
The Hadamard transform - a tool for index assignment

Downloaded from: https://research.chalmers.se, 2022-08-09 15:57 UTC

Citation for the original published paper (version of record):
Knagenhjelm, P., Agrell, E. (1996). The Hadamard transform - a tool for index assignment. IEEE
Transactions on Information Theory, 42(4): 1139-1151. http://dx.doi.org/10.1109/18.508837

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

1

The Hadamard Transform - A Tool for Index Assignment

Petter Knagenhjelm, Member, IEEE, and Erik Agrell

ABSTRACT

We show that the channel distortion due to noise on a binary symmetric channel is minimized

for maximum entropy encoders, if the vector quantizer can be expressed as a linear transform

of a hypercube. The index assignment problem is regarded as a problem of linearizing the

vector quantizer. We define classes of index assignments with related properties, within

which the best index assignment is found by sorting, not searching. Two powerful algorithms

for assigning indices to the codevectors of non-redundant coding systems are presented. One

algorithm finds the optimal solution in terms of linearity, whereas the other finds a very good,

but suboptimal, solution in a very short time.

Index terms: Vector Quantization, Noisy Channel, Index Assignment, Robust Coding,

Hadamard transform

Submitted to

IEEE Transactions on Information Theory

December 1993

First revision May 1995

Second revision January 1996

2

I. INTRODUCTION

In this report we are concerned with non-redundant coding systems, i.e. coding without ex-

plicit error precaution. In digital communication over a noisy channel, other measures must

be incorporated in the design to ensure robust transmission for such systems. The effect of

channel errors on a zero-redundancy quantizer, can be severe if the codeword indices are not

carefully selected. Codewords that interchange frequently may be far apart in signal space and

cause large contributions to the overall distortion when transmission errors do occur.

Robustification of non-redundant coding systems can be divided into two categories. Firstly,

there are encoders where careful assignment of the codevector indices is the only precaution

taken to mitigate the effects of channel errors. The labeling of the codevectors is often re-

ferred to as index assignment (IA) and the design of an encoder in this category can be sepa-

rated into two steps: i) the source coding problem and ii) the index assignment problem. A

coder designed in this manner is called a Robust Vector Quantizer (RVQ).

The other category consists of coders that are affected by the channel errors in their design

and, hence, the final positioning of the reconstruction vectors depends on the channel error.

The encoder-decoder system is trained, or optimized, to the channel error assumed at the time

of training. Such a system will be called a Channel Optimized Vector Quantizer (COVQ).

The usefulness of this approach may be restricted, firstly due to the increased training time

needed for the design of the COVQ compared to an equally large encoder designed for a

noiseless channel. Secondly, the channel characteristics must be well specified (i.e., the tran-

sition probabilities must be known) which can be hard, as the channel attributes probably will

vary in time. However, the correctly designed COVQ will always outperform the RVQ. In

this paper we address the index assignment problem which is, as mentioned above, an impor-

tant part of the proper VQ design of the first category (RVQs). As there are M! ways to order

M numbers, exhaustive search for the optimal ordering is not feasible and practical IA algo-

rithms are (to this day) suboptimal. However, we identify that a robust quantizer needs struc-

tured index assignment and use the Hadamard transform to search for an assignment that is

more robust than the initial. We define a fidelity criterion, highly correlated to the channel

distortion, and present an algorithm which finds the optimal index assignment given an arbi-

trary vector quantizer. We then modify this algorithm to a practical and powerful tool for

finding a suboptimal solution.

In Section II, we present the nomenclature employed in the report and introduce the concept

of using the Hadamard matrix for codebook description. The channel distortion of a maxi-

3

mum entropy encoder transmitting over a binary symmetric channel is stated in Section III

and in Section IV, it is shown that the channel distortion is minimized if the codebook can be

expressed as a linear transform of a hypercube. The index assignment problem is then re-

garded as a problem of linearizing the codebook. In Section V, we decompose the index as-

signments into categories with similar features, and in Section VI we state the properties of

random assignment and full search assignment. We show in Section VII that the set of all in-

dex assignments can be divided into classes, and that starting with an arbitrary assignment,

the best index assignment within the class is easily found by a sorting procedure. An algo-

rithm to successively generate one member in each class is provided in Section VIII. A prac-

tical approach called LISA, not visiting all Hadamard classes, is described in Section IX. To

explore the performance of the algorithm, experimental results, including comparisons to

established methods, are given in Section X. Section XI, finally, summarizes some con-

clusions.

Related work

Totty and Clark [1] showed that the total squared error distortion in scalar quantizing can be

divided into a source distortion term and a channel distortion term provided the quantization

is optimal. This separation lead to an awareness that the channel distortion term can be coped

with by a proper index assignment. The problem of assigning N elements in one set to M ele-

ments in another set in general, and the classical Quadratic Assignment Problem in particular,

are predecessors to the Index Assignment problem and hence, much background literature can

be found. Potter [2] parallels the index assignment to the Quadratic Assignment Problem

stated by Koopmans and Beckmann in 1957. An early reference on the importance of having

a good IA is Rydbeck and Sundberg [3] addressing the case of scalar quantizers. Extensions

of index assignment to vector quantizers were introduced in [4-8]. Cheng and Kingsbury [9]

point out that the LBG-split algorithm [10] gives a better IA than average, measured in terms

of SNR performance. Zeger and Gersho [8] compute a cost function which governs a binary

index-swap strategy while Farvardin employs in [6] a simulated annealing algorithm to the

problem. Knagenhjelm [11] uses the Hadamard transform to derive an objective measure on

the success of the index assignment. Hagen and Hedelin [12] employ the Hadamard transform

in the VQ design to get a suboptimal, but robust, VQ. McLaughlin et al. [13] show that the

Natural Binary Code is optimal for uniform scalar quantizers and uniform source distribution

and the work is extended to vector quantizers in [14]. Recently Chiang and Potter [15] pre-

sented a paper where a minimax criterion is used instead of the usual MSE criterion in the

channel coding. This improves the worst case performance and the minimax criterion is

4

shown to be a useful objective for the perception of images. Wu and Barba exploit the un-

equal apriori probabilities in a fast, greedy algorithm in [16]. An in depth discussion on

transmitting VQ data over a noisy channel is found in [17, 18].

II. PRELIMINARIES

We here state the problem of index assignment, introduce the transformed hypercube de-

scription of the codebook and recall some matrix algebra.

A. Problem statement

We will address the problem of assigning indices to the codevectors of a vector quantizer to

reduce the effects of channel errors when the codewords are transmitted on a noisy, memory-

less, Binary Symmetric Channel (BSC). A d-dimensional vector X is fed to the quantizer

producing a k -bit binary codeword for transmission. The codeword is said to be the index of

the vector used for signal reproduction at the receiver. For convenience, the index is regarded

as an integer where the corresponding base 2 representation of the integer is the codeword.

The set of M k= 2 vectors defines the codebook . The encoder is said to be a Maximum

Entropy Encoder (MEE), if the entropy is full, i.e. H kX̂() = , where X̂ denotes the random

output from the vector quantizer. Of course, full entropy is only reached when all codewords

are used with equal probability. In this paper we will only address such encoders, which facil-

itates the distortion analysis, but represents a difficult task for the Index Assignment, as we

can not focus on finding a good index assignment for just a subset of frequently used code-

words. The decoder receives a codeword j, and produces a d-dimensional reconstruction vec-

tor y j as output. Here we adopt the name VQ point for this vector, and thereby regard the

codebook as a set of points in the d-dimensional signal space. A codebook with M recon-

struction vectors is said to be an M -point codebook.

