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1 Introduction

The computation of hadronic contributions to observables derived from the vacuum po-

larization function, especially the muon anomalous magnetic moment, ahad
µ , have recently

been a major target of the lattice community, see for instance [1–12]. The reason is that

ahad
µ is a prime candidate to find indications of physics beyond the standard model. One

basic element to obtain the leading contribution to ahad
µ and other quantities derived from

the vacuum polarization function with good accuracy is the property of O (a) improve-

ment, which guarantees that physical quantities scale with a rate of O
(
a2
)

towards the

continuum limit.

For twisted mass fermions at maximal twist automatic O (a) improvement has been

established for physical quantities without short-distance singularities [13] based on sym-

metry arguments of the lattice theory, see also [14] for a review. The hadronic vacuum

polarization function in momentum space, Πµν(Q), however, also receives short-distance

contributions arising from the Fourier summation of the 2-point vector current correlator

〈Jµ(x) Jν(y)〉 for x− y → 0.
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Employing Symanzik’s effective theory [15, 16], we show in the following that with

our definition of the hadronic vacuum polarization function and at maximal twist these

short-distance contributions do not spoil the automatic O (a)-improvement of the vacuum

polarization function in the twisted mass formulation of lattice QCD (tmLQCD). This

finding is in accordance with a similar analysis performed for the chiral condensate and

the topological susceptibility [17–19], which also involve summations over all lattice points

with the corresponding appearance of short-distance contributions.

To demonstrate the O (a) improvement of the complete vacuum polarization function

we will perform an operator product expansion (OPE) and determine the operators ap-

pearing at small distances. An essential step is to also identify all operators that can mix

with the ones in the OPE. This requires the investigation of the symmetry properties of

all operators of equal and lower dimension. The classification of such operators up to mass

dimension 6 are compiled in appendix C. This classification can also be useful to identify

the renormalization pattern of other operators built from twisted mass fermions.

The article is structured as follows. In section 2 we state the momentum space defini-

tion of the hadronic vacuum polarization function whose short-distance contributions we

investigate later on. We then briefly outline our strategy to prove automatic O(a) improve-

ment in section 3. In section 4 and appendix A we discuss the position space properties

of the definition given in section 2. Section 5 and the appendices B and C contain a list

of the symmetries of the twisted mass lattice action and the corresponding classification

of possible mixing operators. The Symanzik expansion constructed from these operators

for the vacuum polarization function of the local vector current is presented in section 6.

In section 7 the discussion is extended to the case of the conserved vector current. Our

conclusions follow in section 8.

2 Definition of the vacuum polarization function

To keep the paper self-contained, we give here the expressions of the fermion actions used

in our lattice calculation of the muon anomalous magnetic moment [11] in the twisted basis

for a setup of active, mass-degenerate up and down and non-degenerate strange and charm

quarks (Nf = 2 + 1 + 1). We will restrict the discussion to the valence quark sector. For

details about the sea sector and the simulation setup for Nf = 2 + 1 + 1 twisted mass

lattice QCD we refer to [20, 21].

In the valence sector we formally introduce three doublets of quarks: the light quark

pair χl = (χ+
l , χ

−
l ) = (u, d), a strange quark pair χs = (χ+

s , χ
−
s ) and a charm quark pair

χc = (χ+
c , χ

−
c ). The superscript sign refers to the sign of the twisted quark mass for the

corresponding field in the valence Dirac operator. Since we employ the Osterwalder-Seiler

action [22, 23] in the heavy sector, the complete valence action can be written concisely as

a sum over standard twisted mass action terms for the fermion doublets [13],

Sval
F =

∑
q=l,s,c

∑
x

χ̄q(x)
[
DW + iµqγ5τ

3
]
χq(x) . (2.1)

µq denotes the bare twisted quark mass for flavor pair q (taken positive) and τ3 is the third

Pauli matrix acting in the flavor (sub-)space spanned by the quark doublet χq. Besides
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Sval
F we assume as usual an action term for the ghost fields corresponding to the valence

sector. Contact to the physical quark content is made by identifying (u, d) ↔ (χ+
l , χ

−
l ),

s↔ χ−s and c↔ χ+
c . We thus choose these fields to initially construct the electromagnetic

current operator as a Noether current resulting from the infinitesimal vector variation

δV χ = iα(x)Qem χ(x)

δV χ̄ = −iα(x) χ̄(x)Qem ,

with Qem = diag (+2/3,−1/3,+2/3, 0, 0,−1/3) related to the electromagnetic charge

matrix taking into account our choice of physical fields. This yields the homogeneous

Ward identity

〈∂bµJCµ (x)JCν (y)〉 − a−3∂bµδµνδxy〈Sν(y)〉 = 0 (2.2)

at non-zero lattice spacing with the backward lattice derivative ∂bµ and the point-split

vector current

JCµ (x) =
1

2

[
χ̄(x) (γµ − r)Uµ(x)Qem χ(x+ aµ̂) + χ̄(x+ aµ̂) (γµ + r)Uµ(x)†Qemχ(x)

]
,

(2.3)

where the multiplet χ collects all flavor components of the three doublets. The field Sν in

the contact term in eq. (2.2) reads

Sν(y) =
1

2

[
χ̄(y) (γν − r)Uν(y)Qem

2 χ(y + aν̂)− χ̄(y + aν̂) (γν + r)Uν(y)†Qem
2 χ(y)

]
.

(2.4)

Thus, the transverse polarization tensor is given by

ΠC
µν(x, y) =

〈
JCµ (x) JCν (y)

〉
− a−3 δµν δxy 〈Sν(y)〉 . (2.5)

Here, we will first investigate the local variant of the vector current and its correlation

functions. Its interpolating field is given by the usual quark bilinear,

JLµ (x) = χ̄(x) γµQem χ(x) . (2.6)

and we define the bare polarization tensor in position space by the 2-point current correlator

ΠL
µν(x, y) =

〈
JLµ (x) JLν (y)

〉
. (2.7)

In contrast to the conserved point-split vector current in eq. (2.3), the local vector current

is not exactly conserved at non-zero lattice spacing and hence the polarization tensor

ΠL
µν is not transverse. Therefore, the latter will have to be potentially additively and

multiplicatively renormalized. This will be partly discussed later on.

The polarization tensor Πµν(Q) in momentum space at Euclidean momentum Q is

obtained via the Fourier transform

Πµν(Q) = a4
∑
x

eiQ·(x+aµ̂/2−y−aν̂/2) Πµν(x, y) (2.8)
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with spacetime arguments in the Fourier phase shifted by half a lattice spacing. The

polarization function Π(Q) is derived from Πµν(Q) using the projector Pµν(Q) on the

transverse part of the tensor,

Pµν(Q) = Q̂µ Q̂ν − δµν Q̂2

Π(Q) =
1

3 (Q̂2)2
Pµν(Q) Πµν(Q) . (2.9)

Q̂ are the lattice momenta, component-wise related to Q via Q̂µ = 2 sin(aQµ/2)/a.

Starting from eq. (2.9) we define the real and momentum-averaged polarization

function

Π(av)(Q̂2) = Re

 1

#G(Q)

∑
Q′ ∈G(Q)

Π(Q′)

 . (2.10)

By explicitly taking the real part, we project on isospin symmetry sectors. This will be

further discussed in section 4. G(Q) is the set which contains all momenta obtained from

Q applying discrete rotations and reflections of the 4-dimensional lattice. We include ro-

tations mixing time and spatial coordinates, whenever they are possible, although our

configurations feature T = 2L for the lattice time and spatial extent T and L, respectively.

