
The Hadoop Distributed File 
System

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler
Yahoo!

Sunnyvale, California USA
{Shv, Hairong, SRadia, Chansler}@Yahoo-Inc.com

Presenter: Alex Hu

mailto:Chansler%7D@Yahoo-Inc.com
mailto:Chansler%7D@Yahoo-Inc.com
mailto:Chansler%7D@Yahoo-Inc.com


 Introduction 
 Architecture
 File I/O Operations and Replica Management
 Practice at YAHOO!
 Future Work
 Critiques and Discussion

HDFS



 What is Hadoop?
– Provide a distributed file system and a framework
– Analysis and transformation of very large data set
– MapReduce

Introduction and Related Work



 What is Hadoop Distributed File System (HDFS) ?
– File system component of Hadoop 
– Store metadata on a dedicated server NameNode
– Store application data on other servers DataNode
– TCP-based protocols
– Replication for reliability
– Multiply data transfer bandwidth for durability

Introduction (cont.)



 NameNode
 DataNodes
 HDFS Client
 Image Journal
 CheckpointNode
 BackupNode
 Upgrade, File System Snapshots

Architecture



Architecture Overview



 Maintain The HDFS namespace, a hierarchy of 
files and directories represented by inodes

 Maintain the mapping of file blocks to DataNodes
– Read: ask NameNode for the location
– Write: ask NameNode to nominate DataNodes

 Image and Journal
 Checkpoint: native files store persistent record of 

images (no location)

NameNode – one per cluster



 Two files to represent a block replica on DN
– The data itself – length flexible
– Checksums and generation stamp

 Handshake when connect to the NameNode
– Verify namespace ID and software version
– New DN can get one namespace ID when join

 Register with NameNode 
– Storage ID is assigned and never changes
– Storage ID is a unique internal identifier

DataNodes



 Block report: identify block replicas
– Block ID, the generation stamp, and the length
– Send first when register and then send per hour

 Heartbeats: message to indicate availability
– Default interval is three seconds
– DN is considered “dead” if not received in 10 mins
– Contains Information for space allocation and load balancing

● Storage capacity
● Fraction of storage in use
● Number of data transfers currently in progress

– NN replies with instructions to the DN
– Keep frequent. Scalability

DataNodes (cont.) - control



 A code library exports HDFS interface
 Read a file

– Ask for a list of DN host replicas of the blocks
– Contact a DN directly and request transfer

 Write a file
– Ask NN to choose DNs to host replicas of the first block of the file
– Organize a pipeline and send the data
– Iteration

 Delete a file and create/delete directory
 Various APIs

– Schedule tasks to where the data are located
– Set replication factor (number of replicas) 

HDFS Client



HDFS Client (cont.)



 Image: metadata describe organization
– Persistent record is called checkpoint
– Checkpoint is never changed, and can be replaced

 Journal: log for persistence changes
– Flushed and synched before change is committed

 Store in multiple places to prevent missing
– NN shut down if no place is available

 Bottleneck: threads wait for flush-and-sync
– Solution: batch

Image and Journal



 CheckpointNode is NameNode
 Runs on different host
 Create new checkpoint

– Download current checkpoint and journal
– Merge
– Create new and return to NameNode
– NameNode truncate the tail of the journal

 Challenge: large journal makes restart slow
– Solution: create a daily checkpoint

CheckpointNode



 Recent feature
 Similar to CheckpointNode
 Maintain an in memory, up-to-date image

– Create checkpoint without downloading
 Journal store
 Read-only NameNode

– All metadata information except block locations
– No modification

BackupNode



 Minimize damage to data during upgrade
 Only one can exist
 NameNode

– Merge current checkpoint and journal in memory
– Create new checkpoint and journal in a new place
– Instruct DataNodes to create a local snapshot

 DataNode
– Create a copy of storage directory
– Hard link existing block files

Upgrades, File System and Snapshots



 NameNode recovers the checkpoint

 DataNode resotres directory and delete replicas after 
snapshot is created

 The layout version stored on both NN and DN
– Identify the data representation formats
– Prevent inconsistent format

 Snapshot creation is all-cluster effort
– Prevent data loss 

Upgrades, File System and Snapshots – 
Rollback



 File Read and Write
 Block Placement and Replication management
 Other features

File I/O Operations and Replica 
Management



 Checksum
– Read by the HDFS client to detect any corruption
– DataNode store checksum in a separate place
– Ship to client when perform HDFS read
– Clients verify checksum

 Choose the closet replica to read
 Read fail due to

– Unavailable DataNode
– A replica of the block is no longer hosted
– Replica is corrupted

 Read while writing: ask for the latest length

File Read and Write



 New data can only be appended
 Single-writer, multiple-reader
 Lease

– Who open a file for writing is granted a lease
– Renewed by heartbeats and revoked when closed
– Soft limit and hard limit
– Many readers are allowed to read

 Optimized for sequential reads and writes
– Can be improved

● Scribe: provide real-time data streaming
● Hbase: provide random, real-time access to large tables

File Read and Write (cont.)