The total distortion related to the quantization and transmission of information can be divided

into three terms as

D D D D= + +Source Channel Mixed , (1)

where DSource is the distortion due to quantizing effects only and DChannel is the distortion

caused by misinterpretation of the received codeword, and hence, DChannel is dependent on

the index assignment. The mixed term of (1) is zero for optimum codebooks designed for

noiseless channels [1, 6] since then the VQ points are the centroids of the reconstruction cells.

The term is also zero in the limit when the number M approaches infinity even when the VQ

5

points are not positioned in the centroids [19]. In this paper we restrict ourselves to study the

effects the index assignment on the channel distortion, DC for short.

The channel distortion, using the squared error distortion measure, associated with choosing

the index i as a representative for a sample is

D pC i j
j

M

j ii
= − ⋅

=

−

∑ y y 2

0

1

 , (2)

where p j i is the probability of receiving the index j given that index i was sent, i.e.

p P J j I ij i = = =[]. As the encoder is assumed to have maximum entropy, the final expres-

sion to minimize is

D
M

pC
i

M

i j
j

M

j i= ⋅ − ⋅
=

−

=

−

∑ ∑1

0

1
2

0

1

y y . (3)

The minimization of (3) is the problem of index assignment. Suppose that a codebook,

Y y y y0

0

0

1

0

1

0= []L M – , is given. There exists a class of related codebooks having the same VQ

points, but in another order. To describe the ordering of the VQ points, we define a row vec-

tor

g = []−g g gM0 1 1L , called the index assignment. This vector, which is any permutation of

g0 0 1 1= −[]L M , contains the codewords (integers) to be associated with the correspond-

ing VQ points in Y0 . The reordered codebook is called Y , and its vectors are thus

y yg ii

i M= = −0 0 1; , ,L . Sometimes it is more appropriate to regard the codewords as bit

sequences. We therefore define the index assignment matrix

G b b= []−() ()g gM0 1L , (4)

where b i() is the k-dimensional binary column vector describing the base 2 representation of

the integer i. Its elements will be called b ij(). The inverse of the function b()⋅ is a scalar

product with the binary vector

cT = []−2 21 0k

L , so that c bT
i i() = .

B. Transformed hypercubes

The distribution of the VQ points in signal space depends, of course, on the source distribu-

tion, but in the case of COVQs, also on how likely indices are to be confused with other in-

dices when transmitted on a noisy channel. The probability of confusing codewords is again

dependent on the indices given to the VQ points and is best expressed by the Hamming dis-

tance between the indices. A way of combining the logical description (i.e. indices) and the

physical description (i.e. position in the signal space) is to move the logical hypercube,

spanned by the codebook’s binary codewords, to the signal space with preserved topology.

For convenience, we replace the logical zeros and ones with +1 and –1 respectively, and de-

6

note by ′ = − ()b i b ij j() 1 2 the jth bit of the positive integer i . The M VQ points can then be de-

scribed by a transform, or a mapping, of the M vertices of the hypercube (see Fig. 1). As soon

will become clear, the Hadamard transform is especially suitable for this task.

In general, any scalar, nonlinear function

y b bk(, ,)0 1K − can be expressed as a discrete

Volterra series [20]

y t t b t b b t b b bi i
i

k

i i i i
i

k

i

k

i i i i i i
i

k

i

k

i

k

L L

L

= + + + + +
=

−

=

−

=

−

=

−

=

−

=

−

∑ ∑∑ ∑∑∑
1 1

1

1 2 1 2

21

1 2 1 2

210

1

0

1

0

1

0

1

0

1

0

1

, , , ,
L L L L

L
 , (5)

where t is the offset , the first sum is the linear part, and the remaining sums constitute the

nonlinear part of the function. Let y be the scalar describing one dimension of an arbitrary

VQ point yi , and bi the bits in the binary representation of the index associated with the VQ

point. In this particular case we have that b b i i jj j= ′ ∈ ±{ } ∀() , ,1 , thus the series expansion

folds into itself, and only 2k unique elements remain for a k-bit codebook [21]. For example,

with two nonlinear functions, yi

()1 and yi

()2 , we can express one of the eight 2-dimensional VQ

points of a 3-bit codebook as

yi

i

i

y

y

t t t t t t t t

t t t t t t t t

b i

b

=








 =









 ⋅

′
′

()

()

() () () () () () () ()

() () () () () () () ()

()

1

2

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

0

2

1

2

2

2

3

2

4

2

5

2

6

2

7

2

0

1

1

(()

() ()

()

() ()

() ()

() () ()

i

b i b i

b i

b i b i

b i b i

b i b i b i

i

′ ⋅ ′
′

′ ⋅ ′
′ ⋅ ′

′ ⋅ ′ ⋅ ′

































= ⋅0 1

2

0 2

1 2

0 1 2

T h . (6)

We have rearranged the order in which the linear and nonlinear coefficients appear in (5) so

that the full codebook,

Y y y y= []−0 1 1L M , can be represented as

Y T H= ⋅ (7)

where the M M× matrix

H h h h= []−0 1 1L M is a normalized (Sylvester style) Hadamard

matrix. The d M× matrix T is the Hadamard transform of Y . Sometimes we refer to

T t t t= []−0 1 1L M as the transform matrix and the vectors, ti , as transform vectors . In

agreement with (5), we call t0 the codebook offset,

t t t t1 2 4 2, , , ,L M the linear part of the

transform and the remaining t -vector the non-linear part. A codebook for which the non-lin-

ear part is zero is a linear codebook.

A Sylvester style Hadamard matrix [22] is generated by the simple recursion

H
H H
H H2n

n n

n n

= −






7

with H1 1= . Its elements hi j, are

hi j
i j b i b j

l

l l

, = −() = −()() () () ()∏1 1
b bT

(8)

and the elements of the columns satisfy

h h hi j i jo = ⊕ (9)

where o denotes the Schur product1 , and ⊕ the bitwise modulo-2 addition. A Hadamard

matrix is a symmetrical matrix with orthogonal rows (and columns), so H is its own inverse

(except for a scaling factor 1/ M). The inverse Hadamard transform is thus

T Y H= ⋅1

M
 , (10)

which shows that there exists a T matrix for an arbitrary codebook Y .

In Section IV, we will demonstrate that for maximum entropy encoders it is advantageous,

from a channel-robustness viewpoint, if the transform is linear. However, a linear transform

imposes a too restrictive constraint on the positioning of the VQ points to achieve the optimal

source coder. In order to abridge the concept of linear and nonlinear transforms, we introduce

in Section IV a measure called the linearity index, which equals 1 for linear transforms, and is

less than 1 for nonlinear transforms. By decomposing the transform into linear and nonlinear

parts as above, we strive, by changing the index assignment of the codebook, to find trans-

forms were the linear part is dominant.

Although the use of the Hadamard transform is extensive in various applications like generat-

ing nonlinear error correcting codes (see for example [22]), speech coding [23], image coding

[24], and echo cancellation [21], the use of the Hadamard matrix for general codebook de-

scription, was, to the best of our knowledge, introduced quite recently [11, 12].

C. Matrix algebra

We will review some ideas from matrix algebra. The following terminology and theory is ex-

tracted from Birkhoff and Mac Lane [25, p. 177] For a more substantial presentation of

matrix algebra, the reader is referred to that source.

An elementary row operation belongs to one of the three following types:

1 The Schur product is defined as

A Bo[] = ⋅

i j i j i ja b
, , ,

8

(1) The interchange of any two rows,

(2) multiplication of a row by any non-zero constant c ,

(3) the addition of any multiple of one row to any other row.