Moreover, in practice we also average over momenta with the same Q̂2 which are only con-

nected by a spacetime transformation in the continuum. Correspondingly, #G(Q) denotes

the number of elements of this set. This defines our method to extract the scalar vacuum

polarization function as a function of the squared lattice 4-momentum.

Relations eq. (4.2) and eq. (4.3) to be given below show that it is not necessary to

calculate the polarization tensor for all combinations of single flavor quark currents as

suggested by eqs. (2.3) and (2.5). It is sufficient to restrict to combinations of single quark

currents with, say, plus components of the quark doublets.

In the following we restrict the discussion to the light valence quark sector. In the

heavy valence sector analogous arguments are used and the latter will be covered in a more

general framework in [24].

3 Procedure

Many applications of the vacuum polarization function require the vacuum polarization

function in momentum space Π(Q̂2). However, below we will investigate the scaling prop-

erties of the polarization tensor implied by relation (2.10) in position space. This will

enable us to draw conclusions on Π(Q̂2).

Given the on-shell O (a) improvement of the vector current correlator at physical dis-

tances in the continuum limit [13] we focus on the impact of contributions to the Fourier

sum from small and zero distance. Formally, we are interested in the quantity

Π(av)(Q̂2) =

[
1

3 (Q̂2)2
Pµν(Q) a4

∑
x∈V

eiQ·(x+aµ̂/2−y−aν̂/2) Πµν(x, y)

]av

(3.1)
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for a physical 4-volume V . This Π(av) can be expanded in the continuum limit as

Π(av) =
∑
k≥−6

Ck a
k , (3.2)

such that

C0 =
1

3(Q2)2
Pµν(Q)

∫
V
d4x 〈Jµ(x) Jν(y)〉 eiQ(x−y)

+ contributions from operators of dimension 6 . (3.3)

We will argue that C1 = 0 automatically in tmLQCD at maximal twist, irrespective of the

remaining Ck for k 6= 1.

To that end we proceed in two steps:

1. We examine the possible mixing of the polarization tensor in position space with

operators of equal and lower dimension due to renormalization and short distance

contributions. The occurrence of such a mixing requires the definition of a subtracted

operator.

2. We use the Symanzik expansion technique with reference to the twisted mass lattice

action and the subtracted operator to show that all contributions to C1 vanish at

maximal twist.

At the non-perturbative level the identification of the mixing pattern and of the terms

in the Symanzik expansion relies on the symmetries of the lattice and the continuum

theory. Automatic O (a) improvement means that no improvement coefficients are needed

in tmLQCD in order to eliminate O (a) terms. The only parameter ultimately assumed

to be tuned is the twist angle such that maximal twist is realized. See refs. [20, 21, 25]

for details how this has been achieved for the Nf = 2 + 1 + 1 setup we are interested in

here. For our purposes, we only need to recall that maximal twist corresponds to having

a vanishing bare quark mass mq = 0 in the Wilson Dirac operator such that the twisted

mass µq takes the role of the physical one.

4 Symmetry projections

Our discussion of operator mixing and the Symanzik expansion given below proceeds in

position space, yet the position space current correlators given in eq. (2.5) and (2.7) do

not have a definite transformation behavior under the symmetries of the lattice theory. To

remedy this shortcoming, our definition of the hadronic vacuum polarization function in

momentum space given in eq. (2.10) incorporates projections on the spacetime symmetry

sector as well as on the isospin symmetry sectors by taking the real part. Since for the

following discussion it is desirable to have definite transformation properties in position

space as well, we show in this section that the projections defined in momentum space

automatically imply the corresponding properties for the correlators in position space.
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Spacetime transformation group. The momentum projector Pµν(Q) given in eq. (2.9)

transforms like a rank-2 tensor. Restricting the set of momenta to a representative set we

can extend the average over G(Q) to the complete spacetime transformation group. As

outlined in appendix A we can realize this average equivalently in position space. This

amounts to defining the projected polarization tensor

[
Πµ′ν′(x

′, y′)
](av)

=
1

NG

∑
R∈G

Λ(R)µ
′
µ Λ(R)ν

′
ν Πµν(Λ(R)x′,Λ(R)y′) , (4.1)

where Λ(R) are the representation matrices of the lattice rotations and reflections. In

this form the vacuum polarization tensor in position space exhibits the transformation

behavior of a rank-2 tensor. We will leave out the brackets [ ](av) from position space

operators and assume this exact rank-n tensor transformation behavior for all operators in

the following sections.

In anticipation of the following discussion we note, that in particular we have invari-

ance of the tensor under spacetime inversion Q → −Q or x → −x. This is one of the key

transformations in the discussion of automatic O (a) improvement. Moreover, with the def-

inition in eq. (4.1) the average over momentum orbits becomes trivial as in the continuum.

Isospin. For SU(2) isospin relations we use the flavor matrices τ±, τ3 based on the Pauli

matrices, and τ0 = 1. Correspondingly, with Jτ = χ̄ γµτ χ we denote the isospin compo-

nent of the current for any of the three doublets.

The implications of taking the real part of the polarization tensor in momentum space

can be immediately seen by using the relation

〈
Jf1
µ (x) Jf2

ν (y)
〉∗

=
〈
J f̄2
µ (x) J f̄1

ν (y)
〉

(4.2)

of the current correlator in position space and the corresponding relation

Πf1f2 ∗
µν (Q) = Πf̄2f̄1

µν (−Q) (4.3)

for the polarization tensor in momentum space. Here (f1, f2) denotes a pair of quark flavor

indices and the index with a bar f̄1/2 denotes the flavor with opposite sign of the twisted

mass parameter compared to flavor f1/2.

Given the electromagnetic charge matrix we can split the electromagnetic current of

the light quarks into its irreducible isospin components

Jem
l =

2

3
Jup − 1

3
Jdown =

1

6
Jτ

0
+

1

2
Jτ

3
. (4.4)

Hence, we only need the components with flavor structure τ0 and τ3. Using the rela-

tion (4.2) the correlator of two such isospin currents Ja,b = Jf + σa,b J
f̄ with σa,b ∈ {±1}
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in momentum space can be decomposed according to

Πab
µν(Q) = 〈JaJb〉

= Πff
µν(Q) + σb Πff̄

µν(Q) + σa Πf̄f
µν(Q) + σaσb Πf̄ f̄

µν(Q)

= Πff
µν(Q) + σb Πff̄

µν(Q) + σa Πff̄ ∗
µν (−Q) + σaσb Πff ∗

µν (−Q)

[ ](av)

−−−−−→ 2 Re

([
Πff
µν(Q)

](av)
)

(1 + σaσb) + 2 Re

([
Πff̄
µν(Q)

](av)
)

(σa + σb)

+ 2i Im

([
Πff
µν(Q)

](av)
)

(1− σaσb) + 2i Im

([
Πff̄
µν(Q)

](av)
)

(−σa + σb) .

