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Abstract
A lattice polytopeP ⊂ R

d is called a locally anti-blocking polytope if for any closed
orthant Rd

ε in R
d , P ∩ R

d
ε is unimodularly equivalent to an anti-blocking polytope

by reflections of coordinate hyperplanes. We give a formula for the h∗-polynomials
of locally anti-blocking lattice polytopes. In particular, we discuss the γ -positivity of
h∗-polynomials of locally anti-blocking reflexive polytopes.
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1 Introduction

A lattice polytope is a convex polytope all of whose vertices have integer coordinates.
A lattice polytope P ⊂ R

d≥0 of dimension d is called anti-blocking if for any y =
(y1, . . . , yd) ∈ P and x = (x1, . . . , xd) ∈ R

d with 0 ≤ xi ≤ yi for all i , it holds that
x ∈ P . Anti-blocking polytopes were introduced and studied by Fulkerson [11,12]
in the context of combinatorial optimization. See, e.g., [35]. For ε ∈ {−1, 1}d and
x ∈ R

d , set εx := (ε1x1, . . . , εd xd) ∈ R
d . Given an anti-blocking lattice polytope
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P ⊂ R
d≥0 of dimension d, we define

P± := {εx ∈ R
d : ε ∈ {−1, 1}d , x ∈ P}.

Since P is an anti-blocking lattice polytope, P± is convex (and a lattice polytope).
Moreover, for any ε ∈ {−1, 1}d and x ∈ P±, we have εx ∈ P±. The polytope
P± is called an unconditional lattice polytope [23]. In general, P± is symmetric
with respect to all coordinate hyperplanes. In particular, the origin 0 of Rd is in
the interior intP±. Given ε = (ε1, . . . , εd) ∈ {−1, 1}d , let Rd

ε denote the closed
orthant {(x1, . . . , xd) ∈ R

d : xiεi ≥ 0 for all 1 ≤ i ≤ d}. A lattice polytope
P ⊂ R

d of dimension d is called locally anti-blocking [23] if, for each ε ∈ {−1, 1}d ,
there exists an anti-blocking lattice polytope Pε ⊂ R

d≥0 of dimension d such that
P ∩ R

d
ε = P±

ε ∩ R
d
ε . Unconditional polytopes are locally anti-blocking.

In the present paper, we investigate the h∗-polynomials of locally anti-blocking
lattice polytopes. First, we give a formula for the h∗-polynomials of locally anti-
blocking lattice polytopes in terms of that of unconditional lattice polytopes.

Theorem 1.1 Let P ⊂ R
d be a locally anti-blocking lattice polytope of dimension d

and for each ε ∈ {−1, 1}d , let Pε be an anti-blocking lattice polytope of dimension
d such that P ∩ R

d
ε = P±

ε ∩ R
d
ε . Then the h∗-polynomial of P satisfies

h∗(P, x) = 1

2d
∑

ε∈{−1,1}d
h∗(P±

ε , x).

In particular, h∗(P, x) is γ -positive if h∗(P±
ε , x) is γ -positive for all ε ∈ {−1, 1}d .

Second, we discuss the γ -positivity of the h∗-polynomials of locally anti-blocking
reflexive polytopes. A lattice polytope is called reflexive if the dual polytope is also
a lattice polytope. Many authors have studied reflexive polytopes from viewpoints of
combinatorics, commutative algebra, and algebraic geometry. In [15], Hibi character-
ized reflexive polytopes in terms of their h∗-polynomials. To be more precise, a lattice
polytope of dimension d is (unimodularly equivalent to) a reflexive polytope if and
only if the h∗-polynomial is a palindromic polynomial of degree d. On the other hand,
in [23], locally anti-blocking reflexive polytopes were characterized. In fact, a locally
anti-blocking lattice polytope P ⊂ R

d of dimension d is reflexive if and only if for
each ε ∈ {−1, 1}d , there exists a perfect graph Gε on [d] := {1, . . . , d} such that
P ∩ R

d
ε = Q±

Gε
∩ R

d
ε , where QGε is the stable set polytope of Gε. Moreover, every

locally anti-blocking reflexive polytope possesses a regular unimodular triangulation.
This fact and the result of Bruns–Römer [5] imply that its h∗-polynomial is unimodal.

In the present paper, we discuss whether the h∗-polynomial of a locally anti-
blocking reflexive polytope has a stronger property, which is called γ -positivity. In
[31], a class of lattice polytopesBG arising from finite simple graphs G on [d], which
are called symmetric edge polytopes of type B, was introduced. Symmetric edge poly-
topes of type B are unconditional, and they are reflexive if and only if the underlying
graphs are bipartite. Moreover, when they are reflexive, the h∗-polynomials are always
γ -positive. On the other hand, in [30], another family of lattice polytopes C (e)

P arising
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from finite partially ordered sets P on [d], which are called enriched chain poly-
topes, was given. Enriched chain polytopes are unconditional and reflexive, and their
h∗-polynomials are always γ -positive. Combining these facts and Theorem 1.1, we
know that, for a locally anti-blocking reflexive polytope P , if every P ∩ R

d
ε is the

intersection of Rd
ε and either an enriched chain polytope or a symmetric edge reflex-

ive polytope of type B, then the h∗-polynomial of P is γ -positive (Corollary 4.2).
By using this result, we show that the h∗-polynomials of several classes of reflexive
polytopes are γ -positive.

In Sect. 5, we will discuss γ -positivity of the h∗-polynomials of symmetric edge
polytopes of type A, which are reflexive polytopes arising from finite simple graphs.
In [21], it was shown that the h∗-polynomials of the symmetric edge polytopes of type
A of complete bipartite graphs are γ -positive. We will show that for a large class of
finite simple graphs, which includes complete bipartite graphs, the h∗-polynomials of
the symmetric edge polytopes of type A are γ -positive (Sect. 5.1). Moreover, by giv-
ing explicit h∗-polynomials of del Pezzo polytopes and pseudo-del Pezzo polytopes,
we will show that the h∗-polynomial of every pseudo-symmetric simplicial reflexive
polytope is γ -positive (Theorem 5.8).

In Sect. 6, we will discuss γ -positivity of h∗-polynomials of twinned chain poly-
topes CP,Q ⊂ R

d , which are reflexive polytopes arising from two finite partially
ordered sets P and Q on [d]. In [39], it was shown that twinned chain polytopes CP,Q

are locally anti-blocking and eachCP,Q ∩R
d
ε is the intersection ofR

d
ε and an enriched

chain polytope. Hence the h∗-polynomials of CP,Q are γ -positive. We will give a
formula for the h∗-polynomials of twinned chain polytopes in terms of the left peak
polynomials of finite partially ordered sets (Theorem 6.3). Moreover, we will define
enriched (P, Q)-partitions of P and Q, and show that the Ehrhart polynomial of the
twined chain polytope CP,Q of P and Q coincides with a counting polynomial of
enriched (P, Q)-partitions (Theorem 6.8).

