Int. Journal of Math. Analysis, Vol. 2, 2008, no. 13, 639-646

The Hadamard's Inequality for s-Convex Function

M. Alomari and ${ }^{*}$ M. Darus
School of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
Bangi 43600 Selangor, Malaysia
alomari@math.com
* Corresponding author. maslina@pkrisc.cc.ukm.my

Abstract

A monotone nondecreasing mapping connected with Hadamardtype inequality for s-convex function and some applications are given.

Keywords: s-Hadamard's inequality, s-Convex function, Jensen's inequality

1 Introduction

Let $f: I \subseteq \mathbf{R} \rightarrow \mathbf{R}$ be a convex mapping defined on the interval I of real numbers and $a, b \in I$, with $a<b$. The following double inequality:

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1}
\end{equation*}
$$

is known in the literature as Hadamard's inequality for convex mappings.
In [1] Hudzik and Maligrada considered among others the class of functions which are s-convex in the second sense. This class is defined in the following way: a function $f:[0, \infty) \rightarrow \mathbf{R}$ is said to be s-convex in the second sense if

$$
\begin{equation*}
f(\lambda x+(1-\lambda) y) \leq \lambda^{s} f(x)+(1-\lambda)^{s} f(y) \tag{2}
\end{equation*}
$$

holds for all $x, y \in[0, \infty), \lambda \in[0,1]$ and for some fixed $s \in(0,1]$. It can be easily seen that every s-convex function is convex when $s=1$.

In [2] Dragomir and Fitzpatrick proved a variant of Hadamard's inequality which holds for s-convex functions in the second sense; which is so called s -Hadamard-type inequality for s-convex function in $2^{\text {nd }}$ sense.

Theorem 1.1 Suppose that $f:[0, \infty) \rightarrow[0, \infty)$ is an s-convex function in the second sense, where $s \in(0,1)$ and let $a, b \in[0, \infty), a<b$. If $f \in L^{1}[0,1]$, then the following inequalities hold:

$$
\begin{equation*}
2^{s-1} f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{s+1} \tag{3}
\end{equation*}
$$

the constant $k=\frac{1}{s+1}$ is the best possible in the second inequality in (1.3). The above inequalities are sharp.

In [6], Yang and Hong established the following theorem which is a refinement of the second inequality of (1).

Theorem 1.2 Suppose that $f:[a, b] \rightarrow \boldsymbol{R}$ is convex on $[a, b]$ and the mapping $F:[0,1] \rightarrow \boldsymbol{R}$ is defined by

$$
\begin{aligned}
& F(t)=\frac{1}{2(b-a)} \\
& \times \int_{a}^{b}\left[f\left(\left(\frac{1+t}{2}\right) a+\left(\frac{1-t}{2}\right) x\right)+f\left(\left(\frac{1+t}{2}\right) b+\left(\frac{1-t}{2}\right) x\right)\right] d x
\end{aligned}
$$

Then
(i) F is an convex on $[0,1]$.
(ii) F is monotone increasing on $[0,1]$.
(iii) One has the bounds

$$
\begin{aligned}
\inf _{t \in[0,1]} F(t) & =F(0) \\
& =\frac{1}{(b-a)} \int_{a}^{b} f(x) d x
\end{aligned}
$$

and

$$
\begin{aligned}
\sup _{t \in[0,1]} F(t) & =F(1) \\
& =\frac{f(a)+f(b)}{2} .
\end{aligned}
$$

For more refinements, counterparts and generalization see [3-6].

2 Hadamard's Inequality

Lemma 2.1 Let $f:[a, b] \rightarrow \boldsymbol{R}$ be s-convex function and let $a \leq y_{1} \leq x_{1} \leq$ $x_{2} \leq y_{2} \leq b$ with $x_{1}+x_{2}=y_{1}+y_{2}$. Then

$$
\begin{equation*}
f\left(x_{1}\right)+f\left(x_{2}\right) \leq f\left(y_{1}\right)+f\left(y_{2}\right) \tag{4}
\end{equation*}
$$

Proof.