(4.5)

As before, [ ](av) denotes the average over equivalent momenta, in particular averaging

over Q and −Q. From eq. (4.5) we find that the contributions from the current-current

correlator with equal isospin components for both currents are purely real (σa = σb),

whereas the mixed isospin combinations are purely imaginary (σa = −σb). The latter

contributions are isospin symmetry breaking lattice artefacts in tmLQCD as can be checked

by symmetry arguments along the lines of the following sections. Retaining only the real

part of the averaged momentum space correlator removes these terms explicitly. We thus

only need to consider the correlators 〈Jτ Jτ 〉 with τ ∈ {1, τ3}.
Knowing that we only need to consider correlators of same isospin, we can infer, that

in position space we always get correlators for flavor pairs (f1, f2), which are symmetrized

in the indices (1, 2) and the bar operation. These combinations, too, are manifestly real.

Finally, the operator in the contact term eq. (2.4) contains the squared electromagnetic

charge matrix. Thus, it also consists of two isospin components given by τ0 and τ3. Again

the isospin component τ3 is purely imaginary whereas the component with τ0 is purely real.

Thus, for the contact term we may limit our considerations to the component with τ0 = 1.

5 Mixing of the polarization tensor

We start our considerations with the local vector current correlator given in eq. (2.7), which

is symmetry projected as described in the previous section and in eq. (2.10). When renor-

malizing the vacuum polarization it will in general mix with operators of equal and lower

dimension possessing the same symmetry transformation properties. Moreover, Fourier

sums on the lattice and the Fourier integrals in the Symanzik effective theory extend over

all distances of operator products. This can give rise to additional terms that need to be

subtracted. They are accounted for by allowing additional contributions of contact terms,

again of equal and lower dimension and with same transformation properties.

The polarization tensor in position space is of mass dimension 6. We thus write a

subtracted polarization tensor in position space as

[
Jτµ(x) Jτν (y)

]
sub

=
6∑

k=0

∑
i≥0

Z
(0)
ki

a6−k Oki µν(x, y) + a−4 δxy

6∑
k=0

∑
i≥0

Z
(1)
ki

a2−k B
(1)
ki µν(y)

– 7 –



J
H
E
P
0
3
(
2
0
1
5
)
0
7
3

+ a−4 ∂̄(x)
µ δxy

6∑
k=0

∑
i≥0

Z
(2)
ki

a1−k B
(2)
ki ν(y)

+ a−4 ∂̄(x)
κ ∂̄

(x)
λ δxy

6∑
k=0

∑
i≥0

Z
(3)
ki

a−k
B

(3)
ki µνκλ(y) + . . . . (5.1)

With index k we label the dimension of the operators and index i runs over the possible

operators within each dimension. As a lattice version of the Dirac δ function we use

a−4 δxy
a→0−−−→ δ(x − y). The parity-odd first lattice derivative ∂̄µ is given by

(
∂fµ + ∂bµ

)
/2

with ∂fµ and ∂bµ being the lattice forward and backward partial derivatives, respectively.

For definiteness we have set Oki µν = Jτµ J
τ
ν for k = 6, i = 0.

When enumerating the operators Oki, B
(n)
ki , we keep explicit factors of Wilson and

twisted quark mass, mq and µq, respectively, as well as of the dimensionless Wilson pa-

rameter r at zeroth and first power. With the parametrization in eq. (5.1), i.e. the explicit

factoring out of powers of the lattice spacing and of quark masses, the dimensionless coef-

ficients Z
(n)
ki do not have a power dependence on the lattice spacing [26, 27]. The detailed

form of these factors would be fixed by a proper set of renormalization conditions. We

will not formulate such conditions, but stay on the level of a general subtracted operator.

This is sufficient for our purposes, since we are primarily interested in the transformation

properties of the operators.

Taking the Fourier transform of eq. (5.1), the contributions from the operators B(1)

are momentum independent, while those from B(2) and B(3) generate terms that depend

on the external momentum. For B(2) there are no operators to give rise to O (a) terms.

The general notation for B
(3)
ki µνκλ is meant to include various Lorentz structures, B

(3)
ki µνκλ ∝

B
(3)
ki δµν δκλ, B

(3)
ki δµκ δνλ, B

(3)
ki µκ δνλ, etc.. The sets of operators for the B(n) that can mix

with the polarization tensor via short-distance contributions can be constructed from the

mass parameters, the Wilson parameter r, quark bilinears and products of those as well

as the lattice covariant derivative and the lattice gauge field strength tensor Cµν for which

the expression given in [28] can be taken. The set is restricted by the symmetries of

the lattice theory. For twisted mass lattice QCD we use the following list of symmetry

transformations,

• twisted time reversal

• twisted parity

• charge conjugation

• P × D × [m0 → −m0]× [r → −r]

• R1,2
5 ×D × [µq → −µq]

The details of these transformations are described in [14, 29] and for completeness a brief

listing is given in appendix B.

– 8 –



J
H
E
P
0
3
(
2
0
1
5
)
0
7
3

To investigate the mixing pattern for ΠL
µν(x, y) obtained from the correlator of two

local vector currents in the continuum limit, we distinguish the two cases x = y and x 6= y

for the spacetime arguments in the Fourier sum

ΠL
µν(Q) = a4

∑
x 6=y

〈[
JLµ (x)

]
R

[
JLν (y)

]
R

〉
eiQ(x−y) + a4

〈[
JLµ (y) JLν (y)

]
R

〉
= Π(2)

µν (Q) + Π(4)
µν , (5.2)

where [ ]R denotes a given renormalization scheme. The two terms in eq. (5.2) have to

be considered individually due to their different behavior under renormalization in the

continuum limit.

x = y. Π
(4)
µν is the lattice vacuum expectation value of a four-quark operator of mass

dimension 6. We recall, that τ is either τ0 or τ3. Additional O (a) terms and terms with

negative powers of the lattice spacing can also arise through singularities in the limit x→ y

when performing the continuum limit in the Symanzik effective theory. In the continuum

these terms can be identified by expanding the operator product to have the form of a

ratio
〈
O(k)(y)

〉
/||x− y||k of a condensate over a power of the distance ||x− y||k with k a

positive integer (up to logarithms). These contributions emerge when applying the Fourier

transform over a region extending to one lattice spacing around y.

We capture these short-distance contributions by subtracting from the current-current

correlator in position space all possible local operators of equal and lower dimension, which

are allowed to appear constrained by the lattice symmetries. This involves contributions

in the form of the B
(n)
ki given in eq. (5.1). The candidate mixing operators B

(n)
ki have been

separated into those that include and do not include covariant derivatives. They are listed

in tables 1, 2, 3 and 4 in appendix C.

x 6= y. Π
(2)
µν (Q) is composed of a product of two vector currents in position space at non-

zero distance x 6= y. This makes the situation rather definite here. For this operator there

is neither mixing nor additive renormalization. The local current operators are normalized

multiplicatively with a factor ZV , which can be determined non-perturbatively [30] in a

lattice calculation. Thus,[
JLµ (x)

]
R

= ZV J
L
µ (x) (5.3)[

Π(2)
µν (Q)

]
R

= a4
∑
x 6=y

[
JLµ (x)

]
R

[
JLν (y)

]
R

eiQ(x−y) . (5.4)

In the language of eq. (5.1) we have Zki 6= 0 only for (k = 6, i = 0) and zero else. For

automatic O (a) improvement of the latter correlator for physical distances x 6= y the

on-shell improvement conditions are sufficient within tmLQCD at maximal twist [13].