The m n× matrix B is called row-equivalent to the m n× matrix A if B can be obtained

from A by a finite succession of elementary row operations. If B is row-equivalent to A ,

then A is row-equivalent to B.

The first non-zero entry in a row is called a leading entry of that row. A matrix R which sat-

isfies the following four conditions is called a reduced echelon matrix:

(1) Every leading entry (of a non-zero row) is 1,

(2) Every column containing such a leading entry 1 has all its other entries zero,

(3) Each zero row of R comes below all non-zero rows of R ,

(4) Suppose that there are r non-zero rows, and that the leading entry of row i appears in

column si , for i r= 1, ,L . These numbers are ordered such that s s sr1 2< < <L .

We will apply this theory to the index assignment matrices. Such a matrix has always the size

k M× , and all its columns are different. The appropriate field is GF(2), which means that the

only numbers are 0 and 1, and addition is carried out modulo 2. In this special case, the theory

can be simplified somewhat, which will be done in Section VIII.

III. THE CHANNEL DISTORTION OF A BINARY SYMMETRIC CHANNEL

It is sometimes convenient to relate the channel distortion to something that is invariant under

all index assignments as, for instance, the sum of the norms of the reconstruction vectors, yi .

Using Parseval’s formula, we define a “variance” of the codebook, σ
VQ

2
, and express it in

terms of the transform vectors, as

σ
VQ

2 2

0

1

0

1
2

2

0

1

0

2 2

1

11 1= ⋅ − = − =
=

−

=

−

=

−

=

−
∑ ∑ ∑ ∑∆

M M
i

i

M

i
i

M

i
i

M

i
i

M

y y t t t . (11)

As h0 contains ones only, we have, using (10), that t y0
1= ∑
M i . In other words, t0 is the

offset vector and typically equals zero for codebooks trained on symmetric, zero-mean

sources. The channel distortion (3) can conveniently be expressed by means of the norms of

the t -vectors as stated in the following.

Theorem 1: The channel distortion for an M point maximum entropy encoder due to noise

on a binary symmetric channel with bit error probability q, is

9

D qC
w i

i
i

M
h= − −() ⋅

=

−
∑2 2 1 2

2 2

1

1

σ
VQ

()
t , (12)

where w ih() is the Hamming weight of the base 2 representation of i .

Proof of Theorem 1: Let the random integer Q represent the bit error pattern for a k-bit word

transmitted over the BSC. The channel distortion is

D
M

E

M
E h h

C i i Q
i

M

j i j i Q j i i Q
j

M

i

M

= ⋅ −[]
= ⋅ −() ⋅ −()









⊕
=

−

⊕ ⊕
=

−

=

−

∑

∑∑

1

1

2

0

1

0

1

0

1

y y

t y yT

, , .

Expanding the product yields, using (9)

D
M

E h h h h h h

E h h

E h

C j i i j i i j Q j i Q i Q j Q j i Q i Q j
i

M

j

M

j j j Q j j Q j j
j

M

j Q j

= ⋅ − − +[]

= − − +[]

= ⋅ −[]

⊕ ⊕ ⊕ ⊕
=

−

=

−

=

−

∑∑

∑

1

2 1

0

1

0

1

0

1

2

t y y y y

t t t t t

t

T

T

, , , , , ,

, ,

,
jj

M

j Q j
j

M

E h

=

−

=

−

∑

∑= − ⋅ []
1

1

2 2

1

1

2 2

.

,σ
VQ

t

(13)

The expectation is (8)

E h EQ j
b Q b j

l

k
l l

,
() ()()[] = −



=

−
∏ 1

0

1

 ,

where both the product and the exponent, b jl (), can be moved outside the expectation; the

product because the bit errors occur independently, and the exponent because it is either 0 or

1. Thus,

E h E q q qQ j
b Q b j

l

k
b j

l

k
w jl

l l h
,

() () () ()() () () ()[] = −[] = −() ⋅ + + ⋅ −() = −
=

−

=

−
∏ ∏1 1 1 1 1 2

0

1

0

1

 ,

which inserted into (13) completes the proof.

❏

Equation (12) is, in spite of its simplicity, a powerful equation, as it expresses the perfor-

mance of a fully trained codebook, with maximum entropy and a certain IA, for an arbitrary

channel bit error rate. The theory is generalized to non-MEEs in [17].

10

IV. THE RELATION BETWEEN DISTORTION AND LINEARITY

In this section we show that for a Maximum Entropy Encoder, MEE, a very good index as-

signment is the one yielding the most linear transform of the hypercube.

As discussed in Section IIB , the t -vectors associated with indices with Hamming weight one

are of special interest, as they represent the linear part of the transform. In the sequel we find

it convenient to employ a measure on how dominant the linear part of the general nonlinear

transform in (7) is. We define the linearity index, λ , as

λ
σ

= ⋅
=

−
∑∆ 1

2 2

2

0

1

VQ

t l

l

k

(14)

where σ VQ
2 is the sum (11) of the norms of

ti i M, , ,= −1 1K . The range of λ is readily seen

to be 0 1≤ ≤λ where λ = 1 denotes a purely linear transform.

We now give bounds on the channel distortion followed by an important corollary.

Theorem 2: The distortion due to noise on a binary symmetric channel with bit error

probability q is, for a codebook with linearity index λ , bounded by

2 2 1 1 2 1 2 2 1 1 2 1
2 2 2σ λ λ σ λ λ
VQ VQ

q q D q qC
k+ − −()() ⋅ −()[] ≤ ≤ + − −()() ⋅ −()[]

Proof of Theorem 2: Separating the sum in (12) into one when i is a power of 2, and one

for the remaining values of i, the latter sum can be bounded by employing the inequality

2 ≤ ≤w i kh() . Insertion of (14), using (11), gives the theorem.

❏

Corollary: If there exists an index assignment giving λ = 1, then it is optimal and the

channel distortion is

D q qC i
i

M

min
= ⋅ ⋅ = ⋅ ⋅

=

−
∑4 4

2

1

1
2

t σ
VQ

(15)

The parameter λ is therefore an indicator of how good an index assignment is, but it gives no

information on how to find the optimal index assignment.

Equation (14) is attractive as it can be understood intuitively and may give a valuable insight

into the structure of robust VQs. It is also useful in the index assignment algorithms presented

in subsequent sections. Figure 2 relates the measurement of the linearity index to the “amount

of linearity” in the mapping. The more “tidy structure” of Fig. 2 (b) compared to Fig. 2 (a) is

a consequence of a more linear mapping of the hypercube. Unfortunately, the distortion is not

a monotonic function of the linearity index. Figure 3 (a) shows a scatter plot of the channel

11

distortion as a function of λ together with the bounds of theorem 2. The corresponding

histogram for random index assignments is depicted in Fig. 3 (b). The figure in (a) shows that

a range of values of the channel distortion exists for a single value of the linearity index λ ,
and hence, maximizing λ is not equivalent to minimizing DC . Still the correlation between

the channel distortion and the linearity index is very strong, and fortunately strongest for the

IAs of most interest, that is, for low DC . This means that the linearity index is a potent

parameter in the search for robustness. The histogram of the measure shows that very few

index assignments result in a high linearity index.

It is worth noting that the linearity index (14) is independent of the channel bit error proba-

bility, q . This feature is attractive since it eliminates the need to design the codebook for a

certain fixed value of a parameter that normally varies with time. Another approach to attain

this advantage is through the assumption that only single bit-errors occur [6, 8].

We have seen that the channel distortion of an arbitrary MEE working over a BSC, is mini-

mized if the codebook can be expressed as a linear transform of the codeword hypercube.