This paper is organized as follows: In Sect. 2, we will review the theory of Ehrhart
polynomials, h∗-polynomials, and reflexive polytopes. In Sect. 3, we will introduce
several classes of anti-blocking polytopes and unconditional polytopes. In Sect. 4,
we will investigate the h∗-polynomials of locally anti-blocking lattice polytopes. In
particular, we will prove Theorem 1.1. We will discuss symmetric edge polytopes of
type A in Sect. 5, and twinned chain polytopes in Sect. 6.

2 Ehrhart Theory and Reflexive Polytopes

In this section, we review the theory of Ehrhart polynomials, h∗-polynomials, and
reflexive polytopes. Let P ⊂ R

d be a lattice polytope of dimension d. Given a
positive integer m, we define

LP (m) = |mP ∩ Z
d |.

Ehrhart [10] proved that LP (m) is a polynomial in m of degree d with the constant
term 1. We say that LP (m) is the Ehrhart polynomial ofP . The generating function
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of the lattice point enumerator, i.e., the formal power series

EhrP (x) = 1 +
∞∑

k=1

LP (k)xk

is called the Ehrhart series ofP . It is well known that it can be expressed as a rational
function of the form

EhrP (x) = h∗(P, x)

(1 − x)d+1 .

Then h∗(P, x) is a polynomial in x of degree at most d with nonnegative integer coef-
ficients [36] and it is called the h∗-polynomial (or the δ-polynomial) ofP . Moreover,
one has Vol(P) = h∗(P, 1), where Vol(P) is the normalized volume of P .

A lattice polytopeP ⊂ R
d of dimension d is called reflexive if the origin of Rd is

a unique lattice point belonging to the interior of P and its dual polytope

P∨ := {y ∈ R
d : 〈x, y〉 ≤ 1 for all x ∈ P}

is also a lattice polytope, where 〈x, y〉 is the usual inner product ofRd . It is known that
reflexive polytopes correspond to Gorenstein toric Fano varieties, and they are related
to mirror symmetry (see, e.g., [3,7]). In each dimension there exist only finitely many
reflexive polytopes up to unimodular equivalence [25] and all of them are known up
to dimension 4 [24]. In [15], Hibi characterized reflexive polytopes in terms of their
h∗-polynomials. We recall that a polynomial f ∈ R[x] of degree d is said to be
palindromic if f (x) = xd f (x−1). Note that if a lattice polytope of dimension d has
interior lattice points, then the degree of its h∗-polynomial is equal to d.

Proposition 2.1 [15] LetP ⊂ R
d be a lattice polytope of dimension d with0 ∈ intP .

Then P is reflexive if and only if h∗(P, x) is a palindromic polynomial of degree d.

Next, we review some properties of polynomials. Let f = ∑d
i=0 ai x

i be a polyno-
mial with real coefficients and ad �= 0. We now focus on the following properties.

(RR) We say that f is real-rooted if all its roots are real.
(LC) We say that f is log-concave if a2i ≥ ai−1ai+1 for all i .
(UN) We say that f is unimodal if a0 ≤ a1 ≤ · · · ≤ ak ≥ · · · ≥ ad for some k.

If all its coefficients are nonnegative, then these properties satisfy the implications

(RR) ⇒ (LC) ⇒ (UN).

On the other hand, the polynomial f is γ -positive if f is palindromic and there are
γ0, γ1, . . . , γ�d/2� ≥ 0 such that f (x) = ∑

i≥0 γi x i (1 + x)d−2i . The polynomial∑
i≥0 γi x i is called the γ -polynomial of f . We can see that a γ -positive polynomial

is real-rooted if and only if its γ -polynomial is real-rooted. If f is palindromic and
real-rooted, then it is γ -positive. Moreover, if f is γ -positive, then it is unimodal. See,
e.g., [2,34] for details.
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For a given lattice polytope, a fundamental problem within the field of Ehrhart
theory is to determine if its h∗-polynomial is unimodal. One famous instance is given
by reflexive polytopes that possess a regular unimodular triangulation.

Proposition 2.2 [5] LetP ⊂ R
d be a reflexive polytope of dimension d. If P possesses

a regular unimodular triangulation, then h∗(P, x) is unimodal.

It is known that if a reflexive polytope possesses a flag regular unimodular trian-
gulation all of whose maximal simplices contain the origin, then the h∗-polynomial
coincides with the h-polynomial of a flag triangulation of a sphere [5]. For the h-
polynomial of a flag triangulation of a sphere, Gal [13] conjectured the following:

Conjecture 2.3 The h-polynomial of any flag triangulation of a sphere is γ -positive.

3 Classes of Anti-Blocking Polytopes and Unconditional Polytopes

In this section, we introduce several classes of anti-blocking polytopes and uncondi-
tional polytopes. Throughout this section, we associate each subset F ⊂ [d] with a
(0, 1)-vector eF =∑

i∈F ei ∈R
d , where each ei is the i th unit coordinate vector inRd .

3.1 (0, 1)-Polytopes Arising from Simplicial Complexes

Let � be a simplicial complex on the vertex set [d]. Then � is a collection of subsets
of [d] with {i} ∈ � for all i ∈ [d] such that if F ∈ � and F ′ ⊂ F , then F ′ ∈ �. In
particular ∅ ∈ � and e∅ = 0. Let P� denote the convex hull of {eF ∈ R

d : F ∈ �}.
The following is an important observation.

Proposition 3.1 Let P ⊂ R
d≥0 be a (0, 1)-polytope of dimension d. Then P is anti-

blocking if and only if there exists a simplicial complex � on [d] such thatP = P�.

3.2 Stable Set Polytopes

Let G be a finite simple graph on the vertex set [d] and E(G) the set of edges of G.
(A finite graph G is called simple if G possesses no loop and no multiple edge.) A
subset W ⊂ [d] is called stable if, for all i and j belonging to W with i �= j , one
has {i, j} /∈ E(G). We remark that a stable set is often called an independent set. Let
S(G) denote the set of all stable sets of G. One has ∅ ∈ S(G) and {i} ∈ S(G) for each
i ∈ [d]. The stable set polytope QG ⊂ R

d of G is the (0, 1)-polytope defined by

QG := conv {eW ∈ R
d : W ∈ S(G)}.

Then one has dimQG = d. Since we can regard S(G) as a simplicial complex on [d],
QG is an anti-blocking polytope.

Locally anti-blocking reflexive polytopes are characterized by stable set polytopes.
A clique of G is a subsetW ⊂ [d] that is a stable set of the complement graph G of G.
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The chromatic number of G is the smallest integer t ≥ 1 for which there exist stable
setsW1, . . . ,Wt of G with [d] = W1 ∪ · · · ∪Wt . A finite simple graph G is said to be
perfect if, for any induced subgraph H of G including G itself, the chromatic number
of H is equal to the maximal cardinality of cliques of H . See, e.g., [9] for details on
graph theoretical terminology.

Proposition 3.2 [23] LetP ⊂ R
d be a locally anti-blocking lattice polytope of dimen-

sion d. Then P ⊂ R
d is reflexive if and only if, for each ε ∈ {−1, 1}d , there exists a

perfect graph Gε on [d] such that P ∩ R
d
ε = Q±

Gε
∩ R

d
ε .

