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Abstract

Background: Most studies describing the human gut microbiome in healthy and diseased states have emphasized

the bacterial component, but the fungal microbiome (i.e., the mycobiome) is beginning to gain recognition as a

fundamental part of our microbiome. To date, human gut mycobiome studies have primarily been disease centric

or in small cohorts of healthy individuals. To contribute to existing knowledge of the human mycobiome, we investigated

the gut mycobiome of the Human Microbiome Project (HMP) cohort by sequencing the Internal Transcribed Spacer 2

(ITS2) region as well as the 18S rRNA gene.

Results: Three hundred seventeen HMP stool samples were analyzed by ITS2 sequencing. Fecal fungal diversity

was significantly lower in comparison to bacterial diversity. Yeast dominated the samples, comprising eight of the top

15 most abundant genera. Specifically, fungal communities were characterized by a high prevalence of Saccharomyces,

Malassezia, and Candida, with S. cerevisiae, M. restricta, and C. albicans operational taxonomic units (OTUs) present in 96.

8, 88.3, and 80.8% of samples, respectively. There was a high degree of inter- and intra-volunteer variability in fungal

communities. However, S. cerevisiae, M. restricta, and C. albicans OTUs were found in 92.2, 78.3, and 63.6% of volunteers,

respectively, in all samples donated over an approximately 1-year period. Metagenomic and 18S rRNA gene sequencing

data agreed with ITS2 results; however, ITS2 sequencing provided greater resolution of the relatively low abundance

mycobiome constituents.

Conclusions: Compared to bacterial communities, the human gut mycobiome is low in diversity and dominated by

yeast including Saccharomyces, Malassezia, and Candida. Both inter- and intra-volunteer variability in the HMP cohort

were high, revealing that unlike bacterial communities, an individual’s mycobiome is no more similar to itself over time

than to another person’s. Nonetheless, several fungal species persisted across a majority of samples, evidence that a

core gut mycobiome may exist. ITS2 sequencing data provided greater resolution of the mycobiome membership

compared to metagenomic and 18S rRNA gene sequencing data, suggesting that it is a more sensitive method for

studying the mycobiome of stool samples.
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Background
Fungi are ubiquitous in our environment and are known

to participate in natural and industrial processes includ-

ing production of antibiotics, bread, cheese, and alco-

holic beverages; decomposing natural debris; and

providing nutrients to plants in soil. Of the estimated

5.1 million different species of fungi in the world, only

around 300 cause disease regularly in humans [1, 2].

These relatively few fungi are responsible for millions of

infections each year, from superficial infections of the

skin and nails, to invasive infections of the lungs, blood,

and brain [3]. However, with the high prevalence of

fungi in the environment, it is not surprising that fungi

are also found on and in our bodies as constituents of

the human microbiome. The fungal microbiome, known

as the mycobiome, is an understudied component of the

human microbiome. Although the mycobiota make up a

small proportion of the entire human microbiome [4],

culture-independent methods utilizing high-throughput

sequencing techniques have allowed scientists to begin

to uncover the identity of our fungal commensals and

determine their role in human health and disease.

Fungi have been detected in the guts of several mam-

mals, including humans, mice, rats, pigs, and many rumin-

ant and non-ruminant herbivores [5–7]. Characterization

of C57BL/6 mice feces revealed greater than 97% of fungal

sequences belonged to only 10 fungal species, identifying

Candida tropicalis and Saccharomyces cerevisiae as the

most abundant commensal fungi [5]. In humans, fungi

have been found to colonize the gut shortly after birth [8].

In a study investigating correlations of archaea and fungi

with diet, volunteers had an abundance of Candida and

Saccharomyces species in their stool, with high Candida

abundance associated with recent consumption of carbo-

hydrates [9]. Fungi have been implicated in the exacerba-

tion of several human diseases, including inflammatory

bowel disease, graft versus host disease, Hirschsprung-

associated enterocolitis, colorectal cancer, and advanced

progression of hepatitis B virus infections [5, 10–15]. The

confirmed presence of fungi as a part of the human micro-

biome, as well as their potential role as contributors to

health and disease, highlight the need to characterize the

healthy human mycobiome more deeply. Knowledge of a

healthy mycobiome will aid in research identifying disease-

contributing fungal species and better define fungal-

bacterial relationships that are important for health.

One of the initial goals of the Human Microbiome

Project (HMP) was to characterize the “healthy” human

microbiome as a baseline for reference and comparison

studies [16]. Microbial communities in HMP healthy

donor stool samples were largely comprised of bacteria

from the Bacteroidetes and Firmicutes phyla, but varied

greatly between volunteers [17]. Although core oper-

ational taxonomic units (OTUs) were identified in HMP

donor stool, the relative abundance of these core OTUs

were found to vary nearly 5000-fold [18]. This suggests

that what constitutes a healthy gut microbiome can be

very different among individuals. However, the myco-

biome was not investigated in initial HMP studies.

Using DNA previously extracted from longitudinally

collected stool samples (two to three samples per volun-

teer, collected over an approximately 1-year period) from

HMP volunteers recruited at Baylor College of Medicine

(Houston, TX), we characterized the “healthy” human

gut mycobiome. Internal Transcribed Spacer 2 (ITS2) se-

quencing confirmed that fungal diversity in the gut is low.

