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Abstract

Given a hypercomplex manifold with a rotating vector field (and additional
data), we construct a conical hypercomplex manifold. As a consequence, we
associate a quaternionic manifold to a hypercomplex manifold of the same di-
mension with a rotating vector field. This is a generalization of the HK/QK-
correspondence. As an application, we show that a quaternionic manifold can
be associated to a conical special complex manifold of half its dimension. Fur-
thermore, a projective special complex manifold (with a canonical c-projective
structure) associates with a quaternionic manifold. The latter is a generalization
of the supergravity c-map. We do also show that the tangent bundle of any special
complex manifold carries a canonical Ricci-flat hypercomplex structure, thereby
generalizing the rigid c-map.
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1 Introduction

The HK/QK-correspondence is a construction of a (pseudo-)quaternionic Kähler man-
ifold from a (pseudo-)hyper-Kähler manifold of the same dimension with a rotating
vector field (see Definition 3.1 and [15, 2, 16, 4]). This correspondence gives also the
supergravity c-map, which associates a quaternionic Kähler manifold with a projective
special Kähler manifold. The supergravity c-map was introduced in theoretical physics
[13].

The inverse construction of the HK/QK-correspondence is called the QK/HK-cor-
respondence. It has been generalized to a Q/H-correspondence, a construction of
hypercomplex manifolds from quaternionic manifolds [10]. The purpose of this pa-
per is to construct a quaternionic manifold from a hypercomplex manifold endowed
with a rotating vector field and some extra data. We shall call this construction the
hypercomplex/quaternionic-correspondence (H/Q-correspondence for short). We briefly
explain how we obtain this correspondence. First we define the notion of a conical hyper-
complex manifold (Definition 2.1). Next we construct a conical hypercomplex manifold
M̂ for every hypercomplex manifold M with a rotating vector field Z (Theorem 3.9)
and additional data: a two-form Θ on M , a U(1)-bundle over M whose curvature sat-
isfies (3.1) and a function f on M such that df = −ιZΘ. The manifold M̂ is endowed
with a free action of the Lie algebra LieH∗ ∼= R ⊕ su(2) and its quotient space M̄
carries a quaternionic structure, provided that the quotient map M̂ → M̄ is a submer-
sion. The H/Q-correspondence is then defined as M 7→ M̄ (Theorems 4.1 and 4.8).
In addition, we show that M̄ carries not only a quaternionic connection but also an
(induced) affine quaternionic vector field (Proposition 4.7). Note that we give an ex-
ample of our H/Q-correspondence from a hypercomplex Hopf manifold, which does not
admit any hyper-Kähler structure (Example 5.3). Therefore the H/Q-correspondence is
a proper generalization of the HK/QK-correspondence. Examples like hypercomplex or
quaternionic Hopf manifolds show that hypercomplex and quaternionic manifolds arise
naturally beyond the context of hyper-Kähler and quaternionic Kähler geometry. We
refer to [25, 18, 19] for the theory of quaternionic manifolds and constructions of such
manifolds.

The rigid c-map [9] allows to associate with a conical special Kähler manifold its
cotangent bundle endowed with a hyper-Kähler structure with a rotating vector field
[2]. In the absence of a metric, we show that the tangent bundle of a special complex
manifold carries a canonical hypercomplex structure and that its Obata connection is
Ricci flat (Theorem 6.5). In this way we establish a generalization of the rigid c-map
which assigns a Ricci flat hypercomplex manifold to each special complex manifold.
When the special complex manifold is conical, the resulting hypercomplex manifold is
shown to admit a canonical rotating vector field (Lemma 8.1). The notion of a (conical)
special complex manifold was introduced in [3]. It is a generalization of a (conical)
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special Kähler manifold. We give a local example which does not arise as a special
Kähler manifold (Example 8.9). In addition, we find many (different) quaternionic
structures on the tangent bundle of a conical special complex manifold in this example
(Example 8.9), using a generalization of the supergravity c-map.

As an application of our H/Q-correspondence, we indeed generalize the supergravity
c-map by associating a quaternionic manifold with every conical special complex mani-
fold and therefore with every projective special complex manifold (using the extra data
involved in the H/Q-correspondence), see Theorem 8.3. It is shown in Proposition 7.3
that any projective special complex manifold possesses a canonical c-projective structure
and in Theorem 7.10 that its c-projective Weyl curvature is of type (1, 1). So our gener-
alized supergravity c-map can be formulated as associating a quaternionic manifold to
a projective special complex manifold endowed with its canonical c-projective structure
with c-projective Weyl curvature of type (1, 1). This addresses one of the questions
raised in [6], where a different construction of quaternionic manifolds from c-projective
structures was obtained, compare Remark 8.5.

In the special case of the HK/QK-correspondence, the two-form Θ, which is part
of the data entering the H/Q-correspondence, is the Z-invariant Kähler form ω1 in the
hyper-Kähler-triple (ω1, ω2, ω3). However, in general, we have a freedom in the choice
of Θ in the H/Q-correspondence (see Section 5). In particular we find two choices of
Θ in Example 5.4 which yield different quaternionic structures on the resulting space.
This shows that our H/Q-correspondence is not an inverse construction of the Q/H-
correspondence without a further specification of Θ. It is left for future studies to find
a suitable choice of Θ which gives an inverse construction.

We summarize our constructions in this paper as the following commutative diagram.

M̂ : conical hypercomplex

M̄ : quaternionic

N : conical special complex

N̄ : projective special complex

(P, η)

(N, J,∇, ξ) (M = TN, f,Θ) M̂ = CP (M)

(N̄, J̄ ,P∇̄′) M̄ = M̂/D

❄

U(1)

♣ ♣ ♣ ♣ ♣ ♣ ♣✲rigid c-map.

Theorem 6.5

❄

Proposition 7.3 pN

♣ ♣ ♣ ♣ ♣ ♣ ♣✲conification

Theorem 3.9
♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣❥

H/Q-corresp.

Theorems 4.1 and 4.8

❄
π̂

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣✲generalized supergravity c-map

Theorem 8.3

2 Preliminaries

Throughout this paper, all manifolds are assumed to be smooth and without boundary
and maps are assumed to be smooth unless otherwise mentioned. The space of sections
of a vector bundle E →M is denoted by Γ(E).
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In this section we introduce hypercomplex and quaternionic structures and derive
some properties of conical hypercomplex manifolds.

We say that M is a quaternionic manifold with the quaternionic structure Q if Q
is a subbundle of End(TM) of rank 3 which at every point x ∈ M is spanned by
endomorphisms I1, I2, I3 ∈ End(TxM) satisfying

I21 = I22 = I23 = −id, I1I2 = −I2I1 = I3,(2.1)

and there exists a torsion-free connection ∇ on M such that ∇ preserves Q, that is,
∇XΓ(Q) ⊂ Γ(Q) for all X ∈ Γ(TM). Such a torsion-free connection ∇ is called a
quaternionic connection and the triplet (I1, I2, I3) is called an admissible frame of Q at
x. Note that we use the same letter ∇ for the connection on End(TM) induced by ∇.
The dimension of the quaternionic manifold M is denoted by 4n.

An almost hypercomplex manifold is defined to be a manifold M endowed with 3 al-
most complex structures I1, I2, I3 satisfying the quaternionic relations (2.1). If I1, I2, I3
are integrable, then M is called a hypercomplex manifold. There exists a unique torsion-
free connection on a hypercomplex manifold for which the hypercomplex structures are
parallel. It is called the Obata connection [22]. Obviously, hypercomplex manifolds are
quaternionic manifolds with Q = 〈I1, I2, I3〉.
Definition 2.1. We say that a hypercomplex manifold (M, (I1, I2, I3)) with a vector field
V is conical if ∇0V = id holds, where ∇0 is the Obata connection. The vector field V is
called the Euler vector field.

We state some lemmas for conical hypercomplex manifolds, which will be used later.

Lemma 2.2. Let (M, (I1, I2, I3), V ) be a conical hypercomplex manifold. Then we have
LV Iα = 0, LIαV Iα = 0 for α ∈ {1, 2, 3} and LIαV Iβ = −2Iγ for any cyclic permutation
(α, β, γ).

Proof. The formulas follow immediately from LV = ∇0
V −∇0V = ∇0

V − id and LIαV =
∇0

IαV
− Iα.

For a connection ∇ and X ∈ Γ(TM), we define

(LX∇)Y Z := LX(∇YZ)−∇LXY Z −∇Y (LXZ),(2.2)

where Y , Z ∈ Γ(TM). Note that LX∇ is a tensor.

Lemma 2.3. Let (M, (I1, I2, I3), V ) be a conical hypercomplex manifold. Then we have
LV∇0 = 0 and LIαV∇0 = 0.

Proof. By Lemma 2.2, V and IαV are quaternionic vector fields, namely LV Γ(Q) ⊂ Γ(Q)
and LIαV Γ(Q) ⊂ Γ(Q), where Q = 〈I1, I2, I3〉. By [10, Proposition 4.2], it is enough to
check Ric∇

0
(V, · ) = 0 and Ric∇

0
(IαV, · ) = 0. We have

Ric∇
0

(V, Y ) = −Ric∇0

(Y, V ) = −TrR∇0

( · , Y )V = 0.

Here we used the skew-symmetry of the Ricci tensor of the Obata connection. It follows
that also Ric∇

0
(IαV, · ) = −Ric∇0

(V, Iα · ) = 0, by the hermitian property of the Ricci
tensor of the Obata connection.
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Alternatively we could have used Lemma 2.2 and the explicit form of the Obata
connection to check LIαV∇0 = 0. Note that LV∇0 = 0 follows from the uniqueness of
the Obata connection, since the vector field V preserves the hypercomplex structure.

Example 2.4 (The Swann bundle). The principal R>0 × SO(3) bundle over a quater-
nionic manifold, whose fibers consist of all volume elements and admissible frames at
each point, possesses a hypercomplex structure (see [24, 10]). It is conical and is called
the Swann bundle. The fundamental vector field generated by c( 6= 0) ∈ T1R

>0 = R

is the Euler vector field, as can be easily checked from the explicit representation of
the Obata connection (see [5] for example). In the notation of [10] with ε = −1 and
c = −4(n+1), a basis of fundamental vector fields for the principal action is given by the
vector fields V = Z0 and Zα = −IαZ0 with non-trivial commutators [Zα, Zβ] = −2Zγ

and Lie derivatives LZα
Iβ = −2Iγ for any cyclic permutation of {1, 2, 3}, where we have

denoted by (I1, I2, I3) the hypercomplex structure of the Swann bundle. Specializing to
the Swann bundle H∗/{±1} of a point, we see that Z0 corresponds to 1 and (Z1, Z2, Z3)
to (i, j, k) in T1(H

∗/{±1}) = T1H = H.

Lemma 2.5. On any conical hypercomplex manifold (M, (I1, I2, I3), V ), the distribution
D := 〈V, I1V, I2V, I3V 〉 on {x ∈M | Vx 6= 0} is integrable.

Proof. This follows from Lemma 2.2.

3 Conification of hypercomplex manifolds

The main result of this section is a construction of conical hypercomplex manifolds M̂ of
dimension dim M̂ = dimM +4 from hypercomplex manifolds M with a rotating vector
field.

Let M be a hypercomplex manifold of dimension 4n with a hypercomplex structure
H = (I1, I2, I3).

Definition 3.1. A vector field Z on a hypercomplex manifold (M, (I1, I2, I3)) is called
rotating if LZI1 = 0 and LZI2 = −2I3.

Note that if Z is rotating, then LZI3 = 2I2. In this section we will essentially show
that by choosing a (local) primitive of the one-form ιZΘ we can construct a conical
hypercomplex manifold (M̂, Ĥ, V ) for a hypercomplex manifold (M,H) with a rotating
vector field Z and a closed two-form Θ such that LZΘ = 0.

Let f be a smooth function onM such that df = −ιZΘ and f1 := f−(1/2)Θ(Z, I1Z)
is nowhere vanishing. Consider a principal U(1)-bundle π : P → M with a connection
form η whose curvature form is

dη = π∗
(
Θ− 1

2
d((ιZΘ) ◦ I1)

)
.(3.1)

Since the curvature dη is a basic form, we will usually identify it with its projection
Θ − 1

2
d((ιZΘ) ◦ I1) on M . With this understood we have the following lemma, which

follows immediately from the definition of f1.
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Lemma 3.2. df1 = −ιZdη.

Define a vector field Z1 on P by Z1 = Zhη +(π∗f1)XP , where Z
hη is the η-horizontal

lift and XP is the fundamental vector field such that η(XP ) = 1. We will write f1 for
π∗f1.

Remark 3.3. Note that [XP , Z1] = 0. Therefore if Z1 generates a U(1)-action on P ,
then its action commutes with the principal action of π : P → M .

Set M̃ = H∗ × P . Let (eR0 , e
R
1 , e

R
2 , e

R
3 ) (resp. (eL0 , e

L
1 , e

L
2 , e

L
3 )) be the right-invariant

(resp. the left-invariant) frame of H∗ which coincides with (1, i, j, k) at 1 ∈ H∗. Note
that [eR1 , e

R
2 ] = −2eR3 . We will use the same letter for vectors or vector fields canonically

lifted to the product M̃ = H∗ × P as for those on the factors H∗ and P . Set

V1 := eL1 − Z1.