6 Symanzik expansion for the local case

The operators allowed in the mixing pattern when using the local light quark current JLµ (x)

are listed in tables 1, 2, 3 and 4 in appendix C. According to this collection the subtracted
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operator reads

[
Jτµ(x) Jτν (y)

]
sub

= Jτµ(x) Jτν (y) +
Z1

a6
δµν δxy +

Zrm rmq

a5
δµν δxy

+
Zm

2
m2
q + Zµ

2
µ2
q

a4
δµν δxy +

Zrχ̄χ

a3
r χ̄χ δµν δxy +

Zrm
3
rm3

q

a3
δµν δxy

+
1

a4

(
ZQ

2
δµν ∂̄

2 + ZQQ ∂̄µ ∂̄ν

)
δxy

+
rmq

a3

(
ZrmQ

2
δµν ∂̄

2 + ZrmQQ ∂̄µ ∂̄ν

)
δxy

+ operators of dimension ≥ 4 . (6.1)

The expansion of the lattice action close to the continuum limit follows from the local

effective action

Seff = S4 + aS5 + a2S6 + a3S7 + . . . , (6.2)

where Sk ≡
∫
Lk d4x and the terms Lk contain linear combinations of fields with mass

dimension k. We expand its exponential up to O(a3). The corrections to the gauge field

Lagrangian in the continuum limit start with O
(
a2
)

and in fact contain only even powers

of the lattice spacing [31]. We thus concentrate on the corrections to the fermion action.

The operators that can appear in L5 and L6 have been listed in refs. [26, 28].

From the expansion of the operator eq. (6.1) and exp (−Seff) in eq. (6.2) the full

Symanzik expansion in momentum space is obtained and reads

Πτ
µν(Q) = a4

〈
Jτµ(y) Jτν (y)

〉
0

+
Z̃1

a2
δµν

+
Z̃1

a
〈−S5〉0 δµν +

Z̃rm rmq

a
δµν

+ Z̃1

〈
−S6 +

1

2
S2

5

〉
0

δµν + Z̃rm 〈−rmq S5〉0 δµν +
(
Z̃m

2
m2
q + Z̃µ

2
µ2
q

)
δµν

+ a Z̃1

〈
−S7 + S5S6 −

1

6
S3

5

〉
0

δµν + a

〈(
Z̃rm rmq

) (
−S6 +

1

2
S2

5

)〉
0

δµν

+ a
〈
−
(
Z̃m

2
m2
q + Z̃µ

2
µ2
q

)
S5

〉
0
δµν + a Z̃rχ̄χ 〈r χ̄χ〉0 δµν + a Z̃rm

3
rm3

q δµν

+
(
Z̃Q

2
δµν Q̂

2 + Z̃QQ Q̂µ Q̂ν

)
+ armq

(
Z̃rmQ

2
δµν Q̂

2 + Z̃rmQQ Q̂µ Q̂ν

)
+
{
O
(
a2
)
, operators of higher dimension

}
. (6.3)

Since we are working at maximal twist mq → 0, we may drop all terms involving the

untwisted quark mass. Using the R1,2
5 -symmetry [14] we see that the vacuum expectation

values 〈 〉0 of S5, S5S6 as well as of µ2
qS5 and χ̄χ vanish as these merely contain R1,2

5 -odd

operators. Similarly all terms in S7 disappear by either the R1,2
5 - or the P × [µq → −µq]

symmetry as is demonstrated in appendix D.

We may then conclude that at maximal twist there are no O(a) lattice artefacts stem-

ming from the contributions in eq. (6.3) to Πτ
µν , whose Symanzik expansion we write again
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for this case,

Πτ
µν(Q) = a4

〈
Jτµ(y) Jτν (y)

〉
0

+
Z̃1

a2
δµν + Z̃1

〈
−S6 +

1

2
S2

5

〉
0

δµν +
(
Z̃µ

2
µ2
q

)
δµν

+
(
Z̃Q

2
δµν Q

2 + Z̃QQQµQν

)
+
{
O
(
a2
)
, operators of higher dimension

}
.

(6.4)

7 Application to the conserved current correlator

The conserved current can be written in the following form

JCµ (x) = JLµ (x) +
a

2

[
χ̄ γµ τ

(−→
∇f
µ +
←−
∇f
µ

)
χ
]

(x)− ar

2

[
χ̄ τ

(−→
∇f
µ −
←−
∇f
µ

)
χ
]

(x) , (7.1)

where
−→
∇f
µ is the covariant forward lattice derivative acting to the right. It is a sum of the

local current operator and two local operators of mass dimension 4. Similarly, for the field

in the lattice contact term in eq. (2.5) we have

Sτν (y) =
a

2

[
χ̄ τ γν

(−→
∇f
ν −
←−
∇f
ν

)
χ
]

(y)− ar

2

[
χ̄ τ

(−→
∇f
ν +
←−
∇f
ν

)
χ
]

(y)− r χ̄ τ χ(y) . (7.2)

Hence, both the conserved current as well as the lattice contact term are a sum of local

quark-bilinear operators for whose correlators we can use the Symanzik expansion.

Having written the conserved current as the local current plus two operators containing

derivatives that are of dimension 4 implies that there is no principle alteration of the mixing

with lower dimensional operators for
〈
JCµ J

C
ν

〉
compared to the local case, since JCµ J

C
ν can

be expressed as a sum of the local-current correlator and additional terms of dimension

7 and 8. Moreover, for the short-distance part of the vacuum polarization tensor formed

from the conserved current the appearance of mixing operators is further constrained by

the vector Ward identity eq. (2.2). Thus, the considerations for the occurrence of O (a)

terms are basically the same as for the local case.

The only addition is the lattice contact term where we have rχ̄ τ χ. As stated earlier,

due to the symmetry projections discussed in section 4, χ̄ τ χ with τ = τ3 is excluded and

only τ = 1 needs to be considered. At maximal twist, when R1,2
5 is a symmetry of the

continuum theory, this term will vanish, since it is odd under R1,2
5 .

Combining the above arguments, the hadronic vacuum polarization function formed

from the conserved vector current according to eq. (2.5), eq. (2.9) and eq. (2.10) exhibits

no O(a) contributions.

8 Conclusions

A crucial element in obtaining accurate results from lattice QCD calculations is the sup-

pression of lattice spacing artefacts and a controlled approach towards the continuum limit.

The lattice community has therefore developed a number of actions and improved operators

that guarantee that physical quantities scale with a rate of O
(
a2
)

to the continuum limit.
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One particular lattice QCD formulation, which we have investigated here, is the twisted

mass formulation [13, 23, 32, 33]. When tuning the twisted mass lattice action to maxi-

mal twist physical quantities are automatically O (a) improved [13]. Indeed, in numerical

computations with two dynamical quarks the O
(
a2
)

scaling of many physical quantities

could be demonstrated [34–36] showing also that these remaining O
(
a2
)

lattice artefacts

are often very small as can be deduced from [25].

However, the arguments that lead to O (a) improvement for twisted mass fermions

do not immediately cover quantities that involve summations over all lattice points thus

possessing short-distance contributions.

Here, we have examined the behavior of the hadronic vacuum polarization function

which serves as a most important basic quantity to compute hadronic contributions to

electroweak observables, quark masses and also the strong coupling constant. In order to

see whether short-distance contributions affect the rate of the continuum limit scaling, we

have constructed the Symanzik expansion for these short-distance contributions.

We have found that when the theory is tuned to maximal twist, automatic O(a) im-

provement prevails for the complete vacuum polarization function provided that it is defined

as eigenstate of the symmetry transformations of the lattice action. Thus, continuum limit

extrapolations of our lattice results can safely be performed employing fit functions without

linear terms in the lattice spacing as has been done in [11]. In the course of this work, we

have established the classification of the twisted mass symmetry properties of operators up

to dimension 6, see appendix C for a complete list.

