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HDFS



 What is Hadoop?
– Provide a distributed file system and a framework
– Analysis and transformation of very large data set
– MapReduce

Introduction and Related Work



 What is Hadoop Distributed File System (HDFS) ?
– File system component of Hadoop 
– Store metadata on a dedicated server NameNode
– Store application data on other servers DataNode
– TCP-based protocols
– Replication for reliability
– Multiply data transfer bandwidth for durability

Introduction (cont.)



 NameNode
 DataNodes
 HDFS Client
 Image Journal
 CheckpointNode
 BackupNode
 Upgrade, File System Snapshots

Architecture



Architecture Overview



 Maintain The HDFS namespace, a hierarchy of 
files and directories represented by inodes

 Maintain the mapping of file blocks to DataNodes
– Read: ask NameNode for the location
– Write: ask NameNode to nominate DataNodes

 Image and Journal
 Checkpoint: native files store persistent record of 

images (no location)

NameNode – one per cluster



 Two files to represent a block replica on DN
– The data itself – length flexible
– Checksums and generation stamp

 Handshake when connect to the NameNode
– Verify namespace ID and software version
– New DN can get one namespace ID when join

 Register with NameNode 
– Storage ID is assigned and never changes
– Storage ID is a unique internal identifier

DataNodes



 Block report: identify block replicas
– Block ID, the generation stamp, and the length
– Send first when register and then send per hour

 Heartbeats: message to indicate availability
– Default interval is three seconds
– DN is considered “dead” if not received in 10 mins
– Contains Information for space allocation and load balancing

● Storage capacity
● Fraction of storage in use
● Number of data transfers currently in progress

– NN replies with instructions to the DN
– Keep frequent. Scalability

DataNodes (cont.) - control



 A code library exports HDFS interface
 Read a file

– Ask for a list of DN host replicas of the blocks
– Contact a DN directly and request transfer

 Write a file
– Ask NN to choose DNs to host replicas of the first block of the file
– Organize a pipeline and send the data
– Iteration

 Delete a file and create/delete directory
 Various APIs

– Schedule tasks to where the data are located
– Set replication factor (number of replicas) 

HDFS Client



HDFS Client (cont.)



 Image: metadata describe organization
– Persistent record is called checkpoint
– Checkpoint is never changed, and can be replaced

 Journal: log for persistence changes
– Flushed and synched before change is committed

 Store in multiple places to prevent missing
– NN shut down if no place is available

 Bottleneck: threads wait for flush-and-sync
– Solution: batch

Image and Journal



 CheckpointNode is NameNode
 Runs on different host
 Create new checkpoint

– Download current checkpoint and journal
– Merge
– Create new and return to NameNode
– NameNode truncate the tail of the journal

 Challenge: large journal makes restart slow
– Solution: create a daily checkpoint

CheckpointNode



 Recent feature
 Similar to CheckpointNode
 Maintain an in memory, up-to-date image

– Create checkpoint without downloading
 Journal store
 Read-only NameNode

– All metadata information except block locations
– No modification

BackupNode



 Minimize damage to data during upgrade
 Only one can exist
 NameNode

– Merge current checkpoint and journal in memory
– Create new checkpoint and journal in a new place
– Instruct DataNodes to create a local snapshot

 DataNode
– Create a copy of storage directory
– Hard link existing block files

Upgrades, File System and Snapshots



 NameNode recovers the checkpoint

 DataNode resotres directory and delete replicas after 
snapshot is created

 The layout version stored on both NN and DN
– Identify the data representation formats
– Prevent inconsistent format

 Snapshot creation is all-cluster effort
– Prevent data loss 

Upgrades, File System and Snapshots – 
Rollback



 File Read and Write
 Block Placement and Replication management
 Other features

File I/O Operations and Replica 
Management



 Checksum
– Read by the HDFS client to detect any corruption
– DataNode store checksum in a separate place
– Ship to client when perform HDFS read
– Clients verify checksum

 Choose the closet replica to read
 Read fail due to

– Unavailable DataNode
– A replica of the block is no longer hosted
– Replica is corrupted

 Read while writing: ask for the latest length

File Read and Write



 New data can only be appended
 Single-writer, multiple-reader
 Lease

– Who open a file for writing is granted a lease
– Renewed by heartbeats and revoked when closed
– Soft limit and hard limit
– Many readers are allowed to read

 Optimized for sequential reads and writes
– Can be improved

● Scribe: provide real-time data streaming
● Hbase: provide random, real-time access to large tables

File Read and Write (cont.)



Add Block and The hflush

hflush
• Unique block ID
• Perform write operation
• new change is not guaranteed 
to be visible
• The hflush



 Not practical to connect all nodes
 Spread across multiple racks

– Communication has to go through multiple switches
– Inter-rack and intra-rack
– Shorter distance, greater bandwidth

 NameNode decides the rack of a DataNode
– Configure script

Block Replacement



 Improve data reliability, availability and network 
bandwidth utilization

 Minimize write cost
 Reduce inter-rack and inter-node write
 Rule1: No Datanode contains more than one 

replica of any block
 Rule2: No rack contains more than two replicas of 

the same block, provided there are sufficient racks 
on the cluster

Replica Replacement Policy



 Detected by NameNode

 Under-replicated
– Priority queue (node with one replica has the highest)
– Similar to replication replacement policy

 Over-replicated
– Remove the old replica
– Not reduce the number of racks

Replication management



 Balancer
– Balance disk space usage
– Bandwidth consuming control

 Block Scanner
– Verification of the replica
– Corrupted replica is not deleted immediately

 Decommissioning
– Include and exclude lists
– Re-evaluate lists
– Remove decommissioning DataNode only if all blocks on it are 

replicated
 Inter-Cluster Data Copy

– DistCp – MapReduce job

Other features 



 3500 nodes and 9.8PB of storage available
 Durability of Data

– Uncorrelated node failures
● Chance of losing a block during one year: <.5% 
● Chance of node fail each month: .8%

– Correlated node failures
● Failure of rack or switch
● Loss of electrical power

 Caring for the commons
– Permissions – modeled on UNIX
– Total space available

Practice At Yahoo!



DFSIO benchmark
 DFSIO Read: 66MB/s per node
 DFISO Write: 40MB/s per node

Production cluster
 Busy Cluster Read: 1.02MB/s per node
 Busy Cluster Write: 1.09MB/s per node

Sort benchmark

Benchmarks
Operation Benchmark



 Automated failover solution
– Zookeeper

 Scalability
– Multiple namespaces to share physical storage
– Advantage

● Isolate namespaces
● Improve overall availability
● Generalizes the block storage abstraction

– Drawback
● Cost of management

– Job-centric namespaces rather than cluster centric

Future Work



 Pros
– Architecture: NameNode, DataNode, and powerful features to provide kinds of operations, 

detect corrupted replica, balance disk space usage and provide consistency.
– HDFS is easy to use: users don’t have to worry about different servers. It can be used as 

local file system to provide various operations
– Benchmarks are sufficient. They use real data with large number of nodes and storage to 

provide kinds of experiments. 

 Cons
– Fault—tolerance is not very sophisticated. All the recoveries introduced are based on the 

assumption that NameNode is alive. No proper solution currently in this paper handles the 
failure of NameNode

– Scalability, especially the handling of replying heartbeats with instructions. If there are too 
many messages come in, the performance of NameNode is not proper measured in this 
paper

– The test of correlated failure is not provided. We can’t get any information of the 
performance of HDFS after correlated failure is encountered. 

Critiques and Discussion



 Thank you very much
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