3.3 Chain Polytopes and Enriched Chain Polytopes

Let (P,<P ) be a partially ordered set (poset, for short) on [d]. A subset A of [d] is
called an antichain of P if all i and j belonging to A with i �= j are incomparable
in P . In particular, the empty set ∅ and each 1-element subset {i} are antichains of
P . Let A (P) denote the set of antichains of P . In [37], Stanley introduced the chain
polytope CP of P defined by

CP := conv {eA ∈ R
d : A ∈ A (P)}.

It is known that chain polytopes are stable set polytopes. Indeed, let GP be the finite
simple graph on [d] such that {i, j} ∈ E(GP ) if and only if i <P j or j <P i . We
call GP the comparability graph of P . It then follows that A (P) = S(GP ). Hence
the chain polytope CP is the stable set polytopeQGP . Therefore, chain polytopes are
anti-blocking polytopes. We remark that any comparability graph is perfect.

On the other hand, the enriched chain polytopeC (e)
P of P is the unconditional lattice

polytope defined by C (e)
P := C±

P . In [30], it was shown that the Ehrhart polynomial of

C (e)
P coincides with a counting polynomial of left enriched P-partitions. We assume

that P is naturally labeled. A map f : P → Z \ {0} is called an enriched P-partition
[38] if, for all x, y ∈ P with x <P y, f satisfies

| f (x)| ≤ | f (y)| and | f (x)| = | f (y)| ⇒ f (y) > 0.

A map f : P → Z is called a left enriched P-partition [33] if, for all x, y ∈ P with
x <P y, f satisfies

| f (x)| ≤ | f (y)| and | f (x)| = | f (y)| ⇒ f (y) ≥ 0.

The symbol �
(�)
P (m) will denote the number of left enriched P-partitions

f : P → Z with | f (x)| ≤ m for any x ∈ P , which is called the left enriched order
polynomial of P .

Proposition 3.3 [30] Let P be a naturally labeled finite poset on [d]. Then one has

L
C (e)
P

(m) = �
(�)
P (m).
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Given a linear extension π = (π1, . . . , πd) of a finite poset P on [d], a left peak of
π is an index 1 ≤ i ≤ d − 1 such that πi−1 < πi > πi+1, where we set π0 = 0. Let
pk(�)(π) denote the number of left peaks of π . Then the left peak polynomial W (�)

P (x)
of P is defined by

W (�)
P (x) =

∑

π∈L (P)

x pk(�)(π),

where L (P) is the set of linear extensions of P .

Proposition 3.4 [30] Let P be a naturally labeled finite poset on [d]. Then the h∗-po-
lynomial of C (e)

P is

h∗(C (e)
P , x) = (x + 1)d W (�)

P

(
4x

(x + 1)2

)
.

In particular, h∗(C (e)
P , x) is γ -positive.

Note that if Q is a finite poset that is obtained from P by reordering the label, then
C (e)
P and C (e)

Q are unimodularly equivalent. Hence the h∗-polynomials of enriched
chain polytopes are always γ -positive.

3.4 Symmetric Edge Polytopes of Type B

Let G be a finite simple graph on [d]. We set

BG := conv
({0, e1, . . . , ed} ∪ {ei + e j : {i, j} ∈ E(G)}).

Then BG = P� where � is a simplicial complex on [d] obtained by regarding G as
a 1-dimensional simplicial complex. The symmetric edge polytope of type B of G is
the unconditional lattice polytope defined byBG := B±

G .

Proposition 3.5 [31] Let G be a finite simple graph on [d]. Then BG is reflexive if
and only if G is bipartite.

A hypergraph is a pair H = (V , E), where E = {e1, . . . , en} is a finite multiset
of non-empty subsets of V = {v1, . . . , vm}. Elements of V are called vertices and
the elements of E are the hyperedges. Then we can associate H to a bipartite graph
BipH with a bipartition V ∪ E , such that {vi , e j } is an edge of BipH if vi ∈ e j .
Assume that BipH is connected. A hypertree inH is a function f : E → {0, 1, . . .}
such that there exists a spanning tree 	 of BipH whose vertices have degree f(e)+1
at each e ∈ E . Then we say that	 induces f . Let BH denote the set of all hypertrees in
H . A hyperedge e j ∈ E is said to be internally activewith respect to the hypertree f if
it is not possible to decrease f(e j ) by 1 and increase f(e j ′), j ′ < j , by 1 so that another
hypertree results. We call a hyperedge internally inactivewith respect to a hypertree if
it is not internally active and denote the number of such hyperedges of f by ι(f). Then
the interior polynomial ofH is the generating function IH (x) = ∑

f∈BH x ι(f). It is
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known [22, Prop. 6.1] that deg IH (x) ≤ min {|V |, |E |} − 1. If G = BipH , then we
set IG(x) = IH (x).

Assume that G is a bipartite graph with a bipartition V1 ∪ V2 = [d]. Then let G̃ be
a connected bipartite graph on [d + 2] whose edge set is

E(G̃) = E(G) ∪ {{i, d + 1} : i ∈ V1} ∪ {{ j, d + 2} : j ∈ V2 ∪ {d + 1}}.

Proposition 3.6 [31] Let G be a bipartite graph on [d]. Then the h∗-polynomial of
the reflexive polytope BG is

h∗(BG, x) = (x + 1)d IG̃

(
4x

(x + 1)2

)
.

In particular, h∗(BG, x) is γ -positive.

4 h∗-Polynomials of Locally Anti-Blocking Lattice Polytopes

In the present section, we prove Theorem 1.1, that is, a formula for the h∗-polynomials
of locally anti-blocking lattice polytopes in terms of that of unconditional lattice poly-
topes. Given a subset J = { j1, . . . , jr } of [d], let

πJ : Rd → R
r , πJ ((x1, . . . , xd)) = (x j1 , . . . , x jr )

denote the projection map. (Here π∅ is the zero map.)

Proposition 4.1 Let P ⊂ R
d≥0 be an anti-blocking lattice polytope. Then we have

h∗(P±, x) =
d∑

j=0

2 j (x − 1)d− j
∑

J⊂[d], |J |= j

h∗(πJ (P), x).

Proof The proof is similar to the discussion in [31, proof of Prop. 3.1]. The inter-
section of P± ∩ R

d
ε and P± ∩ R

d
ε′ is of dimension d − 1 if and only if ε − ε′ ∈

{±2e1, . . . ,±2ed}. Moreover, if ε − ε′ = 2ek , then

(P± ∩ R
d
ε ) ∩ (P± ∩ R

d
ε′) = P± ∩ R

d
ε ∩ R

d
ε′ � π[d]\{k}(P±) ∩ R

d−1
π[d]\{k}(ε)

� π[d]\{k}(P).

Hence the Ehrhart polynomial LP±(m) satisfies the following:

LP±(m) =
d∑

j=0

2 j (−1)d− j
∑

J⊂[d], |J |= j

LπJ (P)(m).
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Thus the Ehrhart series satisfies

h∗(P±, x)

(1 − x)d+1 =
d∑

j=0

2 j (−1)d− j
∑

J⊂[d], |J |= j

h∗(πJ (P), x)

(1 − x) j+1 ,

as desired. ��
We now prove Theorem 1.1.