In this paper, we have concentrated on the twisted mass formulation of lattice QCD.

However, it would be important to extend the analysis to other lattice formulations of QCD

to ensure that the short-distance contributions do not spoil the desired O (a) improvement

of the corresponding vacuum polarization function.

Another extension of the present work, which however goes substantially beyond the

scope of this paper, is a potentially generalized analysis of short-distance contributions to

a larger class of operators in twisted mass lattice QCD, which is currently under investi-

gation [24].
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A Spacetime symmetry projections in position space

The momentum projector Pµν(Q) given in (2.9) transforms like a rank-2-tensor, that is for

any discrete spacetime transformation Λ we have

Pµν(ΛQ) = Λµ
′
µ Λν

′
ν Pµ′ν′(Q) .

Λ denotes a representation of the essentially hypercubic lattice symmetry group. We can

restrict the set of momenta to a representative set and translate the average over G(Q) to

position space. Moreover, instead of averaging over G(Q) for a specific momentum Q we

can average over the complete spacetime transformation group G,1 and define

[Π(Q)](av) =
1

NG(Q)

∑
Q∈G(Q)

1

3(Q̂2)2
Pµν(Q) a4

∑
x

Πµν(x, y) eiQ(x+aµ̂/2−y−aν̂/2)

=
1

NG

∑
Λ∈G

1

3(Q̂2)2
Pµν(ΛQfix) a4

∑
x

Πµν(x, y) ei(ΛQfix)(x+aµ̂/2−y−aν̂/2)

=
Pµ′ν′(Qfix)

3(Q̂2)2
a4
∑
x

1

NG

∑
Λ∈G

Λµ
′
µ Λν

′
ν Πµν(x, y) eiQfix Λ−1(x+aµ̂/2−y−aν̂/2) (A.1)

where Qfix is some fixed reference momentum. We can rewrite the transformed spacetime

argument in the Fourier phase in eq. (A.1) as

Λ−1(x+ aµ̂/2) = x′ + aµ̂′/2

µ′ = σΛ(µ)

x′ =

{
Λ−1x µ− direction not reflected

Λ−1(x+ aµ̂) µ− direction reflected
, (A.2)

where σΛ is the permutation generated by Λ. Hence, we obtain

[Π(Q)](av) =
1

3(Q̂2)2
Pµ′ν′(Qfix) a4

∑
x′

1

NG
×

×
∑
Λ∈G

Λµ
′
µ Λν

′
ν Πµν(Λx′,Λy′) eiQfix (x′+aµ̂′/2−y′−aν̂′/2)

=
1

3(Q̂2)2
Pµ′ν′(Qfix) a4

∑
x′

[
Πµ′ν′(x

′, y′)
](av)

eiQfix (x′+aµ̂′/2−y′−aν̂′/2) . (A.3)

By construction the operator[
Πµ′ν′(x

′, y′)
](av)

=
1

NG

∑
Λ∈G

Λµ
′
µ Λν

′
ν Πµν(Λx′,Λy′) (A.4)

has the same transformation behavior as the projector Pµν ; it transforms like a true rank-2

tensor in position space and the trace of the tensor,
∑

µ′
[
Πµ′µ′(x

′, y′)
](av)

, is a scalar.

1For any momentum Q the number of elements NG(Q) divides the number of elements in the whole

group NG .
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B Symmetry transformations

T1,2 : x → Tx = (−x0, ~x)

χ(x) → iτ1,2 γ0 γ5 χ(Tx)

χ̄(x) → −iχ̄(Tx) τ1,2 γ5 γ0

U0(x) → U0(Tx− a0̂)† , Ui(x)→ Ui(Tx)

T × [µq → −µq] :

with T : x → Tx = (−x0, ~x)

χ(x) → i γ0 γ5 χ(Tx)

χ̄(x) → −iχ̄(Tx) γ5 γ0

U0(x) → U0(Tx− a0̂)† , Ui(x)→ Ui(Tx)

P1,2 : x → Px = (x0, −~x)

χ(x) → iτ1,2 γ0 χ(Px)

χ̄(x) → −iχ̄(Px) τ1,2 γ0

U0(x) → U0(Px) , Ui(x)→ Ui(Px− aî)†

P × [µq → −µq] :

with P : x → Px = (x0, −~x)

χ(x) → i γ0 χ(Px)

χ̄(x) → −iχ̄(Px) γ0

U0(x) → U0(Px) , Ui(x)→ Ui(Px− aî)†

C : χ(x) → C−1 χ̄(x)T

χ̄(x) → −χ(x)T C

Uµ(x) → Uµ(x)∗

with C = iγ0γ2 in representation of [14]

P ×D × [m0 → −m0]× [r → −r] :

with D : Uµ(x) → Uµ(−x− aµ̂)†

χ(x) → −i χ(−x)

χ̄(x) → −i χ̄(−x)

R1,2
5 ×D × [µq → −µq] :

with R1,2
5 : χ(x) → i γ5 τ

1,2 χ(x)

χ̄(x) → i χ̄(x) γ5 τ
1,2

(B.1)
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Operator P1,2 P [−µ] T1,2 T [−µ]

δµν r
kmnm µnµ Iµν (−)nµ Iµν Iµν (−)nµ Iµν

δµν χ̄ (τ3)m γl5 χ(x) (−)m+l Iµν (−)l Iµν (−)m+l Iµν (−)l Iµν

tr [CµλCλν(x)] Iµν Iµν Iµν Iµν

tr
[
Cµλ C̃λν(x)

]
+ [µ↔ ν] −Iµν −Iµν −Iµν −Iµν

χ̄ (τ3)m γl5 σµλCλν χ(x) + [µ↔ ν] (−)l+m Iµν (−)l Iµν (−)l+m Iµν (−)l Iµν

χ̄ (τ3)m γl5 σµλ C̃λν χ(x) + [µ↔ ν] (−)l+m+1 Iµν (−)l+1 Iµν (−)l+m+1 Iµν (−)l+1 Iµν

δµν χ̄ (τ3)m γl5 χ χ̄ (τ3)m
′
γl
′

5 χ(x) (−)l+l
′+m+m′ Iµν (−)l+l

′
Iµν (−)l+l

′+m+m′ Iµν (−)l+l
′
Iµν

χ̄ (τ3)m γl5 γµ χ χ̄ (τ3)m
′
γl
′

5 γν χ(x) + [µ↔ ν] (−)l+l
′+m+m′ Iµν (−)l+l

′
Iµν (−)l+l

′+m+m′ Iµν (−)l+l
′
Iµν

χ̄ (τ3)m γl5 σµλ χ χ̄ (τ3)m
′
γl
′

5 σλν χ(x) + [µ↔ ν] (−)l+l
′+m+m′ Iµν (−)l+l

′
Iµν (−)l+l

′+m+m′ Iµν (−)l+l
′
Iµν

δµν χ̄ (τ3)m γl5 t
a χ χ̄ (τ3)m

′
γl
′

5 t
a χ(x)

χ̄ (τ3)m γl5 γµ t
a χ χ̄ (τ3)m

′
γl
′

5 γν t
a χ(x) + [µ↔ ν]

χ̄ (τ3)m γl5 σµλ t
a χ χ̄ (τ3)m

′
γl
′

5 σλν t
a χ(x) + [µ↔ ν]