Saccharomyces was found to be the most abundant fungal

genus in healthy human stool, followed by Malassezia and

Candida. These three genera were present in at least one

sample from nearly every volunteer in this study, although

the mycobiome was highly variable within and between

individuals. Sequencing of the 18S rRNA gene revealed

similar results to the ITS2 sequencing, but included

the addition of the non-fungal microbial eukaryote

(microeukaryote) Blastocystis as a prominent eukaryotic

member of the gut microbiome. Additionally, fungi identi-

fied in metagenomic sequences from HMP stool samples

agreed with the ITS2 sequencing results; however, deeper

metagenomic sequencing is likely required to fully survey

the fungal constituents of the gut. It is important to

understand what constitutes a healthy human gut myco-

biome as this allows for further understanding of fungal-

bacterial and fungal-host interactions, which may

contribute to human health and disease.

Results

Fungal diversity and composition in healthy human stool

To investigate gut fungal diversity and composition, a

total of 333 HMP stool sample microbial DNA extrac-

tions were retrieved and underwent ITS2 amplification

and sequencing. After rarefaction, the number of sam-

ples analyzed was reduced to 317 (from 147 volunteers),

with each sample normalized to 1954 sequences. Missing

taxonomic information in databases resulted in many

fungal OTUs being classified as “Fungi sp.” These OTUs

constituted 17% of the total OTUs. Altogether, 701

fungal OTUs were detected in the sample set, capturing

247 named genera.

Observed OTUs within samples ranged from 2 to 92

(Table 1). The Shannon diversity index, which measures

evenness and richness of communities within a sample, var-

ied between 0.004 and 2.94, indicating low alpha diversity

for most samples (Table 1). There was a significant differ-

ence between bacterial and fungal communities in both the

number of observed OTUs and the Shannon diversity

index values (Fig. 1a), supporting previous studies suggest-

ing fungal diversity is lower than that of bacteria in a
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healthy human gut [19, 20]. No associations were observed

between bacterial and fungal alpha diversity values as

assessed by linear regression (Fig. 1).

Samples primarily consisted of fungi from the Asco-

mycota and Basidiomycota phyla, with Ascomycota be-

ing the most abundant phylum represented (Fig. 2a).

The dominance of these phyla has been reported for

other parts of the human body, including the skin, va-

gina, and oral cavity [21–24], suggesting that these

phyla may be well-suited for life on mammalian hosts.

Saccharomyces was the most abundant genus among

all samples, followed by Malassezia and Candida

(Fig. 2b). Overall, genera that include yeast species,

including the three listed above as well as Cyberlindnera,

Pichia, Debaryomyces, Galactomyces, and Clavispora,

comprise eight of the 15 most abundant genera in the

samples (Fig. 2b).

Variability of the mycobiome

We sought to determine the variability between and

within HMP volunteers’ gut fungal communities. In the

original HMP study, the within-volunteer bacterial beta

diversity measured between consecutive samples was

lower (i.e., greater temporal similarity) compared to

samples donated by other volunteers. That is, variation

observed within a volunteer over time was lower than

between-volunteer variation. This was true for all major

body sites sampled [17]. In order to investigate whether

within-volunteer fungal community diversity in the gut

was lower than between-volunteer diversity as observed

for bacterial communities, we measured variability using

the Bray-Curtis dissimilarity metric. Ordination by prin-

cipal coordinates analysis (PCoA) of bacterial (Fig. 3a)

and fungal (Fig. 3b) communities reveals that HMP vol-

unteers show more similar fecal bacterial community

Table 1 Alpha Diversity of fungal communities in HMP stool

samples

Observed OTUs Shannon diversity index

Mean 14 1.27

Median 12 1.24

Minimum 2 0.004

Maximum 92 2.94

Fig. 1 Fungal and bacteria alpha diversity. a Observed OTUs and Shannon diversity index values of HMP samples with both 16S rRNA gene and

ITS2 sequencing data compared. Only visit 1 samples are shown for statistical purposes. Visit 2 and visit 3 comparisons showed similar results. For

statistical analysis, only samples with both ITS2 and 16S rRNA gene sequencing data were used. ***P < 0.0001 for both observed OTUs and

Shannon diversity index (Mann-Whitney test). b Associations between fungal (ITS2) and bacterial (16S) alpha diversity (observed OTUs and

Shannon diversity index values) for a given sample. Shaded gray region represents 95% confidence intervals. Linear regression analysis: P = 0.693

for observed OTUs and P = 0.929 for Shannon diversity. Only samples with ITS2 and 16S rRNA gene sequencing data are plotted and analyzed
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structure than fecal fungal community structure over

time. Pairwise comparisons of Bray-Curtis dissimilarity

values between longitudinal samples donated by the

same volunteer and between samples donated by differ-

ent volunteers for the 16S rRNA gene and ITS2 sequen-

cing data were performed. The results reveal that, unlike

bacterial communities, fungal communities exhibit high

intra- and inter-volunteer dissimilarity (i.e., Bray-Curtis

dissimilarity approaching 1.0) (Fig. 3c). This indicates

that while longitudinal samples of one individual’s fecal

bacterial microbiome are more similar to each other

than those of another individual, this does not appear to

be the case for the fecal mycobiome.

Stability of the mycobiome

To investigate the stability of the mycobiome, we mea-

sured the recurrence of fungal OTUs across all samples,

as well as across each volunteers’ longitudinal samples.