Proof of Theorem 1.1 Given J = { j1, . . . , jr } ⊂ [d] and ε ∈ {−1, 1}r , let

R
d
J ,ε = {x = (x1, . . . , xd) ∈ R

d : πJ (x) ∈ R
r
ε and x j = 0 for all j /∈ J }.

It then follows thatP∩R
d
J ,ε is equal to πJ (Pε′)± ∩R

r
ε, where πJ (ε

′) = ε. Note that,

given J = { j1, . . . , jr } ⊂ [d] and ε ∈ {−1, 1}r , we have |{ε′ ∈ {−1, 1}d : πJ (ε
′) =

ε}| = 2d−r . Thus

h∗(P, x) =
d∑

j=0

(x − 1)d− j
∑

J⊂[d], |J |= j

∑

ε∈{−1,1} j
h∗(P ∩ R

d
J ,ε, x)

=
d∑

j=0

(x − 1)d− j
∑

ε∈{−1,1}d

∑

J⊂[d], |J |= j

h∗(πJ (Pε), x)

2d− j

= 1

2d
∑

ε∈{−1,1}d

d∑

j=0

2 j (x − 1)d− j
∑

J⊂[d], |J |= j

h∗(πJ (Pε), x)

= 1

2d
∑

ε∈{−1,1}d
h∗(P±

ε , x)

by Proposition 4.1. ��
Combining Theorem 1.1 with Propositions 3.4 and 3.6, we have

Corollary 4.2 Let P ⊂ R
d be a locally anti-blocking reflexive polytope. If every

P∩R
d
ε is the intersection ofR

d
ε and either an enriched chain polytope or a symmetric

edge reflexive polytope of type B, then the h∗-polynomial of P is γ -positive.

Finally, we conjecture the following.

Conjecture 4.3 The h∗-polynomial of any locally anti-blocking reflexive polytope is
γ -positive.

Thanks to Theorem 1.1 and Proposition 3.2, in order to prove Conjecture 4.3, it
is enough to study unconditional lattice polytopes Q±

G where QG is the stable set
polytope of a perfect graph G.
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5 Symmetric Edge Polytopes of Type A

Let G be a finite simple graph on the vertex set [d] and the edge set E(G). The
symmetric edge polytope AG ⊂ R

d of type A is the convex hull of the set

A(G) = {±(ei − e j ) ∈ R
d : {i, j} ∈ E(G)}.

The polytope AG is introduced in [26,28] and called a “symmetric edge polytope
of G.”

Example 5.1 Let G be a tree on [d]. ThenAG is unimodularly equivalent to a (d −1)-
dimensional cross polytope. Hence we have h∗(AG , x) = (x + 1)d−1.

It is known [26, Prop. 4.1] that the dimension of AG is d − 1 if and only if G is
connected. Higashitani [20] proved that AG is simple if and only if AG is smooth
Fano if and only if G contains no even cycles. It is known [26,28] thatAG is unimod-
ularly equivalent to a reflexive polytope having a regular unimodular triangulation.
In particular, the h∗-polynomial of AG is palindromic and unimodal. For a complete
bipartite graph K�,m , it is known [21] that the h∗-polynomial of AK�,m is real-rooted
and hence γ -positive.

5.1 Recursive Formulas for h∗-Polynomials

In this section, we give several recursive formulas of h∗-polynomials of AG when G
belongs to certain classes of graphs. By the following fact, we may assume that G is
2-connected if needed.

Proposition 5.2 Let G be a graph and let G1, . . . ,Gs be 2-connected components of
G. Then the h∗-polynomial of AG satisfies

h∗(AG, x) = h∗(AG1 , x) · · · h∗(AGs , x).

Proof Since AG is the free sum of reflexive polytopes AG1 , . . . ,AGs , a desired con-
clusion follows from [4, Thm. 1]. ��

The suspension Ĝ of a graph G is the graph on the vertex set [d + 1] and the edge
set

E(G) ∪ {{i, d + 1} : i ∈ [d]}.

We now study the h∗-polynomial of AĜ . Given a subset S ⊂ [d],

ES := {e ∈ E(G) : |e ∩ S| = 1}

is called a cut of G. For example, we have E∅ = E[d] = ∅. In general, it follows that
ES = E[d]\S . We identify ES with the subgraph of G on the vertex set [d] and the
edge set ES . By definition, ES is a bipartite graph. Let Cut(G) be the set of all cuts of
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G. Note that |Cut(G)| = 2d−1. From Theorem 1.1 and Proposition 3.6, we have the
following.

Theorem 5.3 Let G be a finite graph on [d]. Then AĜ is unimodularly equivalent to
a locally anti-blocking reflexive polytope whose h∗-polynomial is

h∗(AĜ , x) = 1

2d−1

∑

H∈Cut(G)

h∗(BH , x) = (x + 1)d fG

(
4x

(x + 1)2

)
,

where

fG(x) = 1

2d−1

∑

H∈Cut(G)

IH̃ (x).

In particular, h∗(AĜ , x) is γ -positive. Moreover, h∗(AĜ , x) is real-rooted if and only
if fG(x) is real-rooted.

Proof Let P ⊂ R
d be the convex hull of

{±e1, . . . ,±ed} ∪ {±(ei − e j ) : {i, j} ∈ E(G)}.

Then AĜ is lattice isomorphic to P . Given ε = (ε1, . . . , εd) ∈ {−1, 1}d , let Sε =
{i ∈ [d] : εi = 1}. Then P ∩ R

d
ε is the convex hull of

{0} ∪ {εiei : i ∈ [d]} ∪ {ei − e j : {i, j} ∈ ESε , i ∈ Sε}.

Hence P ∩ R
d
ε = BESε

∩ R
d
ε . Thus P is a locally anti-blocking polytope and

h∗(AĜ , x) = 1

2d−1

∑

H∈Cut(G)

h∗(BH , x)

by Theorem 1.1. ��
Let G be a graph and let e = {i, j} be an edge of G. Then the graph G/e obtained

by the procedure

(i) Delete e and identify the vertices i and j
(ii) Delete the multiple edges that may be created while (i)

is called the graph obtained from G by contracting the edge e. Next, we will show
that, for any bipartite graph G and e ∈ E(G), h∗(AG , x) is γ -positive if and only if so
is h∗(AG/e, x). In order to show this fact, we need the theory of Gröbner bases of toric
ideals. Given a graph G on the vertex set [d] and the edge set E(G) = {e1, . . . , en},
let

R = K [t1, t−1
1 , . . . , td , t

−1
d , s]

123



712 Discrete & Computational Geometry (2021) 66:701–722

be the Laurent polynomial ring over a field K and let

S = K [x1, . . . , xn, y1, . . . , yn, z]

be the polynomial ring over K . We define the ring homomorphism π : S → R by
setting π(z) = s, π(xk) = ti t