δµν χ̄ τ
b γl5 χ χ̄ τ

b γl
′

5 χ(x) (−)l+l
′
Iµν (−)l+l

′
Iµν (−)l+l

′
Iµν (−)l+l

′
Iµν

χ̄ τ b γl5 γµ χ χ̄ τ
b γl

′
5 γν χ(x) + [µ↔ ν] (−)l+l

′
Iµν (−)l+l

′
Iµν (−)l+l

′
Iµν (−)l+l

′
Iµν

χ̄ τ b γl5 σµλ χ χ̄ τ
b γl

′
5 σλν χ(x) + [µ↔ ν] (−)l+l

′
Iµν (−)l+l

′
Iµν (−)l+l

′
Iµν (−)l+l

′
Iµν

δµν χ̄ τ
b γl5 t

a χ χ̄ τ b γl
′

5 t
a χ(x)

χ̄ τ b γl5 γµ t
a χ χ̄ τ b γl

′
5 γν t

a χ(x) + [µ↔ ν]

χ̄ τ b γl5 σµλ t
a χ χ̄ τ b γl

′
5 σλν t

a χ(x) + [µ↔ ν]

Table 1. Transformation properties of operators without covariant derivatives up to mass dimension

6 for P1,2, P [−µ], T1,2 and T [−µ]; [−A] is short-hand for [A→ −A]. Cµν is a version of the lattice

field strength tensor as appearing in the Sheikholeslami-Wohlert term [28]. Iµν = (−1)δµ0+δν0 .

C Operator listings

The relevant lattice operators which potentially mix with Πµν at short distances are listed in

the following tables 1, 2, 3 and 4. The first pair contains operators not involving derivatives

whereas the second accommodates the derivative operators. We note that for obtaining a

complete set of operators for any operator Oµν appearing in the tables the diagonal part

δµν Oµµ (without summation over µ) and the trace δµν Oλλ must be included separately.

Since these have the same quantum numbers as Oµν given in the table (with Iµµ = 1), we

do not repeat those quantum numbers.

Furthermore, to save space the common prefactor rkmnm
q µ

nµ
q (k ∈ {0, 1}, nm, nµ ∈

N0), which is essential for counting the dimension of the operator, is omitted for all but the

first operator. Its quantum numbers can be inferred from the first line of each table and
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operator C P D [−m] [−r] R1,2
5 D [−µ]

δµν r
kmnm µnµ +1 (−)nm+k Iµν (−)nµ

δµν χ̄ (τ3)m γl5 χ(x) +1 (−)l+1 Iµν (−)m

tr [CµλCλν(x)] +1 Iµν +1

tr
[
Cµλ C̃λν(x)

]
+ [µ↔ ν] +1 −Iµν +1

χ̄ (τ3)m γl5 σµλCλν χ(x) + [µ↔ ν] +1 (−)l+1Iµν (−)m

χ̄ (τ3)m γl5 σµλ C̃λν χ(x) + [µ↔ ν] +1 (−)lIµν (−)m

δµν χ̄ (τ3)m γl5 χ χ̄ (τ3)m
′
γl
′

5 χ(x) +1 (−)l+l
′
Iµν (−)m+m′

χ̄ (τ3)m γl5 γµ χ χ̄ (τ3)m
′
γl
′

5 γν χ(x) + [µ↔ ν] (−)l+l
′

(−)l+l
′
Iµν (−)m+m′

χ̄ (τ3)m γl5 σµλ χ χ̄ (τ3)m
′
γl
′

5 σλν χ(x) + [µ↔ ν] +1 (−)l+l
′
Iµν (−)m+m′

δµν χ̄ (τ3)m γl5 t
a χ χ̄ (τ3)m

′
γl
′

5 t
a χ(x)

χ̄ (τ3)m γl5 γµ t
a χ χ̄ (τ3)m

′
γl
′

5 γν t
a χ(x) + [µ↔ ν]

χ̄ (τ3)m γl5 σµλ t
a χ χ̄ (τ3)m

′
γl
′

5 σλν t
a χ(x) + [µ↔ ν]

δµν χ̄ τ
b γl5 χ χ̄ τ

b γl
′

5 χ(x) +1 (−)l+l
′
Iµν +1

χ̄ τ b γl5 γµ χ χ̄ τ
b γl

′
5 γν χ(x) + [µ↔ ν] (−)l+l

′
(−)l+l

′
Iµν +1

χ̄ τ b γl5 σµλ χ χ̄ τ
b γl

′
5 σλν χ(x) + [µ↔ ν] +1 (−)l+l

′
Iµν +1

δµν χ̄ τ
b γl5 t

a χ χ̄ τ b γl
′

5 t
a χ(x)

χ̄ τ b γl5 γµ t
a χ χ̄ τ b γl

′
5 γν t

a χ(x) + [µ↔ ν]

χ̄ τ b γl5 σµλ t
a χ χ̄ τ b γl

′
5 σλν t

a χ(x) + [µ↔ ν]

Table 2. Transformation properties of operators without covariant derivatives for C, P D [−m] [−r]
and R1,2

5 D [−µ].

have to be multiplied with the quantum numbers in the respective column. For the reader’s

convenience we have added as supplementary material an expanded list of non-derivative

operators, which contain the operators up to dimension six relevant for the discussion of

O (a) improvement.

The powers of τ3 and γ5 appearing in fermion bilinears such as

rkmnm
q µ

nµ
q χ̄(τ3)m(γ5)lΓχ

with Γ ∈ {1, γµ, σµν , γ5γµ, γ5} and four-quark operators

rkmnm
q µ

nµ
q χ̄(τ3)m(γ5)lΓχχ̄(τ3)m

′
(γ5)l

′
Γχ

can take the values m, m′, l, l′ ∈ {0, 1}.
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Operator P1,2 P [−µ] T1,2 T [−µ]

rkmnmµnµ +1 (−)nµ +1 (−)nµ

Tr

(
→
∇µ
→
∇λCλν(x) +

→
∇ν
→
∇λCλµ(x)

)
Iµν Iµν Iµν Iµν

Tr

(
→
∇µ
→
∇λ C̃λν(x) +

→
∇ν
→
∇λ C̃λµ(x)

)
−Iµν −Iµν −Iµν −Iµν

χ̄ (τ3)m
(
←
∇µ γν γl5 ± γl5 γν

→
∇µ
)
χ(x) + [µ↔ ν] (−)l+mIµν (−)lIµν (−)l+mIµν (−)lIµν

χ̄ (τ3)m γl5

(
←
∇µ
←
∇ν ±

→
∇µ
→
∇ν
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(←
/∇
←
∇µ γν γl5 ± γl5 γν

→
∇µ
→
/∇
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇µ
←
/∇ γν γl5 ± γl5 γν

→
/∇
→
∇µ
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m γl5

(
←
∇µ
→
∇ν
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(←
/∇ γν γl5

→
∇µ ∓

←
∇µ γl5 γν

→
/∇
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇µ
←
∇ν
←
/∇ γl5 ∓ γl5

→
/∇
→
∇ν
→
∇µ
)
χ(x) + [µ↔ ν] (−)l+mIµν (−)lIµν (−)l+mIµν (−)lIµν

χ̄ (τ3)m
(
←
∇µ
←
/∇
←
∇ν γl5 ∓ γl5

→
∇ν
→
/∇
→
∇µ
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(←
/∇
←
∇µ
←
∇ν γl5 ∓ γl5

