1 diabetes human

progressors compared with controls significantly correlated with

that of GF compared with CONV-R NOD mice (r = 0.43,

P = 7.061025, comparing mean concentrations of each of the 78

metabolites in type 1 diabetes progressors and GF mice, scaled by

mean concentrations in non-progressors and CONV-R mice,

respectively).

Discussion

Here we identified a profound role of the gut microbiota in the

regulation of glycaemic control as well as of immunological and

metabolic profiles in a mouse model of autoimmune diabetes. The

absence of gut microbiota in NOD mice did not affect overall

disease incidence, but resulted in increased insulitis and levels of

IAA and pro-inflammatory cytokines, and worsened glucose

control in mice that did not progress to diabetes. Furthermore,

we observed differences in the serum metabolomic profiles

between GF and CONV-R NOD mice that resembled the

difference between those of newborn infants who later progress to

type 1 diabetes and non-progressors, suggesting that the

metabolomic changes in infants who later progress to type 1

diabetes may be modulated by the gut microbiota.

The similarity in diabetes incidence in both male and female

mice between GF and CONV-R NOD is in agreement with

earlier studies [21,32]. We observed an increase in insulitis in GF

NOD mice at 9 weeks, again consistent with previous results [32],

but the effect was only transient and there was no difference in

beta cell area in older mice. Disease incidence is affected by

housing conditions [33] and the relatively high disease incidence in

our CONV-R mice could be explained by the clean housing

conditions in our specific pathogen free facility. IAA positivity was

more frequent at 4 weeks of age in GF versus CONV-R NOD

mice, which may mirror progressive beta cell autoimmunity [34]

and contribute to the enhanced beta cell destruction indicated by

the increased insulitis at 9 weeks. The gut microbiota is known to

affect B-cell development [35] and B-cells have been shown to be

important contributors to diabetes progression in the NOD mouse

model [36]. However, the difference in IAA production from B-

cells did not contribute to an effect on overall diabetes incidence.

We observed that levels of IFN-c and IL-12 were higher in GF

compared with CONV-R NOD mice at 23 weeks in both male

and female mice. These cytokines are known to influence diabetes

progression in NOD mice [37], and IL-12-induced secretion of

IFN-c at the effector stage of diabetes development has previously

been shown to promote diabetes in NOD mice [38,39]. The

increase in IL-12 and IFN-c at 23 weeks was paralleled by an

increase in autoantibody titers in GF NOD mice, consistent with

an association between these cytokines and autoimmunity. In

addition, we observed a decrease in IL-10 levels in female CONV-

R at 23 weeks of age. IL-10 has been shown to protect against

diabetes in NOD mice but only when administered from an early

age [40], and thus the reduction in IL-10 levels we observed might

not have an influence on autoimmunity.

Earlier studies have shown that GF wild-type mice have

improved peripheral glucose metabolism compared with their

CONV-R counterparts [30]. We therefore tested the hypothesis

that the incidence of diabetes is similar in GF and CONV-R NOD

mice because improved peripheral glucose metabolism counter-

balances the increased autoimmunity in GF NOD mice. In

agreement with our hypothesis, we showed that fasting insulin

levels in NOD mice that had not progressed to diabetes by 30

weeks were lower in GF versus CONV-R mice despite similar

fasting glucose levels. Furthermore, female GF NOD mice had

improved glucose clearance at 17–18 weeks. We propose that the

GF NOD mice are more resistant to developing diabetes because

lower levels of insulin are required to maintain normoglycaemia in

these mice. However, the blood glucose levels of the GF NOD

mice that had not progressed to diabetes by 30 weeks increased

after 20 weeks of age with considerably higher variability

compared with CONV-R NOD mice in both male and female

mice, suggesting that blood glucose control in the non-fasting state

is reduced in GF NOD mice.