Furthermore, it is conjectured, and confirmed by an example, that the correlation between the

distortion and linearity is strong and, hence, the search for a good index assignment may be

transformed to a search for a high linearity index. We now turn to the index assignment prob-

lem and specifically present the theory behind an algorithm to achieve a good index assign-

ment under the constraint that we seek as linear transforms as possible.

V. DECOMPOSITION OF AN INDEX ASSIGNMENT

In order to find a good index assignment, a time-saving trick is to identify assignments having

related properties. Using such knowledge, we can evaluate whole classes of assignments si-

multaneously. Our first observation is that any k M× matrix, G , can be uniquely factorized

as

G LG= e ,

where L is a k k× matrix and Ge is a reduced echelon matrix [25]. If the rows of G are lin-

early independent, as they are for any index assignment matrix (4), then so are the rows of L .

Second, because an IA matrix, G , consists of the columns

b b(), , ()0 1L M −{ }, though not

necessarily in that order, the matrix G z1⊕ T , where 1 is the column vector of M ones, will

contain the same vectors, for any k -dimensional vector z . (Remember that the field is

GF(2)). Specifically, we may set z b= ()g0 , which yields

G G z1= ⊕z

T

12

where Gz has the zero vector in the first column. This is equivalent to assigning the zero

codeword to an arbitrary VQ point and relate all distances to this VQ point. Combining the

two decompositions of G into one, we have proved the following theorem.

Theorem 3: Any IA matrix, G , can be decomposed as

G LG z1= ⊕ez

T (16)

in one and only one way, where Gez is a reduced echelon IA matrix with an initial zero vec-

tor, L is an invertible k k× matrix, and z is a k -dimensional vector.

Any IA can be uniquely specified through its triplet (, ,)G L zez . There are

M
M

M M l

l

kλ =
⋅ −

=

−
∏

!

()2
0

1
(17)

possible values for Gez (see Section VIII),

M Ml
l

l

k

= −
=

−
∏()2

0

1

(18)

values for L , and M values for z . Table I gives numerical values of Mλ and Ml for some k.

It turns out that it is not necessary to examine all combinations of Gez , L , and z . In the fol-

lowing sections, we will present an algorithm to find one of the best L matrices without gen-

erating all of them, and another algorithm to generate all Gez matrices. We will not generate

more than one value of z; this vector does not affect the distortion for a binary symmetric

channel, since the probability of confusing codewords b()i and b()j is the same as that of

confusing b z()i ⊕ and b z()j ⊕ .

VI. UNCONSTRAINED INDEX ASSIGNMENT

In this section we state some properties of random index assignment and full search index as-

signment to get a perspective on the constrained assignment presented in Section VIII. The

methods are trivial and extreme cases of index assignment; the first being fast but bad, and

the second being slow but good. The goal in index assignment research, is to find a compro-

mise between the two. Note that the positioning of the VQ points is not affected by any IA

procedure.

13

A. Assigning Indices Randomly

For a random assignment of the indices, the expected norms of the transform vectors in the

numerator and denominator of (14) are equal. Hence, the expected value of λ over all index

assignments becomes

E
k

M
λ[] =

− 1
 . (19)

The expected value decreases rapidly with increasing number of bits in the codebook. The

mean of the histogram in Fig. 3 (b) for the 4-bit codebook is accurately predicted by

4 15 0 267/ .≈ .

Another interpretation of (19) is that the probability of finding a good IA by random search

strategies approaches zero for increasing k. The expected channel distortion for an MEE at

low bit error probability and a randomly chosen index assignment can be shown to be [6]

D q k
M

M
C = ⋅ ⋅ ⋅

−
⋅2

1

2σ
VQ

 , (20)

which is roughly k 2 times the distortion for a codebook with a good IA.

B. Full Search Index Assignment

As there are M! ways to order M elements, exhaustive search belongs to a class of problems

called NP-complete, i.e., no solution is reached in reasonable (polynomial) time. The M! pos-

sibilities needed for an unconstrained search are reduced by identifying several solutions

yielding identical distortion. We may add any vector b i i M() = −; , ,0 1K to the vector repre-

sentation of the indices, and we may permute the bits. This corresponds to selecting an arbi-

trary z and permuting the rows of L . To perform a full search, i.e. just as good as exhaustive,

we thus have to examine

M
M

M k
F =

⋅
!

!
(21)

possibilities. Table I shows that this is only feasible for codebook sizes up to 3 or 4 bits.

VII. HADAMARD CLASSES

In this section, we employ the decomposition of Section V to demonstrate that index assign-

ments of a codebook can be categorized into groups or classes, which we call Hadamard

classes.

14

Definition: A Hadamard class is the set of index assignments having the same reduced

echelon matrix Gez .

In a Hadamard class, all elements (IAs) can be generated from an arbitrary element within the

class by elementary matrix manipulations. Below we will show how to generate the elements

in a Hadamard class and how to find the element with maximum linearity by a simple sorting

procedure.

It is readily understood from (7) that for a fixed Hadamard matrix H , a reordering of the

columns in Y must alter the transform matrix T , and that some of the alterations may result

in a higher linearity index λ . Conversely, at least some reorderings of the t -vectors should

affect just the index assignment, whereas other reorderings of t -vectors are not allowed, since

the codevectors yi{ }would be repositioned. Knowing that a high linearity index is favorable

in terms of robustness, we may try to increase the linearity by reordering the indices of the t -

vectors so that the t -vectors with large norms correspond to the linear part. First we show that

some reorderings of the t -vectors indeed are reorderings of the y -vectors, which may not be

immediately obvious. We regard the equivalent problem of reordering the indices instead of

the vectors, and especially study reorderings that may be expressed by multiplying (in GF(2))

each binary representation of the index by a binary k k× matrix D. If we reorder t j to be-

come ′ =t tc Dbj j
T () , the effect on yi is, according to (8),

′ = ⋅ −()
=

−
⋅∑y tc Db

b b

i j
j

M
j i

T

T

()

() ()

0

1

1 . (22)

Substituting D b−1 ()l for b()j ,

′ = ⋅ −()

= ⋅ −()

=

−
−

−

−

=

− ⋅

=

− ⋅ ()

∑

∑

y t

t

y

c DD b
b D b

b b c D b

c D b

i l
l

M
l i

l
l

M
l i

i

T

T T

T T T

T T

1

1

1

1

0

1

0

1

1

1

()
() () ()

() () ()

() () .

(23)

This means that if we reorder the indices of T using the matrix D, we reorder the indices of

Y according to ()D−1 T (and vice versa), provided that D is invertible. For D to be invertible,

all rows must be linearly independent.

Now we know that this type of t -vector reordering indeed corresponds to another index as-

signment for the same VQ points. To prove that the two IAs always belong to the same

Hadamard class, we examine the IA matrices in terms of the triplet (, ,)G L zez . The new IA

matrix is

15

′ = ′ ′[] = [] =

= +

−
− −

−
−

− −

G b b D b D b D G

D LG D z1

() () () () () () ()

() ()

g g g gM M

ez

0 1

1

0

1

1

1

1 1

L L
T T T

T T T
(24)

and thus the new triplet (, ,) (,() ,())′ ′ ′ = − −G L z G D L D zez ez

1 1T T . Since Gez is not affected, the

new IA is, by definition, within the same Hadamard class.

The Hadamard transform of one codebook (i.e. T) has the same columns, but in a different

order, as the Hadamard transform of other IAs within the same Hadamard class. If the objec-

tive is to minimize the distortion directly, this would not help us much. However, in order to

maximize the linearity index, all we have to do is to locate the k t -vectors with largest norms.

