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Abstract The role of intestinal bacteria in the patho-

genesis of nonalcoholic fatty liver disease is increasingly

acknowledged. Recently developed microbial profiling

techniques are beginning to shed light on the nature of gut

microbiota alterations in nonalcoholic fatty liver disease. In

this review, we summarize the gut microbiota composition

changes that have been reported during different stages of

human nonalcoholic fatty liver disease, and highlight the

relation between bile acids and gut bacteria in this context.

In addition, we discuss the different methodologies used in

microbiota analyses as well as the interpretation of

microbiota data. Whereas the currently available studies

have provided useful information, future large-scale

prospective studies with carefully phenotyped subjects and

sequential sampling will be required to demonstrate a

causal role of gut microbiota changes in the etiology of

nonalcoholic fatty liver disease.

Keywords Gut microbiota � Steatosis � Steatohepatitis �
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Introduction

Nonalcoholic fatty liver disease (NAFLD), the hepatic

manifestation of the metabolic syndrome [1], is charac-

terized by hepatic fat accumulation in the absence of sig-

nificant alcohol consumption, viral infection, or other liver

disorders [2]. NAFLD ranges from simple steatosis to

inflammatory nonalcoholic steatohepatitis (NASH), with or

without fibrosis. It is the most common liver disorder

worldwide, and has an increasing prevalence. NASH, but

not simple steatosis, frequently progresses to life threat-

ening disorders such as cirrhosis and hepatocellular carci-

noma (HCC) [3].

NAFLD pathophysiology is multifactorial, involving

ecological, genetic, and metabolic factors such as limited

physical activity, high energy intake, and a dysbalanced

diet (e.g. too much fructose and/or saturated fat) [4].

Together with epigenetic factors, this promotes insulin

resistance and hepatic fat accumulation [2, 5]. Progression

towards inflammation of the steatotic liver was initially

proposed to be related to endotoxemia as a result of

increased gut permeability by Brun et al. [6] and Wigg

et al. [7]. Subsequently, evidence accumulated that

intestinal microbiota plays an important part in the patho-

genesis of NAFLD [8–10]. Microbial profiling techniques

developed in the past few years enabled major advances in

our understanding of alterations of the gut microbiota and

the role of gut bacteria in the development of NAFLD [11].

This review summarizes these recent findings, focusing

on gut microbiota composition changes during the different

stages of human NAFLD, and paying particular attention to

the methodologies used in microbiota analyses as well as

their interpretation.

Microbiota composition in NAFLD

Steatosis and steatohepatitis

There are only a limited number of studies that have

examined microbiota composition in patients with simple
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steatosis or NASH, and these have very dissimilar results

(Table 1). First of all, patients with NASH were recently

shown to have a decreased abundance of bacteria belonging to

the phylum Bacteroidetes compared to subjects with simple

steatosis and healthy individuals as shown by qPCR [9]. In

contrast, studies using sequencing techniques showed an

increase of Bacteroides, one of the most important genera

within theBacteroidetes phylum, and a decrease of Firmicutes

in NASH patients as compared to healthy subjects [8]. The

lower representation of Firmicutes in NASH patients was

especially due to a reduced abundance of theLachnospiraceae

and Ruminococcaceae families. However, another study

demonstrated an increase of Lachnospiraceae and Lacto-

bacillaceae in NAFLD patients, albeit without distinguishing

Table 1 Significant microbiota composition changes in nonalcoholic liver disease

Disease comparison Samples Microbiota variations

(family_genus)

Techniques References

Non-NASH cirrhotic patients (n = 181) versus NASH

cirrhotic patients (n = 32)

Stool :Bacterioidaceae

:Porphyromonadaceae

;Veillonellaceae

16S rRNA MT

pyrosequencing

[13]

Healthy (n = 17) versus NASH (n = 22) Stool ;Phylum: Bacteroidetes qPCR [7]

Simple steatosis (n = 11) versus NASH (n = 22) Stool ;Phylum: Bacteroidetes

: C. coccoides

qPCR [7]

