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Abstract
A monotone nondecreasing mapping connected with Hadamard–

type inequality for s–convex function and some applications are given.
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1 Introduction

Let f : I ⊆ R → R be a convex mapping defined on the interval I of real
numbers and a, b ∈ I, with a < b. The following double inequality:

f

(
a + b

2

)
≤ 1

b − a

b∫
a

f (x) dx ≤ f (a) + f (b)

2
(1)

is known in the literature as Hadamard’s inequality for convex mappings.

In [1] Hudzik and Maligrada considered among others the class of functions
which are s–convex in the second sense. This class is defined in the following
way: a function f : [0,∞) → R is said to be s–convex in the second sense if

f (λx + (1 − λ) y) ≤ λsf (x) + (1 − λ)s f (y) (2)

holds for all x, y ∈ [0,∞), λ ∈ [0, 1] and for some fixed s ∈ (0, 1]. It can be
easily seen that every s–convex function is convex when s = 1.
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In [2] Dragomir and Fitzpatrick proved a variant of Hadamard’s inequality
which holds for s–convex functions in the second sense; which is so called s–
Hadamard–type inequality for s–convex function in 2nd sense.

Theorem 1.1 Suppose that f : [0,∞) → [0,∞) is an s–convex function in
the second sense, where s ∈ (0, 1) and let a, b ∈ [0,∞), a < b. If f ∈ L1 [0, 1],
then the following inequalities hold:

2s−1f

(
a + b

2

)
≤ 1

b − a

b∫
a

f (x) dx ≤ f (a) + f (b)

s + 1
(3)

the constant k = 1
s+1

is the best possible in the second inequality in (1.3).
The above inequalities are sharp.

In [6], Yang and Hong established the following theorem which is a refine-
ment of the second inequality of (1).

Theorem 1.2 Suppose that f : [a, b] → R is convex on [a, b] and the map-
ping F : [0, 1] → R is defined by

F (t) =
1

2 (b − a)

×
b∫

a

[
f
((

1 + t

2

)
a +

(
1 − t

2

)
x
)

+f
((

1 + t

2

)
b +

(
1 − t

2

)
x
)]

dx

Then

(i) F is an convex on [0, 1].

(ii) F is monotone increasing on [0, 1].

(iii) One has the bounds

inf
t∈[0,1]

F (t) = F (0)

=
1

(b − a)

b∫
a

f (x) dx,

and

sup
t∈[0,1]

F (t) = F (1)

=
f (a) + f (b)

2
.
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For more refinements, counterparts and generalization see [3–6].

2 Hadamard’s Inequality

Lemma 2.1 Let f : [a, b] → R be s–convex function and let a ≤ y1 ≤ x1 ≤
x2 ≤ y2 ≤ b with x1 + x2 = y1 + y2. Then

f (x1) + f (x2) ≤ f (y1) + f (y2) (4)

Proof.

First we show that f (x1) + f (x2) ≤ f (y1) + f (y2). If y1 = y2 then we are
done. Suppose y1 �= y2 and write

x1 =
y2 − x1

y2 − y1

y1 +
x1 − y1

y2 − y1

y2, x2 =
y2 − x2

y2 − y1

y1 +
x2 − y1

y2 − y1

y2,

since f is s–convex, we have

f (x1) + f (x2) ≤ y2 − x1

y2 − y1
f (y1) +

x1 − y1

y2 − y1
f (y2)

+
y2 − x2

y2 − y1
f (y1) +

x2 − y1

y2 − y1
f (y2)

=
2y2 − (x1 + x2)

y2 − y1
f (y1) +

(x1 + x2) − 2y1

y2 − y1
f (y2)

= f (y1) + f (y2) . (5)

which completes the proof.

The following inequality is considered the mapping connected with the
inequality (3).

Theorem 2.2 Suppose that f : [a, b] → R is s–convex on [a, b] and the
mapping F : [0, 1] → R is defined by

F (t) =
1

(s + 1) (b − a)

×
b∫

a

[
f
((

1 + t

2

)
a +

(
1 − t

2

)
x
)

+f
((

1 + t

2

)
b +

(
1 − t

2

)
x
)]

dx

Then
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(i) F is an s–convex on [0, 1].

(ii) F is monotone increasing on [0, 1].

(iii) One has the bounds

inf
t∈[0,1]

F (t) = F (0)

=
2

(s + 1) (b − a)

b∫
a

f (x) dx,

sup
t∈[0,1]

F (t) = F (1)

=
f (a) + f (b)

s + 1
.

Proof.