Despite the high degree of variability in the fungal com-

munities of healthy human stool, there were several fun-

gal taxa detected in a large proportion of HMP samples.

S. cerevisiae, M. restricta, and C. albicans OTUs were

present in 96.8, 88.3, and 80.8% of samples, respectively

(Table 2). Additionally, longitudinal sampling of these

volunteers allowed us to identify OTUs present at all

visits of each volunteer. Excluding volunteers with only

one sampling time point, S. cerevisiae, M. restricta, and

C. albicans were detected at all visits in 92.2, 78.3, and

63.6% of volunteers, respectively (n = 129; Table 2).

Although we observed great variability in the gut myco-

biome among healthy volunteers, these three fungal spe-

cies present in a majority of longitudinally collected

samples suggest they may be resident commensals in the

human gastrointestinal tract and part of our core gut

mycobiome. However, we cannot rule out the possibility

that consistent detection of these fungi in stool may in-

dicate regular exposure to these organisms through

environmental contact or diet.

Associations with host phenotype

To determine whether the mycobiome was associated

with any host phenotypes, we utilized clinical metadata

collected on HMP volunteers. These metadata include

age, gender, BMI, race/ethnicity, tobacco use, insurance

status, and more (for full list, see Additional file 1). Al-

though the HMP consortium was able to identify modest

associations between host phenotype and bacterial com-

munities [17], based on EnvFit analysis [25], no signifi-

cant covariate was associated with mycobiome profiles.

Our data suggest, in line with conclusions from the

HMP study, that the majority of variation in the human

microbiome is not explained well by available

Fig. 2 Relative abundance of fungi at the a phylum level and b genus level. a Relative abundance of fungal phyla in each sample. “Fungi sp.”

here represents unknown/unidentified fungal phylum. b Relative abundance of fungal genera in each sample. “Fungi sp.” here represents

unknown/unidentified fungal genus
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phenotypic metadata and that other factors such as diet,

environment, daily cycles, and host genetics may play a

larger role in influencing the human gut mycobiome.

Correlations between taxa

We investigated taxa correlations by combining available

16S rRNA gene and ITS2 sequencing data from the same

samples. Both fungal-fungal relationships and fungal-

bacterial relationships were interrogated using SparCC [26].

Analysis of HMP fecal ITS2 sequencing data revealed

the strongest positive correlation occurred between

Sarocladium and Fusarium, while Candida and

Saccharomyces exhibited the strongest negative correl-

ation (Fig. 4a). Comparing abundances of fungal and

bacterial genera using SparCC revealed both positive and

negative correlations between taxa in the two domains

(Fig. 4b). Rikenellaceae and Botrytis showed the strongest

inter-domain positive correlation, and Penicillium and

Faecalibacterium exhibited the strongest negative correl-

ation. The biological relevance of these correlations re-

mains unknown, but identification of relationships

between fungal and bacterial taxa within a healthy human

gut may reveal interactions that inform future studies

seeking to modulate the relative abundances of certain

taxa in the gut microbiome (e.g., through the use of fungi

or fungal metabolites that impact targeted bacterial

species).

18S rRNA gene sequencing

To determine whether the ITS2 primers were appropri-

ately capturing the majority of the mycobiome taxa, a re-

gion of the 18S rRNA gene was amplified from 44

Fig. 3 Variability of the mycobiome. a Bacterial (16S) and b Fungal (ITS2) Bray-Curtis dissimilarity shown on principal coordinates analysis (PCoA) plots for a

subset of volunteers (20 volunteers, randomly chosen, subsetted for clarity). Samples are colored by volunteer, and each volunteer was assigned the same

color in both a and b. Lines connect samples donated by the same volunteer. c Pairwise comparisons of Bray-Curtis dissimilarity values between samples

donated by the same volunteer (within volunteers) and between samples donated by different volunteers (between volunteers) for 16S rRNA gene and

ITS2 sequencing data. Bray-Curtis dissimilarity values range from 0 to 1, with 0 being the least dissimilar and 1 being the most dissimilar. ***P< 0.0001; ns:

not significant

Table 2 The prevalence of OTUs within samples and volunteers

OTU % of samples with
OTU (n = 317)

% of volunteers with OTU
at all time points (n = 129)

Saccharomyces cerevisiae 96.8 92.2

Malassezia restricta 88.3 78.3

Candida albicans 80.8 63.6

Candida sake 62.1 40.3

Cyberlindnera jadinii 62.1 40.3

Cladosporium sp. 59.3 34.9

Penicillium sp. 46.7 24.0

Galactomyces candidum 46.1 38.0

Malassezia globosa 36.0 12.4

Agaricus bisporus 35.0 17.1
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Baylor College of Medicine volunteers who had three

sample collections. The 18S rRNA gene is more con-

served and typically cannot resolve taxonomy as well as

the ITS region, but provides an independent measure of

fungal diversity that can identify biases in ITS2 analysis.

The 18S rRNA gene-specific primers used by the Earth

Microbiome Project (139f/EukBr) and Parfrey et al.