Healthy (n = 30) versus obese NAFLD (n = 30) Stool :Veillonellaceae

:Kiloniellaceae

:Pasteurellaceae

:Lactobacillaceae

:Lachnospiraceae

;Ruminococcaceae

;Porphyromonadaceae

:Lactobacillaceae_Lactobacillus

:Lachnospiraceae_Dorea

:Lachnospiraceae_Robinsoniella

:Lachnospiraceae_Roseburia

;Ruminococcaceae_Oscillibacter

16S rRNA MT

pyrosequencing

[8]

Obese (n = 25) versus NASH (n = 22) children Stool :Enterobacteriaceae

:Enterobacteriaceae_Escherichia

16S rRNA MT

pyrosequencing

[6]

Healthy (n = 16) versus NASH (n = 22) children Stool :Enterobacteriaceae

:Enterobacteriaceae_Escherichia

;Bifidobacteriaceae_Bifidobacterium

;Bifidobacteriaceae

:Prevotellaceae

:Prevotellaceae_Prevotella

;Rikenellaceae

;Rikenellaceae_Alistipes

:Clostridiales XI_Peptoniphilus

;Lachnospiraceae

;Lachnospiraceae_Blautia

;Lachnospiraceae_Coprococcus

;Eubacteriaceae_Eubacterium

;Lachnospiraceae_Roseburia

;Ruminococcaceae

;Ruminococcaceae_Oscillospira

;Ruminococcaceae_Ruminococcus

;Ruminococcaceae_Unclassified

:Alcaligenaceae

16S rRNA MT

pyrosequencing

[6]
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between simple steatosis and NASH [10]. Both studies

observed a decrease in members of the Ruminococcaceae

family in NASH [8, 10]. The apparent lack of consistent

changes of gut microbiota composition in NASH is further

exemplified by two recent studies, showing either an over-

representation of the genus Escherichia from the Enterobac-

teriaceae family in subjectswithNASH [8] or no difference in

Escherichia coli abundance in NASH patients compared to

subjects with simple steatosis [9]. Despite the lack of consis-

tent NAFLD-related gut microbiota changes, the possible

overgrowth of these ethanol-producing bacteria may underlie

the increased circulating ethanol levels in NASH [8]. The

endogenous production of ethanolmight, in turn, contribute to

the formation of free fatty acids and oxidative stress (Fig. 1),

further underscoring the potential role of ethanol-producing

bacteria in the pathogenesis of NAFLD.

Large scale trials, designed to identify alterations of

microbiota composition in patients with simple steatosis

versus NASH, are required to shed more light on the nature

of the gut microbiota shifts characteristic of specific stages

of NAFLD. These trials should also pay attention to the

fact that most NAFLD patients are obese, since obesity

itself is linked to gut microbiota composition changes, as

reviewed elsewhere [12, 13]. Future studies should ideally

include obese non-NAFLD patients or non-obese NAFLD

patients [14] to exclude the impact of obesity, or control for

obesity in statistical analyses. It should be further noticed

that many studies so far excluded all taxa with an abun-

dance below 1 %. However, even low-abundant bacteria

such as Akkermansia muciniphila have the potential to

profoundly affect host metabolism [15]. In addition, with-

out any fundamental direct evidence provided by fecal

transplantation or antibiotic studies, one cannot exclude

that the described alterations in the intestinal microbiota

are a consequence rather than a cause of liver disease.

Fibrosis and cirrhosis

Surprisingly little evidence exists to date for an effect of

gut microbiota on liver fibrosis. However, very recently, an

elegant study was published showing that in a bile duct

ligation-induced liver fibrosis model, transplantation of the

Steatosis Steato-
hepa��s

FibrosisCirrhosis

Dysbiosis
↑ SCFAs

↑ Hepa�c Tg 
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Fig. 1 Mechanisms by which gut bacteria affect the hallmarks of