We denote the space of integral curves of V1 by M̂ . We assume that the quotient map
π̃ : M̃ → M̂ is a submersion. Note that “submersion” requires that the quotient space
M̂ is smooth.

Lemma 3.4. We assume that the equation (3.1) holds. If LZI1 = 0 and LZΘ = 0, we
have

LV1Y
hη = −[Z, Y ]hη

for all Y ∈ Γ(TM).

Proof.

−LV1Y
hη =− [eL1 − Z1, Y

hη ] = [Z1, Y
hη ]

=[Zhη , Y hη ] + [f1XP , Y
hη ] = [Zhη , Y hη ]− (Y hηf1)XP

=[Z, Y ]hη + η([Zhη , Y hη ])XP − (Y hηf1)XP

=[Z, Y ]hη − dη(Z, Y )XP − (Y f1)XP

=[Z, Y ]hη ,

where we have used Lemma 3.2.

Note that

T(z,p)M̃ ∼= TzH
∗ ⊕ TpP = 〈eR0 , eR1 , eR2 , eR3 〉z ⊕ 〈XP 〉p ⊕Ker ηp

= 〈V1〉(z,p) ⊕ 〈eR0 , eR1 , eR2 , eR3 〉z ⊕Ker ηp

for (z, p) ∈ H∗ × P . We define three endomorphisms fields Ĩ1, Ĩ2, Ĩ3 on M̃ of rank Ĩα =
4n+ 4 (α = 1, 2, 3) as follows:

ĨαV1 = 0, Ĩαe
R
0 = eRα , Ĩαe

R
α = −eR0 , ĨαeRβ = eRγ , Ĩαe

R
γ = −eRβ ,

(Ĩα)(z,p)((Y
hη)(z,p)) = ((I ′α)π(p)(π∗Y ))

hη
(z,p)
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for Y ∈ TpM . Here I ′α is defined by

I ′α =

3∑

β=1

AαβIβ,(3.2)

where A = (Aαβ) ∈ SO(3) is the representation matrix of Adz|ImH with respect to the
basis (i, j, k). Note that Ker Ĩα = 〈V1〉, Im Ĩα = TH∗ ⊕ Ker η (α = 1, 2, 3) and that
Ĩ1, Ĩ2, Ĩ3 satisfy the quaternionic relations on TH∗ ⊕Ker η.

Lemma 3.5. LeR0
Ĩα = 0.

Proof. The flow ϕt : (z, p) 7→ (etz, p) of eR0 preserves the decomposition M̃ = H∗ × P
and acts trivially on the second factor. In particular, it preserves the distribution Ker η.
The action on the first factor is tri-holomorphic with respect to the (standard) hyper-
complex structure induced by (Ĩα) on H∗. Since Adz = Adrz for all r > 0, we also see
that ϕt preserves the tensors Ĩα|Ker η.

Lemma 3.6. If Z is rotating and LZΘ = 0, then we have LV1 Ĩα = 0.

Proof. By the definition of Ĩα, it is easy to obtain (LV1 Ĩα)V1 = 0 and (LV1 Ĩα)e
R
δ = 0

(δ = 0, . . . , 3). Moreover, by Lemma 3.4, we have

(LV1 Ĩα)(z,p)(Y
hη)

=[V1, ĨαY
hη ](z,p) − Ĩα[V1, Y

hη ](z,p)

=[eL1 , ĨαY
hη ](z,p) − [Z1, ĨαY

hη ](z,p) + Ĩα[Z, Y ]
hη

(z,p)

=[eL1 , ĨαY
hη ](z,p) − [Zh, ĨαY

hη ](z,p) − [f1XP , ĨαY
hη ](z,p) + (I ′α[Z, Y ])

hη
(z,p)

=[eL1 , ĨαY
hη ](z,p) − ((LZI

′
α)Y )

hη
(z,p),

where we have used that [Zh
η , ĨαY

hη ] + [f1XP , ĨαY
hη ] = [Z, I ′αY ]

hη + η([Z, I ′αY ])XP −
(I ′αY )(f1)XP = [Z, I ′αY ]

hη at the point (z, p), by Lemma 3.2. Taking the flow ϕt gener-
ated by eL1 , we have

[eL1 , ĨαY
hη ](z,p) =

3∑

β=1

(
d

dt

∣∣∣∣
t=0

Aαβ(t)

)
(IβY )hη

(z,p),

where

A(t) = (Aαβ(t)) =




1 0 0
0 cos 2t sin 2t
0 − sin 2t cos 2t


 ∈ SO(3),

is the matrix associated with ϕt(z). On the other hand, we see that

LZI
′
1 = −2A12I3 + 2A13I2,

LZI
′
2 = −2A22I3 + 2A23I2,

LZI
′
3 = −2A32I3 + 2A33I2
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and hence

LZ(I
′
1, I

′
2, I

′
3) = (LZI

′
1, LZI

′
2, LZI

′
3) = (I1, I2, I3)

(
d

dt
A(t)

)
.

Therefore we have (LV1 Ĩα)(z,p)(Y
hη) = 0.

By Lemma 3.6, we can define an almost hypercomplex structure (Î1, Î2, Î3) on M̂
satisfying π̃∗ ◦ Ĩα = Îα ◦ π̃∗.

Lemma 3.7. The almost hypercomplex structure Ĥ = (Î1, Î2, Î3) is integrable, that is,
(M̂, Ĥ) is a hypercomplex manifold.

Proof. Let X̃ and Ỹ be projectable vector fields on the total space of the submersion
π̃ : M̃ → M̂ and denote by X = π̃∗X̃, Y = π̃∗Ỹ their projections. Then we have
π̃∗(N

Ĩα(X̃, Ỹ )) = N Îα(X, Y ), where N Ĩα and N Îα are the Nijenhuis tensors of Ĩα and Îα,

respectively. Using that ĨαV1 = 0 and LV1 Ĩα = 0 (Lemma 3.6) we see that N Ĩα(V1, ·) = 0.

Since N Ĩα and N Îα are tensors, it is sufficient to show that the horizontal component
of N Ĩα(A,B) vanishes for sections A and B of 〈eR0 , eR1 , eR2 , eR3 〉 ⊕Ker η. It is easy to see

that N Ĩα(eRa , e
R
b ) = 0 and N Ĩα(eRa , X

hη) = 0, for all a, b ∈ {0, . . . , 3}. So we only need

to show that the horizontal component of N Ĩα(Xhη , Y hη) vanishes, i.e. the component
in 〈eR0 , eR1 , eR2 , eR3 〉 ⊕Ker η. It is given by

([X, Y ] + I ′α[X, I
′
αY ] + I ′α[I

′
αX, Y ]− [I ′αX, I

′
αY ])

hη = 0,

since (I ′1, I
′
2, I

′
3) is a hypercomplex structure on M , for every z ∈ H

∗.

Since LV1e
R
0 = 0, we can define a vector field V = π̃∗e

R
0 on M̂ . Let ∇̂0 be the Obata

connection with respect to Ĥ .

Lemma 3.8. We have ∇̂0V = id.

Proof. Using the explicit representation of the Obata connection (see [5] for example)
and Lemma 3.5, we have

12(∇̂0
π̃∗Y π̃∗e

R
0 ) =π̃∗


 ∑

(α,β,γ)

(Ĩα[ĨβY, e
R
γ ] + Ĩα[e

R
β , ĨγY ]) + 2

3∑

α=1

Ĩα[e
R
α , Y ]


 ,

where (α, β, γ) indicates sum over cyclic permutations of (1, 2, 3) and Y is a projectable
vector field on M̃ commuting with eR0 . Evaluating the expression on Y = eRa and
Y = Uhη , we obtain 12π̃∗Y .

As a consequence, by Lemmas 3.7 and 3.8, we can conclude

8



Theorem 3.9 (Conification). Let M be a hypercomplex manifold with a hypercomplex
structure H = (I1, I2, I3), a closed two-form Θ and a rotating vector field Z such that
LZΘ = 0. Let f be a smooth function on M such that df = −ιZΘ and assume f1 :=
f − (1/2)Θ(Z, I1Z) does nowhere vanish. Consider a principal U(1)-bundle π : P →M
with a connection form η whose curvature form is

dη = π∗
(
Θ− 1

2
d((ιZΘ) ◦ I1)

)
.

If the quotient map π̃ : M̃ → M̂ is a submersion, then (M̂, Ĥ) is a conical hypercomplex
manifold with the Euler vector field V = π̃∗e

R
0 .

Remark 3.10. The assumption that π̃ is a submersion is always satisfied locally by
considering local 1-parameter subgroup generated by V1, since the vector field V1 has no
zeros. Note that “submersion” requires that the quotient space is a smooth manifold.

We say that (M̂, Ĥ, V ) is the conification of (M,H,Z, f,Θ) associated with (P, η)
and denote it by (M̂, Ĥ, V ) = C(P,η)(M,H,Z, f,Θ) (or simply M̂ = CP (M) if there is
no confusion).

4 The hypercomplex/quaternionic-correspondence

Building on the conification construction of the last section we will now construct a
quaternionic manifold M̄ of dimension dim M̄ = dimM from a hypercomplex manifold
M with rotating vector field. The resulting quaternionic manifold is endowed with a
torsion-free quaternionic connection and an affine quaternionic vector field X .

The space of leaves of the integrable distribution D := 〈V, Î1V, Î2V, Î3V 〉 on M̂ is
denoted by M̄ . We shall show that M̄ = CP (M)/D is a quaternionic manifold, which is
the main theorem of this paper. In addition, we show that M̄ has a natural quaternionic
connection ∇̄ and an affine quaternionic vector field X induced from the fundamental
vector field XP of P → M .

Using Theorem 3.9 and a similar argument as in [24, Theorem 2.1], we prove Theo-
rem 4.1.

Theorem 4.1 (H/Q-correspondence). Let M be a hypercomplex manifold with a hy-
percomplex structure H = (I1, I2, I3), a closed two-form Θ and a rotating vector field Z
such that LZΘ = 0. Let f be a smooth function on M such that df = −ιZΘ and assume
that f1 := f − (1/2)Θ(Z, I1Z) does nowhere vanish. Consider a principal U(1)-bundle
π : P →M with a connection form η whose curvature form is

dη = π∗
(
Θ− 1

2
d((ιZΘ) ◦ I1)

)
.

If both quotient maps π̃ : M̃ → M̂ and π̂ : M̂ → M̄ defined above are submersions, then
there exists an induced quaternionic structure Q̄ on M̄ .
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Proof. As we proved in Theorem 3.9, M̂ = CP (M) is a conical hypercomplex manifold
with the hypercomplex structure Ĥ = (Î1, Î2, Î3). Let ϕ =

∑3
a=0 ϕaia ((i0, i1, i2, i3) =

(1, i, j, k)) be the right-invariant Maurer-Cartan form on H∗ and extend it with the same
letter to M̃ as ϕ|TP = 0. Set θ̃0 = ϕ0. Since LV1 θ̃0 = 0, we can define the one-form
θ̂0 on M̂ such that θ̃0 = π̃∗θ̂0. We define θ̂′ = θ̂0 +

∑3
α=1(θ̂0 ◦ Îα)iα and take the Euler

vector field V on M̂ as in Theorem 3.9. Here define an Îα-invariant distribution

Ĥ := Ker θ̂′.

It holds that TM̂ = D ⊕ Ĥ. Since LV θ̂
′ = 0 and LÎαV

θ̂′ = 2(θ̂0 ◦ Îβ)iγ − 2(θ̂0 ◦ Îγ)iβ
for any cyclic permutation (α, β, γ) (these are checked by straightforward calculations),
the distribution Ĥ is invariant along leaves of D. Since π̂ is a submersion, there exist a
neighborhood U ⊂ M̄ of x ∈ M̄ and a section s : U → M̂ . Then we can define

Īα(Y ) := π̂∗(Îα(Y
h
θ̂′

s(y)))

for y ∈ U , where Y ∈ TyM̄ and Y h
θ̂′ is the θ̂′-horizontal lift of Y with respect to Ĥ.

Although each Īα depends on the sections, the subbundle Q̄ = 〈Ī1, Ī2, Ī3〉 ⊂ End(TM̄)
is independent of the section by Lemma 2.2. This means that (M̄, Q̄) is an almost
quaternionic manifold.

Next we show that there exists a torsion-free connection which preserves Q̄. We
define a connection ∇̄ on M̄ by

∇̄YW = π̂∗(∇̂0

Y
h
θ̂′
W h

θ̂′ ), Y,W ∈ Γ(TM̄),(4.1)

where ∇̂0 is the Obata connection of M̂ . Note that ∇̄ is well-defined by Lemma 2.3.
Since the Obata connection is torsion-free, then so is ∇̄. To show that ∇̄ preserves Q̄,
we consider I ∈ Γ(Q̄). Then (IW )hθ̂′ =

∑3
α=1 aαÎαW

h
θ̂′ for some functions aα with∑3

α=1 a
2
α = 1, which implies

(∇̄Y I)W = π̂∗(
3∑

α=1

(Y h
θ̂′aα)ÎαW

h
θ̂′ ),

showing that ∇̄ preserves Q̄. Therefore (M̄, Q̄) is a quaternionic manifold.

Remark 4.2. The assumption that π̂ is a submersion is always satisfied locally.

Next we shall show that our construction induces a vector field X which is an affine
quaternionic vector field of (M̄, Q̄, ∇̄), where ∇̄ is given by (4.1).

