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ABSTRACT

Aims. To provide a significantly improved probability distribution for the H-test for periodicity in X-ray and γ-ray arrival times,
which is already extensively used by the γ-ray pulsar community. Also, to obtain an analytical probability distribution for stacked test
statistics in the case of a search for pulsed emission from an ensemble of pulsars where the significance per pulsar is relatively low,
making individual detections insignificant on their own. This information is timely given the recent rapid discovery of new pulsars
with the Fermi-LAT t γ-ray telescope.
Methods. Approximately 1014 realisations of the H-statistic (H) for random (white) noise is calculated from a random number
generator for which the repetition cycle is�1014. From these numbers the probability distribution P(>H) is calculated.
Results. The distribution of H is found to be exponential with parameter λ = 0.4 so that the cumulative probability distribution
P(>H) = exp (−λH). If we stack independent values for H, the sum of K such values would follow the Erlang-K distribution with
parameter λ for which the cumulative probability distribution is also a simple analytical expression.
Conclusions. Searches for weak pulsars with unknown pulse profile shapes in the Fermi-LAT, Agile or other X-ray data bases should
benefit from the H-test since it is known to be powerful against a broad range of pulse profiles, which introduces only a single
statistical trial if only the H-test is used. The new probability distribution presented here favours the detection of weaker pulsars in
terms of an improved sensitivity relative to the previously known distribution.
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1. Introduction

When searching for a periodic signal in X-ray or γ-ray ar-
rival times dominated by noise, we may either perform a blind
search for γ-ray pulsars as demonstrated by the Fermi-LAT
Collaboration (Abdo et al. 2009), or, search for such a signal
where the frequency parameters have been prescribed by con-
temporary radio data (Weltevrede 2010). Following the folding
of say N arrival times t1, ..., tN modulo the pulsar spin parame-
ters, we arrive at a set of phases θi, i = 1, ...N. However, in the
case of blind searches, Atwood et al. (2006) introduced a time
differencing technique in which case the number of trial periods
is significantly reduced.

de Jager et al. (1989, hereafter DSR) reviewed the general
class of Beran statistics (Beran 1969), from which the most gen-
eral test statistics such as Pearson’s χ2, Rayleigh and Z2

m statis-
tics are derived, and from within this class they derived the well
known H-test for X-ray and γ-ray Astronomy.

The probability distribution of the H-test statistic as given
by DSR was derived from Monte Carlo simulations employing
∼108 simulations. The computational power and random number
simulators on typical IBM machines during the 1980’s had lim-
ited ranges of applicability and the H-test suffered accordingly.
For values of H < 23 we found that the probability distribution
was exponential with parameter λ = 0.398 (or 0.4), whereas a
hard tail developed for H > 23, which resulted in a significant
compromise in sensitivity.

The old version of the H-test probability distribution is al-
ready extensively used by e.g. the Fermi-LAT Collaboration for
pulsar searches (e.g. Abdo et al. 2009; and Weltevrede et al.
2010), and from this paper it will become clear that the sig-
nificances assigned to pulsar detections (or non-detections) may
be too conservative, so that some pulsars may be missed, espe-
cially when many trial periods are involved, so that large values
of the H-statistic are required for a significant detection. In this
Letter we notify the community that all previous published sig-
nificances from the H-test should be reassessed, based on the
new improved distribution presented below. Before we do so,
we first briefly review the origin and properties of the H-test.

2. The Beran class of test statistics – towards
the H-test

Let θ be the pulsar phase measured on the interval [0, 2π), so that
a full rotation corresponds to 2π. Assuming noise (e.g. from cos-
mic rays) are also present such that the pulsed fraction is p ≤ 1.
Let fs(θ) be the observed line-of-sight pulse profile in the ab-
sence of noise. The case p = 0 then corresponds to no signal
(pure noise), whereas p = 1 corresponds to no noise (pure pulsed
signal). The observed light curve f (θ) can then be represented as
a mixing of the noise and signal distributions (see Eq. (2) of DSR
1989)

f (θ) = p fs(θ) +
(1 − p)

2π
· (1)
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The general form of the Beran statistic is given by Beran (1969)
in the form (see also DSR 1989)

ψ( f ) =
∫ 2π

0

(
f (θ) − 1

2π

)2

dθ = p2
∫ 2π

0

(
fs(θ) − 1

2π

)2

dθ. (2)

It is thus clear that the Beran statistic measures the integrated
squared distance between the pulse profile and uniformity, so
that if p → 0, then ψ → 0 as well, or, if fs = 1/2π (i.e. a flat
uniform distribution), then ψ = 0 as well. Thus, we would reject
uniformity if ψ exceeds a chosen positive critical value.