nonalcoholic fatty liver disease. SCFAs short-chain fatty acids,

PAMPs pathogen associated molecular patterns, ROS reactive oxygen

species, FFAs free fatty acids, Tg triglyceride, LPS lipopolysaccha-

ride, TLR Toll-like receptor, SIBO small intestinal bacterial

overgrowth, TGF-b transforming growth factor-b, IL-6 interleukin-

6, TNF-a tumor necrosis factor-a, HSCs hepatic stellate cells, Fiaf

fasting induced adipocyte factor, Lpl lipoprotein lipase, VLDL very

low density lipoprotein, GLP-1 glucagon-like peptide-1
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gut microbiota of mice fed a high fat diet (HFD) aggra-

vated fibrosis relative to transplanting gut microbiota of

mice fed chow [16]. This was mainly attributable to an

increased abundance of Gram-negative Proteobacteria; a

marked decrease of Bifidobacteriaceae was also observed.

Specific bacteria of both the Proteobacteria and Firmicutes

phyla produce enzymes catalyzing choline conversion into

methylamines [17]. The latter may promote liver inflam-

mation via the portal vein, and decreased choline levels

have already been associated with fibrosis progression [18].

However, future studies should ascertain to what extent the

described microbiota composition changes in fibrosis affect

choline metabolism.

Cirrhosis patients often have a higher proportion of

potentially pathogenic bacteria and a reduction of auto-

chthonous (resident) bacteria compared to healthy indi-

viduals (Table 2) [19–21]. Common differences include a

decrease in families with the potential to convert primary

into secondary bile salts (Lachnospiraceae and Ru-

minococcaceae) in cirrhosis, and overgrowth of the Gram-

negative Enterobacteriaceae family, similar to what is

observed in NASH [22]. This suggests that bile salts and

endotoxin [23] may play a role in the pathogenesis of

cirrhosis. Additional gut microbiota changes in patients

with cirrhosis include a decrease in Clostridiales XIV and

an increase in Enterococcaceae and Staphylococcaeae [19]

as well as overgrowth of Veillonellaceae [21].

Another cohort of cirrhotic patients revealed a decrease

of the genera Bacteroides, Eubacterium, and Alistipes,

whereas Clostridium and Prevotella were increased com-

pared to healthy controls [24]. However, the most abun-

dantly enriched species in these cirrhotic patients belonged

to the Streptococcus and Veillonella genera. Remarkably,

these genera comprise oral species that might invade the

gut and contribute to small-intestinal bacterial overgrowth,

which frequently occurs in NASH and cirrhosis [7, 25].

Furthermore, the lower microbial richness and reduced

abundance of butyrate-producing species with anti-in-

flammatory properties (F. prausnitzii, Coprococcus comes,

Lachnospiraceae spp., Ruminoccaceae spp.) suggest that

patients with cirrhosis have a less ‘‘healthy’’ microbiota

[24, 26, 27].

Cirrhotic patients with NASH further demonstrated a

decrease in Veillellaceae and an increase in Bac-

teroidaceae and Porphyromonadaceae families compared

to cirrhotic patients without NASH [19]. Although the

abundance of Enterobacteriaceae was increased in NASH

patients compared to healthy individuals, Enterobacteri-

aceae in NASH patients within a cirrhotic cohort were not

affected. The latter might be due to the high proportion of

Enterobacteriaceae in cirrhotic patients [19, 21, 22].

Interestingly, Bajaj and colleagues showed that the

microbiome in cirrhotic patients with stable disease

remains unaltered over time, suggesting that the composi-

tion of the microbiome can be used as a potential disease

marker [19]. All in all, it appears that different stages of

NAFLD are associated with different microbiota compo-

sitions, although these need to be better defined.

Gut microbiota, bile acids, and hallmarks
of NAFLD

The mechanisms by which gut bacteria affect the various

manifestations of NAFLD have been reviewed recently by

Schnabl et al. [28]. The most relevant insights obtained in

this burgeoning field of research are summarized in Fig. 1.

In view of the accumulating evidence for the role of bile

acids in the treatment of NAFLD [29], we will here focus

on the intimate and reciprocal relation between bile acids

and the gut microbiota.