−1
j s and π(yk) = t−1

i t j s if ek = {i, j} ∈ E(G) and
i < j . The toric ideal IAG ofAG is the kernel of π . (See, e.g., [14] for details on toric
ideals and Gröbner bases.) We now recall the notation given in [21]. For any oriented
edge ei , let pi denote the corresponding variable, i.e., pi = xi or pi = yi depending
on the orientation, and let {pi , qi } = {xi , yi }. Let G (G) be the set of all binomials f
satisfying one of the following:

f =
∏

ei∈I
pi −

∏

ei∈C\I
qi , (1)

where C is an even cycle in G of length 2k with a fixed orientation, and I is a k-subset
of C such that e� /∈ I for � = min {i : ei ∈ C};

f =
∏

ei∈I
pi − z

∏

ei∈C\I
qi , (2)

where C is an odd cycle in G of length 2k + 1 and I is a (k + 1)-subset of C ;

f = xi yi − z2, (3)

where 1 ≤ i ≤ n. Then G (G) is a Gröbner basis of IAG with respect to a reverse
lexicographic order < induced by the ordering z < x1 < y1 < · · · < xn < yn [21,
Prop. 3.8]. Here the initial monomial of each binomial is the first monomial. Using
this Gröbner basis, we have the following.

Proposition 5.4 Let G be a bipartite graph on [d] and let e ∈ E(G). Then we have

h∗(AG , x) = (x + 1)h∗(AG/e, x).

Proof Let E(G) = {e1, . . . , en} with e = e1 = {i, j}. Since G is a bipartite graph,
the Gröbner basis G (G) above consists of the binomials of the form (1) and (3).

Since G has no triangles, the procedure (ii) does not occur when we contract e of
G. Hence E(G/e) = {e′

2, . . . , e
′
n} where e′

k is obtained from ek by identifying i with
j . Let G ′ be a graph obtained by adding an edge e′

1 = {d + 1, d + 2} to the graph
G/e. Then G (G ′) consists of all binomials f satisfying one of the following:

f =
∏

ei∈I
pi −

∏

ei∈C\I
qi ,
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where C is an even cycle in G of length 2k with a fixed orientation and e1 /∈ C , and I
is a k-subset of C such that e� /∈ I for � = min {i : ei ∈ C};

f =
∏

ei∈I
pi − z

∏

ei∈C\I
qi ,

where C ∪ {e1} is an even cycle in G of length 2k + 2 and I is a (k + 1)-subset of C ;

f = xi yi − z2,

where 1 ≤ i ≤ n. Hence {in<( f ) : f ∈ G (G)} = {in<( f ) : f ∈ G (G ′)}. By a
similar argument as in the proof of [19, Thm. 3.1], it follows that

h∗(AG, x) = h∗(AG ′ , x) = h∗(A{e′
1}, x)h

∗(AG/e, x) = (x + 1)h∗(AG/e, x),

as desired. ��
From Theorem 5.3, Propositions 5.2 and 5.4 we have the following immediately.

Corollary 5.5 Let G be a bipartite graph on [d]. Then we have that:

(a) The h∗-polynomial h∗(AG̃, x) = (x + 1)h∗(AĜ , x) is γ -positive.
(b) If G is obtained by gluing bipartite graphs G1 and G2 along with an edge e, then

h∗(AG , x) = (x + 1)h∗(AG/e, x)

= (x + 1)h∗(AG1/e, x)h
∗(AG2/e, x)

= h∗(AG1 , x)h
∗(AG2 , x)/(x + 1).

Remark Corollary 5.5 (b) was recently generalized in [8, Thm. 4.17].

5.2 Pseudo-Symmetric Simplicial Reflexive Polytopes

A lattice polytope P ⊂ R
d is called pseudo-symmetric if there exists a facet F of

P such that −F is also a facet of P . Nill [27] proved that any pseudo-symmetric
simplicial reflexive polytope P is a free sum of P1, . . . ,Ps , where each Pi is one
of the following:

• cross polytope;
• del Pezzo polytope V2m = conv (±e1, . . . ,±e2m,±(e1 + · · · + e2m));
• pseudo-del Pezzo polytope Ṽ2m = conv (±e1, . . . ,±e2m,−e1 − · · · − e2m).

Note that a del Pezzo polytope is unimodularly equivalent toAC2m+1 where C2m+1 is
an odd cycle of length 2m + 1 (see [20]). The h∗-polynomial of ACd was essentially
studied in the following papers (see also the OEIS sequence A204621):

• Conway and Sloane [6, p. 2379] computed h∗(ACd , x) for small d by using results
of O’Keeffe [32] and gave a conjecture on the γ -polynomial of h∗(ACd , x) (coin-
cides with the γ -polynomial in Proposition 5.7 below).
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• General formulas for the coefficients of h∗(ACd , x)were given in Ohsugi–Shibata
[29] and Wang–Yu [40].

In order to give the h∗-polynomial of Ṽ2m , we need the following lemma.

Lemma 5.6 Let G be a connected graph. Suppose that an edge e = {i, j} of G is not
a bridge. Let Pe be the convex hull of A(G) \ {ei − e j }. Then we have

h∗(Pe, x) = h∗(AG , x) + h∗(AG\e, x)
2

,

where G \ e is the graph obtained by deleting e from G.

Proof Note that AG\e ⊂ Pe ⊂ AG . Since G is connected and e is not a bridge of
G, the dimension of both AG and AG\e is d − 1. Let P ′

e denote the convex hull of
A(G) \ {−ei + e j }, which is unimodularly equivalent to Pe. Then AG and Pe are
decomposed into the following disjoint union:

AG = AG\e ∪ (Pe \ AG\e) ∪ (P ′
e \ AG\e),

Pe = AG\e ∪ (Pe \ AG\e).

Since Pe \ AG\e is unimodularly equivalent to P ′
e \ AG\e, we have a desired con-

clusion. ��
The h∗-polynomials of V2m and Ṽ2m are as follows:

Proposition 5.7 Let Cd denote a cycle of length d ≥ 3 and let 1 ≤ m ∈ Z. Then we
have

h∗(ACd , x) =
�(d−1)/2�∑

i=0

(
2i

i

)
xi (x + 1)d−2i−1,

h∗(V2m, x) =
m∑

i=0

(
2i

i

)
xi (x + 1)2m−2i ,

h∗(Ṽ2m, x) = (x + 1)2m +
m∑

i=1

(
2i − 1

i − 1

)
xi (x + 1)2m−2i .

In particular, the h∗-polynomials of ACd , V2m, and Ṽ2m are γ -positive.

Proof Theproof forCd is by induction ond. First,wehaveh∗(AC3 , x) = x2+4x+1 =
(x + 1)2 + (2

1

)
x . If d ≥ 4 is even, then

h∗(ACd , x) = (x + 1)h∗(ACd−1 , x)

=
(d−2)/2∑

i=0

(
2i

i

)
xi (x + 1)d−2i−1 =

�(d−1)/2�∑

i=0

(
2i

i

)
xi (x + 1)d−2i−1.
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Moreover, if d = 2m + 1, 2 ≤ m ∈ Z, then the coefficient of xm in

(d−1)/2∑

i=0

(
2i

i

)
xi (x + 1)d−2i−1 = (x + 1)h∗(ACd−1 , x) +

(
2m

m

)
xm

is

m∑

i=0

(
2i

i

)(
2m − 2i

m − i

)
= 4m = 2d−1,

and the other coefficient is arising from (x + 1)h∗(ACd−1 , x). By a recursive formula
in [29, Thm. 2.3], we have

h∗(ACd , x) =
(d−1)/2∑

i=0

(
2i

i

)
xi (x + 1)d−2i−1.