First we show that $f\left(x_{1}\right)+f\left(x_{2}\right) \leq f\left(y_{1}\right)+f\left(y_{2}\right)$. If $y_{1}=y_{2}$ then we are done. Suppose $y_{1} \neq y_{2}$ and write

$$
x_{1}=\frac{y_{2}-x_{1}}{y_{2}-y_{1}} y_{1}+\frac{x_{1}-y_{1}}{y_{2}-y_{1}} y_{2}, \quad x_{2}=\frac{y_{2}-x_{2}}{y_{2}-y_{1}} y_{1}+\frac{x_{2}-y_{1}}{y_{2}-y_{1}} y_{2},
$$

since f is s-convex, we have

$$
\begin{align*}
f\left(x_{1}\right)+f\left(x_{2}\right) & \leq \frac{y_{2}-x_{1}}{y_{2}-y_{1}} f\left(y_{1}\right)+\frac{x_{1}-y_{1}}{y_{2}-y_{1}} f\left(y_{2}\right) \\
& +\frac{y_{2}-x_{2}}{y_{2}-y_{1}} f\left(y_{1}\right)+\frac{x_{2}-y_{1}}{y_{2}-y_{1}} f\left(y_{2}\right) \\
& =\frac{2 y_{2}-\left(x_{1}+x_{2}\right)}{y_{2}-y_{1}} f\left(y_{1}\right)+\frac{\left(x_{1}+x_{2}\right)-2 y_{1}}{y_{2}-y_{1}} f\left(y_{2}\right) \\
& =f\left(y_{1}\right)+f\left(y_{2}\right) \tag{5}
\end{align*}
$$

which completes the proof.
The following inequality is considered the mapping connected with the inequality (3).

Theorem 2.2 Suppose that $f:[a, b] \rightarrow \boldsymbol{R}$ is s-convex on $[a, b]$ and the mapping $F:[0,1] \rightarrow \boldsymbol{R}$ is defined by

$$
\begin{aligned}
F(t) & =\frac{1}{(s+1)(b-a)} \\
& \times \int_{a}^{b}\left[f\left(\left(\frac{1+t}{2}\right) a+\left(\frac{1-t}{2}\right) x\right)+f\left(\left(\frac{1+t}{2}\right) b+\left(\frac{1-t}{2}\right) x\right)\right] d x
\end{aligned}
$$

Then
(i) F is an s-convex on $[0,1]$.
(ii) F is monotone increasing on $[0,1]$.
(iii) One has the bounds

$$
\begin{aligned}
\inf _{t \in[0,1]} F(t) & =F(0) \\
& =\frac{2}{(s+1)(b-a)} \int_{a}^{b} f(x) d x \\
\sup _{t \in[0,1]} F(t) & =F(1) \\
& =\frac{f(a)+f(b)}{s+1}
\end{aligned}
$$

Proof.

(i) For all $\alpha, \beta \geq 0$ with $\alpha+\beta=1$ and $t_{1}, t_{2} \in[0,1]$, we have:

$$
\begin{array}{r}
F\left(\alpha t_{1}+\beta t_{2}\right)=\frac{1}{(b-a)} \int_{a}^{b} f\left(\frac{1+\left(\alpha t_{1}+\beta t_{2}\right)}{2} a+\frac{1-\left(\alpha t_{1}+\beta t_{2}\right)}{2} x\right) d x \\
+\frac{1}{(b-a)} \int_{a}^{b} f\left(\frac{1+\left(\alpha t_{1}+\beta t_{2}\right)}{2} b+\frac{1-\left(\alpha t_{1}+\beta t_{2}\right)}{2} x\right) d x \\
=\frac{1}{(b-a)} \int_{a}^{b} f\left(\alpha \frac{\left(1+t_{1}\right) a+\left(1-t_{1}\right) x}{2}+\beta \frac{\left(1+t_{2}\right) a+\left(1-t_{2}\right) x}{2}\right) d x \\
\quad+\frac{1}{(b-a)} \int_{a}^{b} f\left(\alpha \frac{\left(1+t_{1}\right) b+\left(1-t_{1}\right) x}{2}+\beta \frac{\left(1+t_{2}\right) b+\left(1-t_{2}\right) x}{2}\right) d x \\
\leq \\
\frac{\alpha^{s}}{(b-a)} \int_{a}^{b}\left[f\left(\frac{\left(1+t_{1}\right)}{2} a+\frac{\left(1-t_{1}\right)}{2} x\right)+f\left(\frac{\left(1+t_{1}\right)}{2} b+\frac{\left(1-t_{1}\right)}{2} x\right)\right] d x \\
\quad+\frac{\beta^{s}}{(b-a)} \int_{a}^{b}\left[f\left(\frac{\left(1+t_{2}\right)}{2} a+\frac{\left(1-t_{2}\right)}{2} x\right)+f\left(\frac{\left(1+t_{2}\right)}{2} b+\frac{\left(1-t_{2}\right)}{2} x\right)\right] d x \\
=\alpha^{s} F\left(t_{1}\right)+\beta^{s} F\left(t_{2}\right) .
\end{array}
$$