Bacteria are needed for deconjugation, 7a-dehydroxy-
lation, and dehydrogenation of primary bile acids. Fur-

thermore, the conversion of primary to secondary bile acids

entirely depends on bacteria. Interestingly, germ-free mice

have an increased bile acid synthesis in parallel with a

decreased fecal bile acid output and an expanded circu-

lating bile acid pool [30]. Thus, there appears to be a

relation between the gut microbiota, bile acid synthesis in

the liver, and bile acid uptake in the terminal ileum.

Fibroblast growth factor 19 (FGF19; Fgf15 in rodents)

plays a major role in this by linking events in the gut to

metabolism in the liver [31, 32]. Upon activation of the

Farnesoid X receptor (FXR) by bile acids, FGF19 is pro-

duced in the ileum and secreted into the portal circulation.

In the liver, FGF19 action ultimately results in reduced

transcription of Cyp7A1, the rate-limiting enzyme for bile

acid synthesis [31].

Recent experiments illustrate the interdependence of gut

microbiota and hepatic bile acid synthesis. Bile acids

chenodeoxycholate (CDCA) and cholate (CA) act as FXR

agonists, while tauro-a-muricholic acid (TaMCA) and

tauro-b-muricholic acid (TbMCA) antagonize FXR [30,

33]. In germ-free mice, TbMCA is produced relatively in

excess over CA, suppressing the generation of Fgf15

thereby increasing primary bile acid synthesis [30], with

TbMCA in excess over CA. In conventional mice, the

TbMA/CA ratio is more in favor of CA, limiting bile acid

synthesis. This has implications for the actions of antibi-

otics. The administration of ampicillin to mice decreases

Fgf15, thereby increasing Cyp7a1 expression and the

synthesis of primary bile acids [30, 34]. Miyata et al. [35]

explain the reduced Fgf15 expression by a lack of sec-

ondary bile acids in antibiotic-treated mice. A more likely

explanation is that the TbMCA/CA ratio increases under

antibiotics, causing decreased Fgf15 expression and
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increased bile acid synthesis [30]. Of note, humans do not

produce TaMCA and TbMCA and therefore the effect of

antibiotics on bile acid synthesis in humans may not be the

same as in mice.

Bile acids have a direct antimicrobial effect and affect

microbiota composition [36, 37]. For example, adminis-

tration of CA to rats induced outgrowth of bacteria in, for

example, the genus of Clostridia. These efficiently trans-

form primary bile acids into deoxycholic acid (DCA) by

7a-dehydroxylation [37]. These changes are similar to the

changes seen with a high fat diet. Furthermore, bile duct

ligation in mice induces bacterial overgrowth, mucosal

injury, and bacterial translocation [38, 39]. Lack of FXR-

mediated production of bacteriostatic angogenin1 may play

a role in this, but the details need to be elucidated. Patients

with advanced cirrhosis have a reduced fecal concentration

of total bile acids and a predominance of primary bile acids

[21]. Advanced cirrhotics also have a higher abundance of

Enterobacteriaceae and a decrease of Clostridia [19].

These intestinal bile acid alterations may contribute to

changes of the microbiota. One can argue that in cirrhotics

with a contracted bile acid pool, FXR activation in the

ileum will be reduced. This leads to upregulation of the

apical sodium-dependent bile salt transporter in the ter-

minal ileum, reducing spill-over of bile acids from ileum to

cecum. Bile acids in the cecum have a strong effect on 7a-
dehydroxylating Clostridia [21]. Reduction of the cecal/-

colonic bile acid concentration therefore decreases con-

version of primary bile acids into DCA and LCA

(lithocholic acid).

In contrast, NAFLD-inducing high fat diets (HFD) in

mice increase the conversion of primary to secondary bile

Table 2 Significant microbiota composition changes in cirrhosis

Disease comparison Samples Microbiota variations (family_genus) Techniques References

Healthy (n = 25) versus cirrhotic compensated outpatients

(n = 121), cirrhotic decompensated outpatients

(n = 54), cirrhotic inpatients (n = 44)

Stool ;Clostridiales XIV
;Ruminococcaceae
;Lachnospiraceae

:Enterococcaeae
:Staphylococcaceae
:Enterobacteriaceae

16S rRNA MT

Pyrosequencing

[13]