Then the whole class, M Ml ⋅ index assignments, has been handled simultaneously. The only

restriction is that the indices of the k t -vectors must be linearly independent. The following

sorting algorithm generates the matrix D which can be used to reorder T to achieve higher

linearity index.

Input: A codebook, specified by its Hadamard transform T .

Output: The best IA within the class, specified by the reordering matrix

D d d= []−k 1 0L

T
.

Sorting Algorithm:

A : (), , ()= −{ }b b1 1L M

For l := 0 to k − 1:

Find

d t

d
c dl : argmax=

∈A

T

2

For i
l:= 2 to 2 11l+ − :

Remove Db()i from A

The reordered version of the matrix T is the matrix

t tc Db c DbT T() ()0 1L M −[], which, after tak-

ing the inverse Hadamard transform, gives a codebook with a higher linearity index than the

original (if possible). The importance of the algorithm is due to the following theorem.

Theorem 4: The reordering matrix D generated by the sorting algorithm produces the

highest linearity index within a Hadamard class.

Proof of Theorem 4: Sort the t -vectors according to decreasing norms by introducing

 s s sM1 2 1, , ,L − so that

t t ts s sM1 2 1

2 2 2≥ ≥ ≥
−

L . Let qi be the smallest integer such that

b bs sqi1() (), ,L span an (i + 1)-dimensional space, for i k= −0 1, ,L . The problem is to pick

k integers

d dk0 1, ,L − to maximize tdl l

2

∑ under the restriction that

b b(), , ()d dk0 1L − are

linearly independent. Without loss of generality we may let

d dk0 1< < −L . At most l ele-

ments of

b bs sql1 1() (){ }−, ,L are linearly independent, so

d s s ll q Ml

∈ () (){ }− ∀b b, , ;L 1 . Thus,

tdl l

2

∑ is maximized when d s ll ql
= ∀; .

❏

16

We have shown that the index assignments can be divided into Mλ disjunct classes and that

the most linear element within each class is found by a simple sorting procedure. Table I

compares the full search complexity, MF , to the number of Hadamard classes, Mλ , for a few

codebook sizes. In the next section, the search method with complexity Mλ is completed.

VIII. CONSTRAINED FULL SEARCH INDEX ASSIGNMENT

With a constrained full search IA strategy, we refer to a search strategy sufficient to find the

best possible IA with respect to some criterion, e.g. the linearity. The strategy of maximizing

the linearity is straightforward in view of the preceding sections; visit each Hadamard class

once (successively generate all possible Gez matrices) and use the sorting algorithm to find

the maximum linearity within each Hadamard class. Consequently, an algorithm to maximize

linearity over all index assignments for a given set of VQ points is formed.

The algorithm is called the Full Linear Search Algorithm (FLSA), because it performs a full

search among the Hadamard classes, which gives the same result as if an exhaustive search

were performed over all index assignments.

Input: A codebook Y0 .

Output: A better index assignment Ĝ for Y0 .

The FLSA:

G G:= 0

ˆ :λ = 0

Repeat:

Compute the Hadamard transform T of

Y y y= []−g gM0 1

0 0
L

Use the sorting algorithm to find the best IA ′G within the current Hadamard class

Compute the linearity ′λ of ′G

If ′ >λ λ̂ : Let ˆ :λ λ= ′ and ˆ :G G= ′
index := 3

Repeat while g indexM− =1 :

Circularly shift

g gindex M, ,L −[]1 one step to the right

index index:= + 1

If index is a power of 2: index index:= + 1

If index M:= − 1: Terminate the procedure and return Ĝ .

Find p such that g indexp = 2

Swap gp and gp+1

2 This should be done by maintaining a table of p for every index value, not by search.

17

Example: An 8-point VQ has Mλ = ⋅ ⋅ ⋅() =8 8 7 6 4 30! Hadamard classes. The following

30 index assignments, g , are generated by the FLSA, reading columnwise from left to right.

012 4567 012 4657 01234675 01234576 01234756 01234765

0124 567 0124 657

01245 67 01246 57

012456 7 012465 7

0124567 0124657 01246753 01245763 01247563 01247653

3 3

3 3

3 3

3 3

3 3

M M M M

To show that this algorithm indeed visits each Hadamard class, that is, that G goes through

all Gez matrices, we take another look at reduced echelon matrices.

Theorem 5: An index assignment matrix G is a reduced echelon matrix if and only if no

element of the index assignment g that is a power of two is preceded by a larger value.

Proof of Theorem 5: In an IA matrix, there is no zero row, and all non-zero elements are

equal to one. This makes properties 1 and 3 of a reduced echelon matrix (Section IIC) lose

significance. Thus, an IA matrix G is a reduced echelon matrix if and only if

(1) Every column containing a leading entry has all its other entries zero,

(2) Suppose that the leading entry of row i appears in column ti , for i k= 1, ,L . These

numbers are ordered such that

t t tk1 2< < <L .

The two conditions can be translated into tests on g :

(1) The first element with bit i set is 2i , for i k= −0 1, ,L ,

(2) The first element with bit i set precedes all elements with bit i + 1 set, for

 i k= −1 1, ,L .

Combining these conditions yields Theorem 5.
❏

Corollary: The FLSA finds the IA with maximum linearity for any codebook.

Essentially, the algorithm creates an index assignment by insertion of one codeword at a time

into a list. We consider the codewords in decreasing order. In the initially empty list, we first

insert the codewords 2 1 2 2 2 11k k k− − +−, , ,L . They can be placed in any order without vio-

lating Theorem 5. Then comes 2 1k− , which must be inserted first in the list. The insertion

continues in the same fashion: the 2 1i − codewords 2 1 2 11i i+ − +, ,L can be inserted any-

where in the list and 2i must be before all the others. This is repeated for

 i k k= − −1 2 0, , ,L . Finally, the zero codeword is, according to Theorem 3, inserted first.

The FLSA generates the Gez ’s in a faster way than by straightforward insertion. To move

from one Gez to the next one, it is not necessary to empty the list and start over again. It is

sufficient to redo the last insertion or insertions, which implies one or more swaps in g . Most

18

often, the codeword 3 is swapped with another codeword, because 3 is the last codeword that

can be inserted in different positions.

The FLSA is of more theoretical than practical interest, because of the rapid increase of

Hadamard classes for increased number of bits in the codebook. Before the codewords

 2 1 2 11i i+ − +, ,L are inserted, the list consists of M i− +2 1 elements, so these codewords can

be inserted in () ()M Mi i− + ⋅ ⋅ − −+2 1 2 11 K ways. The total number of Hadamard classes is

thus

M M M

M

M

i i

i

k

i

i

k

λ = − + ⋅ ⋅ − −

= −

−

+

=

−

=

−

∏

∏

() ()

()!

()

,

2 1 2 1

3

2

1

1

1

2

1

K

which is the number used in (17) and in Table I. Although 4-bit codebooks can be assigned

with the best indices found by exhaustive search, optimal index assignment of 5-bit code-

books is still infeasible. Therefore we proceed to suboptimal, but much faster, search strate-

gies.

IX. THE LINEARITY INCREASING SWAP ALGORITHM

The obvious modification of the FLSA for k > 4 is to examine just a subset of the Mλ
classes. A straightforward algorithm would be to systematically do pairwise swaps of the

codewords and, for each swap, sort for the best index assignment within the current

Hadamard class. Although correct in theory, this strategy is not efficient, as the linearity in-

dex varies very little within almost all Hadamard classes when the number of bits is more

than, say, 7-8. Exceptions are within the Hadamard classes which contain the really good in-

dex assignments, because then there are k t -vectors with large norms and M k− −1 t -vectors

with small norms, which implies a large range of λ values. Unfortunately, as discussed ear-

lier, the probability of finding such a Hadamard class is close to zero, making this strategy not

more efficient than swapping codewords alone.