We observed differences in the global profiles of polar

metabolites and molecular lipids between 9-week-old GF and

CONV-R NOD mice that were similar to those reported earlier

between GF and CONV-R Swiss Webster mice [31]. Specifically,

as previously seen in GF wild-type Swiss Webster mice, GF NOD

mice had reduced levels of TCA cycle metabolites, sugar

derivatives and triglycerides compared with their CONV-R

counterparts. However, in contrast to an increase in only one

BCAA (valine) in GF versus CONV-R Swiss Webster mice [31],

we observed an increase in all three BCAAs (isoleucine, valine and

leucine) in GF versus CONV-R NOD mice irrespective of gender.

Increased levels of BCAAs predict both type 1 and 2 diabetes

[22,41,42] and have been shown to contribute to insulin resistance

[43]. An abnormal insulin response caused by increased levels of

Figure 4. Heatmap of significantly altered identified metabolites in GF and CONV-R NOD mice in 4- and 9-week old mice. For each
metabolite, the levels in each mouse are normalized to the mean level in CONV-R mice, i.e., yellow and blue indicate increased and decreased levels
of the metabolites, respectively, relative to the average level in CONV-R mice. Hierarchical clustering is applied across all metabolites (performed
across all n = 69 samples analyzed) and all mice. (Female n = 6–10. Male n = 7–11.).
doi:10.1371/journal.pone.0110359.g004
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BCAAs could thus potentially explain the reduced glycaemic

control in GF NOD mice.

We also observed an increase in the amino acids glycine,

phenylalanine, tyrosine and 2-hydroxybutyric acid in GF versus

CONV-R NOD mice, which was not seen in the previous study in

GF versus CONV-R Swiss Webster mice [31]. These metabolites

are associated with progression to insulin resistance and type 2

Figure 5. Increased levels of branched chain amino acids in GF NODmice. Relative concentrations of branched chain amino acids mice at 4,
9 and 23 weeks. (Male n = 7–11. Female n = 9–14.) Data are presented as mean 6s.e.m. *p,0.05, **p,0.01, ***p,0.001 vs CONV-R mice determined
by Student’s t-test.
doi:10.1371/journal.pone.0110359.g005
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diabetes [41,42,44] but it is unclear whether they also affect beta

cell function.

The differences in the metabolic profiles between GF and

CONV-R NOD mice in our study correlated significantly with

differences in the metabolic profiles between newborn infants who

later progressed to type 1 diabetes and non-progressors from a

previous study [22]. Notably, elevated insulinotropic BCAAs and

diminished TCA cycle metabolites had been observed in these pre-

diabetic children even before the first seroconversion for islet

autoantibodies [22]. These results indicate that the changes in

metabolic profiles in infants who later progress to type 1 diabetes

could be microbially driven.

In our study, the effects of the microbiota in NOD mice were

similar in males and females and thus not likely to be dependent

on testosterone levels, in contrast to previous results that identified

a gender-dependent protective effect of the microbiota in NOD

mice [21]. This is of importance because type 1 diabetes does not

have a female bias in humans [3] and suggests that there are

microbial effects in addition to those mediated by sex hormones

that may protect against autoimmune diabetes.

In conclusion, our results support a role of the gut microbiota as

a regulator of diabetic autoimmunity and glucose metabolism and

suggest that altered microbial metabolism may contribute to the

pathogenesis of type 1 diabetes.

Supporting Information

Figure S1 Beta cell area in 23 week old NOD mice.

Insulin area as a percent of total pancreas area was measured in

female mice at 23 weeks (n = 6 per group). Data are presented as

mean 6 s.e.m.

(EPS)

Figure S2 Altered IAA titers in GF NOD mice. Scatter plot

of relative IAA units (4w GF n= 17, CONV-R n= 18; 9w GF

n=14, CONV-R n= 21; 23w GF n= 20, CONV-R n= 16). Line

represents median value **p,0.01 determined by Student’s t-test.
(EPS)

Figure S3 Glucose tolerance in GF NOD mice. Oral

glucose tolerance test, average area under the curve (AUC) and

serum insulin levels in GF and CONV-R mice at 17–18 weeks of

age (n = 4–5). Data are presented as mean 6s.e.m. *p,0.05

determined by Student’s t-test.
(EPS)
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