Lemma 4.3. We have LV1XP = 0 and LXP
Ĩα = 0.

Proof. The first equation can be checked by a straightforward calculation. The second
follows from [XP , ĨαY

hη ] = [XP , (I
′
αY )

hη ] = 0.

By Lemma 4.3, we can define a vector field X̂P := π̃∗XP on M̂ . Moreover X̂P

satisfies the following.
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Lemma 4.4. We have LX̂P
Îα = 0, in addition, LX̂P

∇̂0 = 0.

Proof. The first claim follows from Lemma 4.3, as (LX̂P
Îα) ◦ π̃∗ = π̃∗ ◦ (LXP

Ĩα). Since
the Obata connection is uniquely determined by the hypercomplex structure, we have
LX̂P

∇̂0 = 0 by the invariance of the hypercomplex structure (Î1, Î2, Î3) under X̂P .

The next two lemmas follow respectively from [eRa , XP ] = 0 and LXP
θ̃0 = 0 by

projection.

Lemma 4.5. We have LV X̂P = 0 and LÎαV
X̂P = 0.

Lemma 4.6. We have LX̂P
θ̂0 = 0 on M̂ .

Lemma 4.5 allows us to define a vector field X := π̂∗X̂P on M̄ .

Proposition 4.7. Let (M̄, Q̄) be a quaternionic manifold obtained from a hypercom-
plex manifold M satisfying the assumptions in Theorem 4.1 and ∇̄ the quaternionic
connection defined by (4.1). The vector field X is an affine quaternionic vector field of
(M̄, Q̄, ∇̄), that is, satisfies LXΓ(Q̄) ⊂ Γ(Q̄) and LX∇̄ = 0.

Proof. It follows easily from Lemma 4.4 that X preserves the quaternionic structure Q̄.
From Lemma 4.4, Lemma 4.6 and the closure of θ̂0 we do also obtain that pv[X̂P , Y

h
θ̂′ ] =

0, where ph and pv denote the projections from TM̂ onto the horizontal and vertical
subbundles, respectively. Using this, for any vector fields Y and W on M̄ , we compute

(LX∇̄)YW =π̂∗

(
[X̂P , ∇̂0

Y
h
θ̂′
W Ĥ]− ∇̂0

ph[X̂P ,Y
h
θ̂′ ]
W h

θ̂′ − ∇̂0

Y
h
θ̂′
ph[X̂P ,W

h
θ̂′ ]
)

=π̂∗

(
(LX̂P

∇̂0)
Y

h
θ̂′
W h

θ̂′ + ∇̂0

pv[X̂P ,Y
h
θ̂′ ]
W h

θ̂′ + ∇̂0

Y
h
θ̂′
pv[X̂P ,W

h
θ̂′ ]
)
= 0.

We call the correspondence from a hypercomplex manifold (M,H,Z, f,Θ) to a
quaternionic manifold (M̄, Q̄, ∇̄, X) described in Theorem 4.1 (and Proposition 4.7
for the additional structure X) the hypercomplex/quaternionic-correspondence (H/Q-
correspondence for short). As we mentioned in Remarks 3.10 and 4.2, the global as-
sumption in Theorem 4.1 (H/Q-correspondence) that π̃ and π̂ are submersions is always
satisfied locally. Under stronger assumptions and by considering Swann’s twist [27], we
have the following global result. We use the notation ζA for the action induced from the
group 〈A〉 generated by a vector field A to distinguish U(1)-actions.

Theorem 4.8 (H/Q-correspondence, second version). Let M be a hypercomplex mani-
fold with a hypercomplex structure H = (I1, I2, I3), a closed two-form Θ and a rotating
vector field Z such that LZΘ = 0. Let f be a smooth function onM such that df = −ιZΘ
and assume that f1 := f − (1/2)Θ(Z, I1Z) does nowhere vanish. Consider a principal
U(1)-bundle π : P →M with a connection form η whose curvature form is

dη = π∗
(
Θ− 1

2
d((ιZΘ) ◦ I1)

)
.

If Z1 = Zhη + f1XP generates a free U(1)-action on P , then the conification M̂ of M is
H

∗ ×〈V1〉 P and the quaternionic manifold M̄ coincides with the twist of M given by the
twist data (Θ− 1

2
d((ιZΘ) ◦ I1), Z, f1) as manifolds.
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Proof. By Lemma 3.2, we see ιZdη = −df1. It follows that LZdη = 0 from the assump-
tions LZΘ = 0 and LZI1 = 0. Therefore we obtain a twist M ′ := P/〈Z1〉 of M with the
twist data (Θ− 1

2
d((ιZΘ)◦I1), Z, f1) since Z1 = Zhη+f1XP generates a free U(1)-action.

Let π′ : P → M ′ be the quotient map by the action of 〈Z1〉. We define an action of
〈V1〉(∼= U(1)) ⊂ 〈eL1 〉 × 〈Z1〉 on H∗ × P by

ζV1(u)(z, p) = (ζeL1 (u)z, ζZ1(u
−1)p)

for (z, p) ∈ H∗×P . We see that the conification M̂ ofM is a fiber bundle (H∗×P )/〈V1〉
over M ′, which is associated with π′ : P → M ′ and usually denoted by H∗ ×〈V1〉 P .

Moreover the quotient of M̂ by H∗ is M ′, that is, M̄ =M ′.

M̃ = H
∗ × P

P M̂ = H
∗ ×〈V1〉 P

M M ′ = M̄

❄

π2

◗
◗
◗
◗
◗
◗◗s

π̃

✑
✑

✑
✑

✑
✑

✑✑✰

π

◗
◗
◗
◗
◗
◗
◗◗s

π′

❄

π̂

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣✲twist

H/Q-corresp.

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣✶

conification

In the above diagram, π2 is the projection onto the second factor P .

Remark 4.9. Note that the bundle π̂ : M̂ → M̄ is associated to the principal U(1)-
bundle P → M̄ = M ′ = P/〈Z1〉. Therefore sections of π̂ are in one-to-one correspon-
dence with equivariant maps P → H∗. Let λ : P → H∗ be such that λ(ζZ1(u)p) =
ζeL1 (u

−1)λ(p) for all u ∈ U(1) and p ∈ P and set Fλ := [λ, id]〈V1〉 : P → M̂ . If we

consider a local section s : U(⊂ M̄ = M ′) → P , then s′ := Fλ ◦ s : U → M̂ is a local
section of π̂ : M̂ → M̄ and the equivariance of λ implies that s′ is independent of s.
As we observed in the proof of Theorem 4.1, the quaternionic structure Q̄ = 〈Ī1, Ī2, Ī3〉
on M̄ is induced from the hypercomplex structure on M̂ and a local section s′. For
Y ∈ TxM̄ , we have

Īα(Y ) = π̂∗(ÎαY
h
θ̂′

s′(x)) = π̂∗(Îαs
′
∗Y ),

since the decomposition TM̂ = D⊕Ĥ is Îα-invariant. From s′ = Fλ ◦ s = [λ ◦ s, s]〈V1〉 =
π̃ ◦ (λ ◦ s, s), it holds that

Īα(Y ) = π̂∗(Îαs
′
∗Y )(4.2)

= π̂∗(Îα(π̃∗((λ ◦ s)∗(Y ) + s∗Y ))

= π̂∗(π̃∗(Ĩα((λ ◦ s)∗(Y ) + s∗Y ))

= π′
∗(π2∗(Ĩα((λ ◦ s)∗(Y ) + s∗Y ))

= π′
∗(π2∗(Ĩαs∗Y )).
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Note that (λ ◦ s)∗(Y ) + s∗Y ∈ T(λ(s(x)),s(x))M̃ .
Next we consider the decomposition TP |s(U) = 〈Z1〉⊕s∗(TU). Let p∨ be the projec-

tion from TP |s(U) onto s∗(TU). Note that s∗(TxU) is generated by the tangent vectors

of the form p∨(W
hη

s(x)) =: W∨ at each point s(x), where W is a tangent vector of M

at π(s(x)) and η is the connection form on P . We define (an almost hypercomplex
structure) I∨α on s(U) by I∨α (W

∨) = (I ′αW )∨ for each W∨ ∈ s∗(TxU), where I
′
α is given

by (3.2) for z = λ(s(x)). Since Ĩα(Z1) = Ĩα(e
L
1 ) ∈ TH∗ (by ĨαV1 = 0), we have

p∨(π2∗(Ĩα(W
∨))) = p∨(π2∗(Ĩα(W

hη + aZ1))) = p∨(ĨαW
hη) = p∨((I ′αW )hη)(4.3)

= (I ′αW )∨ = I∨α (W
∨),

where a ∈ R. Then it holds that

Īα(Y ) = π′
∗(π2∗(Ĩαs∗Y )) = π′

∗(p
∨(π2∗(Ĩα(s∗Y ))) = π′

∗(I
∨
α (s∗Y ))

from (4.2) and (4.3). Therefore Q̄ can be identified with 〈I∨1 , I∨2 , I∨3 〉 on s(U). Note
that 〈I∨1 , I∨2 , I∨3 〉 is independent of the choice of λ, and hence it is shown again that Q̄
is independent of the choice of λ, which is identified with a section of M̂ .

Note that a quaternionic Kähler metric obtained by the HK/QK-correspondence is
described directly in terms of the objects on P (instead of M̂) in [4, 21].

Remark 4.10. The conification M̂ of M is locally isomorphic to the Swann bundle
of M̄ , which is conical as discussed in Example 2.4. Note that the Swann bundle
is an H∗/{±1}-bundle over a quaternionic manifold whereas M̄ is the quotient of M̂
by H∗ as above. Indeed, take an open set U of M̄ and local sections s : U → M̂ ,
s′ : U → U(M̄), where πSw : U(M̄) → M̄ is the Swann bundle of M̄ . For a local
trivialization Φ : π̂−1(U) → U × H

∗ associated to s and given by Φ(x) = (π̂(x), φ(x)),
we can define a double covering F : π̂−1(U) → (πSw)−1(U) by

F (x) = Φ′−1(s′(π̂(x)), p(φ(x))).

Here Φ′ : (πSw)−1(U) → U × H∗/{±1} is a local trivialization associated to s′ and
p : H∗ → H∗/{±1} is the projection. See [24, 6] for the (twisted) Swann bundle.

5 Examples of the H/Q-correspondence

In this section, we give examples of the H/Q-correspondence.

Example 5.1 (HK/QK-correspondence). Let (M, g,H = (I1, I2, I3)) be a (possibly
indefinite) hyper-Kähler manifold with a rotating Killing vector field Z and f a nowhere
vanishing smooth function such that df = −ιZΘ, where Θ is the Kähler form with
respect to g and I1. Set f1 = f−(1/2)g(Z,Z) and assume that the functions g(Z,Z) and
f1 are nowhere zero. From these data, we can obtain a (possibly indefinite) quaternionic
Kähler manifold (M̄, ḡ) [15, 2, 4]. The metric ḡ is positive definite under the assumptions
specified in [2, Corollary 2] for the signs of the functions f, f1 and for the signature of
g. Also the sign of the scalar curvature of M̄ is determined by these choices.
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In the HK/QK-correspondence, the initial data Θ is a non-degenerate 2-form. In
our more general setting, we may also choose Θ = 0, like in the following example.

Example 5.2 (Conical hypercomplex manifold). Let (M, (I1, I2, I3), V ) be a conical
hypercomplex manifold with the Euler vector field V . Choose f1 = f = 1, Θ = 0, and
consider the trivial principal bundle P =M ×U(1) with the connection η = dt, where t
is the angular coordinate of U(1) such that dt(XP ) = 1 on the fundamental vector field
XP . We assume that Z := I1V generates a free U(1)-action on M and that the periods
of Z, XP and eL1 are the same. It holds that Z is rotating from Lemma 2.2. Then V1
generates a free U(1)-action on M̃ = H∗ × P = H∗ ×M × U(1) of the same period.
Therefore

M̂(= (H∗ ×M × U(1))/〈V1〉) ∋ [z, p, q] = [zq, ζZ(q
−1)p, 1] 7→ (zq, ζZ(q

−1)p) ∈ H
∗ ×M

gives a diffeomorphism M̂ ∼= H∗ ×M , and hence M̄ ∼=M as smooth manifolds. In fact,
we can define a diffeomorphism ϕ′ :M → M ′(= M̄) by ϕ′(x) = π′(x, 1). A global section
M̄ → M̂ gives rise to a hypercomplex structure (Ī1, Ī2, Ī3) on M̄ but the latter does not
coincide with (I1, I2, I3) in general (under the diffeomorphism ϕ′). The quaternionic
structure Q̄ on M̄ , however, coincides with 〈I1, I2, I3〉. Note that Q̄ is independent of
the section, as shown in the proof of Theorem 4.1 and Remark 4.9. More explicitly,
considering λz : M × U(1) → H∗ defined by λz(x, u) = z · u−1 (z ∈ H∗) and the section
s : M̄ → P defined by s(x) = ((ϕ′)−1(x), 1), we see that the section Fλ1 ◦ s gives the
hypercomplex structure (I1, I2, I3) and, hence, the quaternionic structure 〈I1, I2, I3〉 on
M̄ ∼= M .

The next example shows that our H/Q-correspondence is a proper generalization of
the HK/QK-correspondence.