(515f/1119r) [27] amplify a significant number of bacter-

ial 16S rRNA genes. Therefore, to reduce the unwanted

16S rRNA gene signal, we designed new primers that

would capture eukaryotic diversity as broadly as possible,

while better discriminating against bacterial 16S rRNA

gene targets. Utilizing two studies that identified the best

regions for generating 18S rRNA gene primers [28, 29]

and an alignment of sequences from representatives of

every known microeukaryotic group, we designed the

1152F and 1428R (S. cerevisiae numbering) primers.

These primers amplify the 18S rRNA gene V6/V7 re-

gion, which is of an appropriate size for Illumina MiSeq

sequencing. Primer 1152F had at most 1 mismatch with

all examined representative microeukaryotes, while

1428R had at most 2 mismatches. The region internal to

the primers varied from 211 base pairs (Microsporidia)

to 380 base pairs (Acanthamoeba). Since PCR and se-

quencing with a 400-base pair control showed a similar

number of reads as a 271-base pair control, we were

confident that there was not a dramatic bias against or-

ganisms with large V6/V7 18S rRNA gene regions.

18S rRNA gene sequencing of HMP samples yielded a

mean of 17,189 reads/sample. While no reads mapped to

bacteria, just 16% mapped to fungi, with the remaining

reads mapping to mammals (mean 57% reads/sample),

Stramenopiles (13%), plants (13%), non-mammalian ani-

mals (0.2%), Intramacronucleata (0.02%), and Amoebozoa

(0.001%).The 18S rRNA gene sequencing of HMP stool

DNA was different from the ITS2 sequencing data in its

detection of the animals Mammalia (presumably mostly

food- or host-derived), Aves (bird), Teleostei (fish),

Ostreoida (oyster), Heterobranchia (snail), Diptera (fly),

Acari (mites/ticks), and Collembola (springtail), the

microeukaryotes Blastocystis (Stramenopiles), Entamoeba

(Amoebozoa), Chromulinaceae sp. (chrysophyte flagel-

late), and Colpodea (ciliate). Only one fungus, the basidio-

mycete Tritirachium, was detected by 18S rRNA gene

sequencing but not ITS2 sequencing. Notably, 18S rRNA

gene sequencing results revealed the presence of the non-

fungal microeukaryote Blastocystis in HMP stool samples.

Multiple Blastocystis subtypes (ST) were detected: 19 sam-

ples from 11 volunteers had at least 10 sequences of

Blastocystis, dominating 12 of those samples with > 99.9%

Fig. 4 Correlations occurring between fungal taxa (ITS2) and a fungal taxa (ITS2) or b bacterial taxa (16S). Red squares represent significant (P < 0.05

after FDR adjustment) negative correlations. Blue squares represent significant (P < 0.05 after FDR adjustment) positive correlations. Darker colors

represent stronger correlations. Non-significant correlations are not shown
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of their 18S rRNA gene sequences (Additional file 2: Table

S1). Volunteers with detectable Blastocystis had increased

bacterial diversity, but no significant difference in their

fungal diversity was observed (Additional file 2: Figure

S1). Filtering out host and plant sequences from 18S rRNA

gene sequencing data left 37 volunteers (66 samples) with

at least 100 sequences. The four most abundant fungi de-

tected were the same as observed using ITS2 primers:

Saccharomyces, Malassezia, Candida, and Cyberlindnera.

Fungi in metagenomic sequences

We sought to investigate whether fungi could be de-

tected in HMP fecal metagenomic sequencing data. The

HMP included relatively deep (targeting 10 gigabases

per sample) whole genome shotgun (WGS) sequencing

on stool samples to investigate metabolic pathways

encoded by fecal bacteria [16]. We mined these metage-

nomic sequences for reads that map to fungal genomes.

Of the > 27 billion metagenomic sequences generated,

approximately 0.01% aligned to fungal genomes. Mapped

fungal sequences in each sample supported the ITS2 se-

quencing data, finding Saccharomyces spp., Malassezia

spp., and Candida spp. among the most abundant fungi

(Table 3; Additional file 3: Tables S2 and S3). Addition-

ally, species in these genera were detected in a large

number of samples and volunteers, though not as preva-

lently as what was identified in the ITS2 sequencing

data. This is likely due to insufficient WGS sequencing

depth given the extremely low abundance of fungi in

stool, in which higher abundance microbes like bacteria

comprise the majority of metagenomic sequencing data.

Greater WGS sequencing depth, as well as more

complete fungal genomes to map this data to, are likely

required to determine the full collection of fungi across

volunteers and samples. Because of the high abundance

of bacterial DNA in stool samples, ITS2 sequencing may

be both a more accurate and sensitive method for

characterizing the human gut mycobiome, providing

greater resolution compared to moderately deep WGS

sequencing.

Discussion

Previous studies have examined fungal communities

largely in small disease centric cohorts, and information

detailing the healthy human mycobiome in a large, well-

studied cohort is lacking. In this study, extracted DNA

from fecal samples from the Human Microbiome Project

was used to investigate what constitutes a normal gut

mycobiome. This study represents the first time the fecal

mycobiome has been described in a large cohort of

healthy individuals (over 100 volunteers), with longitu-

dinal samples provided by each volunteer (up to three

samples per volunteer, totaling 317 samples). Further-

more, this is the first study that includes ITS, 18S rRNA

gene, 16S rRNA gene, and WGS metagenomic sequen-

cing data on the same samples, thus enabling a valid-

ation of methods and correlative analyses. The results

indicate that fungal diversity is lower than bacterial diversity

in the gut, and that yeast genera such as Saccharomyces,

Malassezia, and Candida are the most abundant genera

present in this cohort. Candida spp. have commonly been

identified as members of the healthy human mycobiome,

not only in the gut [9, 20] but also at several other body

sites, including the oral cavity [21, 22], vagina [24], and skin

[23, 30]. Previous studies have observed high levels of

Malassezia at different body sites, describing it as a prom-

inent commensal of the skin and oral mycobiomes [21, 23].