→
∇ν
→
∇µ
→
/∇
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇

2 ←
∇µ γν γl5 ∓ γl5 γν

→
∇µ
→
∇

2
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇
←
∇µ
←
∇ γν γl5 ∓ γl5 γν

→
∇
→
∇µ
→
∇
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇µ
←
∇

2

γν γ
l
5 ∓ γl5 γν

→
∇

2 →
∇µ
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m

(
←
∇µ
←
/∇

2

γν γ
l
5 ∓ γl5 γν

→
/∇

2 →
∇µ

)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(←
/∇
←
∇µ
←
/∇ γν γl5 ∓ γl5 γν

→
/∇
→
∇µ
→
/∇
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m

(
←
/∇

2 ←
∇µ γν γl5 ∓ γl5 γν

→
∇µ
→
/∇

2
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇

3

µ γν γ
l
5 ∓ γl5 γν

→
∇

3

µ

)
χ(x) + [µ↔ ν] (−)l+mIµν (−)lIµν (−)l+mIµν (−)lIµν

χ̄ (τ3)m
(
←
∇

2

µ

←
∇ν γµ γl5 ∓ γl5 γµ

→
∇ν
→
∇

2

µ

)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇µ
←
∇ν
←
∇µ γµ γl5 ∓ γl5 γµ

→
∇µ
→
∇ν
→
∇µ
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇ν
←
∇

2

µ γµ γ
l
5 ∓ γl5 γµ

→
∇

2

µ

→
∇ν
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇

2

µ

←
/∇ γµ γν γl5 ∓ γl5 γν γµ

→
/∇
→
∇

2

µ

)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇µ
←
/∇
←
∇µ γµ γν γl5 ∓ γl5 γν γµ

→
∇µ
→
/∇
→
∇µ
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(←
/∇
←
∇

2

µ γµ γν γ
l
5 ∓ γl5 γν γµ

→
∇

2

µ

→
/∇
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇µ
←
∇ν
→
/∇ γl5 ∓ γl5

←
/∇
→
∇ν
→
∇µ
)
χ(x) + [µ↔ ν] (−)l+m Iµν (−)l Iµν (−)l+m Iµν (−)l Iµν

χ̄ (τ3)m
(
←
∇µ
←
/∇
→
∇ν γl5 ∓ γl5

←
∇ν
→
/∇
→
∇µ
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(←
/∇
←
∇µ
→
∇ν γl5 ∓ γl5

←
∇ν
→
∇µ
→
/∇
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇

2 →
∇µ γν γl5 ∓ γl5 γν

←
∇µ
→
∇

2
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇
←
∇µ
→
∇ γν γl5 ∓ γl5 γν

←
∇
→
∇µ
→
∇
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇µ
←
∇
→
∇ γν γl5 ∓ γl5 γν

←
∇
→
∇
→
∇µ
)
χ(x) + [µ↔ ν]

Table 3. Continued on next page.
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Operator P1,2 P [−µ] T1,2 T [−µ]

χ̄ (τ3)m
(
←
∇µ
←
/∇
→
/∇ γν γl5 ∓ γl5 γν

←
/∇
→
/∇
→
∇µ
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(←
/∇
←
∇µ
→
/∇ γν γl5 ∓ γl5 γν

←
/∇
→
/∇µ
→
/∇
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m

(
←
/∇

2 →
∇µ γν γl5 ∓ γl5 γν

←
/∇

2 →
/∇µ

)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇

2

µ

→
∇µ γν γl5 ∓ γl5 γν

←
∇µ
→
∇

2

µ

)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇

2

µ

→
∇ν γµ γl5 ∓ γl5 γµ

←
∇ν
→
∇

2

µ

)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇µ
←
∇ν
→
∇µ γµ γl5 ∓ γl5 γµ

←
∇µ
→
∇ν
→
∇µ
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇ν
←
∇µ
→
∇µ γµ γl5 ∓ γl5 γµ

←
∇µ
→
∇µ
→
∇ν
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇

2

µ

→
/∇ γµ γν γl5 ∓ γl5 γν γµ

←
/∇
→
∇

2

µ

)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇µ
←
/∇
→
∇µ γµ γν γl5 ∓ γl5 γν γµ

←
∇µ
→
/∇
→
∇µ
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(←
/∇
←
∇µ
→
∇µ γµ γν γl5 ∓ γl5 γν γµ

←
∇µ
→
∇µ
→
/∇
)
χ(x) + [µ↔ ν]

Table 3. Transformation properties of operators including derivatives for P1,2, P [−µ], T1,2 and

T [−µ].

Operator C P D [−m] [−r] R1,2
5 D [−µ]

rkmnmµnµ +1 (−)nm(−)k (−)nµ

Tr

(
→
∇µ
→
∇λCλν(x) +

→
∇ν
→
∇λCλµ(x)

)
+1 Iµν +1

Tr

(
→
∇µ
→
∇λ C̃λν(x) +

→
∇ν
→
∇λ C̃λµ(x)

)
N −Iµν +1

χ̄ (τ3)m
(
←
∇µ γν γl5 ± γl5 γν

→
∇µ
)
χ(x) + [µ↔ ν] ±1 (−)lIµν (−)m

χ̄ (τ3)m γl5

(
←
∇µ
←
∇ν ±

→
∇µ
→
∇ν
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(←
/∇
←
∇µ γν γl5 ± γl5 γν

→
∇µ
→
/∇
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇µ
←
/∇ γν γl5 ± γl5 γν

→
/∇
→
∇µ
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m γl5

(
←
∇µ
→
∇ν
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(←
/∇ γν γl5

→
∇µ ∓

←
∇µ γl5 γν

→
/∇
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇µ
←
∇ν
←
/∇ γl5 ∓ γl5

→
/∇
→
∇ν
→
∇µ
)
χ(x) + [µ↔ ν] ±1 (−)lIµν (−)m

χ̄ (τ3)m
(
←
∇µ
←
/∇
←
∇ν γl5 ∓ γl5

→
∇ν
→
/∇
→
∇µ
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(←
/∇
←
∇µ
←
∇ν γl5 ∓ γl5

→
∇ν
→
∇µ
→
/∇
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇

2 ←
∇µ γν γl5 ∓ γl5 γν

→
∇µ
→
∇

2
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇
←
∇µ
←
∇ γν γl5 ∓ γl5 γν

→
∇
→
∇µ
→
∇
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇µ
←
∇

2

γν γ
l
5 ∓ γl5 γν

→
∇

2 →
∇µ
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m

(
←
∇µ
←
/∇

2

γν γ
l
5 ∓ γl5 γν

→
/∇

2 →
∇µ

)
χ(x) + [µ↔ ν]

Table 4. Continued on next page.
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Operator C P D [−m] [−r] R1,2
5 D [−µ]

χ̄ (τ3)m
(←
/∇
←
∇µ
←
/∇ γν γl5 ∓ γl5 γν

→
/∇
→
∇µ
→
/∇
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m

(
←
/∇

2 ←
∇µ γν γl5 ∓ γl5 γν

→
∇µ
→
/∇

2
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇

3

µ γν γ
l
5 ∓ γl5 γν

→
∇

3

µ

)
χ(x) + [µ↔ ν] ±1 (−)lIµν (−)m

χ̄ (τ3)m
(
←
∇

2

µ

←
∇ν γµ γl5 ∓ γl5 γµ

→
∇ν
→
∇

2

µ

)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇µ
←
∇ν
←
∇µ γµ γl5 ∓ γl5 γµ