Example 5.3 (Hypercomplex Hopf manifold). Consider Hn ∼= R4n as a right-vector
space over the quaternions with the standard hypercomplex structure

H̃ = (Ĩ1 = Ri, Ĩ2 = Rj, Ĩ3 = Ĩ1Ĩ2 = −Rk)

and the standard flat hyper-Kähler metric g̃ and set M̃ = Hn\{0}. Take A ∈ Sp(n)Sp(1)
and λ > 1. Then 〈λA〉 is a group of homotheties which acts freely and properly discon-
tinuously on the simply connected manifold M̃ . The quotient space M̃/〈λA〉 inherits
a quaternionic structure Q and a quaternionic connection ∇ which are invariant under
the centralizer GQ of λA in GL(n,H)Sp(1). In fact, the quaternionic structure Q̃ on
M̃ is GL(n,H)Sp(1)-invariant and induces therefore an almost quaternionic structure
Q on M̃/〈λA〉, since 〈λA〉 ⊂ GL(n,H)Sp(1). Moreover, the Levi-Civita connection ∇̃
on (M̃, g̃), which coincides with the Obata connection with respect to H̃, is invariant
under all homotheties of M̃ . Since 〈λA〉 acts by homotheties, we see that ∇̃ induces
a torsion-free connection ∇ on M̃/〈λA〉, which preserves Q. This means that Q is
a quaternionic structure on M̃/〈λA〉. In particular, if A ∈ Sp(n), then the quotient
M̃/〈λA〉 inherits an induced hypercomplex structure H = (I1, I2, I3) from H̃, which is
invariant under the centralizer GH of λA in GL(n,H), since 〈λA〉 preserves H̃. We say
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that (M̃/〈λA〉, Q) (resp. (M̃/〈λA〉, H)) is a quaternionic (resp. hypercomplex) Hopf
manifold. See [23, 10].

We start with a hypercomplex Hopf manifoldM := M̃/〈λA〉, where A ∈ Sp(n). Take
q ∈ Sp(1) such that q 6= ±1. The centralizer of q in Sp(1) is isomorphic to U(1), which
is denoted by Uq(1). We consider a U(1)-action : z 7→ ze−it on M̃ defined by the right
multiplication of U(1) ∼= Uq(1) ⊂ Sp(n)Uq(1) ⊂ Sp(n)Sp(1). This action induces one on
M and the corresponding vector field Z is rotating. Therefore we can apply the same
procedure as in Example 5.2 under the setting P =M × Uq(1) (resp. P̃ = M̃ × Uq(1))

and Θ = 0, and we have the quaternionic manifold M̄(= M ′) (resp. ¯̃M(= M̃ ′)) by the
H/Q-correspondence. In the following, the quotient map of an action by a group G is
denoted by πG and the objects associated with M̃ are denoted by the corresponding
letters forM with ˜, for example, the projection of the twist from M̃ ×Uq(1) is denoted
as π̃′, where we use the notation of Theorem 4.8. Let Rq be the right multiplication by
q.

M̃ ′ = ¯̃M = M̃ M ′ = M̄

P̃ = M̃ × Uq(1) P =M ×Uq(1)

M̃ M

✲
/〈λARq〉

✻
π̃′

✲
/〈λA〉

❄

π̃

✻
π′

❄

π

✲
/〈λA〉

Since π′ ◦ π〈λA〉 = π〈λARq〉 ◦ π̃′ and M̃ ′ = M̃ is a manifold with an invariant quaternionic
structure under the action of 〈λARq〉 (Example 5.2 and Proposition 4.7), we have

M̄ =M ′ = M̃/〈λARq〉.

Therefore it holds that

M = M̃/〈λA〉 H/Q7−→ M̄ = M̃/〈λARq〉.

In particular, we can choose A = En ∈ Sp(n). Then the centralizer GH of λ = λEn

is R
>0 × SL(n,H). We take the subgroup R

>0 × Sp(n) of GH , which acts transitively
on M . Then

M = (R>0/〈λ〉)× Sp(n)

Sp(n− 1)
.

On the other hand, considering the subgroup R>0×Sp(n)Uq(1) of the centralizer G
Q of

λRq, we see that

(R>0/〈λ〉)× Sp(n)

Sp(n− 1)

H/Q7−→ (R>0/〈λ〉)× Sp(n)U(1)

Sp(n− 1)△U(1)

,
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where △U(1) is a diagonally embedded subgroup of Sp(n)U(1) ⊂ Sp(n)Sp(1) which is
isomorphic to U(1). Considering the case of n = 2, we have an invariant quaternionic
structure on the homogeneous space

M̄ = R
>0/〈λ〉 × Sp(2)U(1)

Sp(1)△U(1)
=
T 2 · Sp(2)

U(2)

by the H/Q-correspondence. Note that T 2×Sp(2) carries a hypercomplex structure and
(T 2 × Sp(2))/U(2) is a homogeneous quaternionic manifold considered in [19].

SinceM is diffeomorphic to S1×S4n−1,M can not admit any hyper-Kähler structure.
Therefore the HK/QK-correspondence can not be applied to the hypercomplex Hopf
manifold M . The H/Q-correspondence is thus a proper generalization of the HK/QK
one.

In the following example, the closed form Θ is non-zero and degenerate.

Example 5.4 (Lie group with left-invariant hypercomplex structure). Consider G =
SU(3). The Lie algebra g of G is decomposed as g = g0+g1, where g0 = s(u(1)⊕u(2)) ∼=
u(1) ⊕ su(2) ∼= H and g1 is the unique complementary g0-module with the action of
H obtained from the adjoint action of g0 [19]. Denote by V ∈ g0 the vector which
corresponds to 1 ∈ H. We use the same letters for left-invariant vector fields and
corresponding elements of g in this example. Three complex structures I1, I2, I3 on g

can be defined as follows. They preserve the decomposition g = g0 + g1 and act on
g0 = H by the standard hypercomplex structure (Ri, Rj, RiRj = −Rk). On g1 they are
defined by

Iα|g1 = −adIαV |g1 , α = 1, 2, 3.(5.1)

These structures extend to a left-invariant hypercomplex structure on G [19], which we
denote again by (I1, I2, I3).

Let G0
∼= (U(1) × SU(2))/{±1} ∼= U(2) be the subgroup of G corresponding to g0.

Note that G0 ⊂ G is a hypercomplex submanifold and therefore totally geodesic with
respect to the Obata connection ∇G of G [24]. The Obata connection ∇G0 of G0 is given
by ∇G0

X Y = XY for X , Y ∈ g0 = H, where XY denotes the product of the quaternions
X and Y . Indeed, ∇G0 is torsion-free and I1, I2, I3 are parallel with respect to ∇G0 .
Then it holds ∇G

XV = ∇G0
X V = X for X ∈ g0. For X ∈ g1, by (5.1) and the explicit

expression of the Obata connection (see [5]), we also find that ∇G
XV = X . Hence the

hypercomplex manifold (G, (I1, I2, I3)) is conical with the Euler vector field V (see also
[26]).

Consider the right-action of U(2) on SU(3) given by

AB := A

(
B 0
0 det(B)−1

)

for A ∈ SU(3) and B ∈ U(2). Let l : SU(3) → SU(3)/U(2) ∼= CP 2 be the projection
and k : S5 → CP 2 the Hopf fibration. The pullback bundle P := l#S5 of k : S5 → CP 2
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by l is a U(1)-bundle over SU(3). The usual identification between the Stiefel manifold
V2(C

3) and SU(3) is given by

V2(C
3) ∋ (a1, a2) ↔ A = (a1, a2, ā1 × ā2) ∈ SU(3).

We can write

P = {(A, u) ∈ SU(3)× S5 | l(A) = k(u)}
= {(A, u) ∈ SU(3)× S5 | 〈c3(A)〉 = 〈u〉 ∈ CP 2}
= {(A, αc3(A)) ∈ SU(3)× S5 | α ∈ U(1)}
∼= SU(3)× U(1),

where c3(A) denotes the third column of A. This shows that P is a trivial bundle. Let
l# : P → S5 be the bundle map given by l#(A, α) = α(ā1× ā2) = α c3(A). Consider the
pullback connection l∗#η on P from the standard one η of k and take Θ = l∗ω, where ω
is the Kähler form on CP 2. Set Z := I1V . We see that Z generates a U(1)-action on
SU(3) and is rotating by Lemma 2.2. Since

〈Z〉 ⊂ SU(2) ⊂ U(2),

Z is tangent to the fiber of l. Hence, we have ιZΘ = 0, LZΘ = 0, and also have dΘ = 0
by dω = 0. So we can choose f = f1 = 1 (see Section 3 for the notation) and then see
that Z1 generates a free U(1)-action on P given by

ζZ1(u)(A, α) = (ζZ(u)(A), uα), u ∈ U(1).

To see this, it is sufficient to check that Z is horizontal with respect to the pull back
connection. The vector field Z is lifted to SU(3)×U(1) as Z(A,α) = (ZA, 0) ∈ TSU(3)×
TU(1) for A ∈ SU(3) and α ∈ U(1) with the same letter Z. From Z ∈ su(2), it holds
that

l#∗Z(A,α) =
d

dt
l#

(
ζZ(e

it)(A, α)
)∣∣∣∣

t=0

=
d

dt
l#((ζZ(e

it)(A), α))

∣∣∣∣
t=0

=
d

dt
α c3(ζZ(e

it)(A))

∣∣∣∣
t=0

=
d

dt
α c3(A)

∣∣∣∣
t=0

= 0.

In particular, (l∗#η)(Z) = 0, that is, Z is horizontal with respect to the pullback con-
nection. So we see that Z1 = Z +XP . Therefore, by applying the H/Q-correspondence
to G = SU(3), we have a quaternionic manifold

Ḡ = P/〈Z1〉 = (SU(3)×U(1)) /U(1) ∼= SU(3).
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The identification is given by

(SU(3)× U(1)) /U(1) ∋ [(A, α)]〈Z1〉 = [(ζZ(α
−1)A, 1)]〈Z1〉

∼= ζZ(α
−1)A ∈ SU(3).

Note that there exists no Riemannian metric g on G such that g is hyper-Kählerian with
respect to (I1, I2, I3) since G is compact. The situation is summarized in the following
diagram.

P = l#S5 ∼= SU(3)× U(1)

SU(3) = G Ḡ

SU(3)/U(2) ∼= CP 2
S5

✟✟✟✟✟✟✟✟✙

❄

l#

❍❍❍❍❍❍❍❍❍❥
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣✲

H/Q-corresp.

❄

l

✛
k

Note also that SU(3) × U(1) is a three-fold covering of U(3) : (A, α) 7→ αA. The
kernel is the cyclic group {(ζ 1, ζ−1) | ζ3 = 1}. The principal bundle P → SU(3) induces
a principal bundle U(3) = P/Z3 → PSU(3) = SU(3)/Z3. The actions generated by
Z1 and Z commutes with that of Z3. The vector field Z (resp. Z1) on SU(3) (resp.
SU(3)×U(1)) induces one on PSU(3) (resp. U(3)), which is denoted by the same letter
Z (resp. Z1) . We obtain the following diagram.

P/〈Z1〉 = Ḡ ∼= SU(3) U(3)/〈Z1〉 = Ḡ1
∼= SU(3)/Z3

P = SU(3)× U(1) P/Z3 = U(3)

G = SU(3) G1 = PSU(3)

✲
/Z3

✻

/〈Z1〉

✲
/Z3

❄

/U(1)

✻

/〈Z1〉

❄

/U(1)

✲
/Z3

We can apply the H/Q-correspondence to the Lie group G1 = PSU(3) with the induced
left-invariant hypercomplex structure and see that its resulting space is SU(3)/Z3. In
fact, since the action of 〈Z1〉 on U(3) is given by ζZ1(u)(αA) = (uα)(ζZ(u)(A)) and
its orbit {(uα)(ζZ(u)(A)) | u ∈ 〈Z1〉} of αA ∈ U(3) intersects SU(3) at exactly three
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points, then the resulting space U(3)/〈Z1〉 is SU(3)/Z3. Consequently, we have Ḡ1
∼= G1

again.
Next we compare the quaternionic structures on the resulting space(s) derived from

the pullback connection η1, which is not flat, and the trivial connection η0 as in Ex-
ample 5.2. Recall the notation in Remark 4.9. We claim that the two quaternionic
structures are different. We label the objects obtained from ηi by the symbol ηi or
just by the letter i (i = 0, 1), when no confusion is possible. Since Zhη0 = Zhη1 ,
ιZΘ0 = ιZ 0 = 0 and ιZΘ1 = 0, the vector field Z1 on P is Z1 = Z +XP for both con-
nections η0 and η1. Then the resulting spaces Ḡ0 and Ḡ1 coincide and we simply write
Ḡ for both. Let a be the 1-form on Ḡ such that η1 − η0 = π∗a. Consider a local section
s : Ḡ → P . Since W hη1 −W hη0 = −a(W )XP for a tangent vector W at π(s(x)) ∈ Ḡ
(we omit the reference points of tangent vectors), we have

W∨1 −W∨0 = −a(W )X

where X = p∨(XP ) and we recall that W∨i = p∨(W hηi ). Therefore we see that

I∨1α (W∨1) = (I ′αW )∨1

= (I ′αW )∨0 − a(I ′αW )X

= I∨0α (W∨0)− a(I ′αW )X

= I∨0α (W∨1) + a(W )I∨0α X− a(I ′αW )X.