Interestingly, a study by Hoffmann et al. examining the

mycobiome of the gut in relation to diet in a smaller set of

healthy volunteers recognized Saccharomyces and Candida

as prevalent members of the gut mycobiome, but did not

identify Malassezia as a member of the gut mycobiota [9].

The discrepancy between the Hoffmann study and the re-

sults in the current study are likely due to differences in

study methodologies: while this study amplified the ITS2

region of the fungal rRNA operon, Hoffmann et al. ampli-

fied the Internal Transcribed Spacer 1 (ITS1) region. In

data described in Additional file 4, amplification and se-

quencing of a fecal samples found that the primers used to

amply the ITS1 region (ITS1F and ITS2 [31, 32], also used

in the Hoffmann study) did not detect Malassezia, indicat-

ing that sequence mismatches in the primers may not allow

for optimal amplification of Malassezia DNA. Alternatively,

Malassezia may not have been identified in the Hoffmann

study due to differences in cohort characteristics, such as

diet or geographical location. While volunteers in this study

were recruited from Houston, Texas, the volunteers in the

Hoffmann study were recruited from Pennsylvania. Differ-

ences in climate may impact the fungi to which individuals

are exposed, which may in turn impact the colonization of

fungi in the gut.

Table 3 Top 10 most prevalent fungi found in metagenomic

WGS sequences

Species Volunteers
(n = 215)

Samples
(n = 472)

Reads
(n = 27,091,491,028)

Malassezia restricta 131 191 5829

Saccharomyces cerevisiae 128 198 6205

Malassezia globosa 115 168 2373

Cyberlindnera jadinii 67 92 88,922

Saccharomyces pastorianus 66 84 307

Candida albicans 45 55 2426

Debaryomyces hansenii 31 32 278

Malassezia sympodialis 24 28 92

Alternaria alternata 24 24 81

Candida parapsilosis 23 25 158
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We determined that the gut mycobiome is highly vari-

able between individuals as well as within individuals

over time. A similar trend was observed in a study fol-

lowing fungal communities in mice, where it was found

that the gut mycobiome varied substantially over time in

mice receiving antibiotics as well as untreated control

mice [33]. Furthermore, it was observed that different

cages of mice receiving the same treatment also varied

in their dominant fungal lineage. These findings oc-

curred in mice housed in the same animal facility and

on a homogeneous diet. Additionally, a human gut

mycobiome study comprised of 24 individuals with two

sampling time points found that detection of the same

fungus at both time points occurred less than 20% of the

time [20]. While the gut mycobiome was found to be

variable within individuals, others have shown that the

oral mycobiome stays fairly stable over time within an

individual [34]. These results prompt a fundamental un-

answered question in the field: which, if any, fungi are

truly colonizing the human gut? It is known that the hu-

man microbiome is greatly impacted by diet, environ-

ment, and lifestyle [9, 35–37]. However, a limitation to

the current culture-independent techniques reported

here is that they only assess DNA signatures. Thus,

these data cannot distinguish between the DNA contrib-

uted from live or dead cells and do not differentiate mi-

crobes that are colonizing the gut from transients

derived from our diet and/or environment. But culture-

dependent studies have identified many of the same

abundant fungi we have detected here, including Can-

dida spp. [38–43], Saccharomyces cerevisiae [40, 43],

Malassezia spp. [38, 39, 44], Penicillium spp. [38–40,

42], Cladosporium spp. [38, 42], and Aspergillus spp.

[38–40, 42, 44]. Candida, Penicillim, and Aspergillus

spp. have been identified in fecal samples from many dif-

ferent volunteers across several studies, but Malassezia

and Saccharomyces spp. are cultured less consistently.

Malassezia has more stringent growth conditions (i.e., it

cannot be grown on common yeast-friendly medias like

Sabouraud or Potato Dextrose), which could account for

its lack of detection in many studies. Saccharomyces, on

the other hand, is easily cultured, suggesting its high

abundance and prevalence in ITS2 sequencing data may

be originating from other sources, especially since it is a

common component in many foods. This is also likely

the case for Cyberlindnera jadinii, a food additive also

known as “torula yeast,” which was found in high abun-

dance in some volunteers. Mycologists Suhr and Hallen-

Adams have proposed that the majority of fungal taxa

detected in culture-independent studies are likely not vi-

able in the gut due to growth constraints (e.g., several

Penicillium species do not grow at 37 °C) or known eco-

logical niches (e.g., Ustilago maydis is an obligate maize

pathogen) [45]. Notwithstanding, colonization is not

necessary to exert a biologically significant effect on the

host (e.g., many proposed probiotics do not necessarily

colonize the gut for prolonged periods [46, 47]). More

research must be done to determine which fungi, if any,

may be colonizing the human gut and how they may be

impacting resident microbes and the host.