Healthy (n = 17) versus liver cirrhosis (n = 36) Sigmoid

mucosa

:Burkholderiaceae_Burkholderia

:Burkholderiaceae_Ralstonia

:Clostridiaceae_Clostridium

:Clostridiaceae_other

:Enterobacteriaceae_Proteus

:Enterococcaceae_Enterococcus

;Incertae Sedis XIV_other

;Lachnospiraceae_Dorea

;Lachnospiraceae_unclassified

;Ruminococcaceae_Subdoligranulum

;Veillonellaceae_Acidaminococcus

16S rRNA MT

Pyrosequencing

[14]

Healthy (n = 14) versus liver cirrhosis (n = 47) Stool :Enterobacteriaceae

:Veillonellaceae

;Lachonospiraceae

;Ruminococcaceae

;Ruminococcaceae_Blautia

16S rRNA MT

Pyrosequencing

[15]

Healthy (n = 4) versus liver cirrhosis (n = 6) :Enterobacteriaceae

:Enterococcus

RT-PCR [16]

Healthy (n = 98) versus liver cirrhosis (n = 83) Stool ;Bacteroidaceae _Bacteroides

;Eubacteriaceae _Eubacterium

;Rikenellaceae _Alistipes

:Veillonellaceae _Veillonella

:Streptococcaceae _Streptococcus

:Clostridiaceae_Clostridium

:Prevotellaceae _Prevotella

Illumina [18]
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acids. DCA has pro-inflammatory and DNA-damaging

properties. Yoshimoto et al. [40] report that DCA induces a

‘senescence-associated secretory phenotype’ in hepatic

stellate cells. Among the secretory products are IL-6 and

PAI-1, factors known to induce cancer and obesity [41].

However, diet-induced obesity by itself is not enough to

induce hepatocellular cancer (HCC) in mice; it was the

combination of HFD and treatment with a carcinogen that

was required. The role of DCA in this model was shown by

administration of an inhibitor of 7a-dehydroxylation, which
decreased serum DCA concentration and HCC development.

In contrast, adding DCA to the HFD increased HCC

development [40], the ultimate consequence of NAFLD.

From these studies it is clear that bile acids are major

players in the interaction between the gut microbiota and

the host. Bile acids affect signaling paths, not only those

mediated by FXR and FGF19, but also pathways regulated

by the xenobiotic receptor PXR, the vitamin D receptor

VDR, the G protein-coupled transmembrane receptor TGR,

the muscarinic receptor, and the conjugated bile acid

receptor [42]. These receptors affect metabolism in a wide

variety of cells and organs both within and outside the

enterohepatic circulation. For drug development, this new

knowledge provides opportunities and challenges. Little

attention has been paid yet to the effect of new potent FXR

agonists like obeticholic acid on the microbiota. In view of

the effects these drugs have on bile acid metabolism and

FGF19 expression, they likely will also affect the micro-

biota. Furthermore, bile acid-mediated activation of TGR5

induces secretion of the glucose homeostasis regulating

hormone glucagon-like peptide-1 (GLP-1) [43], which

levels are decreased in NAFLD patients [44]. Other

microbial metabolites such as indole and butyrate are also

able to promote GLP-1 secretion [45, 46], and modulation

of the gut microbiota by prebiotics or antibiotics affects

GLP-1 secretion as well [46–48]. This further underscores

the close interaction between the gut microbiota, bile acids,

and gut hormones involved in metabolism.

How to study and interpret microbiota

To interpret the relevance of published data on microbiota

in NAFLD, both the characterization of the disease and the

type of microbial assays employed need to be taken into

account. Importantly, the intestinal microbiota composition

can be affected by even small changes in experimental

methods at several steps from sample collection to statis-

tical analysis, resulting in a different outcome of apparently

identical studies. The most crucial technical and analytical

aspects of microbial profiling, i.e. factors that may influ-

ence the results and/or result in possible bias, will be dis-

cussed here.