On the other hand, sinceW∨1 =W hη1+cZ1 = W hη1+c(Zhη1+XP ), we have η1(W
∨1) = c

and π∗(W
∨1) = W + cZ. It holds that

(π∗a)(W∨1) = a(W ) + ca(Z) = a(W ) + a(Z)η1(W
∨1).

Hence we have

I∨1α = I∨0α + (π∗a− a(Z)η1)⊗ (I∨0α X)− ((π∗a− a(Z)η1) ◦ I∨1α )⊗ X.

Set ρ := π∗a− a(Z)η1 and A := ρ⊗ (I∨0α X)− (ρ ◦ I∨1α )⊗X. If Q∨0(:= 〈I∨01 , I∨02 , I∨03 〉) =
Q∨1(:= 〈I∨11 , I∨12 , I∨13 〉), then A2 = −|A|2id, where | · | is the norm induced from the
metric on Q∨0 such that I∨01 , I∨02 , I∨03 are orthonormal. As the rank of A is at most 2,
this is only possible if A = 0. This implies ρ = π∗a − a(Z)η1 = 0, which is equivalent
to a = 0. By Remark 4.9, the quaternionic structure Q̄i can be identified with Q∨i

(i = 0, 1). Then we see that Q̄0 6= Q̄1 since η0 6= η1. This proves the claim.

6 The tangent bundle of a special complex manifold

and a generalization of the rigid c-map

In this section, we consider a generalization of the rigid c-map [9, 14, 3]. The generaliza-
tion associates a hypercomplex manifoldM , the Obata connection of which is Ricci-flat,
with a special complex manifold. In the case of a conical special complex manifold, we
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shall show that the hypercomplex manifold carries a canonical rotating vector field ZM

(Lemma 8.1), such that we can apply our H/Q correspondence. Consequently, we shall
construct a quaternionic manifold from a conical special complex manifold as the gen-
eralized supergravity c-map (Theorem 8.3). We start with defining a class of manifolds
generalizing conical special Kähler manifolds [3, 21].

Definition 6.1. A special complex manifold (N, J,∇) is a complex manifold (N, J)
endowed with a torsion-free flat connection ∇ such that the (1, 1)-tensor field ∇J is
symmetric. A conical special complex manifold (N, J,∇, ξ) is a special complex manifold
(N, J,∇) endowed with a vector field ξ such that

• ∇ξ = id and

• LξJ = 0 or, equivalently, ∇ξJ = 0.

The connection ∇ is called the special connection. To see that LξJ = 0 is equivalent
to ∇ξJ = 0 it suffices to write Lξ = ∇ξ − ∇ξ = ∇ξ − id, using that ∇ is torsion-free
and ∇ξ = id. We also note that the integrability of J follows from the symmetry of ∇J
since ∇ is torsion-free. We set A := ∇J.
Lemma 6.2. For every conical special complex manifold, we have LJξJ = AJξ = 0.

Proof. Based on the symmetry of ∇J , we compute

AJξ = A(Jξ) = −J(Aξ) = −JAξ = 0.

Using this and the properties listed in Definition 6.1, we then obtain

(LJξJ)X =−AJXξ + JAXξ = 0

for allX ∈ Γ(TN). Note that in the last step we have used the symmetry of A = ∇J .
Next we consider the tangent bundle TN =: M of a special complex manifold

(N, J,∇). We can define the ∇-horizontal lift Xh∇ and the vertical lift Xv of X ∈
Γ(TN). See [7] for example. The C∞(M)-module Γ(TM) is generated by vector fields
of the form Xh∇ + Y v, where X , Y ∈ Γ(TN). On M , we define a triple of (1, 1)-tensors
(I1, I2, I3) by

I1(X
h∇ + Y v) = (JX)h∇ − (JY )v,(6.1)

I2(X
h∇ + Y v) = Y h∇ −Xv,(6.2)

I3(X
h∇ + Y v) = (JY )h∇ + (JX)v(6.3)

for Xh∇ +Y v ∈ TM . Note that (I1, I2, I3) is an almost hypercomplex structure. In fact,
it is easy to see I2α = −id and

(I1 ◦ I2)(Xh∇ + Y v) = I1(Y
h∇ −Xv) = (JY )h∇ + (JX)v = I3(X

h∇ + Y v),

(I2 ◦ I1)(Xh∇ + Y v) = I2((JX)h∇ − (JY )v) = −(JY )h∇ − (JX)v = −I3(Xh∇ + Y v)

for Xh∇ + Y v ∈ TM . Note that it holds

[Xh∇, Y h∇ ] = [X, Y ]h∇ , [Xh∇, Y v] = (∇XY )v, [Xv, Y v] = 0(6.4)

for X , Y ∈ Γ(TN).
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Lemma 6.3. For every special complex manifold (N, J,∇), the canonical almost hy-
percomplex structure (I1, I2, I3) on M = TN is integrable, that is, (M, (I1, I2, I3)) is a
hypercomplex manifold.

Proof. Thanks to (6.4), the Nijenhuis tensors of I1 and I2 can be easily calculated and we
find the following. Using that J is integrable, ∇ is flat and ∇J is symmetric, we see that
I1 is integrable. Because ∇ is flat and torsion-free, I2 is integrable. The integrability of
I3 follows from that of I1 and I2 [5, Theorem 3.2].

We define a connection ∇′ by

∇′ := ∇− 1

2
J(∇J) = ∇− 1

2
JA.

Then we see that ∇′J = 0 and ∇′ is torsion-free for every special complex manifold.
Moreover, when the special complex manifold is conical, it holds that ∇′ξ = ∇ξ = id.

Lemma 6.4. For every special complex manifold (N, J,∇), we have

R∇′

X,Y = −1

4
[AX , AY ]

for X, Y ∈ TN .

Proof. Set S = −(1/2)J(∇J). Since ∇ is flat, we see that the curvature R∇′

of ∇′ is
given by

R∇′

X,Y = (∇XS)Y − (∇Y S)X + [SX , SY ]

for X , Y ∈ TN . By

(∇XS)Y − (∇Y S)X = −1

2
[AX , AY ]−

1

2
J(R∇

X,Y J),

[SX , SY ] =
1

4
[AX , AY ],

we have the conclusion.

Hence a special complex manifold admits the complex connection ∇′ such that R∇′

is of type (1, 1). In fact, it follows from AJX = −JAX for all X ∈ TN . The following
theorem is a generalization of the rigid c-map in the absence of a metric.

Theorem 6.5 (Generalized rigid c-map). The tangent bundle of any special complex
manifold (N, J,∇) carries a canonical hypercomplex structure, defined by (6.1)-(6.3),
and the Obata connection of the hypercomplex manifold (M = TN, (I1, I2, I3)) is Ricci
flat.

Proof. The integrability of the canonical almost hypercomplex structure defined by
(6.1)-(6.3) was proven in Lemma 6.3. Let ∇̃0 be its Obata connection. Using the
explicit expression of the Obata connection, we have

∇̃0
Xh∇

Y h∇ = (∇′
XY )

h∇ , ∇̃0
UvXh∇ = −1

2
(JAXU)

v = −1

2
(JAUX)v

∇̃0
Xh∇

Uv = (∇′
XU)

v, ∇̃0
UvV v =

1

2
(JAV U)

h∇ =
1

2
(JAUV )

h∇
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for X , Y , U , V ∈ Γ(TN). It can be also checked directly, using by (6.1)-(6.4), that the
above formulas for ∇̃0 on horizontal and vertical lifts extend uniquely to a torsion-free
connection ∇̃0 for which I1, I2, I3 are parallel. We see that the bundle projection from
(TN, ∇̃0) onto (N,∇′) is an affine submersion [1]. Again, a straightforward calculation
(or the fundamental equations of an affine submersion) gives

R∇̃0

Uv,V vW v =−1

4
(AUAVW )v +

1

4
(AVAUW )v = (R∇′

U,VW )v,

R∇̃0

Uv,V vXh∇ =−1

4
(AUAVX)h∇ +

1

4
(AVAUX)h∇ = (R∇′

U,VX)h∇,

R∇̃0

Uv,Xh∇
V v =−1

2
(J(H∇

U,V J)X)h∇ − 1

4
(AXAUV )h∇ − 1

4
(AUAXV )h∇,

R∇̃0

Uv,Xh∇
Y h∇ =

1

2
(J(H∇

X,Y J)U)
v +

1

4
(AXAY U)

v +
1

4
(AUAXY )

v,

R∇̃0

Xh∇ ,Y h∇
Uv =(R∇′

X,Y U)
v,

R∇̃0

Xh∇ ,Y h∇
Zh∇ =(R∇′

X,Y Z)
h∇

for X , Y , Z, U , V , W ∈ TN , where H∇ is the Hessian (the second covariant derivative)
with respect to ∇ and we have used Lemma 6.4. Note that (H∇

X,Y J)(Z) = (H∇
X,ZJ)(Y )

for all X , Y , Z ∈ TN , since ∇J is symmetric. Hence the flatness of ∇ means that
the Hessian of J with respect to ∇ is totally symmetric. By these equations, the Ricci
tensor of ∇̃0 satisfies

Ric∇̃
0

(Xh∇, Y h∇) =
1

2
TrJ(H∇

X,Y J) +
1

2
TrAXAY ,

Ric∇̃
0

(Xh∇, Uv) = Ric∇̃
0

(Uv, Xh∇) = 0,

Ric∇̃
0

(Uv, V v) =
1

2
TrJ(H∇

U,V J) +
1

2
TrAUAV

for X , Y , U , V ∈ TN . From (∇J)J = −J(∇J), it holds that

TrJ(H∇
X,Y J) + TrAXAY = 0

for all X , Y ∈ TN . Therefore the Obata connection of the manifolds obtained from our
hypercomplex version of the c-map is Ricci flat.

Remark 6.6. The horizontal distribution on M is integrable by (6.4) and each leaf is
totally geodesic with respect to the Obata connection ∇̃0, since ∇̃0

Xh∇
Y h∇ = (∇′

XY )h∇

for X , Y ∈ Γ(TN) .

Remark 6.7. In [12, Theorem A], a hypercomplex structure was obtained on a neigh-
borhood of the zero section of the tangent bundle of a complex manifold with a complex
connection whose curvature is of type (1, 1). By contrast, our generalized rigid c-map
gives a hypercomplex structure on the whole tangent bundle when the manifold is special
complex.
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7 The c-projective structure on a projective special

complex manifold

In this section, we discuss projective special complex manifolds and obtain the c-
projective Weyl curvature of a canonically induced c-projective structure. Let (N, J,∇, ξ)
be a conical special complex manifold. Since LξJ = 0 and LJξJ = 0, we obtain a com-
plex structure J̄ on the quotient N̄ := N/〈ξ, Jξ〉 if N̄ is a smooth manifold.

Lemma 7.1. We have Lξ∇′ = 0 and LJξ∇′ = 0.

Proof. By Lemmas 6.4 and 6.2, we have

(Lξ∇′)XY = [ξ,∇′
XY ]−∇′

[ξ,X]Y −∇′
X [ξ, Y ]

= ∇′
ξ∇′

XY −∇′
∇′

X
Y ξ −∇′

[ξ,X]Y −∇′
X∇′

ξY +∇′
X∇′

Y ξ

= R∇′

ξ,XY = 0

and

(LJξ∇′)XY = [Jξ,∇′
XY ]−∇′

[Jξ,X]Y −∇′
X [Jξ, Y ]

= ∇′
Jξ∇′

XY −∇′
∇′

X
Y Jξ −∇′

[Jξ,X]Y −∇′
X∇′

JξY +∇′
X∇′

Y Jξ

= R∇′

Jξ,XY = 0

for all X , Y ∈ Γ(TN).

Recall [17] that a smooth curve t 7→ c(t) on a complex manifold (M,J) is called
J-planar with respect to a connection ∇ if ∇c′c

′ ∈ span{c′, Jc′}. We say that torsion-free
complex connections ∇1 and ∇2 on a complex manifold (M,J) are c-projectively related
[8] if they have the same J-planar curves. It is known that ∇1 and ∇2 are c-projectively
related if and only if there exists a one-form θ on M such that

∇1
XY =∇2

XY + θ(X)Y + θ(Y )X − θ(JX)JY − θ(JY )JX

for X , Y ∈ Γ(TM). See [17] for example. This defines an equivalence relation on
the space of torsion-free complex connections on M . The equivalence classes are called
c-projective structures.

Definition 7.2. We call the complex manifold (N̄, J̄) a projective special complex mani-
fold if pN : (N, J,∇, ξ) → (N̄ , J̄) is a principal C∗-bundle, where the principal C∗-action
is generated by the holomorphic vector field ξ −

√
−1Jξ.

Note that a projective special Kähler manifold is a Kähler quotient of a conical
special Kähler manifold. Similarly, a projective special complex manifold carries an
induced c-projective structure as follows.

Proposition 7.3. Any projective special complex manifold (N̄, J̄) carries a canonical
c-projective structure.
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Proof. Consider a connection form α̂ = α −
√
−1(α ◦ J) of type (1, 0) on the principal

C∗-bundle pN : N → N̄ . (Note that any C∗-invariant real one-form α such that α(ξ) = 1
is the real part of such a connection.) We have TN = Ker α̂ ⊕ 〈ξ, Jξ〉, where Ker α̂ is
J-invariant. We denote the α̂-horizontal lift of X ∈ Γ(TN̄) by Xhα. By Lemma 7.1, we
can define ∇̄′α by

∇̄′α
XY = pN∗(∇′

XhαY
hα)(7.1)

for X , Y ∈ Γ(TN̄). We claim that ∇̄′αJ̄ = 0. In fact, using that JY hα = (J̄Y )hα for
Y ∈ TN̄ we have

∇̄′α
X(J̄Y ) = pN∗(∇′

XhαJY
hα) = pN∗J(∇′

XhαY
hα) = J̄pN∗(∇′

XhαY
hα).