Comparing results between existing mycobiome stud-

ies presents many challenges. First, non-standardized ap-

proaches are used by various labs to explore the

mycobiome, and analysis strategies are rapidly evolving.

Many molecular and bioinformatics methods utilized by

researchers were optimized for isolation and analysis of

bacterial communities and may not always be appropri-

ate for fungi. Although the extraction method used on

HMP stool samples was optimized for bacterial commu-

nity analysis, we determined that this did not have a sig-

nificant effect on alpha diversity, beta diversity, or

taxonomy compared to an extraction method utilizing

harsher mechanical lysis that is similar to methods used

in current mycobiome studies (Additional file 5). Fur-

thermore, there is still debate on the optimal region of

the rRNA operon to assay for fungal community profil-

ing. While the ITS1 region is a common target for mo-

lecular studies, our laboratory and others have found

ITS2 may be more suitable for detecting fungal com-

mensals. A closer look at ITS1F and ITS2 primers re-

vealed that these commonly used ITS1 region-targeting

primers contain critical mismatches to common fungal

taxa found in the human microbiome, including

Galactomyces geotrichum, Yarrowia lipolytica, and fungi

belonging to the Malasseziales and Tremellales orders

[48]. Additionally, available fungal databases are quite

sparse and less well-curated compared to bacterial data-

bases, both in terms of the overall number of sequences

and the accuracy of taxonomic information. Misidentifi-

cations in fungal databases occur frequently, a circum-

stance that is compounded by fungal dimorphism (the

ability of some fungi to change morphologically between

hyphal and yeast forms depending on environmental

conditions). This phenomenon often results in different

studies identifying identical ITS sequences as two differ-

ent fungi. Moreover, database entries may contain insuffi-

cient taxonomic information to correctly identify fungi,

leading to the “Fungi sp.” or “unclassified fungi” identifica-

tions seen in our and others’ data [20]. Our study found

that approximately 17% of OTUs lacked taxonomic infor-

mation. Finally, availability of fungal genomes is also lack-

ing compared to bacteria, though there are efforts

underway to change this [49]. This scarcity of complete

fungal genomes makes identifying fungi in complex sam-

ples difficult and is compounded by the generally low rela-

tive abundance of fungi compared with other microbes. In

the HMP samples used in this study, we found that fungal

sequences constituted approximately 0.01% of the total
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number of metagenomic sequences. However, this num-

ber may increase as more fungal genomes are sequenced

and more data may be mapped to these genomes.

To confirm that no major components of the myco-

biome were being missed due to known ITS2 primer

bias, a subset of samples were analyzed by broad

eukaryotic 18S rRNA gene amplification and sequen-

cing. Only one additional fungal genus, Tritirachium,

was detected that was not among the named genera

detected by ITS2 sequencing in the 89 shared sam-

ples. The discovery of this low abundance genus in a

single sample was likely due to further sampling of a

diverse sample rather than an ITS2 primer bias. The

18S rRNA gene results lend support to the complete-

ness of the ITS2 fungal data but also demonstrate

that fungi are not the only microeukaryotes present

in the gut. In particular, the animal gut symbiont

Blastocystis was present in 25% (11/44) of the volun-

teers examined, which is within the carriage range

found in other developed countries. In contrast,

Dientamoeba fragilis, another intestinal microeukar-

yote common in some healthy populations, was not

detected in HMP samples [50]. The Blastocystis sub-

types that were detected (ST1, ST2, ST3) are, to-

gether with ST4, the most frequently identified in

humans [51]. Colonization by Blastocystis has been

associated with increased bacterial diversity [52], and

this held true for HMP samples. However, the detec-

tion of Blastocystis did not correspond to increased

fungal diversity—yet another distinct attribute of the

mycobiome. We also found that 18S rRNA gene se-

quencing data mapped to a variety of presumably

dietary sources, such as fish, meat, fowl, and plants,

raising the idea that perhaps 18S rRNA gene sequen-

cing data could be used to validate, or as a surrogate

for, dietary information collected by questionnaires.

Conclusions

The human gut mycobiome is low in diversity compared

to gut bacterial communities and is dominated by the

yeast genera Saccharomyces, Malassezia, and Candida.

Both inter- and intra-volunteer variability were high, yet

several species tended to persist across all samples and

within longitudinal samples belonging to a single indi-

vidual. While no associations between the mycobiome

and volunteer metadata were detected, correlation ana-

lysis revealed newly discovered relationships between

and among bacterial and fungal taxa, and further studies

of these correlations could identify novel means by

which to modulate the abundance of specific micro-

biome constituents. Finally, 18S rRNA gene and WGS

metagenomic sequencing aligned with the results of

ITS2 sequencing, but ITS2 data provided greater

resolution of the mycobiome membership, suggesting

that ITS2 sequencing is a more accurate and sensitive

method for studying the mycobiome in stool samples.

Understanding what constitutes a “normal” or “healthy”

gut mycobiome could assist in future research efforts to

determine contributions of commensal fungi to the

health of the host or the exacerbation of disease.