SinceV2m is unimodularly equivalent toAC2m+1 ,wehaveh
∗(V2m, x) = h∗(AC2m+1 , x).

By Lemma 5.6, it follows that

h∗(Ṽ2m, x) = h∗(AC2m+1 , x) + h∗(AP2m+1 , x)

2

= 1

2

m∑

i=0

(
2i

i

)
xi (x + 1)2m−2i + (x + 1)2m

2

= (x + 1)2m +
m∑

i=1

(
2i − 1

i − 1

)
xi (x + 1)2m−2i . ��

Thus it turns out that any pseudo-symmetric simplicial reflexive polytope is a free
sum of reflexive polytopes whose h∗-polynomials are γ -positive. By [4, Thm. 1], we
have the following.

Theorem 5.8 The h∗-polynomial of any pseudo-symmetric simplicial reflexive poly-
tope is γ -positive.

Proof From results byNill [27], any pseudo-symmetric simplicial reflexive polytope is
a free sum of cross polytopes, del Pezzo polytopes, and pseudo-del Pezzo polytopes.
On the other hand, by [4, Thm. 1], the h∗-polynomial of a free sum of reflexive
polytopes P1, . . . ,Ps is equal to the product of h∗-polynomials of P1, . . . ,Ps .
Hence, by Example 5.1 and Proposition 5.7, it follows that the h∗-polynomial of any
pseudo-symmetric simplicial reflexive polytope is γ -positive. ��

5.3 Classes of Graphs with h∗(AG, x) Being �-Positive

With the results of the present section one can show that, for example, h∗(AG , x) is
γ -positive if one of the following holds:
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• G = Ĥ for some graph H (e.g., G is a complete graph, a wheel graph);
• G = H̃ for some bipartite graph H (e.g., G is a complete bipartite graph);
• G is a cycle;
• G is an outerplanar bipartite graph.

Moreover, one can compute h∗(AG , x) explicitly in some cases. We give such cal-
culations for some known formulas (for complete [1] and complete bipartite graphs
[21]).

Example 5.9 [1] By Theorem 5.3, we have

h∗(AKd , x) = h∗(AK̂d−1
, x) = (x + 1)d−1

2d−2

∑

H∈Cut(Kd−1)

IH̃

(
4x

(x + 1)2

)
.

If the edge set of H ∈ Cut(Kd−1) is ES with S ⊂ [d − 1], then H is a complete
bipartite graph K|S|,d−1−|S| and

IH̃ (x) =
∑

i≥0

(|S|
i

)(
d − |S| − 1

i

)
xi .

(Here K0,d−1 denotes an empty graph.) It then follows that

h∗(AKd , x) = 1

2d−1

d−1∑

k=0

(
d − 1

k

) �(d−1)/2�∑

i=0

4i
(
k

i

)(
d − k − 1

i

)
xi (x + 1)d−1−2i

= 1

2d−1

�(d−1)/2�∑

i=0

4i x i (x + 1)d−1−2i
d−i−1∑

k=i

(
d − 1

k

)(
k

i

)(
d − k − 1

i

)

= 1

2d−1

�(d−1)/2�∑

i=0

4i x i (x + 1)d−1−2i
d−i−1∑

k=i

(
d − 1

2i

)(
2i

i

)(
d − 1 − 2i

k − i

)

= 1

2d−1

�(d−1)/2�∑

i=0

4i x i (x + 1)d−1−2i2d−1−2i
(
d − 1

2i

)(
2i

i

)

=
�(d−1)/2�∑

i=0

(
d − 1

2i

)(
2i

i

)
xi (x + 1)d−1−2i .

Example 5.10 [21] Let G = Km,n . Then G̃ = Km+1,n+1 and

h∗(AKm+1,n+1 , x) = (x + 1)h∗(AK̂m,n
, x)

= (x + 1)m+n+1

2m+n−1

∑

H∈Cut(Km,n)

IH̃

(
4x

(x + 1)2

)
.
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Let V1 ∪V2 be the partition of the vertex set of Km,n , where |V1| = m and |V2| = n. If
the edge set of H ∈ Cut(Km,n) is ES with S ⊂ [m + n], then H is the disjoint union
of two complete bipartite graphs Kk,� and Km−k,n−�, and hence

IH̃ (x) =
∑

i≥0

(
k

i

)(
�

i

)
xi ×

∑

j≥0

(
m − k

j

)(
n − �

j

)
x j ,

where k = |V1 ∩ S| and � = n − |V2 ∩ S|. It then follows that

h∗(AKm+1,n+1 , x) = x + 1

2m+n

m∑

k=0

n∑

�=0

(
m

k

)(
n

�

)min (k,�)∑

i=0

4i
(
k

i

)(
�

i

)
xi (x + 1)k+�−2i

×
min (m−k,n−�)∑

j=0

4 j
(
m − k

j

)(
n − �

j

)
x j (x + 1)m+n−k−�−2 j

= 1

2m+n

∑

i, j≥0

4i+ j x i+ j (x + 1)n+m−2(i+ j)+1

×
m− j∑

k=i

(
m

k

)(
k

i

)(
m − k

j

) n− j∑

�=i

(
n

�

)(
�

i

)(
n − �

j

)
.

Since

m− j∑

k=i

(
m

k

)(
k

i

)(
m − k

j

)
=

m− j∑

k=i

(
m

i + j

)(
i + j

i

)(
m − (i + j)

k − i

)

= 2m−(i+ j)
(

m

i + j

)(
i + j

i

)
,

we have

h∗(AKm+1,n+1 , x) =
∑

i≥0

∑

j≥0

(
i + j

i

)2( m

i + j

)(
n

i + j

)
xi+ j (x + 1)m+n−2(i+ j)+1

=
min(m,n)∑

α=0

α∑

i=0

(
α

i

)2(m
α

)(
n

α

)
xα(x + 1)m+n−2α+1

=
min(m,n)∑

α=0

(
2α

α

)(
m

α

)(
n

α

)
xα(x + 1)m+n−2α+1.

Finally, we conjecture the following:

Conjecture 5.11 The h∗-polynomial of any symmetric edge polytope of type A is γ -
positive.
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6 Twinned Chain Polytopes

In this section, we will apply Theorem 1.1 to twinned chain polytopes. For two lattice
polytopes P,Q ⊂ R

d , we set

	(P,Q) := conv (P ∪ (−Q)) ⊂ R
d .

Let P and Q be two finite posets on [d]. The twinned chain polytope of P and Q is the
lattice polytope defined by CP,Q := 	(CP ,CQ). Then CP,Q is reflexive. Moreover,
CP,Q has a flag, regular unimodular triangulation all of whose maximal simplices
contain the origin [16, Prop. 1.2]. Hence we obtain

Corollary 6.1 Let P and Q be two finite posets on [d]. Then the h∗-polynomial ofCP,Q

coincides with the h-polynomial of a flag triangulation of a sphere.