To show that the c-projective structure [∇̄′α] does not depend on α, we consider another
connection form β̂ = β −

√
−1(β ◦ J) of type (1, 0). Then there exist one-forms θ0 and

θ1 on N̄ such that

β̂ − α̂ = (p∗Nθ0) + (p∗Nθ1)
√
−1.

On the other hand, we can write Xhα −Xhβ = aξ + bJξ for some functions a, b on N .
It is easy to see that

a = θ0(X) ◦ pN , b = −θ0(J̄X)◦pN , θ1 = −θ0 ◦ J̄

for X ∈ TN̄ . By the definition (7.1) of the induced connection on N̄ , we have

∇̄′α
XY =pN∗(∇′

XhαY
hα)

=pN∗(∇′
X

hβ+θ0(X)ξ−θ0(J̄X)Jξ
(Y hβ + θ0(Y )ξ − θ0(J̄Y )Jξ))

=pN∗(∇′
X

hβ
Y hβ +∇′

X
hβ
θ0(Y )ξ −∇′

X
hβ
θ0(J̄Y )Jξ

+ θ0(X)(∇′
ξY

hβ +∇′
ξθ0(Y )ξ −∇′

ξθ0(J̄Y )Jξ)

− θ0(J̄X)(∇′
JξY

hβ +∇′
Jξθ0(Y )ξ −∇′

Jξθ0(J̄Y )Jξ)

=∇̄′β
XY + θ0(Y )X + θ0(X)Y − θ0(J̄Y )J̄X − θ0(J̄X)J̄Y

for X , Y ∈ Γ(TN̄), which means that ∇̄′α and ∇̄′β are c-projectively related. Here we
write θ0(X) for θ0(X) ◦ pN etc.

We denote the induced c-projective structure given in Proposition 7.3 by P∇̄′ (with-
out a label α). Next we prove that the c-projective Weyl curvature of P∇̄′ is of type
(1, 1) (see Theorem 7.10).

Note that ξ, Jξ are the fundamental vector fields generated by 1,
√
−1 ∈ C = LieC∗,

respectively. Recall that A = ∇J and Aξ = AJξ = 0. We also have that LξA = 0, since
Lξ∇ = 0 and LξJ = 0.

Lemma 7.4. LJξ∇ = A, LJξA = −2JA and LJξ(JA) = 2A.
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Let η be a connection form on the principal bundle pN : N → N̄ . As before, we
assume that Ker η is J-invariant or, equivalently, that η is of type (1, 0) (but not neces-
sarily holomorphic). Using η we can project the connection ∇′ on N to a connection ∇̄′ η

on N̄ , which is complex with respect to J̄ , as shown in the proof of Proposition 7.3. Note
that the quotient pN : (N,∇′) → (N̄ , ∇̄′ η) is an affine submersion with the horizontal
distribution H := Ker η (in the sense defined in [1]). From now on the η-horizontal lift
of X ∈ TN̄ is denoted by X̃. Note that our sign convention for the curvature tensor
is different from the one in [1]. Let h : TN → H and v : TN → V be the projections
with respect to the decomposition TN = H ⊕ V, where V = Ker pN ∗. We define the
fundamental tensors A∇′

and T ∇′

by

A∇′

E F = v(∇′
hEhF ) + h(∇′

hEvF )

and
T ∇′

E F = h(∇′
vEvF ) + v(∇′

vEhF )

for E, F ∈ Γ(TN).

Lemma 7.5. We have T ∇′

= 0, A∇′

X ξ = X and A∇′

X Jξ = JX for any horizontal vector
X.

Let a and b be (0, 2)-tensors defined by

A∇′

X Y = a(X, Y )ξ + b(X, Y )Jξ

for horizontal vectors X and Y . Since ∇′ and the projections v, h are C∗-invariant,
A∇′

is C∗-invariant, and hence, a = p∗N ā and b = p∗N b̄ for some tensors ā and b̄ on N̄ .
For any (0, 2)-tensor k on a complex manifold with a complex structure J , define the
(0, 2)-tensor kJ by kJ(X, Y ) := k(X, JY ).

Lemma 7.6. We have

v((∇′
X̃
J)Ỹ ) =

(
ā(X, J̄Y ) + b̄(X, Y )

)
ξ +

(
b̄(X, J̄Y )− ā(X, Y )

)
Jξ

for X, Y ∈ TN̄ .

Lemma 7.7. We have b̄(X, Y ) = −ā(X, J̄Y ) = −āJ̄ (X, Y ) for tangent vectors X and
Y on N̄ . Consequently, the fundamental tensor A∇′

satisfies

A∇′

X̃
Ỹ = ā(X, Y )ξ − āJ̄ (X, Y )Jξ(7.2)

for tangent vectors X, Y on N̄ .

Proof. By ∇′J = 0 and Lemma 7.6, we have the conclusion.

Let (r, θ) be the polar coordinates with respect to a (smooth) local trivialization
p−1
N (Ū) ∼= Ū × C∗ of the principal C∗-bundle pN : N → N̄ such that ξ = r∂/∂r and
Jξ = ∂/∂θ. A principal connection η is locally given by

η := η1 ⊗ 1 + η2 ⊗
√
−1 = p∗N(γ1 ⊗ 1 + γ2 ⊗

√
−1) +

(
dr

r
⊗ 1 + dθ ⊗

√
−1

)
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for a C-valued one-form γ1 ⊗ 1 + γ2 ⊗
√
−1 on Ū ⊂ N̄ . For each local trivialization

p−1
N (Ū) ∼= Ū × C∗, we set

B := e2θJA (e2θJ = (cos 2θ)id + (sin 2θ)J).

The symmetric (1, 2)-tensor field B is defined locally and B is projectable by Lemma
7.4, i.e. horizontal (i.e. Bξ = BJξ = 0) and C∗-invariant. Therefore we obtain an induced
locally defined symmetric tensor field B̄ on N̄ .

Lemma 7.8. The tensor B2 : (X, Y ) 7→ BX ◦BY is a globally defined tensor field on N ,
in particular, [B,B] is so. As a consequence, we have the globally defined tensor fields
B̄2 and [B̄, B̄] on N̄ .

Proof. It follows from B2 = A2.

For a (0, 2)-tensor a and a (1, 1)-tensor K, we define an End(TN)-valued 2-form
a ∧K by

(a ∧K)X,Y Z = a(X,Z)KY − a(Y, Z)KX

for tangent vectors X , Y and Z.

Proposition 7.9. The curvature R∇̄′ η

of ∇̄′ η is of the form

R∇̄′ η

=− 1

4
[B̄, B̄] + 2āa ⊗ Id− 2(āJ̄)

a ⊗ J̄ + ā ∧ Id− āJ̄ ∧ J̄ ,

where ( · )a denotes anti-symmetrization. Moreover we have dγ1 = −2āa and dγ2 =
2(āJ̄)

a.

Proof. By the fundamental equation for an affine submersion [1], we have

(R∇̄′ η

X,Y Z)
˜= h(R∇′

X̃,Ỹ
Z̃) + h(∇′

v[X̃,Ỹ ]
Z̃) +A∇′

Ỹ
A∇′

X̃
Z̃ −A∇′

X̃
A∇′

Ỹ
Z̃

for X , Y , Z ∈ Γ(TN̄). Since

v[X̃, Ỹ ] = η1([X̃, Ỹ ])ξ + η2([X̃, Ỹ ])Jξ

= −(dη1)(X̃, Ỹ )ξ − (dη2)(X̃, Ỹ )Jξ

= −(dγ1)(X, Y )ξ − (dγ2)(X, Y )Jξ,

we have

h(∇′
v[X̃,Ỹ ]

Z̃) = h(∇′
Z̃
v[X̃, Ỹ ])

= h(∇′
Z̃
(−(dγ1)(X, Y )ξ − (dγ2)(X, Y )Jξ))

= −(dγ1)(X, Y )Z̃ − (dγ2)(X, Y )(J̄Z)
˜.

Moreover, by

A∇′

X̃
Ỹ −A∇′

Ỹ
X̃ = v[X̃, Ỹ ] = −dγ1(X, Y )ξ − dγ2(X, Y )Jξ,

we have dγ1 = −2āa and dγ2 = 2(āJ̄)
a.
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Now we set dimN = 2(n + 1). By Proposition 7.9 and TrB̄X = 0 for all X ∈ TN̄ ,
we obtain

Ric∇̄
′ η

(Y, Z) =
1

4
TrB̄Y B̄Z + (ā(Z, Y )− ā(Y, Z))(7.3)

− (ā(J̄Y, J̄Z) + ā(Y, Z))− 2nā(Y, Z) + ā(Y, Z)− ā(J̄Y, J̄Z)

=
1

4
TrB̄Y B̄Z − (2n+ 1)ā(Y, Z) + ā(Z, Y )

− ā(J̄Y, J̄Z)− ā(J̄Z, J̄Y ).

We define a (0, 2)-tensor PD on a complex manifold (M,J), which is called the Rho
tensor of a connection D, by

PD(X, Y ) =
1

m+ 1

(
RicD(X, Y ) +

1

m− 1

(
(RicD)s(X, Y )− (RicD)s(JX, JY )

))
,

for X , Y ∈ TM , where 2m = dimM ≥ 4, RicD is the Ricci tensor of D and ( · )s
is the symmetrization of a (0, 2)-tensor. The c-projective Weyl curvature W c,[D̄] of a
c-projective structure [D̄] is given by

W c,[D̄] =RD̄ + (P D̄)a ⊗ Id− (P D̄
J̄ )a ⊗ J̄ +

1

2
P D̄ ∧ Id− 1

2
P D̄
J̄ ∧ J̄ .(7.4)

See [8]. We shall compute the c-projective Weyl curvature of [∇̄′ η]. From (7.3) it holds

(Ric∇̄
′ η

)s(Y, Z) =
1

4
TrB̄Y B̄Z − 2nās(Y, Z)− 2ās(J̄Y, J̄Z),

(Ric∇̄
′ η

)s(J̄Y, J̄Z) =
1

4
TrB̄Y B̄Z − 2nās(J̄Y, J̄Z)− 2ās(Y, Z)

and hence

(Ric∇̄
′ η

)s(Y, Z)− (Ric∇̄
′ η

)s(J̄Y, J̄Z) = −2(n− 1)
(
ās(Y, Z)− ās(J̄Y, J̄Z)

)
.

From these equations, it follows that

(n+ 1)P ∇̄′ η

(Y, Z) =
1

4
TrB̄Y B̄Z − (2n + 1)ā(Y, Z) + ā(Z, Y )− ā(J̄Y, J̄Z)− ā(J̄Z, J̄Y )

− 2(ās(Y, Z)− ās(J̄Y, J̄Z))

=
1

4
TrB̄Y B̄Z − (2n + 1)ā(Y, Z) + ā(Z, Y )− (ā(Y, Z) + ā(Z, Y ))

=
1

4
TrB̄Y B̄Z − 2(n + 1)ā(Y, Z).

Setting B̄(Y, Z) = TrB̄Y B̄Z , which is a symmetric, J̄-hermitian globally defined (0, 2)-
tensor on N̄ , we have

ā =
1

8(n+ 1)
B̄ − 1

2
P ∇̄′ η

.(7.5)
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Therefore the coefficients of the curvature form dη = dγ1+
√
−1dγ2 = −2āa+2

√
−1(āJ̄)

a

are determined by

āa = −1

2
(P ∇̄′ η

)a
(
= − 1

2(n+ 1)
(Ric∇̄

′ η

)a
)
,(7.6)

(āJ̄)
a =

1

8(n+ 1)
B̄J̄ − 1

2
(P ∇̄′ η

J̄ )a
(
=

1

8(n+ 1)
B̄J̄ − 1

2(n+ 1)
(Ric∇̄

′ η

J̄ )a
)
.(7.7)

By the above calculations we arrive at the following theorem.

Theorem 7.10. Let (N, J,∇, ξ) be a conical special complex manifold which is the total
space of a (holomorphic) principal C∗-bundle pN : N → N̄ , the base of which is a
projective special complex manifold N̄ with dim N̄ = 2n ≥ 4. The c-projective Weyl
curvature W c,P

∇̄′ of the canonically induced c-projective structure P∇̄′ is given by

W c,P
∇̄′ =− 1

4
[B̄, B̄]− 1

4(n+ 1)
B̄J̄ ⊗ J̄ +

1

8(n+ 1)
B̄ ∧ Id− 1

8(n+ 1)
B̄J̄ ∧ J̄ .

In particular, W
c,P

∇̄′

J̄( · ),J̄( · ) =W c,P
∇̄′ , that is, W c,P

∇̄′ is of type (1, 1) as an End(TN̄)-valued

two-form.