Sampling and storage

It is essential that sampling and storage methods do not

modify microbiota composition by themselves. An

important consideration in this respect concerns the type of

samples collected, which are commonly stool or endo-

scopic biopsies. Stool samples are non-invasive and easy to

obtain. However, the colonic mucosal microbiota has been

shown to deviate considerably from stool microbiota, also

in cirrhotic patients [49–51]. Moreover, whereas micro-

biota composition along the colon was considered

homogenous only a decade ago [50, 51], recent high-

throughput microbial profiling techniques revealed that the

mucosal microbiota varies along the length of the gut [52,

53].

Immediate freezing of microbiota-containing samples is

regarded the gold standard for long-term storage. However,

this is a logistic challenge in large cohort studies which

usually rely on fecal swabs [54]. Fecal swabs are com-

monly stored for short-term at room temperature in specific

media in which obligate anaerobes can survive [55].

Recently, the impact of different sampling (fecal aliquots

and fecal swabs) and storage techniques (-80, -20, ?4 �C
for 1 week and RT for 24 h) on fecal microbiota compo-

sition was examined in healthy and diseased individuals

[56]. Although no significant effect of storage temperature

on microbiota composition was observed during transport

(24 h), fecal swabs stored in Cary-Blair medium showed an

enrichment of Ruminococcus and Enterobacteriaceae in

comparison to fecal aliquots stored at -80 �C. Therefore, it
is recommended to use a single uniform method within one

study to minimize possible bias. Additionally, it is crucial

to only compare results that have been obtained with the

same sample methodology and from the same type of

sample.

As for the design of studies, large-scale well-defined

prospective cohorts of patients that have been carefully

phenotyped are essential. In these studies, factors known to

influence gut microbiota composition should be taken into

account. In particular, diet and use of antibiotics, probi-

otics, and prebiotics should be well-documented. Further-

more, sex-specific differences in the human colonic

microbiota have recently been shown [52] and should be

considered when setting up microbiota studies.

Microbial screening techniques

The human gut mainly harbors strictly anaerobic microbial

species that are difficult to culture. Therefore, several

culture-independent techniques have been introduced in

recent decades to analyze composition and complexity of

the intestinal microbiota. These techniques include (quan-

titative) polymerase chain reaction [(q)PCR], PCR

Hepatol Int (2015) 9:406–415 411
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followed by denaturing gradient gel electrophoresis, fluo-

rescent in situ hybridization (FISH), and DNA microarrays

that hybridize ribosomal RNA (rRNA) sequences with

probes.

Although these methods are useful for rapid microbial

profiling, they usually do not provide detailed taxonomic

data. For that reason, the most important techniques

nowadays are high-throughput next-generation sequencing

followed by bioinformatics analysis. These sequence

methods are commonly based on analysis of the 16S rRNA

gene which is present in all bacteria and archaea, consisting

of nine unique hypervariable regions (V1–V9) and bor-

dered by highly conserved regions [57]. Despite the fact

that other genes have been suggested, sequencing of 16S

rRNA remains the gold standard to analyze the microbiota

in view of the completeness of reference databases, low

costs, and advanced bioinformatics software available.

Different next-generation sequencers can be used to ana-

lyze the 16S rRNA gene. However, the majority utilizes

either Illumina sequencing (Illumina Inc., San Diego, CA)

or 454 pyrosequencing (Roche, Brandfort, CT). These

widely popular approaches have distinct coverage ratios,

sequence lengths, and construction mechanisms. 454

pyrosequencing generates longer sequences which increa-

ses taxonomic accuracy, whereas Illumina provides higher

coverage at lower cost per sample [58]. It should be noted

that the selection of primers, the number of sequences,

costs, and aim of the experiment are strongly interdepen-

dent. Therefore, it is essential to balance these factors to

achieve the optimum amount of information.

Although 16S sequencing is the most commonly used

technology in microbiome studies, it is important to

understand its limitations. Differences in DNA extraction

methods, PCR errors, and discrepancy in 16S gene copy

numbers all affect the proportions of bacteria detected [59–

61]. The latter leads to bias in the detection of unknown or

unclassified bacteria (dead or alive) and taxonomic char-

acterization. Moreover, both 454 pyrosequencing and

Illumina display sequencing error rates; pyrosequencing is

associated with relatively more insertions and deletions,

whereas Illumina has more mismatches [62, 63]. Therefore,

it is crucial to consider standardized control sequences to

estimate the exact error rate for each experiment. Addi-

tionally, despite the fact that sequencing of 16S rRNA

provides insight into overall microbiota composition, it

does not provide data on their functions and interactions.