Therefore, F is s-convex function on $[0,1]$.
(ii) Let $0 \leq t_{1} \leq t_{2} \leq 1, a \leq x \leq b$. Since

$$
\int_{a}^{b} f\left(\frac{\left(1+t_{1}\right)}{2} b+\frac{\left(1-t_{1}\right)}{2} x\right) d x
$$

$$
=\int_{a}^{b} f\left(\frac{\left(1+t_{1}\right)}{2} b+\frac{\left(1-t_{1}\right)}{2}(b+a-x)\right) d x
$$

Thus, we have

$$
\begin{aligned}
F\left(t_{1}\right) & =\frac{1}{(b-a)} \int_{a}^{b}\left[f\left(\frac{\left(1+t_{1}\right)}{2} a+\frac{\left(1-t_{1}\right)}{2} x\right)\right. \\
& \left.+f\left(\frac{\left(1+t_{1}\right)}{2} b+\frac{\left(1-t_{1}\right)}{2}(b+a-x)\right)\right] d x
\end{aligned}
$$

and since

$$
\begin{aligned}
\frac{\left(1+t_{2}\right)}{2} a+\frac{\left(1-t_{2}\right)}{2} x & \leq \frac{\left(1+t_{1}\right)}{2} a+\frac{\left(1-t_{1}\right)}{2} x \\
& \leq \frac{\left(1+t_{1}\right)}{2} b+\frac{\left(1-t_{1}\right)}{2}(b+a-x) \\
& \leq \frac{\left(1+t_{2}\right)}{2} b+\frac{\left(1-t_{2}\right)}{2}(b+a-x)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& {\left[\frac{\left(1+t_{1}\right)}{2} a+\frac{\left(1-t_{1}\right)}{2} x\right]+\left[\frac{\left(1+t_{1}\right)}{2} b+\frac{\left(1-t_{1}\right)}{2}(b+a-x)\right] } \\
= & {\left[\frac{\left(1+t_{2}\right)}{2} a+\frac{\left(1-t_{2}\right)}{2} x\right]+\left[\frac{\left(1+t_{2}\right)}{2} b+\frac{\left(1-t_{2}\right)}{2}(b+a-x)\right] }
\end{aligned}
$$

and since f is s-convex on $[a, b]$, and by Lemma 2.1, we have:

$$
\begin{aligned}
& F\left(t_{1}\right) \leq \frac{1}{(b-a)} \int_{a}^{b}\left[f\left(\frac{\left(1+t_{2}\right)}{2} a+\frac{\left(1-t_{2}\right)}{2} x\right)\right. \\
& \left.+f\left(\frac{\left(1+t_{2}\right)}{2} b+\frac{\left(1-t_{2}\right)}{2}(b+a-x)\right)\right] d x \\
& =\frac{1}{(b-a)} \int_{a}^{b}\left[f\left(\frac{\left(1+t_{2}\right)}{2} a+\frac{\left(1-t_{2}\right)}{2} x\right)+f\left(\frac{\left(1+t_{2}\right)}{2} b+\frac{\left(1-t_{2}\right)}{2} x\right)\right] d x \\
& =F\left(t_{2}\right) .
\end{aligned}
$$