A more constructive approach is to focus first on what can be done fast, and second where

applied effort is most effective. Below we address these foci, and present a suboptimal algo-

rithm that rapidly finds a good index assignment.

In the first category, we identify that it is unnecessary to compute the complete Hadamard

transform in order to calculate the linearity index. From (10), using the notation of (8), it is

19

easy to express what effect a swap of two VQ points has on the t -vectors. Suppose we swap

the VQ points y yK L and . The new t -vectors, ′t , become

′ = + + −() + + −() +[]
− −() ⋅ −() − −()()





=

t y y y

t y y

b b b b

b b b b

i L
K i

K
L i

i L K
L i K i

M

M

1

1

0 1 1

1 1

L L L
T T

TT

() () () ()

() () () ()
. (25)

This is how an arbitrary t -vector is affected by an arbitrary codeword swap. Now we focus

on a subset of the t -vectors and a special type of swaps.

As the denominator of (14) is invariant under all index assignments, the linearity only de-

pends on the t -vectors for which i l= 2 . For such indices, the norm of ′t2l is

′ + () − ⋅=
′ ′

t t y t y2

2

2

2
2

2

22 2l l l

b

M

b

M
l l

∆
∆

∆
∆

T , (26)

where ∆y y y= −L K , ∆ ′ = ′() − ′()b b L b Kl l l , and ′ ⋅()bl is defined in Section IIB . The new linear-

ity becomes

′ + ′() − ′[]=
=

−
∑λ λ

σ
1 22 2

2 2

2
0

1

VQ

T

M
b M bl l

l

k

l∆ ∆ ∆ ∆y t y . (27)

To find out whether a swap will increase the linearity or not, all we have to do is to evaluate

the sum above. If it is positive, the swap is favorable. The existence of this fast test is one

strong argument for using linearity as the performance measure.

We now concentrate on swaps such that ∆ ′ =bl 0 for all but one l value. This occurs for swaps

of indices with a Hamming distance of one. Thus, if 2 2 2 1 2 1n K n
l l⋅ ≤ ≤ +() ⋅ − , for any in-

teger n, and L K
l= + 2 , then K and L differ only in bit l. Hence ∆ ′ = −bl 2 and ∆ ′ =bj 0 for

j l≠ . All possible swaps of this type are depicted as a butterfly structure in Fig. 4, well-

known from FFT and similar algorithms. For L and K matching this pattern, (25) and (27)

yield the following simple expressions.

Test:
1 2

2 0
M

l⋅ + >∆ ∆y t yT

Update t2l : ′ = + ⋅t t y2 2
2

l l
M

∆

Update λ : ′ +
⋅

⋅ + ⋅[]=λ λ
σ

4
2 2

2

2
VQ

T

M
M l∆ ∆y t y (28)

This swap strategy is just a special case of the general pairwise swap. It picks out only a sub-

set (the k k⋅ −2 1 Hamming 1 neighbors) of all pairwise swaps, but the computational burden is

so low that it is well worth treating separately. The t -vectors that are important for the linear-

20

ity are successively and independently increased, which results in a high linearity almost in-

stantly. We glimpse into the experimental section by mentioning that we typically rise the lin-

earity of a 12 bit codebook with randomized indices from 0.0 to 0.9 in a tenth of a second on

a modern computer. We name this swap strategy “Hamming 1 Butterflies” and provide a de-

tailed description in the Appendix.

The remaining 2 2 11k k k− − −() pairwise swaps involve more than one t -vector for each

swap, and the somewhat more complicated test (implicitly implied by (27)) must be in-

voked. Still the additional increase of linearity may motivate these swaps. A procedure named

“Remaining Butterflies” is also relegated to the Appendix.

Below we present a routine performing all pairwise swaps by first swapping the Hamming 1

neighbors and then all the others. This split is especially favorable when the total time con-

sumption is of concern and the procedure has to be terminated before a full cycle is com-

pleted.

Input: An initial codebook Y .

Output: A permutation of the initial codebook, also named Y .

Linearity Increasing Swap Algorithm (LISA):

Compute the Hadamard transform T of Y

Repeat:

Hamming 1 Butterflies

Remaining Butterflies

Until convergence

Most index assignment procedures are indeed computationally oppressive, and the following

list of computational aspects is worth taking into consideration when implementing the LISA.

• The Hadamard transform should be computed using an FFT-type structure.

• Only

t t t t1 2 4 2, , , ,L M are updated by the algorithm, so if the T matrix is needed

afterwards, it has to be computed anew from Y .

• Store and update M i⋅ t instead of ti .

• If desired, the progress of λ can be monitored using (27) and (28).

• Powers of two should not be implemented as such; use bit operations instead.

• Do not compute ∆ ′bj as a variable, but use if statements to take care of its three possible

values.

21

X. EXPERIMENTS

In this section we present some numerical results to get a perspective on the complexity of

index assignment. For comparison, we solve the same problems with three different algo-

rithms: the proposed LISA, and two well-known index assignment algorithms, namely a

Simulated Annealing Algorithm (SAA) as described by Farvardin [6], and the Binary

Switching Algorithm (BSA) by Zeger and Gersho [8]. All three algorithms are based on

pairwise swaps to improve a given index assignment, but they employ different swap criteria

and test order. We have tried to adhere as closely as possible to the descriptions of these al-

gorithms, using the same program structures, parameter values, approximations, etc., as in the

papers describing them, except in Fig. 7 below, where slightly modified versions were used.

We provide results for experiments on rate k d/ = 1 (,)k d= =6 6 , and rate 3 (,)k d= =9 3

codebooks, designed using a sample iterative training algorithm [26]. The codebooks were

optimized for sequences of samples from first-order Gauss-Markov sources, with a sample-to-

sample correlation of ρ = 0 0. (i.i.d. Gaussian variables) and ρ = 0 9. , with the assumption of

an error-free channel. As all algorithms employ a local descent concept, the results are depen-

dent on the initial codebook. All results presented here (except Fig. 6) are therefore averaged

over 20 runs of each algorithm, each time beginning from a new randomized index assign-

ment3.

There was no need to reoptimize the index assignments for different bit error probability val-

ues. This constant does not enter any of the IA algorithms used, since the BSA and the SAA

use the single-error approximation of DC , and the LISA uses λ .

In Fig. 5, the signal-to-noise ratio (SNR) is given as a function of the channel bit error prob-

ability, q . It is clear that all three algorithms improve the SNR considerably for noisy chan-

nels, compared to a random IA. For the small codebook in Figs. 5 (a) and (b), the results are

almost indistinguishable, their difference being less than 0.13 dB.

Index assignment for 9-bit codebooks is a harder problem. In Figs. 5 (c) and (d), the differ-

ences between the algorithms are apparent. Here, the SAA terminates far from the optimal IA,

mainly because of the fixed cooling schedule [6]. A large codebook requires more pairwise

swaps than a small one, which in terms of simulated annealing means that an extended cool-

ing schedule should be applied. We will do that in the following.

3It is known that e.g. the LBG-split algorithm yield a more robust IA than a random assignment [6]. Structured
VQ initializations and/or temporarily training for a noisy channel have also proved to give robust results [26],
and consequently, such VQs could serve as good initial IAs. In this report however, the initial IA is randomized
in order to remove the dependency of the VQ design procedure, which also makes it possible to measure
statistics over a large number of runs of each IA algorithm. We have not observed a systematic decrease in the
final robustness due to random initialization.