Finally, it should be noted that it was recently found that in

certain conditions, next-generation sequencing data were

found to be less representative of the ‘real’ microbiota than

culture-based methods [64].

Metagenomics and metabolomics

As opposed to sequencing of marker genes such as the 16S

rRNA gene, sequencing of the entire genomic content of

microorganisms (the ‘microbiome’) provides more specific

information on their potential functional roles. These

metagenomic or metatranscriptomic analyses, referred to as

shotgun sequencing, are especially appropriate for linking

microbial communities with functional potential and

activity in the human gut. In addition, metabolomics—the

quantitative assessment of metabolic responses of organ-

isms to genetic or pathophysiological changes—is a pow-

erful approach and also key to unraveling specific host-

microbe interactions. Metagenomic approaches relate the

microbiome to phenotype changes in disease, whereas

metabolomic approaches relate the metabolic profile with

disease phenotypes [65]. The latter analyses are principally

based on proton nuclear magnetic resonance (1H-NMR)

spectroscopy and mass spectrometry methods. Ideally,

these analytical techniques should be complemented for the

most detailed characterization of microbial metabolites

obtained from feces, blood, urine, or intestinal tissues. In

contrast to just sequencing the microbiota, shotgun-se-

quencing and metabolomics require direct freezing of fecal

samples.

Analysis with bioinformatics

16S rRNA gene sequences can be analyzed with several

tools, especially with QIIME [66] and Mothur software

[67], which are reviewed in detail elsewhere [65, 68, 69].

These approaches produce phylogenetic trees and assess-

ments of bacterial diversity within samples (a-diversity)
and between samples (b-diversity). To this end, sequences

are clustered into taxonomic groups, referred to as opera-

tional taxonomic units (OTUs), by comparing them across

samples (de novo) or to reference data such as Greengenes

[70]. Importantly, a reference-based approach provides a

more straightforward interpretation and enables the com-

parison of data with different sequenced regions of the 16S

rRNA gene. However, a crucial consideration and limita-

tion of this technique is the common existence of unclas-

sified bacteria in these databases and the complex

taxonomic clustering including discrimination of related

bacterial types. To reduce the effect of sequencing errors, it

is recommended to disable the formation of new clusters

with sequences that were not detected in any reference

database. Fortunately, the increasing developments in the

field of microbiota contribute to a high rate of classifying

and discovering novel bacteria species.
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Conclusion and perspectives

Our progressive knowledge of the role of the gut micro-

biota in NAFLD is rapidly expanding due to improved

DNA sequencing techniques. However, currently available

studies show a marked discrepancy in results which is

likely related to small sample size, variability in patient

cohorts, and limited phenotyping of liver disease. Different

sampling techniques and analysis methods likely also

underlie the lack of consistent data. The key challenge now

is to execute large-scale prospective studies with carefully

phenotyped subjects; sequential samples should be

obtained to demonstrate causality of gut microbiota chan-

ges in the etiology of NAFLD/NASH. In addition, diet,

medicine use, and sampling methods should be well doc-

umented and considered before drawing conclusions.

Importantly, metatranscriptomic and metabolic approaches

are lacking and are urgently needed to assess the specific

functional role of a certain microbial community. Provid-

ing insight into these aspects will help in understanding

NAFLD pathophysiology and might eventually yield non-

invasive biomarkers. However, next-generation sequencing

techniques are currently not able to characterize the entire

microbiota and their reproducibility has to be increased to

use the microbiome as a diagnostic biomarker. Novel

molecular methods, such as the promising IS-pro tech-

nique, may contribute to this [71]. Despite these challenges

and the fact that the progression of NAFLD relies on

multiple hits, the intestinal microbiota appears to represent

an important factor that contributes to several aspects of

NAFLD, and should be considered in any future mecha-

nistic study.
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