This shows that $F(t)$ is monotone increasing for all $t \in[0,1]$.
(iii) It follows from (ii), that, for all $t \in[0,1]$

$$
\begin{align*}
F(t) & \geq F(0) \\
& =\frac{1}{(s+1)(b-a)} \int_{a}^{b}\left[f\left(\frac{a+x}{2}\right)+f\left(\frac{b+x}{2}\right)\right] d x \\
& =\frac{2}{(s+1)(b-a)} \int_{a}^{b} f(x) d x \tag{6}
\end{align*}
$$

and

$$
\begin{align*}
F(t) & \leq F(1) \\
& =\frac{1}{(s+1)(b-a)} \int_{a}^{b}[f(a)+f(b)] d x \\
& =\frac{f(a)+f(b)}{s+1} \tag{7}
\end{align*}
$$

Remark 1 : In (6) and (7), set $s=1$ we get inequality 1 . Also, if we set $s=1$ in (3) we get the same result.

3 Hadamard's Inequality For Lipschitzian Mapping

Theorem 3.1 Let $f:[a, b] \rightarrow \boldsymbol{R}$ satisfy Lipschitzian conditions. That is, for t_{1} and $t_{2} \in[0,1]$, we have

$$
\left|f\left(t_{1}\right)-f\left(t_{2}\right)\right| \leq L\left|t_{1}-t_{2}\right|
$$

where L is positive constant. Then

$$
\begin{equation*}
\left|F\left(t_{1}\right)-F\left(t_{2}\right)\right| \leq \frac{L\left|t_{1}-t_{2}\right|(b-a)}{s+1} \tag{8}
\end{equation*}
$$

Proof.

For $t_{1}, t_{2} \in[0,1]$, we have

$$
\begin{aligned}
F\left(t_{1}\right) \leq & \frac{1}{(s+1)(b-a)} \\
& \times \int_{a}^{b}\left[\left|f\left(\frac{\left(1+t_{1}\right)}{2} a+\frac{\left(1-t_{1}\right)}{2} x\right)-f\left(\frac{\left(1+t_{2}\right)}{2} a+\frac{\left(1-t_{2}\right)}{2} x\right)\right|\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left|f\left(\frac{\left(1+t_{1}\right)}{2} b+\frac{\left(1-t_{1}\right)}{2} x\right)-f\left(\frac{\left(1+t_{2}\right)}{2} b+\frac{\left(1-t_{2}\right)}{2} x\right)\right|\right] d x \\
\leq & \frac{1}{(s+1)(b-a)} \\
& \quad \times \int_{a}^{b} L\left[\left|\left(\frac{t_{1}-t_{2}}{2}\right) a+\left(\frac{t_{2}-t_{1}}{2}\right) x\right|+\left|\left(\frac{t_{1}-t_{2}}{2}\right) b+\left(\frac{t_{2}-t_{1}}{2}\right) x\right|\right] d x \\
& \frac{L\left|t_{1}-t_{2}\right|(b-a)}{(s+1)}
\end{aligned}
$$

This completes the proof.

Remark 2 : In (8) if we take $t_{1}=0$ and $t_{1}=1$, then (8) reduce to

$$
\begin{equation*}
\left|\frac{f(a)+f(b)}{s+1}-\frac{2}{(s+1)(b-a)} \int_{a}^{b} f(x) d x\right| \leq \frac{L(b-a)}{(s+1)} \tag{9}
\end{equation*}
$$

The inequality (9) is the s-Hadamard-type inequality for Lipschitzian mapping of one variable.

Acknowledgement : The work here is supported by the Grant: UKM-GUP-TMK-07-02-107.

References

[1] H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequationes Math., 48 (1994), 100-111.
[2] S.S. Dragomir, S. Fitzpatrick, The Hadamard's inequality for s-convex functions in the second sense, Demonstratio Math., 324 (1999), 687 696.
[3] S. S. Dragomir, On Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese Journal of Mathematics, 5 (2001), $775-788$.
[4] S. S. Dragomir, A mapping in connection to Hadamard's inequality, An Ostro. Akad. Wiss. Math. -Natur (Wien) 128 (1991), 17-20.
[5] S. S. Dragomir, Two mappings in connection to Hadamard's inequality, Math. Anal. Appl., 167 (1992), 49 - 56.
[6] G. S. Yang and M. C. Hong, A note on Hadamard's inequality, Tamkang J. Math., 281 (1997), 33-37.

Received: January 23, 2008