Proof. Take a principal connection η of type (1, 0). By Proposition 7.3, the canonically
induced c-projective structure is [∇̄′ η]. From Proposition 7.9, equation (7.4) and the
symmetry of B̄, it holds that

W c,[∇̄′η ] =− 1

4
[B̄, B̄]− 1

4(n+ 1)
B̄J̄ ⊗ J̄ +

1

8(n+ 1)
B̄ ∧ Id− 1

8(n+ 1)
B̄J̄ ∧ J̄ .

Since B̄J̄ , [B̄, B̄] and B̄ ∧ Id− B̄J̄ ∧ J̄ are of type (1, 1), W c,P
∇̄′ is of type (1, 1).

The following corollary is a direct consequence of Theorem 7.10.

Corollary 7.11. Any complex manifold (N̄, J̄) with a c-projective structure P such that
W c,P is not of type (1, 1) can not be realized as a projective special complex manifold
whose canonical c-projective structure is P.

8 A generalization of the supergravity c-map

The supergravity c-map associates a (pseudo-)quternionic Kähler manifold with any
projective special Kähler manifold. In this section, we give a generalization of the
supergravity c-map by using the results in previous sections. Let (N, J,∇, ξ) be a
conical special complex manifold and set Z := Jξ.

Lemma 8.1. 2Zh∇ is a rotating vector field on TN .
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Proof. Since LZJ = 0 and ∇ZJ = 0 (cf. Lemma 6.2), we have LZh∇I1 = 0. Moreover
we have

(LZh∇I2)(X
h∇ + Y v) = [Z, Y ]h∇ − (∇ZX)v − (∇ZY )

h∇ + [Z,X ]v

= −(∇Y Z)
h∇ − (∇XZ)

v

= −(JY )h∇ − (JX)v

= −I3(Xh∇ + Y v)

for all X , Y ∈ Γ(TN).

Remark 8.2. By the equations for ∇̃0 in the proof of Theorem 6.5, we have

∇̃0
Xh∇

ξh∇ = (∇′
Xξ)

h∇ =

(
∇Xξ −

1

2
JAXξ

)h∇

= Xh∇,

∇̃0
Xvξh∇ = −1

2
(JAξX)v = 0

for X ∈ TN , when (N, J,∇, ξ) is a conical special complex manifold.

We have the following theorem.

Theorem 8.3 (Generalized supergravity c-map). Let (N, J,∇, ξ) be a 2(n+1)-dimensional
conical special complex manifold. Let Θ be a closed two-form on M = TN such that
LZMΘ = 0, where ZM = 2Zh∇. Consider a U(1)-bundle π : P → M over M and η a
connection form whose curvature form is

dη = π∗
(
Θ− 1

2
d((ιZMΘ) ◦ I1)

)
.

Let f be a smooth function onM such that df = −ιZMΘ and f1 := f−(1/2)Θ(ZM , I1Z
M)

does nowhere vanish. If π̃ : M̃ → M̂ and π̂ : M̂ → M̄ are submersions, we have an as-
signment from a 2n-dimensional projective special complex manifold (N̄, J̄ ,P∇̄′) whose
c-projective Weyl curvature is of type (1, 1) to a 4(n+1)-dimensional quaternionic man-
ifold

M̄(= TN) = C(P,η)(M, 〈I1, I2, I3〉, ZM , f,Θ)/D
foliated by (2n+4)-dimensional leaves such that N̄ coincides with the space of its leaves.

Proof. By Theorem 4.1, Lemma 8.1 and Proposition 7.3, we have an assignment from a
2n-dimensional projective special complex manifold (N̄, J̄ ,P∇̄′) to a 4(n+1)-dimensional
quaternionic manifold TN . By virtue of Theorem 7.10, the c-projective Weyl curvature
of P∇̄′ is of type (1, 1). Next we give a foliation on TN whose leaves space is N̄ .
Set L := V ⊕ 〈ξh∇, Zh∇〉, where V is the vertical distribution of T (TN) → TN . The
distribution L is ZM = 2Zh∇-invariant and integrable by (6.4). Therefore each leaf L of
L is a ZM = 2Zh∇-invariant submanifold of TN . Consider the pull-back ι#P of P by
the inclusion ι : L→ TN with the bundle map ι# : ι#P → P and L̃ := H∗× ι#P . Since
V1 is tangent to L̃, then L̂ := L̃/〈V1〉 is a submanifold M̂ . Moreover V , Î1(V ), Î2(V ),
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Î3(V ) are tangent to L̂ because V is induced by eR0 . Taking the quotient again, we
obtain a submanifold L̄ := L̂/〈V, Î1(V ), Î2(V ), Î3(V )〉 on a quaternionic manifold TN .
Therefore the quaternionic manifold TN is foliated by (2n+4)-dimensional leaves such
that the space of its leaves L̄ is the projective special complex manifold N̄ .

Remark 8.4. If we assume that Z1 = (ZM)hη + f1XP generates a free U(1)-action on
P instead of assuming that π̃ : M̃ → M̂ and π̂ : M̂ → M̄ are submersions, we obtain
the same result as in Theorem 8.3 (see Theorem 4.8).

Remark 8.5. Borówka and Calderbank have given a construction of a quaternionic
manifold from a complex manifold of half the dimension with a c-projective structure,
known as the quaternionic Feix-Kaledin construction [6]. Their construction generalizes
the original construction [11, 20], which yields a hyper-Kähler structure on a neigh-
borhood of the zero setion of any Kähler manifold. They also point out that this
construction is a generalization of [12, Theorem A] (see [6, Proposition 5.4]). More
precisely, the initial data of the quaternionic Feix-Kaledin construction are a complex
manifold with a c-projective structure of type (1, 1) and a complex line bundle with a
connection of type (1, 1). Note that this construction is different from our generaliza-
tion of the supergravity c-map, in which the real dimension of the quaternionic manifold
TN is related to the real dimension of the projective special complex manifold N̄ by
dim(TN) = 2 dim(N̄) + 4.

We consider a conical special complex manifold (N, J,∇, ξ), which we endow now
with an additional structure. Let ψ be a J-hermitian, ∇-parallel two-form on (N, J,∇, ξ).
We consider a function µ = (1/2)ψ(ξ, Jξ) on N . Then we see dµ = −ιZψ. Set

Θ = −π∗
TNψ,(8.1)

f = −2π∗
TNµ+ c(8.2)

for some constant c. Then it holds that

df = −ιZMΘ, f1 = f − 1

2
Θ(ZM , I1Z

M) = 2π∗
TNµ+ c,

where πTN : TN → N is the bundle projection. In fact, we have

df = −2d(π∗
TNµ) = 2π∗

TN(ιZψ) = −ιZMΘ

and

f1 = f − 1

2
Θ(ZM , I1Z

M)

= −ψ(ξ, Jξ) ◦ πTN − 2Θ(Zh∇, I1Z
h∇) + c

= ψ(Jξ, ξ) ◦ πTN + c = 2π∗
TNµ+ c.

Corollary 8.6. Let (N, J,∇, ξ) be a 2n-dimensional conical special complex manifold
and ψ a J-hermitian, ∇-parallel two-form on N . Consider a U(1)-bundle π : P → M
over M = TN and η a connection form whose curvature form is

dη = (πTN ◦ π)∗ψ.
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If π̃ : M̃ → M̂ and π̂ : M̂ → M̄ are submersions and µ−1(−c/2) = ∅, then the
generalized supergravity c-map of Theorem 8.3 can be specialized to this setting such
that the data Θ and f are related to ψ by equations (8.1) and (8.2).

Proof. By a straightforward calculation, we have d((ιZψ) ◦ J) = 2ψ. Then it is easy to
check

dη = (πTN ◦ π)∗ψ
= (πTN ◦ π)∗ (−ψ + d((ιZψ) ◦ J))

= (πTN ◦ π)∗
(
−ψ +

1

2
d((ι2Zψ) ◦ J)

)

= π∗
(
Θ− 1

2
d((ιZMΘ) ◦ I1)

)
,

where Θ is the two-form given by (8.1). Since dψ = 0 and ιZψ = −dµ, it holds LZMΘ =
0. The function f1 = f − (1/2)Θ(ZM , I1Z

M) does nowhere vanish by µ−1(−c/2) = ∅.
Therefore Theorem 8.3 leads to the conclusion.

Therefore a conical special complex manifold (N, J,∇, ξ) with a J-hermitian, ∇-
parallel two-form ψ such that (1/2π)[ψ] ∈ H2

DR(N,Z) and µ = (1/2)ψ(ξ, Jξ) is not
surjective gives rise to a quaternionic manifold of dimension 2 dimN under a suitable
choice of the constant c.

For t ∈ R/πZ, we define a connection ∇t by ∇t = etJ ◦ ∇ ◦ e−tJ , which is a special
complex connection by [3, Proposition 1]. Moreover, by

∇t = ∇− (sin t)etJ(∇J)

([3, Lemma 1]), we see that ∇t satisfies ∇tξ = id. Therefore {∇t}t∈R/πZ is a family of
conical special complex connections if ∇J 6= 0.

Lemma 8.7. If ψ is J-hermitian and ∇-parallel, then ψ is ∇t-parallel.

Proof. Since ∇t − ∇ is a linear combination of ∇J and J(∇J) = −(∇J)J , it suffices
to remark that ∇ψ = 0, J · ψ = 0 and, hence, (∇XJ) · ψ = 0 for all X . Here the dot
stands for the action on the tensor algebra by derivations.

Hence, Corollary 8.6 and Lemma 8.7 imply

Corollary 8.8. If A(= ∇J) 6= 0, there exists an (R/πZ)-family of quaternionic mani-
folds obtained from a conical special complex manifold with ψ under the same assump-
tions of Corollary 8.6 by the H/Q-correspondence (for any chosen function f in the
construction).

Proof. By Lemma 8.7, ∇t
Xψ = 0. Since (N, J,∇t, ξ) are conical special complex mani-

folds, we have the conclusion.
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To give an example, we recall the (local) characterization of a conical special complex
manifold [3]. Let (Cn+1, J) be the standard complex vector space and U an open subset
in Cn+1 with the standard coordinate system (z0, . . . , zn). We consider a holomorphic
one-form α =

∑
Fidzi on U , which is also viewed as a holomorphic map φ = φα from

U to (T ∗U = U × Cn+1 ⊂) C2(n+1). If Reφ : U → R2(n+1) is an immersion, which is
equivalent to φ being totally complex [3], then we can find an affine connection ∇ such
that (U, J,∇) is a special complex manifold. In fact, we can take a local coordinate
system

(x0 := Re z0, . . . , xn := Re zn, y0 := ReF0, . . . , yn := ReFn)

on U induced by φ and a connection∇ defined by the condition that (x0, . . . , xn, y0, . . . , yn)
is affine. Moreover

∑n
i=0 dxi ∧ dyi is ∇-parallel symplectic form on U . In particular,

if α = −∑n
i=0

√
−1zidzi, then the induced affine coordinate system coincides with the

real coordinate system underlying the holomorphic coordinate system (z0, . . . , zn), hence
(U, J,∇) is trivial (∇J = 0) in that special case. In addition to being holomorphic and
totally complex, we assume that φ is conical, which is equivalent to the condition that
functions F0, . . . , Fn are homogeneous of degree one, i.e. Fi(λz) = λFi(z) for all λ near
1 ∈ C∗ and z ∈ U . Then U is conical, that is, any conical holomorphic one-form φ such
that Reφ is an immersion on U defines a conical special complex (and symplectic) man-
ifold structure of complex dimension n. Conversely, any such manifold can be locally
obtained in this way (see [3, Corollary 5]).

If we choose α = −∑n
i=0

√
−1zidzi on Cn+1\{0}, then the generalized c-map asso-

ciates an open submanifold of (Hn+1, Q) with the standard quaternionic structure Q to
the complex projective space (CP n, Jst, [∇FS]), where Jst is the standard complex struc-
ture and ∇FS is the Levi-Civita connection of the Fubini-Study metric. Here we have
chosen Θ = 0. We can also apply Corollary 8.6 by choosing the standard symplectic
form as ψ. More generally, we have the following example.

Example 8.9. For a holomorphic function g of homogeneous degree one, we consider
the holomorphic 1-form

α = gdz0 −
√
−1

n∑

i=1

zidzi

on U := {(z0, z1, . . . , zn) ∈ Cn+1 | Im g0 6= 0}, where gi = ∂g
∂zi

(i = 0, 1, . . . , n). [Com-
ment Vicente: we should perhaps use a different symbol for F to avoid Note that dα 6= 0
if there exists i such that gi 6= 0 (i ≥ 1). Setting zi = ui +

√
−1vi (i = 0, 1, . . . , n), we

have

(x0, . . . , xn, y0, y1, . . . , yn) = Reφ(u0, . . . , un, v0, . . . , vn)

= (Re z0, . . . ,Re z1,Re g,Re (−
√
−1z1), . . . ,Re (−

√
−1zn))

= (u0, . . . , un,Re g, v1, . . . , vn).
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Since its Jacobian matrix is given by

∂(x0, . . . , yn)

∂(u0, . . . , vn)
=




1 0 0 . . . . . . 0
. . .

...
...

...
1 0 0 . . . . . . 0

Re g0 . . . Re gn −Im g0 −Im g1 . . . . . . −Im gn
0 . . . 0 0 1 0 . . . 0
...

...
... 0 1 0

...
...

...
...

. . .