In [39, Prop. 2.2] it was shown that CP,Q is locally anti-blocking. In general, for
two finite posets (P,<P ) and (Q,<Q) with P ∩ Q = ∅, the ordinal sum of P and
Q is the poset (P ⊕ Q,<P⊕Q) on P ⊕ Q = P ∪ Q such that i <P⊕Q j if and only
if (a) i, j ∈ P and i <P j , or (b) i, j ∈ Q and i <Q j , or (c) i ∈ P and j ∈ Q.
Given a subset I of [d], we define the induced subposet of P on I to be the finite poset
(PI ,<PI ) on I such that i <PI j if and only if i <P j . For I ⊂ [d], let I := [d] \ I .

Proposition 6.2 [39, Prop. 2.2] Let P and Q be two finite posets on [d]. Then for each
ε ∈ {−1, 1}d , it follows that

CP,Q ∩ R
d
ε = C±

PIε ⊕QIε
∩ R

d
ε ,

where Iε = {i ∈ [d] : εi = 1}.
From this result, Theorem 1.1, and Proposition 3.4 we obtain the following:

Theorem 6.3 Let P and Q be two finite posets on [d]. Then one has

h∗(CP,Q, x) = 1

2d
∑

ε∈{−1,1}d
h∗(C (e)

Rε
, x) = (x + 1)d fP,Q

(
4x

(x + 1)2

)
,

where Iε = {i ∈ [d] : εi = 1} and Rε is a naturally labeled poset that is obtained
from PIε ⊕ QI ε

by reordering the label and

fP,Q(x) = 1

2d
∑

ε∈{−1,1}d
W (�)

Rε
(x).

In particular, h∗(CP,Q, x) is γ -positive. Moreover, h∗(CP,Q, x) is real-rooted if and
only if fP,Q(x) is real-rooted.
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On the other hand, it is known that from h∗(CP,Q, x) we obtain h∗-polynomials of
several non-locally anti-blocking lattice polytopes arising from the posets P and Q.
The order polytope OP [37] of P is the (0, 1)-polytope defined by

OP := {x ∈ [0, 1]d : xi ≤ x j if i <P j}.

Given two lattice polytopes P,Q ⊂ R
d , we define

P ∗ Q := conv ((P × {0}) ∪ (Q × {1})) ⊂ R
d+1,

which is called the Cayley sum of P and Q, and define

�(P,Q) := conv ((P × {1}) ∪ (−Q × {−1})) ⊂ R
d+1.

Proposition 6.4 [16, Thm. 1.1] Let P and Q be two finite posets on [d]. Then

h∗(CP,Q, x) = h∗(	(OP ,CQ), x).

Furthermore, if P and Q have a common linear extension, then

h∗(CP,Q, x) = h∗(	(OP ,OQ), x).

Proposition 6.5 [18, Thm. 1.4] Let P and Q be two finite posets on [d]. Then

(1 + x)h∗(CP,Q, x) = h∗(�(OP ,CQ), x).

Furthermore, if P and Q have a common linear extension, then

(1 + x)h∗(CP,Q, x) = h∗(�(OP ,OQ), x).

Proposition 6.6 [17, Thm. 4.1] Let P and Q be two finite posets on [d]. Then

h∗(CP,Q, x) = h∗(OP ∗ CQ, x).

From these propositions and Theorem 6.3, we obtain the following:

Corollary 6.7 Let P and Q be two finite posets on [d]. Then the h∗-polynomials of
	(OP ,CQ), �(OP ,CQ), OP ∗ CQ, and �(CP ,CQ) are γ -positive. Furthermore, if
P and Q have a common linear extension, then the h∗-polynomials of 	(OP ,OQ)

and �(OP ,OQ) are also γ -positive.

In the rest of this section, we introduce enriched (P, Q)-partitions and we show
that the Ehrhart polynomial ofCP,Q coincides with a counting polynomial of enriched
(P, Q)-partitions. Assume that P and Q are naturally labeled. We say that a map
f : [d] → Z is an enriched (P, Q)-partition if, for all x, y ∈ [d], it satisfies
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• x <P y, f (x) ≥ 0, and f (y) ≥ 0 ⇒ f (x) ≤ f (y);
• x <Q y, f (x) ≤ 0, and f (y) ≤ 0 ⇒ f (x) ≥ f (y).

For a map f : [d] → Z, we set

m( f ) = min {{0} ∪ { f (x) : x ∈ [d]}} and M( f ) = max {{0} ∪ f (x) : x ∈ [d]}}.

For each 0 < m ∈ Z, let �
(e)
P,Q(m) denote the number of enriched (P, Q)-partitions

f : [d] → Z with M( f ) − m( f ) ≤ m.

Theorem 6.8 Let P and Q be two finite posets on [d]. Then one has

LCP,Q (m) = �
(e)
P,Q(m).

Proof Let F(m) stand for the set of enriched (P, Q)-partitions with M( f )−m( f ) ≤
m. We show that there exists a bijection from mCP,Q ∩ Z

d to F(m). Take f ∈ F(m)

and set m( f ) = a and M( f ) = b. We set

I = {i ∈ [d] : f (i) ≥ 0}.

Let

xi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f (i) if i ∈ I is minimal in PI ,

min { f (i) − f ( j) : i covers j in PI } if i ∈ I is not minimal in PI ,

−| f (i)| if i ∈ I is minimal in QI ,

−min {| f (i)| − | f ( j)| : i covers j in QI } if i ∈ I is not minimal in QI .

Assume that I = {1, . . . , k} and I = {k + 1, . . . , d}. Then we have (x1, . . . , xk) ∈
bCPI and (xk+1, . . . , xd) ∈ aCQI

by a result of Stanley [37, Thm. 3.2]. Hence one
obtains (x1, . . . , xd) ∈ bCPI ⊕ aCQI

⊂ mCP,Q , where bCPI ⊕ aCQI
is the free

sum of bCPI and aCQI
. Similarly, in general, it follows that (x1, . . . , xd) ∈ mCP,Q .

Therefore, the map ϕ : F(m) → mCP,Q ∩ Z
d , ϕ( f ) = (x1, . . . , xd) for each f ∈

F(m), is well defined.
Take (x1, . . . , xd) ∈ mCP,Q ∩Z

d . We set I = {i ∈ [d] : xi ≥ 0} and define a map
f : [d] → Z by

f (i) =
{
max {x j1 + · · · + x jk : j1 <PI · · · <PI jk = i} if i ∈ I ,

−max {|x j1 | + · · · + |x jk | : j1 <QI
· · · <QI

jk = i} if i ∈ I .