Methods
Sample collection and DNA extraction

Stool samples were collected and DNA was extracted as

previously described [53]. In brief, stool samples were

collected, and approximately 2 ml of stool was homoge-

nized by vortexing in 5 ml of MO BIO lysis buffer

(PowerLyzer PowerSoil Bead solution, MO BIO Labora-

tories). After slow-speed centrifugation, 1 ml of super-

natant was added to MO BIO Garnet Bead tubes

containing 750 μl of lysis buffer. The sample was then

incubated at 65 °C for 10 min followed by 95 °C for

10 min. Further DNA extraction steps were performed

using the standard protocol from the MO BIO Power-

Soil DNA Isolation Kit. After initial sample extraction,

aliquoted DNA samples were stored at − 80 °C before

retrieval for this study. The present study only used

DNA from stool samples collected at Baylor College of

Medicine in Houston, TX, from volunteers who donated

between one and three stool samples over the course of

approximately 1 year. Detailed information about volun-

teer inclusion criteria, consent forms, sample collection,

extraction protocols, and supplemental study information

can be found on the HMP Data Analysis and Coordination

Center website (http://www.hmpdacc.org/).

Harsher mechanical lysis methods are often employed

for fungal DNA extraction because of the chitin in fun-

gal cell walls [21, 38, 54, 55]. We wanted to confirm that

the method used for microbial DNA extraction from

HMP stool samples was not preventing us from captur-

ing all the fungal diversity in the samples. Using stool

from five healthy non-HMP donors, we compared fungal

diversity and taxonomy using the HMP method of mi-

crobial DNA extraction (MO BIO PowerSoil DNA

Isolation Kit) and a modified version of this protocol

that is similar to what other investigators have used [21,

38, 54, 55]. This modified protocol included 0.5-mm

glass beads in place of garnet beads and use of the

FastPrep-24 Instrument (MP Biomedicals, speed 6.5 for

1 min, performed twice with a 5 min break in between)

in place of a benchtop vortexer. Results (Additional file 5:

Figure S2) revealed no difference in fungal taxonomy,

alpha diversity, or beta diversity between the unmodified

MO BIO PowerSoil DNA Isolation Kit protocol and the

modified version in which harsher mechanical lysis steps

were used.
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ITS2 amplification and sequencing

Before analyzing HMP samples, conditions for PCR were

optimized as described in Additional file 4: Table S4 and

S5. The Internal Transcribed Spacer 2 (ITS2) region was

amplified from HMP stool DNA using primers ITS3 and

ITS4 [32]. Each primer included an Illumina adapter and

linker sequence designed using PrimerProspector [56].

Each reverse primer (ITS4) also contained a unique 12

base pair Golay barcode [57]. Amplification, sequencing,

and index primers can be found in Additional file 6: Table

S6. PCRs (20 μl total volume) contained 2 μl of Accuprime

10X PCR Buffer II (Invitrogen), 0.15 μl of Accuprime Taq

High Fidelity DNA Polymerase (Invitrogen), 1 μl of each

primer (0.4 μM final concentration), 14.25 μl of template

DNA, and 1.60 μl of BSA. PCR cycling conditions were as

follows: initial denaturation at 95 °C for 2 min, 35 amplifi-

cation cycles of 95 °C for 20 s, 56 °C for 45 s, and 72 °C

for 90 s, followed by a final extension step of 72 °C for

10 min. PCR products were visualized using agarose gel

electrophoresis, quantified using Quant-iT PicoGreen

dsDNA Assay Kit (Molecular Probes), and then cleaned

using ChargeSwitch PCR Clean-Up Kit (Invitrogen). Sam-

ples were pooled and sequenced on the Illumina MiSeq

platform using the Illumina MiSeq Reagent v3 600-cycle

(2 × 300 bp) Kit.

Bioinformatics and statistical analysis

ITS2 sequencing analysis

The ITS2 read pairs were demultiplexed based on the

unique molecular barcodes. Reads were merged and fil-

tered using USEARCH v7.0.1090 [58] using default set-

tings, except with a minimum overlap length set to

50 bp and with staggered alignments enabled. A custom

algorithm was used to cut off overhangs if read pairs

were staggered. In the event of a conflict, the base with

the higher Q score was chosen. Merged reads containing

more than 0.5% expected errors were discarded.

ITS2 sequences were stepwise clustered into OTUs at

a similarity cutoff value of 97% using the UPARSE pipe-

line [59]. Chimeras were removed using USEARCH

v8.0.1517 and UCHIME [60]. OTUs were aligned against

a combined database comprised of sequences from the

NCBI GenBank Plant (including fungi) and Environmen-

tal databases [61]. Abundances were recovered by map-

ping the demultiplexed reads to the UPARSE OTUs. A

custom script constructed an OTU table from the out-

put files generated in the previous two steps. Unmapped

(< 80% identity or < 95% coverage) OTUs were manually

analyzed by BLASTN [62].

Samples were rarefied to 1954 reads/sample, unless other-

wise noted, based on rarefaction analysis (Additional file 7:

Figure S3a), to optimize number of sequences/sample with-

out losing too many samples from the dataset. Analysis and

visualization of microbiome communities was conducted in

R version 3.3.3 [63], utilizing the phyloseq package version

1.19.1 [64] to import sample data and calculate alpha- and

beta-diversity metrics. Plots were made using ggplot2 pack-

age version 2.2.1 [65], except for Fig. 4, which is described

below. Significance of categorical variables was determined

using the non-parametric Mann-Whitney test or Kruskal-

Wallis test and adjusted for multiple comparisons with the

FDR algorithm [66], unless otherwise stated. For box and

whisker plots, the line represents the median value and the

upper and lower hinges correspond to the first and third

quartile. The whiskers extend from the box to the largest or

smallest (upper or lower whisker, respectively) value no fur-

ther than 1.5 * the inter-quartile range. Points plotted be-

yond the whiskers are considered outliers.