It was noted by DSR that by replacing f (θ) with a density
estimator f̂ (θ) based on the observed folded phases θi, we re-
trieve test statistics specific to the kernel of the density estimator.
Selecting the Fourier series estimator f̂m with m harmonics (see
Eq. (5) of DSR) as representative of the light curve, results in the
well-known Z2

m given the proper normalisation (Eq. (7) of DSR)

Z2
m = 2πNψ( f̂m). (3)

Since ψ( f ) scales with p2 (Eq. (2)), it is then clear that the statis-
tic Z2

m should scale as p2N. The quantity X = p
√

N is then also
the approximate Gaussian significance of the point source on the
skymap if the background level is well known.

The main problem raised by DSR is that we do not know
a-priori the optimal number of harmonics to select. In the case
of the popular Z2

m test, the optimal number of harmonics would
depend on X and the pulse profile shape.

The rationale behind the H-test was to find a consistent esti-
mator for f (θ) where the number of harmonics m is not chosen
subjectively by the observer, since selecting a number of m val-
ues for Z2

m, until a pleasing result is obtained, may lead to a false
detection, given the difficulty to keep track of the number of tri-
als involved.

Hart (1985) derived a technique to obtain the optimal num-
ber of harmonics M such that the mean integrated squared er-
ror (MISE) between the Fourier series estimator f̂M(θ) and the
true unknown light curve shape is a minimum (see DSR for a
review). Thus, f̂M(θ) would give the best Fourier series repre-
sentation of the true pulse profile, given the constraints imposed
by the statistics and inherent pulsed fraction. Since the minimum
of the MISE involves the finding of a maximum quantity over all
harmonics m, DSR redefined this maximal (optimal) quantity in
terms of the so-called H-test statistic (named after Hart):

H ≡ max
1≤m≤20

(Z2
m − 4m + 4) = Z2

M − 4M + 4 ≥ 0. (4)

Uniformity would correspond to low values of M and also low
values of H, whereas large values of Z2

M (relatively strong pulsed
signal) corresponds to large values of H. Subtracting 4M and
adding 4 (to ensure positive values of H only) effectively limits
the variance of H in the absence of a pulsed signal. It is clear that
the H test represents a rescaled version of the Z2

m test: if M = 1,
then we retrieve the well-known Rayleigh test. DSR have shown
that this test is powerful against a wide range of alternatives,
which makes this test attractive if the pulse profile shape is not
known a priori.

To give an example of how H and M depend on the above-
mentioned significance X = p

√
N given real data, we selected

archival photon arrival times from the public Fermi-LAT data
base from the Vela pulsar direction, with events selected accord-
ing to the Fermi-LAT point spread function, but with energies
>500 MeV. Folding these phases with the given contemporary
spin parameters of Vela reveals a pulsed fraction of p ∼ 0.96, i.e.

Fig. 1. The dependence of H and M on the approximate skymap signif-
icance X for γ-ray pulse phases above 500 MeV from the Vela pulsar
as described in the text. The errors represent standard deviations based
on 20 independent Fermi-LAT Vela pulsar data sets, each of length up
to ∼4 days. The horisontal line represent the upper limit of M = 20,
whereas the dashed line represent a fit of the form H = 1.9X2 for X > 3.

nearly 100% and from N = 600 events (4 days integration) we
already obtain M = 20. By adding randomly generated events
(i.e. uniformly distributed pulse phases) to the signal events we
effectively reduce p and hence X, so that H and M should also
decrease accordingly. Figure 1 shows how H and M relates to X:
For X > 3 (stronger than a ∼3σ signal) we see that H scales with
X2, with H = 1.9X2, whereas the optimal M is already >10 for
X > 7.

This figure is also quite useful to see what typical H and M
values we may expect for a typical Vela-like pulsar if we know
the strength of the signal as derived from a point source on the
skymap, and assuming the excess is due to such a pulsed signal.

3. The revised probability distribution
of H for uniformity

The calculations were performed on the Institutional Cluster
of the North-West University, Potchefstroom campus. To par-
allelize the computations, we used the RngStream pack-
age (L’Ecuyer 2002), which guarantees independent, non-
overlapping substreams of random numbers. The repetition
cycle for this random number generator is 3×1057, which is cer-
tainly large enough for our purposes. A total of 4× 1014 samples
were calculated in this way.