22

The LISA does not reach the good performance of the BSA for codebooks (c) and (d) in Fig.

5. The difference is about 0.6 dB, which shows the influence of the MEE assumption. When

the rate is high, a Gaussian codebook will generally have an entropy significantly less that k

(for the 9-bit codebooks, 8.80 and 8.83), which increases the discrepancy between linearity

and channel distortion. A method to abridge the gap between the LISA and the BSA is sug-

gested in the next section.

Obviously, it is important how fast an algorithm reaches good performance. Table II shows

the computational complexity for each of the curves in Fig. 5. Three different measures re-

lated to the speed of the algorithms are presented. First, the number of pairs that are tested as

candidates for a swap. Second, the number of these swaps that are actually retained. And

third, the consumed CPU time4. While being the most important of the three features in appli-

cations, the CPU time is also the one most difficult to measure, in the sense that it is depen-

dent on exterior circumstances such as hardware, software and programmer. Still, some gen-

eral tendencies can clearly be seen, e.g., that the time needed by the SAA does not vary much

with the codebook size. This is again due to the fixed cooling schedule employed. The BSA

requires several times more CPU time than the LISA, but common for both, is that time in-

creases rapidly with k.

Figure 6 shows the search procedures at work. The curves represent one sample run of each

algorithm, using the same codebook and the same initial IA. The “noisy” behavior during the

first phase of the SAA, when the algorithm sometimes allows the cost function to increase in

order to avoid shallow local minima, is typical for simulated annealing. On a microscale, the

two other curves are not monotonically increasing either, because none of them uses true

channel distortion as the fidelity measure.

When a robust VQ is designed, the time allowed for the index assignment is normally not un-

limited. A realistic problem may be to obtain as good results as possible in a pre-specified pe-

riod of time. This is the setting for Fig. 7, where we have modified the algorithms to increase

the SNR as much as possible in at most 1 minute each. The BSA was simply interrupted

when the allowed period of time had elapsed whereas for the SAA, we adjusted the cooling

schedule. The parameters (α = 0 97. , Tf xσ 2 52 10= ⋅ − ; T x0

2 0 004σ = . for ρ = 0 0. and

T x0

2 0 05σ = . for ρ = 0 9.) were empirically found to yield good performance under this time

constraint. There was no need to interrupt the LISA in this experiment, since it had converged

well within the time limit.

4 The CPU time was measured on a DEC Alpha AXP 400 Workstation. Its clock speed is 133 MHz, and its
SPECfp92 measure is 112.5.

23

In applications, it does not matter much whether the index assignment takes seconds or hours.

However, since the time required to obtain a good result increases fast with the codebook

size, a fast algorithm makes it possible to use larger codebooks. For instance, the LISA com-

pletes an index assignment for 12-bit codebooks in 10–20 minutes. The improvement is still

greatest in the beginning, as in Fig. 6, so very little is lost if the algorithm is interrupted after,

say, one minute.

XI. DISCUSSION AND CONCLUSIONS

In the experiments of the previous section, we have intentionally avoided creating any combi-

nation of the three algorithms. Doing so may however prove fruitful, since the algorithms

exhibit different advantages. The possibilities to create such hybrid algorithms are almost

endless. For instance, the fast method to compute DC that the BSA employs can be used in

other algorithms using the same fidelity measure. The idea of simulated annealing can be in-

corporated into other swap-based algorithms, such as the LISA. Two or more algorithms with

different fidelity measures can be used after each other, so that one improves the result from

another. Especially, Figs. 5 (c)–(d) and 6 suggest that a superior algorithm can be created by

succeeding the LISA with the BSA or the SAA.

We have introduced an objective measure called the linearity index, which was shown to be

decisive for robustness in maximum entropy coding systems without explicit error protection.

The Hadamard matrix proved effective in describing the codebook and the Hadamard trans-

form facilitated the search for the index assignments yielding a high linearity index. One al-

gorithm, the FLSA, finds the optimal index assignment and is of more theoretical than

practical interest. Another algorithm, the LISA, proves to be significantly faster than the other

algorithms tested, reaching a good, but not the best IA in the test. For large codebooks, say

k > 10, the speed makes the LISA an attractive choice, if not the only practical alternative

among the algorithms tested, for finding a good IA.

Experimental results verifies that good performance is reached also for encoding systems

without full entropy.

ACKNOWLEDGMENTS

The authors wish to thank professor Per Hedelin for the idea of using the Hadamard transform

for description of codebooks. Fruitful discussions with Hedelin has also helped improving the

LISA. We also appreciate the helpful suggestions given by the reviewers.

24

APPENDIX

The following procedures are used in the LISA algorithm presented in Section IX.

Hamming 1 Butterflies:

For l := 0 to k − 1:

For i := 0 to M l− +2 1, step 2 1l+ :

For K i:= to i l+ −2 1:

∆y y y:= −+K K
l2

If ∆ ∆y t y
2

2 0+ ⋅ >M l
T :

Swap yK and yK l+2

t t y2 2
2

l l
M

:= + ⋅ ∆

Remaining Butterflies:

For l := 1 to k − 1:

For w
l l:= + −+2 1 2 11 to :

For i := 0 to M l− +2 1, step 2 1l+ :

For K i:= to i l+ −2 1:

L K w:= ⊕
∆y y y:= −K L

∆ ′ = ′() − ′() =b b L b K j lj j j: ; , ,0 L

If ∆ ∆ ∆ ∆′() − ′[] >=∑ b M bj jj

l
j

T
2 2

20
2 0y t y :

Swap yK and yL

t t y2 2 0j j

b

M
j j l: ; , ,= − =′

⋅∆
∆ L

25

REFERENCES

[1] R. E. Totty and G. C. Clark, “Reconstruction error in waveform transmission,” IEEE

Trans. Inform. Theory , vol. IT-13, no. 2, pp. 336-338, Apr. 1967.

[2] L. C. Potter, “Minimax nonredundant channel coding,” Submitted to IEEE Trans.

Commun., May 1993.

[3] N. Rydbeck and C.-E. Sundberg, “Analysis of digital errors in nonlinear PCM

systems,” IEEE Trans. Commun. , vol. COM-24, no. 1, pp. 59-65, Jan. 1976.

[4] K. Zeger and A. Gersho, “Zero redundancy channel coding in vector quantization,”

Electron. Lett. , vol. 23, pp. 654-655, June 1987.

[5] J. R. B. De Marca and N. S. Jayant, “An algorithm for assigning binary indices to the

codevectors of a multi-dimensional quantizer,” in Proc. IEEE Int. Conf. Commun., pp. 1128-

1132, Seattle, WA, June 1987.

[6] N. Farvardin, “A study of vector quantization for noisy channels,” IEEE Trans.

Inform. Theory , vol. 36, no. 4, pp. 799-809, July 1990.

[7] K. Zeger, E. Paksoy, and A. Gersho, “Source/channel coding for vector quantizers by

index assignment permutations,” in Proc. IEEE Int. Symp. Information Theory , pp. 78-79,

San Diego, CA, Jan. 1990.

[8] K. Zeger and A. Gersho, “Pseudo-Gray coding,” IEEE Trans. on Communications,

vol. 38, no. 12, pp. 2147-2158, Dec. 1990.

[9] N.-T. Cheng and N. K. Kingsbury, “Robust zero-redundancy vector quantization for

noisy channels,” in Proc. IEEE Int. Conf. Commun., pp. 1338-1342, Boston, MA, June 1989.