To determine associations with host phenotype, we

performed the “EnvFit” function within the “Vegan”

package version 2.4-2 [25] in R to determine covariates

significantly associated with the mycobiome profiles.

The model was performed based on the Bray-Curtis dis-

similarity in NMDS ordination. Significance was deter-

mined by 10,000 permutations, and resulting p values

were adjusted for multiple comparisons with the FDR al-

gorithm [66].

Correlation analysis between taxa was performed using

SparCC [26]. Fungal and bacterial taxa must make up at

least 0.05% of the overall abundance to be included in the

correlation analysis. Correlation values were plotted in R

using the corrplot package version 0.77 [67]. p values were

adjusted for multiple comparisons with the FDR algorithm

[66]. Significant correlation values are signified by a col-

ored square (either blue or red). That is, squares that lack

color represent correlation values that are not significant

(p > 0.05 after FDR adjustment) based on the statistical

test built into the package. For comparisons between bac-

terial and fungal taxa, samples were included only if they

had both 16S rRNA gene sequencing and ITS2 sequencing

data available. Raw correlation values and p values for

SparCC analyses can be found in Additional file 8: Tables

S8, S9, S10, S11, S12, and S13.

16S rRNA gene sequencing analysis

HMP 16S V3-V5 sequences were downloaded from http://

www.hmpdacc.org. Read pairs were demultiplexed and

then merged using USEARCH v7.0.1090 [58], allowing zero

mismatches and a minimum overlap of 50 bp. Sequences

were clustered into OTUs at a similarity cutoff value of

97% using the UPARSE algorithm [59]. OTUs were subse-

quently mapped to the SILVA database v123 [68] for taxo-

nomic classification. An OTU table was constructed and

used for further analyses.

18S rRNA gene analysis

The eukaryotic 18S rRNA gene was amplified, sequenced,

and processed as for ITS2, with the following exceptions:
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(1) 5 μl template was used in PCR, with annealing at 50 °

C, (2) the only reads retained were those that contained

no mismatches to expected barcode/linker/primer se-

quences, (3) to maximize phylogeny resolution, sequences

were stepwise clustered into OTUs at a similarity cutoff

value of 99%, and (4) OTUs were mapped to the SILVA

database [68]. Dual-barcoded primers were composed of

the 58 bp Illumina flow cell binding and sequencing pri-

mer regions, one of 22 different 4 bp barcodes, a TT

linker, and the 20 or 23 bp 18S rRNA gene-targeting

sequence (Additional file 6: Table S7).

Differences in bacterial and fungal diversity associated

with the presence of Blastocystis were determined using

the Mann-Whitney test with one random sample/volun-

teer. There was 16S rRNA gene sequencing data for 5

Blastocystis-positive and 26 Blastocystis-negative volun-

teers and ITS2 sequencing data for 11 Blastocystis-positive

and 35 Blastocystis-negative volunteers. Rarefaction

curves for 18S rRNA gene sequencing data is provided in

Additional file 7: Figure S3b.

Fungi in metagenomic sequences

The HMP HiSeq metagenomic data set (from NCBI

Accession PRJNA43017, also available at http://

www.hmpdacc.org/) consisted of 27,091,491,028 total se-

quences from 472 stool samples of 215 volunteers, 64 of

which overlapped with volunteers whose samples under-

went ITS2 sequencing in this study. MetaPhlAn2 [69]

and searches against ITS databases yielded very few fun-

gal hits. Therefore, we instead mapped reads against all

1315 fungal genomes in NCBI (downloaded July 19,

2016). However, all examined hits initially mapped to ei-

ther bacterial contamination within the fungal data, or

fungal genes with high identity to bacterial homologs.

Therefore, we used a 35 bp seed size MegaBLAST of the

fungal genome assemblies against all NCBI genome as-

semblies to eliminate non-fungal hits of ≥ 85% identity,

reducing the database of fungal genomes 1 gigabase

(GB) from its original 47 GB size (46 GB final size).

HMP reads were trimmed using BBDuk and searched

against the cleaned fungal database using Bowtie2 [70]

with a seed size of 20 bp. Positive hits were further re-

fined by (1) only examining hits with 0 or 1 mismatches,

(2) searching the reads against Silva SSU and LSU v. 128

databases [68] using Bowtie2 and removing any hits, and

(3) running all translated and untranslated reads against

non-redundant GenBank protein and nucleotide data-

bases using DIAMOND [71] and BLASTN [72] to re-

move those reads that hit bacteria, archaea, non-fungal

eukaryotes, or nothing. Taxonomic names were assigned

from the top nucleotide (96%) or protein (4% with no

taxonomic name by BLASTN) hit. Further pipeline de-

velopment is needed to better classify reads from con-

served fungal genes that match multiple taxa equally

well. Each taxonomic name was assigned from the top

hit to the fungal genome assembly database; however, if

multiple taxa hit equally, the assigned name was ran-

domly chosen. Therefore, conserved fungal genes have

the potential to overestimate the contribution of closely

related taxa.
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