(i) For all α, β ≥ 0 with α + β = 1 and t1, t2 ∈ [0, 1], we have:

F (αt1 + βt2) =
1

(b − a)

b∫
a

f

(
1 + (αt1 + βt2)

2
a +

1 − (αt1 + βt2)

2
x

)
dx

+
1

(b − a)

b∫
a

f

(
1 + (αt1 + βt2)

2
b +

1 − (αt1 + βt2)

2
x

)
dx

=
1

(b − a)

b∫
a

f

(
α

(1 + t1) a + (1 − t1)x

2
+ β

(1 + t2) a + (1 − t2) x

2

)
dx

+
1

(b − a)

b∫
a

f

(
α

(1 + t1) b + (1 − t1) x

2
+ β

(1 + t2) b + (1 − t2)x

2

)
dx

≤ αs

(b − a)

b∫
a

[
f

(
(1 + t1)

2
a +

(1 − t1)

2
x

)
+ f

(
(1 + t1)

2
b +

(1 − t1)

2
x

)]
dx

+
βs

(b − a)

b∫
a

[
f

(
(1 + t2)

2
a +

(1 − t2)

2
x

)
+ f

(
(1 + t2)

2
b +

(1 − t2)

2
x

)]
dx

= αsF (t1) + βsF (t2) .

Therefore, F is s–convex function on [0, 1].

(ii) Let 0 ≤ t1 ≤ t2 ≤ 1, a ≤ x ≤ b. Since

b∫
a

f

(
(1 + t1)

2
b +

(1 − t1)

2
x

)
dx
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=

b∫
a

f

(
(1 + t1)

2
b +

(1 − t1)

2
(b + a − x)

)
dx.

Thus, we have

F (t1) =
1

(b − a)

b∫
a

[
f

(
(1 + t1)

2
a +

(1 − t1)

2
x

)

+f

(
(1 + t1)

2
b +

(1 − t1)

2
(b + a − x)

)]
dx

and since

(1 + t2)

2
a +

(1 − t2)

2
x ≤ (1 + t1)

2
a +

(1 − t1)

2
x

≤ (1 + t1)

2
b +

(1 − t1)

2
(b + a − x)

≤ (1 + t2)

2
b +

(1 − t2)

2
(b + a − x)

Thus,

[
(1 + t1)

2
a +

(1 − t1)

2
x

]
+

[
(1 + t1)

2
b +

(1 − t1)

2
(b + a − x)

]

=

[
(1 + t2)

2
a +

(1 − t2)

2
x

]
+

[
(1 + t2)

2
b +

(1 − t2)

2
(b + a − x)

]

and since f is s–convex on [a, b], and by Lemma 2.1, we have:

F (t1) ≤ 1

(b − a)

b∫
a

[
f

(
(1 + t2)

2
a +

(1 − t2)

2
x

)

+f

(
(1 + t2)

2
b +

(1 − t2)

2
(b + a − x)

)]
dx

=
1

(b − a)

b∫
a

[
f

(
(1 + t2)

2
a +

(1 − t2)

2
x

)
+f

(
(1 + t2)

2
b +

(1 − t2)

2
x

)]
dx

= F (t2) .

This shows that F (t) is monotone increasing for all t ∈ [0, 1].
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(iii) It follows from (ii), that, for all t ∈ [0, 1]

F (t) ≥ F (0)

=
1

(s + 1) (b − a)

b∫
a

[
f
(

a + x

2

)
+f

(
b + x

2

)]
dx

=
2

(s + 1) (b − a)

b∫
a

f (x) dx, (6)

and

F (t) ≤ F (1)

=
1

(s + 1) (b − a)

b∫
a

[f (a) +f (b)] dx

=
f (a) + f (b)

s + 1
(7)

Remark 1 : In (6) and (7), set s = 1 we get inequality 1. Also, if we set
s = 1 in (3) we get the same result.

3 Hadamard’s Inequality For Lipschitzian Map-

ping

Theorem 3.1 Let f : [a, b] → R satisfy Lipschitzian conditions. That is,
for t1 and t2 ∈ [0, 1], we have

|f (t1) − f (t2)| ≤ L |t1 − t2|
where L is positive constant. Then

|F (t1) − F (t2)| ≤ L |t1 − t2| (b − a)

s + 1
(8)

Proof.

For t1, t2 ∈ [0, 1], we have

F (t1) ≤ 1

(s + 1) (b − a)

×
b∫

a

[∣∣∣∣∣f
(

(1 + t1)

2
a +

(1 − t1)

2
x

)
− f

(
(1 + t2)

2
a +

(1 − t2)

2
x

)∣∣∣∣∣
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+

∣∣∣∣∣f
(

(1 + t1)

2
b +

(1 − t1)

2
x

)
− f

(
(1 + t2)

2
b +

(1 − t2)

2
x

)∣∣∣∣∣
]
dx

≤ 1

(s + 1) (b − a)

×
b∫

a

L
[∣∣∣∣
(

t1 − t2
2

)
a +

(
t2 − t1

2

)
x

∣∣∣∣+
∣∣∣∣
(

t1 − t2
2

)
b +

(
t2 − t1

2

)
x

∣∣∣∣
]
dx

=
L |t1 − t2| (b − a)

(s + 1)

This completes the proof.

Remark 2 : In (8) if we take t1 = 0 and t1 = 1, then (8) reduce to

∣∣∣∣∣∣
f (a) + f (b)

s + 1
− 2

(s + 1) (b − a)

b∫
a

f (x) dx

∣∣∣∣∣∣ ≤
L (b − a)

(s + 1)
. (9)

The inequality (9) is the s–Hadamard–type inequality for Lipschitzian mapping
of one variable.
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