0 . . . 0 0 0 1




,

we see that Re φ is an immersion and we obtain a conical special complex structure on
U . The coordinate vector fields of (x0, . . . , yn) are given by

∂

∂xi
=

∂

∂ui
+

Re gi
Im g0

∂

∂v0
(i ≥ 0),

∂

∂y0
= − 1

Im g0

∂

∂v0
,

∂

∂yj
= − Im gj

Im g0

∂

∂v0
+

∂

∂vj
(j ≥ 1)

on U . Let ∇ (resp. ∇st) be the flat affine connection on U such that (x0, . . . , yn) (resp.
(u0, . . . , vn)) is a ∇ (resp. ∇st)-affine coordinate system. We define S by ∇ = ∇st + S.
Then we calculate

0 = ∇X
∂

∂xi
= (∇st

X + SX)

(
∂

∂ui
+

Re gi
Im g0

∂

∂v0

)

= X

(
Re gi
Im g0

)
∂

∂v0
+ SX

∂

∂ui
+

Re gi
Im g0

SX
∂

∂v0
(i ≥ 0)

and similarly we have

−X

(
1

Im g0

)
∂

∂v0
− 1

Im g0
SX

∂

∂v0
= 0,

−X

(
Im gj
Im g0

)
∂

∂v0
− Im gj

Im g0
SX

∂

∂v0
+ SX

∂

∂vj
= 0 (j > 0).

From these equations, it holds that

SX
∂

∂ui
= −XRe gi

Im g0

∂

∂v0
, SX

∂

∂vi
=
XIm gi
Im g0

∂

∂v0
(i ≥ 0).(8.3)

Using AXY = (∇XJ)(Y ) = SXJY −JSXY and (8.3), we have the matrix representation

A = ∇J =
1

Im g0




A0 . . . An

02 · · · 02
...

. . .
...

02 · · · 02


(8.4)
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of A with respect to the frame
(

∂

∂u0
,
∂

∂v0
, . . . ,

∂

∂un
,
∂

∂vn

)
,

where

Ai =

(
−dRe gi dIm gi
dIm gi dRe gi

)
and 02 =

(
0 0
0 0

)
.

Note that we change the order of the frame for simplicity. This means that A 6= 0 if
there exists i such that gi 6= constant. By Lemma 7.8 and (8.4), A2 = (∇J)2 induces a
globally defined tensor on Ū , in particular

TrA2 = TrA2
0 =

2

(Im g0)2
(dRe g0 ⊗ dRe g0 + dIm g0 ⊗ dIm g0)

also induces the the symmetric tensor B̄ on Ū . By Lemma 6.4 and (8.4), we see that

R∇′

= −1

4
A ∧A = − 1

4(Im g0)2




A0 ∧ A0 A0 ∧ A1 . . . A0 ∧An

02 02 · · · 02
...

...
. . .

...
02 02 · · · 02




as the matrix representation.
Since

dxi = dui (i ≥ 0), dy0 =
n∑

i=0

Re gi dui − Im gi dvi,

dyj = dvj (j > 0),

a 2-form ψ =
∑n

i=1 dxi∧dyi(=
∑n

i=1 dui∧dvi) is J-hermitian and ∇-parallel. Note that∑n
i=0 dxi ∧ dyi = dx0 ∧ dy0 + ψ is not J-hermitian, that is, (U, J,∇, dx0 ∧ dy0 + ψ) is

not special Kählerian if there exists i > 0 such that Re gi 6= 0. However it is a special
symplectic manifold. In fact, it holds

(dx0 ∧ dy0)(
∂

∂u0
,
∂

∂ui
) = Re gi and (dx0 ∧ dy0)(J

∂

∂u0
, J

∂

∂ui
) = 0.

Moreover since

ξ =
n∑

i=0

xi
∂

∂xi
+ yi

∂

∂yi
= · · ·+

n∑

i=1

ui
∂

∂ui
+ vi

∂

∂vi
,

Jξ = · · ·+
n∑

i=1

ui
∂

∂vi
− vi

∂

∂ui
,

we have µ = ψ(ξ, Jξ) = (1/2)
∑n

i=1(u
2
i + v2i ). Take a U(1)-bundle π : TU ×U(1) → TU

with a connection form

η = (πTU ◦ π)∗(
n∑

i=1

uidvi) + dθ,
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where θ is the angular coordinate of U(1). The special case Corollary 8.6 of Theorem
8.3 can be applied and then we obtain a quternionic manifold.

We consider the horizontal subbundle of pU : U → Ū given by the kernel of κ =
−(1/2s)dµ ◦ J on each level set µ−1(s) ⊂ U (s 6= 0). We retake U as an open set
in ∪s>0µ

−1(s). For horizontal vector fields X and Y tangent to each level set µ−1(s),
XY µ = 0 means that

(p∗U ā)(X, Y ) =
1

2s
ψ(JX, Y ),

where ā is the ξ-component of the fundamental tensor of A∇′

as in Section 7 . Here
we used dκ = ψ/s. This means that ā is symmetric and J̄-hermitian, and hence the
Ricci tensor of the connection ∇̄′κ on Ū induced from κ is symmetric and J̄-hermitian.
Therefore it holds

p∗U ā = − 1∑n
i=1(u

2
i + v2i )

n∑

i=1

dui ⊗ dui + dvi ⊗ dvi.

Hence the Ricci tensor Ric∇̄
′κ

of ∇̄′κ satisfies

− 1∑n
i=1(u

2
i + v2i )

n∑

i=1

dui ⊗ dui + dvi ⊗ dvi

=
1

4(n+ 1)(Im g0)2
(dRe g0 ⊗ dRe g0 + dIm g0 ⊗ dIm g0)−

1

2(n+ 1)
p∗Ū(Ric

∇̄′κ

)

by (7.5). In particular, we see that Ric∇̄
′κ ≥ 0. For example, when we choose g =

−
√
−1zl1/z

l−1
0 for l( 6= 1) ∈ Z, we obtain

dRe g0 =

√
−1

2
(−l + 1)l(−wl−1dw + w̄l−1dw̄),

dIm g0 = −1

2
(−l + 1)l(wl−1dw + w̄l−1dw̄),

dRe g1 =

√
−1

2
(−l + 1)l(wl−2dw − w̄l−1dw̄),

dIm g1 =
1

2
(−l + 1)l(wl−2dw + w̄l−2dw̄),

dRe gj = dIm gj = 0 (j > 1),

where w = z1/z0. We denote the corresponding objects with subscript l for ones given
by g = −

√
−1zl1/z

l−1
0 . It holds that

R∇l ′

= −
√
−1 l2 |w|2(l−2)

(wl + w̄l)2




0 −|w|2 −Imw Rew 0 . . . 0
|w|2 0 −Rew −Imw 0 . . . 0
0 0 0 0 0 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 0



dw ∧ dw̄(8.5)
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and

Tr(Al)2 = Tr(∇lJ)2 =
4 l2 |w|2(l−1)

(wl + w̄l)2
(dw ⊗ dw̄ + dw̄ ⊗ dw).(8.6)

Finally we consider the quaternionic Weyl curvature of TU . Let W q be the quater-
nionic Weyl curvature of the quaternionic structure Q = 〈I1, I2, I3〉. In [5], the explicit
expression of W q is given and it is shown that W q is independent of the choice of
the quaternionic connection. Since the Obata connection of the c-map is Ricci flat by
Theorem 6.5, we have W q,l = R∇̃0,l

for g = −
√
−1zl1/z

l−1
0 . If l 6= 1, then we see that

W q,l
Xv,Y vZ

v = R∇̃0,l

Xv,Y vZv =
(
R∇l ′

X,Y Z
)v

.

Because the vertical lift is determined by a differential manifold structure (not by a con-
nection), we see that W q,l 6=W q,k on T (Uk ∩Ul) if l 6= k, where Uj = {(z0, z1, . . . , zn) ∈
C

n+1 | Im g0 6= 0} = {(z0, z1, . . . , zn) ∈ C
n+1 | Re (z1/z0)j 6= 0} for g = −

√
−1zj1/z

j−1
0 .

Here we used (8.5). So we can find different quaternionic structures Qα1 , . . . , Qαt on
T (

⋂t
i=1 Uαi

), where 1 6= αi ∈ Z. Note that Q0 is the flat quaternionic structure.

Remark 8.10. Since dα 6= 0 except the trivial case g = −
√
−1z0, Example 8.9 with

g = −
√
−1zl1/z

l−1
0 (l 6= 0), which is local one, is not given by a local special Kählerian

one.

Remark 8.11. For a conical special Kähler manifold N , the particular twist data which
yields the quaternionic Kähler structure of the supergravity c-map on T ∗N ∼= TN is
given in [21, Lemma 5.1] in consistency with [4]. As we noted in the introduction, we also
have a freedom in the choice of the data Θ etc. for our generalized supergravity c-map.
For instance, the two form Θ can be chosen as trivial (Θ = 0) or as in equation (8.1). For
illustration, we can give yet another possible choice of Θ. Assume that dimN ≥ 6. Let
{Ūα}α∈Λ be an open covering of N̄ with local trivializations Uα := p−1

N (Ūα) ∼= Ūα × C∗

and gαβ : Ūα ∩ Ūβ → C∗ be the corresponding transition functions. Let (rα, θα) be the
polar coordinates with respect to a (smooth) local trivialization p−1

N (Ūα) ∼= Ūα ×C∗ for
each α ∈ Λ. A principal connection η is locally given by

η = p∗N (γ
α
1 ⊗ 1 + γα2 ⊗

√
−1) +

(
drα
rα

⊗ 1 + dθα ⊗
√
−1

)

for a C-valued one-form γα1 ⊗ 1 + γα2 ⊗
√
−1 on Ūα ⊂ N̄ for each α ∈ Λ. If we write

gαβ = ef
1
αβ

+f2
αβ

√
−1, then

f 1
αβ + f 1

βγ − f 1
αγ = 0,

f 2
αβ + f 2

βγ − f 2
αγ ∈ 2πZ,

γ1β − γ1α = df 1
αβ,

γ2β − γ2α = df 2
αβ.
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Therefore we obtain a principal U(1)-bundle pS : S → N̄ with transition functions

ef
2
αβ

√
−1 : Ūα ∩ Ūβ → U(1) and connection ηS locally given by

p∗S(γ
α
2 ⊗

√
−1) + dθα ⊗

√
−1.

In fact, the collection {ef2
αβ

√
−1} of local U(1)-valued functions satisfies the cocycle cond-

tion and the collection {γα} of local
√
−1R-valued one-forms satisfying γ2β − γ2α = df 2

αβ

defines a connection form ηS. By Proposition 7.9 and (7.7), its curvature dηS(= p∗S(dγ
α
2 ))

is 2(āJ̄)
a, where (āJ̄)

a is given by

(āJ̄)
a =

1

8(n+ 1)
B̄J̄ − 1

2
(P ∇̄′

J̄ )a.

On TN , we choose the two-form Θ = 2(pN ◦ πTN )
∗((āJ̄)

a) and consider the pull-back
connection (pN# ◦ πTN#)

∗ηS on the pull-back bundle P = πTN
#p#NS. Since ιZMΘ = 0,

we can see that the assumptions in Theorem 8.3 hold. It is left for future studies to find
a canonical choice of Θ for the generalized supergravity c-map, which allows to invert
the H/Q-correspondence of [10].

As an application of Theorem 8.3, we have the following corollary by patching quater-
nionic manifolds locally constructed by the generalized supergravity c-maps.

Corollary 8.12. Let (M,J, [∇]) be a complex manifold with a c-projective structure [∇]
and dimM = 2n. If 2n = dimM ≥ 4 and the harmonic curvature of its normal Cartan
connection vanishes, then there exists a 4(n + 1)-dimensional quaternionic manifold
(M̌,Q) with the vanishing quaternionic Weyl curvature foliated by (n + 2)-dimensional
complex manifolds whose leaves space is M .

Proof. Since dimM ≥ 4 and the harmonic curvature of its normal Cartan connection
vanishes, (M,J, [∇]) is locally isomorphic to (CP n, Jst, [∇FS]) (see [8] for example).
So we may assume that M =

⋃
α Uα, where Uα is an open subset CP n. Set Vα :=

p−1(Uα), where p : Cn+1\{0} → CP n is the projection. We consider the standard
complex structure and the standard flat connection induced from Cn+1 on each Vα. By
Theorem 8.3, we have a quaternionic manifold Wα := ϕ′(TVα) ⊂ Hn+1, where ϕ′ is the
diffeomorphism given in Example 5.2. Here we have chosen the two-form Θ = 0 and
f = f1 = 1 on TVα for each α. We set M̌ :=

⋃
αWα. The induced quaternionic structure

on each Wα coincides with the standard one from Hn+1. Hence an almost quaternion
structure Q on M̌ can be obtained. Since there exists a quaternionic connection on
each Wα, one can obtain a quaternionic connection on M̌ by the partition of unity, that
is, Q is a quaternionic structure with vanishing quaternionic Weyl curvature. For each
p ∈ TVα ∩ TVβ, the leaf of L through p in TVα is denoted by Lα and corresponding leaf

in Wα is denoted by L̂α, that is L̂α = ϕ′(Lα). Since L̂α = L̂β in M̌ , we obtain leaves
in M̌ and see that its leaves space is M . Since the subbundle L is an I1-invariant in
T (TVα), each leaf L is a complex manifold with I := I1|L. Each leaf L̂ on M̌ is obtained
by the Swann’s twist with an almost complex structure Î. By [27, Proposition 3.8] and
Θ = 0, Î is integrable.
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