In the case of large statistics (N > 100) we do not need to
simulate individual arrival times directly (see the approximate
correction factors in Figs. 1 and 2 of DSR in the case of low
statistics – N < 100), so that we only need to simulate the Z2

m
statistics directly: since Z2

m is the sum of m χ2
2-statistics, we can

simulate a χ2
2 statistic directly from a uniformly distributed ran-

dom number r ∈ [0, 1) by taking the transformation −2 ln r and
adding these numbers to give Z2

m. This speeds up the process
considerably. A total of 4 × 1014 values of H were simulated in
this way and the results are shown in Fig. 2. The distribution
is everywhere consistent with an exponential distribution with
parameter λ = 0.398 (or 0.4), except for H > 70 where a down-
turn relative to the 0.4 index is possibly seen. DSR arrived at
the same precise value of λ = 0.398 for small values of H (i.e.
less than 23) since the random number generator used by DSR
did not yet reach the limit of its random cycle for the number
of simulations required to reach H ∼ 23 (with a relatively small
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Fig. 2. The distribution of the H-statistic derived from 4 × 1014 Monte
Carlo simulations with the best fit model for the cumulative probability
P(>H) = exp (−0.4H) (solid line) and the old version of the probability
distribution given by DSR shown as a dashed line.

error on the corresponding probability) and should therefore re-
veal the same result as ours for H < 23.

It is thus clear that the probability distribution of the
H-statistic can be conservatively described by the simple
formula

Prob(>H) = exp (−0.4H). (5)

4. Incoherent stacking

Suppose we analysed the data from K pulsars, or, K indepen-
dent observations of the same pulsar, where the effect of e.g.
unrecorded glitches excluded the possibility of analysing all the
data as one single coherent set of arrival times. In this case we
want to see if there is a net signal represented by K values of
the H-statistic. Suppose we arrive at a set of K such values of H,
given by Hi, i = 1, ...,K.

Since we have shown (to the probability level of ∼10−14) that
the H-statistic follows that of an exponential distribution with
parameter λ = 0.4, we can stack these test statistics through the
sum

HT = Σ
K
i=1Hi, (6)

which is known to follow the Erlang-K distribution with param-
eter λ, so that the significance (or probability for uniformity) of
such stacking is given by the simple analytical expression (see
e.g., Leemis & McQueston 2008, on univariate distribution re-
lationships, which includes the Erlang distribution as the sum of
independent exponential variables with parameter λ.)

P(>HT |K, λ) = ΣK−1
n=0

exp (−λHT )(λHT )n

n!
· (7)

5. Conclusions

For M = 1 we retrieve the well-known Rayleigh test, with the
exception that the parameter for the exponential distribution has
been reduced from λ = 0.5 (for the Rayleigh test) to λ = 0.4
for the H-test. This slight loss of sensitivity is the effect of the
number of trials taken implicitly into account as a result of the
search through m within the H-test.

Finally, it is clear that the corrected distribution of the H-
statistic follows a simple exponential with parameter λ = 0.4
and evaluation of results for H > 23 (i.e. the 10−4 significance
level) would yield more significant results compared to the old
distribution presented by DSR. For example, for H = 50 a prob-
ability of 4 × 10−8 is typically quoted in the literature, whereas
the true probability for uniformity is actually 2 × 10−9 – already
a factor 20 smaller.

A Fermi-LAT example of the Vela pulsar (>500 MeV) shows
clearly values for M up to 20 for “skymap” significances X =
p
√

N > 20, whereas H scales with H ∝ X2 as expected for
Beran-type tests. The scaling H = 1.9X2 can be used to pre-
dict H-test statistics for Vela-like pulsars above 500 MeV if we
assume the excess on the skymap is all pulsed.

The hard tail of the distribution beyond H > 23 presented
by DSR probably arose from the repetition cycle of the random
number generator used in those days, so that the same fluctua-
tions at large H values were repeated given the finite cycle length
of the generator used. In this case we however used a genera-
tor with a cycle time much longer than 1014, in which case we
did not see the repetition of outliers as a result of a finite cycle
length. Confirmation of the possible break (i.e. downturn) in the
probability distribution at H > 70 requires extensive simulations
beyond 4 × 1014 and is beyond the scope of this paper.
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