→
∇µ
→
∇ν
→
∇µ
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇ν
←
∇

2

µ γµ γ
l
5 ∓ γl5 γµ

→
∇

2

µ

→
∇ν
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇

2

µ

←
/∇ γµ γν γl5 ∓ γl5 γν γµ

→
/∇
→
∇

2

µ

)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇µ
←
/∇
←
∇µ γµ γν γl5 ∓ γl5 γν γµ

→
∇µ
→
/∇
→
∇µ
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(←
/∇
←
∇

2

µ γµ γν γ
l
5 ∓ γl5 γν γµ

→
∇

2

µ

→
/∇
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇µ
←
∇ν
→
/∇ γl5 ∓ γl5

←
/∇
→
∇ν
→
∇µ
)
χ(x) + [µ↔ ν] ±1 (−)l Iµν (−)m

χ̄ (τ3)m
(
←
∇µ
←
/∇
→
∇ν γl5 ∓ γl5

←
∇ν
→
/∇
→
∇µ
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(←
/∇
←
∇µ
→
∇ν γl5 ∓ γl5

←
∇ν
→
∇µ
→
/∇
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇

2 →
∇µ γν γl5 ∓ γl5 γν

←
∇µ
→
∇

2
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇
←
∇µ
→
∇ γν γl5 ∓ γl5 γν

←
∇
→
∇µ
→
∇
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇µ
←
∇
→
∇ γν γl5 ∓ γl5 γν

←
∇
→
∇
→
∇µ
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇µ
←
/∇
→
/∇ γν γl5 ∓ γl5 γν

←
/∇
→
/∇
→
∇µ
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(←
/∇
←
∇µ
→
/∇ γν γl5 ∓ γl5 γν

←
/∇
→
/∇µ
→
/∇
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m

(
←
/∇

2 →
∇µ γν γl5 ∓ γl5 γν

←
/∇

2 →
/∇µ

)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇

2

µ

→
∇µ γν γl5 ∓ γl5 γν

←
∇µ
→
∇

2

µ

)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇

2

µ

→
∇ν γµ γl5 ∓ γl5 γµ

←
∇ν
→
∇

2

µ

)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇µ
←
∇ν
→
∇µ γµ γl5 ∓ γl5 γµ

←
∇µ
→
∇ν
→
∇µ
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇ν
←
∇µ
→
∇µ γµ γl5 ∓ γl5 γµ

←
∇µ
→
∇µ
→
∇ν
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇

2

µ

→
/∇ γµ γν γl5 ∓ γl5 γν γµ

←
/∇
→
∇

2

µ

)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(
←
∇µ
←
/∇
→
∇µ γµ γν γl5 ∓ γl5 γν γµ

←
∇µ
→
/∇
→
∇µ
)
χ(x) + [µ↔ ν]

χ̄ (τ3)m
(←
/∇
←
∇µ
→
∇µ γµ γν γl5 ∓ γl5 γν γµ

←
∇µ
→
∇µ
→
/∇
)
χ(x) + [µ↔ ν]

Table 4. Transformation properties of operators including derivatives for C, P D [−m] [−r] and

R1,2
5 D [−µ].
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Operator R1,2
5 P [−µq] Operator R1,2

5 P [−µq]
µ4
qχ̄χ -1 +1 µ4

qχ̄γ5τ
3χ +1 -1

µ3
qχ̄ /Dχ +1 -1 µ3

qχ̄γ5τ
3 /Dχ -1 +1

µ3
qtr [GµνGµν ] +1 -1 - - -

µ2
qχ̄D

2χ -1 +1 µ2
qχ̄γ5τ

3D2χ +1 -1

µ2
qχ̄σµνGµνχ -1 +1 µ2

qχ̄γ5τ
3σµνGµνχ +1 -1

µq(χ̄T
Aχ)2 +1 -1 µq(χ̄γ5τ

3TAχ) (χ̄TAχ) -1 +1

µq(χ̄γ5τ
3TAχ)2 +1 -1 - - -

µqχ̄ /DσµνGµνχ +1 -1 µqχ̄γ5τ
3 /DσµνGµνχ -1 +1

µqχ̄ /DD
2χ +1 -1 µqχ̄γ5τ

3 /DD2χ -1 +1

µqχ̄γµD
3
µχ +1 -1 µqχ̄γ5τ

3γµD
3
µχ -1 +1

µqχ̄γµ[Dν , Gµν ]χ +1 -1 µqχ̄γ5τ
3γµ[Dν , Gµν ]χ -1 +1

(χ̄TAχ)(χ̄ /DTAχ) -1 +1 (χ̄γ5τ
3TAχ)(χ̄ /DTAχ) +1 -1

(χ̄γ5τ
3TAχ)(χ̄γ5τ

3TA /Dχ) -1 +1 - - -

χ̄ /DγµD
3
µχ -1 +1 χ̄γ5τ

3 /DγµD
3
µχ +1 -1

χ̄ /Dγµ[Dν , Gµν ]χ -1 +1 χ̄γ5τ
3 /Dγµ[Dν , Gµν ]χ +1 -1

χ̄D2σµνGµνχ -1 +1 χ̄γ5τ
3D2σµνGµνχ +1 -1

χ̄σκλGκλσµνGµνχ -1 +1 χ̄γ5τ
3σκλGκλσµνGµνχ +1 -1

χ̄(D2)2χ -1 +1 χ̄γ5τ
3(D2)2χ +1 -1

χ̄D4χ -1 +1 χ̄γ5τ
3D4χ +1 -1

χ̄γ5GµνG̃µνχ -1 +1 χ̄τ3GµνG̃µνχ +1 -1

χ̄GµνGµνχ -1 +1 χ̄γ5τ
3GµνGµνχ +1 -1

χ̄χtr [GµνGµν ] -1 +1 χ̄γ5τ
3χtr [GµνGµν ] +1 -1

χ̄GµνG̃µνχ +1 -1 χ̄γ5τ
3GµνG̃µνχ -1 +1

χ̄χtr
[
GµνG̃µν

]
+1 -1 χ̄γ5τ

3χtr[GµνG̃µν ] -1 +1

Table 5. Transformation properties of operators appearing in S7.

D Symmetry properties of S7

In table 5 we list all possible terms of mass dimension 7 appearing in an expansion of the

effective action to order a3. We discuss their transformation properties under the R1,2
5 and

P × [µq → −µq] symmetries which are symmetries of the continuum twisted mass action.

We restrict the discussion to operators involving the twisted mass µq only since the bare

quark mass mq = 0 at maximal twist. We note further that neitherR1,2
5 nor P×[µq → −µq]

is affected by commuting two different derivative operators in a given expression such that

we omit the commuted expressions. Gµν and G̃µν denote the continuum field strength

tensor and its dual, respectively.

In the four fermion operators we have included a generic transformation matrix TA =

τµ× ta×Γ where τ ∈ {τ0, τ1, τ2, τ3}, Γ ∈ {1, γµ, σµν , γ5γµ, γ5} and ta are acting in flavor-,
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Dirac- and color-space, respectively. Their index A used as a short-hand notation for flavor-

, Dirac- and color-indices is summed over in the fermion bilinear product. Different Dirac

structures are related via Fierz-identities and have the same transformation properties

under the symmetries. Since TA is appearing twice in all products this introduces an even

number of both flavor- and Dirac-matrices such that the symmetry transformation is the

same as for the trivial product with all matrices equal to the identity.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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