Add Block and The hflush

hflush
• Unique block ID
• Perform write operation
• new change is not guaranteed 
to be visible
• The hflush



 Not practical to connect all nodes
 Spread across multiple racks

– Communication has to go through multiple switches
– Inter-rack and intra-rack
– Shorter distance, greater bandwidth

 NameNode decides the rack of a DataNode
– Configure script

Block Replacement



 Improve data reliability, availability and network 
bandwidth utilization

 Minimize write cost
 Reduce inter-rack and inter-node write
 Rule1: No Datanode contains more than one 

replica of any block
 Rule2: No rack contains more than two replicas of 

the same block, provided there are sufficient racks 
on the cluster

Replica Replacement Policy



 Detected by NameNode

 Under-replicated
– Priority queue (node with one replica has the highest)
– Similar to replication replacement policy

 Over-replicated
– Remove the old replica
– Not reduce the number of racks

Replication management



 Balancer
– Balance disk space usage
– Bandwidth consuming control

 Block Scanner
– Verification of the replica
– Corrupted replica is not deleted immediately

 Decommissioning
– Include and exclude lists
– Re-evaluate lists
– Remove decommissioning DataNode only if all blocks on it are 

replicated
 Inter-Cluster Data Copy

– DistCp – MapReduce job

Other features 



 3500 nodes and 9.8PB of storage available
 Durability of Data

– Uncorrelated node failures
● Chance of losing a block during one year: <.5% 
● Chance of node fail each month: .8%

– Correlated node failures
● Failure of rack or switch
● Loss of electrical power

 Caring for the commons
– Permissions – modeled on UNIX
– Total space available

Practice At Yahoo!



DFSIO benchmark
 DFSIO Read: 66MB/s per node
 DFISO Write: 40MB/s per node

Production cluster
 Busy Cluster Read: 1.02MB/s per node
 Busy Cluster Write: 1.09MB/s per node

Sort benchmark

Benchmarks
Operation Benchmark



 Automated failover solution
– Zookeeper

 Scalability
– Multiple namespaces to share physical storage
– Advantage

● Isolate namespaces
● Improve overall availability
● Generalizes the block storage abstraction

– Drawback
● Cost of management

– Job-centric namespaces rather than cluster centric

Future Work



 Pros
– Architecture: NameNode, DataNode, and powerful features to provide kinds of operations, 

detect corrupted replica, balance disk space usage and provide consistency.
– HDFS is easy to use: users don’t have to worry about different servers. It can be used as 

local file system to provide various operations
– Benchmarks are sufficient. They use real data with large number of nodes and storage to 

provide kinds of experiments. 

 Cons
– Fault—tolerance is not very sophisticated. All the recoveries introduced are based on the 

assumption that NameNode is alive. No proper solution currently in this paper handles the 
failure of NameNode

– Scalability, especially the handling of replying heartbeats with instructions. If there are too 
many messages come in, the performance of NameNode is not proper measured in this 
paper

– The test of correlated failure is not provided. We can’t get any information of the 
performance of HDFS after correlated failure is encountered. 

Critiques and Discussion



 Thank you very much


	Slide 1
	HDFS
	Introduction and Related Work
	Introduction (cont.)
	Architecture
	Architecture Overview
	NameNode – one per cluster
	DataNodes
	DataNodes (cont.) - control
	HDFS Client
	HDFS Client (cont.)
	Image and Journal
	CheckpointNode
	BackupNode
	Upgrades, File System and Snapshots
	Upgrades, File System and Snapshots – Rollback
	File I/O Operations and Replica Management
	File Read and Write
	File Read and Write (cont.)
	Add Block and The hflush
	Block Replacement
	Replica Replacement Policy
	Replication management
	Other features
	Practice At Yahoo!
	Benchmarks
	Future Work
	Critiques and Discussion
	Slide 29