Assume that I = {1, . . . , k} and I = {k + 1, . . . , d}. Then one has (x1, . . . , xd) ∈
m(CPI ⊕ (−CQI

)) ∩ Z
d . Moreover, for some integers a and b with a ≤ 0 ≤ b and

b − a ≤ m, it follows that (x1, . . . , xk) ∈ bCPI and (xk+1, . . . , xd) ∈ aCQI
. We

define f1 : I → Z by f1(i) = f (i), and f2 : I → Z by f2(i) = − f (i). From [37,
proof of Thm. 3.2], it follows that 0 ≤ f1(i) ≤ b for any i ∈ I and f1(x) ≤ f1(y)
if x<PI

y, and 0 ≥ f2(i) ≥ a for any i ∈ I and f2(x) ≤ f2(y) if x<QI
y. Therefore,
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f : [d] → Z is an enriched (P, Q)-partition with M( f ) − m( f ) ≤ b − a ≤ m,
namely, f ∈ F(m). Similarly, in general, it follows that f ∈ F(m). Thus, the map
ψ : mCP,Q∩Z

d → F(m),ψ(x)(i) = f (i) for each x = (x1, . . . , xd) ∈ mCP,Q∩Z
d ,

is well defined.
Finally, we show that ϕ is a bijection. However, this immediately follows by the

above and the argument in [37, proof of Thm. 3.2]. ��

Since CP,Q is reflexive, we obtain

Corollary 6.9 Let P and Q be two finite naturally labeled posets on [d]. Then�
(e)
P,Q(m)

is a polynomial in m of degree d and one has

�
(e)
P,Q(m) = (−1)d�(e)

P,Q(−m − 1).
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13. Gal, Ś.R.: Real Root Conjecture fails for five- and higher-dimensional spheres. Discrete Comput.

Geom. 34(2), 269–284 (2005)
14. Herzog, J., Hibi, T., Ohsugi, H.: Binomial Ideals. Graduate Texts in Mathematics, vol. 279. Springer,

Cham (2018)
15. Hibi, T.: Dual polytopes of rational convex polytopes. Combinatorica 12(2), 237–240 (1992)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1910.05193


722 Discrete & Computational Geometry (2021) 66:701–722

16. Hibi, T., Matsuda, K., Tsuchiya, A.: Gorenstein Fano polytopes arising from order polytopes and chain
polytopes. arXiv:1507.03221

17. Hibi, T., Ohsugi, H., Tsuchiya, A.: Integer decomposition property for Cayley sums of order and stable
set polytopes. Michigan Math. J. (2020). https://doi.org/10.1307/mmj/1585792887

18. Hibi, T., Tsuchiya, A.: Facets and volume of Gorenstein Fano polytopes. Math. Nachr. 290(16), 2619–
2628 (2017)

19. Hibi, T., Tsuchiya, A.: Reflexive polytopes arising from perfect graphs. J. Comb. Theory Ser. A 157,
233–246 (2018)

20. Higashitani, A.: Smooth Fano polytopes arising from finite directed graphs. Kyoto J. Math. 55(3),
579–592 (2015)

21. Higashitani, A., Jochemko, K., Michałek, M.: Arithmetic aspects of symmetric edge polytopes. Math-
ematika 65(3), 763–784 (2019)

22. Kálmán, T.: A version of Tutte’s polynomial for hypergraphs. Adv. Math. 244, 823–873 (2013)
23. Kohl, F., Olsen, M., Sanyal, R.: Unconditional reflexive polytopes. Discrete Comput. Geom. (2020).

https://doi.org/10.1007/s00454-020-00199-8
24. Kreuzer,M., Skarke, H.: Complete classification of reflexive polyhedra in four dimensions. Adv. Theor.

Math. Phys. 4(6), 1209–1230 (2000)
25. Lagarias, J.C., Ziegler, G.M.: Bounds for lattice polytopes containing a fixed number of interior points

in a sublattice. Can. J. Math. 43(5), 1022–1035 (1991)
26. Matsui, T., Higashitani, A., Nagazawa, Y., Ohsugi, H., Hibi, T.: Roots of Ehrhart polynomials arising

from graphs. J. Algebr. Comb. 34(4), 721–749 (2011)
27. Nill, B.: Classification of pseudo-symmetric simplicial reflexive polytopes. In: Algebraic and Geomet-

ric Combinatorics (Anogia 2005). Contemp. Math., vol. 423, pp. 269–282. American Mathematical
Society, Providence (2006)

28. Ohsugi, H., Hibi, T.: Centrally symmetric configurations of integer matrices. Nagoya Math. J. 216,
153–170 (2014)

29. Ohsugi, H., Shibata, K.: Smooth Fano polytopes whose Ehrhart polynomial has a root with large real
part. Discrete Comput. Geom. 47(3), 624–628 (2012)

30. Ohsugi, H., Tsuchiya, A.: Enriched chain polytopes. Israel J. Math. 237, 485–500 (2020)
31. Ohsugi, H., Tsuchiya,A.: Reflexive polytopes arising frombipartite graphswith γ -positivity associated

to interior polynomials. Selecta Math. (N.S.), to appear
32. O’Keeffe, M.: Coordination sequences for lattices. Zeitschrift für Kristallographie 210(12), 905–908

(1995)
33. Petersen, T.K.: Enriched P-partitions and peak algebras. Adv. Math. 209(2), 561–610 (2007)
34. Petersen, T.K.: Eulerian Numbers. Birkhäuser Advanced Texts. Basler Lehrbücher. Birkhäuser, New

York (2015)
35. Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete Math-

ematics. Wiley, Chichester (1986)
36. Stanley, R.P.: Decompositions of rational convex polytopes. Ann. Discrete Math. 6, 333–342 (1980)
37. Stanley, R.P.: Two poset polytopes. Discrete Comput. Geom. 1(1), 9–23 (1986)
38. Stembridge, J.R.: Enriched P-partitions. Trans. Am. Math. Soc. 349(2), 763–788 (1997)
39. Tsuchiya, A.: Volume, facets and dual polytopes of twinned chain polytopes. Ann. Comb. 22(4),

875–884 (2018)
40. Wang, C., Yu, J.: Toric h-vectors and Chow Betti numbers of dual hypersimplices (2017).

arXiv:1707.04581

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1507.03221
https://doi.org/10.1307/mmj/1585792887
https://doi.org/10.1007/s00454-020-00199-8
http://arxiv.org/abs/1707.04581

	The h*-Polynomials of Locally Anti-Blocking Lattice Polytopes and Their γ-Positivity
	Abstract
	1 Introduction
	2 Ehrhart Theory and Reflexive Polytopes
	3 Classes of Anti-Blocking Polytopes and Unconditional Polytopes
	3.1 (0,1)-Polytopes Arising from Simplicial Complexes
	3.2 Stable Set Polytopes
	3.3 Chain Polytopes and Enriched Chain Polytopes
	3.4 Symmetric Edge Polytopes of Type B

	4 h*-Polynomials of Locally Anti-Blocking Lattice Polytopes
	5 Symmetric Edge Polytopes of Type A
	5.1 Recursive Formulas for h*-Polynomials
	5.2 Pseudo-Symmetric Simplicial Reflexive Polytopes
	5.3 Classes of Graphs with h*(mathcalAG, x) Being γ-Positive

	6 Twinned Chain Polytopes
	Acknowledgements
	References