[10] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer design,” IEEE

Trans. Commun., vol. COM-28, no. 1, pp. 84-95, Jan. 1980.

[11] P. Knagenhjelm, “How good is your index assignment?,” in Proc. IEEE Int. Conf.

Acoust., Speech, Signal Processing , vol. ΙΙ , pp. 423-426, Minneapolis, MN, Apr. 1993.

[12] R. Hagen and P. Hedelin, “Robust vector quantization in speech coding,” in Proc.

IEEE Int. Conf. Acoust., Speech, Signal Processing, vol. ΙΙ , pp. 13-16, Minneapolis, MN,

Apr. 1993.

[13] S.W. McLaughlin, J. Ashley, and D.L. Neuhoff, “The optimality of the natural binary

code,” Coding and Quantization, vol. 14, DIMACS Series in Discrete Mathematics and

Theoretical Computer Science, American Mathematical Society, 1993.

26

[14] S. W. McLaughlin, D. L. Neuhoff, and J. J. Ashley, “Optimal binary index assignment

for a class of equiprobable scalar and vector quantizers,” Submitted to IEEE Trans. Inform.

Theory , 1993.

[15] D.-M. Chiang and L. C. Potter, “Minimax non-redundant channel coding for vector

quantization,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, vol. V, pp. 617-

620, Minneapolis, MN, Apr. 1993.

[16] H.-S. Wu and J. Barba, “Index allocation in vector quantization for noisy channels,”

Electron. Lett. , vol. 29, no. 15, pp. 1317-1319, July 1993.

[17] P. Hedelin, P. Knagenhjelm, and M. Skoglund, “Vector quantization for speech

transmission,” in Speech Coding and Synthesis, W. B. Kleijn, K. K. Paliwal, eds., Elsevier,

1995.

[18] P. Hedelin, P. Knagenhjelm, and M. Skoglund, “Theory for transmission of vector

quantization data,” in Speech Coding and Synthesis, W. B. Kleijn, K. K. Paliwal, eds.,

Elsevier, 1995.

[19] K. Zeger and V. Manzella, “Asymptotic bounds on optimal noisy channel quantization

via random coding,” IEEE Trans. Inform. Theory , vol. 40, no. 6, pp. 1926-1938, Nov. 1994.

[20] S. Benedetto, E. Biglieri, and V. Castellani, Digital Transmission Theory. Englewood

Cliffs, NJ: Prentice-Hall, 1987.

[21] O. Agazzi, D. G. Messerschmitt, and D. A. Hodges, “Nonlinear echo cancellation of

data signals,” IEEE Trans. Commun., vol. COM-30, no. 11, pp. 2421-2433, Nov. 1982.

[22] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes,

Amsterdam, Holland: North-Holland Publishing Company, 1977.

[23] W. R. Crowther and C. M. Rader, “Efficient coding of vocoder channel signals using

linear transformation,” Proc. IEEE , vol. 54, no. 11, pp. 1594-1595, Nov. 1966.

[24] W. K. Pratt, J. Kane, and H. C. Andrews, “Hadamard transform image coding,” Proc.

IEEE , vol. 57, no. 1, pp. 58-68, Jan. 1969.

[25] G. Birkhoff and S. Mac Lane, A Survey of Modern Algebra, revised ed. New York,

NY: MacMillan, 1953.

[26] P. Knagenhjelm, “A recursive design method for robust vector quantization,” in Proc.

International Conference on Signal Processing, Applications and Technology (ICSPAT), vol.

ΙΙ , pp. 423-426, Boston, MA, Nov. 1992.

LIST OF FIGURES

Fig. 1 The codebook regarded as a transform of the hypercube, in this case 3-dimen-

sional, spanned by the codewords. Codewords with a Hamming distance of 1 are

connected with a line.

Fig. 2 Two codebooks with identical codevectors. In (a) the linearity index λ = 0 12. and

in (b) λ = 0 91. . Codewords with a Hamming distance of 1 are connected with a

line.

Fig. 3 Fig. (a) shows a scatter plot of the distortion versus λ for various index assign-

ments, for a 4-bit codebook and q = 0 01. . The lines visualize the bounds of

Theorem 2. The channel is presumed to be BSC. The histogram (based on approx-

imately 100000 samples) of the parameter is shown in (b). The mean value is

0.267 and the correlation between the distortion and λ is ρ λDC , .= −0 846 .

Fig. 4 VQ points involved in a butterfly swap for the updating of the vectors t t1 2, , and

t4 in the case of a 3-bit codebook.

Fig. 5 SNR in dB as a function of bit error probability. Index assignments by three algo-

rithms, compared to random IAs. (a) k d= = =6 6 0, , and ρ . (b) k d= =6 6, , and

ρ = 0 9. . Here the results of using the BSA and the SAA coincide. (c) k d= =9 3, ,

and ρ = 0 0. . (d) k d= = =9 3 0 9, , . and ρ .

Fig. 6 Achieved SNR performance as a function of time for one trial of each algorithm.

SNR was measured at q = 0 01. . The codebook is k d= =9 3, , and ρ = 0 0. .

Fig. 7 SNR as a function of bit error probability. Each of the three algorithms was modi-

fied to terminate in 1 minute. k d= =9 3, . (a) ρ = 0 0. . (b) ρ = 0 9. .

LIST OF TABLES

TABLE I: SEARCH COMPLEXITY FOR FULL SEARCH (MF) AND FULL LINEAR SEARCH (Mλ).

TABLE II: THE COMPLEXITY OF THE THREE ALGORITHMS , MEASURED FOR FOUR CODEBOOKS.

TABLE I
SEARCH COMPLEXITY FOR FULL SEARCH (MF) AND FULL LINEAR SEARCH (Mλ).

k M! k ! Ml MF Mλ

2 24 2 6 3 1

3 4 0 104. ⋅ 6 168 840 30

4 2 1 1013. ⋅ 24 2 0 104. ⋅ 5 4 1010. ⋅ 6 5 107. ⋅

5 2 6 1035. ⋅ 120 1 0 107. ⋅ 6 9 1031. ⋅ 8 2 1026. ⋅

TABLE II
THE COMPLEXITY OF THE THREE ALGORITHMS , MEASURED FOR FOUR CODEBOOKS.

Number of tests Number of swaps CPU time

k d ρ BSA SAA LISA BSA SAA LISA BSA SAA LISA

6 6 0.0 14000 30000 12000 62 2200 130 1 s 30 s 0 s

6 6 0.9 71000 31000 11000 120 2400 160 7 s 20 s 0 s

9 3 0.0 2.9·107 10000 1.3·106 1800 2900 2200 50 min 50 s 9 s

9 3 0.9 7.4·107 7000 1.3·106 1800 2900 2400 2 h 30 s 6 s

FOOTNOTES

1 The Schur product is defined as

A Bo[] = ⋅

i j i j i ja b
, , ,

2 This should be done by maintaining a table of p for every index value, not by search.

3 It is known that e.g. the LBG-split algorithm yield a more robust IA than a random

assignment [6]. Structured VQ initializations and/or temporarily training for a noisy channel

have also proved to give robust results [26], and consequently, such VQs could serve as good

initial IAs. In this report however, the initial IA is randomized in order to remove the

dependency of the VQ design procedure, which also makes it possible to measure statistics

over a large number of runs of each IA algorithm. We have not observed a systematic

decrease in the final robustness due to random initialization.

4 The CPU time was measured on a DEC Alpha AXP 400 Workstation. Its clock speed is 133

MHz, and its SPECfp92 measure is 112.5.

