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Abstract: We present a calculation of the hadronic vacuum polarization contribution

to the muon anomalous magnetic moment, ahvpµ , in lattice QCD employing dynamical up

and down quarks. We focus on controlling the infrared regime of the vacuum polarization

function. To this end we employ several complementary approaches, including Padé fits,

time moments and the time-momentum representation. We correct our results for finite-

volume effects by combining the Gounaris-Sakurai parameterization of the timelike pion

form factor with the Lüscher formalism. On a subset of our ensembles we have derived

an upper bound on the magnitude of quark-disconnected diagrams and found that they

decrease the estimate for ahvpµ by at most 2%. Our final result is ahvpµ = (654 ± 32+21
−23) ·
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10−10, where the first error is statistical, and the second denotes the combined systematic

uncertainty. Based on our findings we discuss the prospects for determining ahvpµ with

sub-percent precision.
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1 Introduction

After the discovery of the Higgs boson the search for physics beyond the Standard Model

has further intensified. The three principal strategies include the observation of new par-

ticles, the detection of enhanced signals in rare decay processes and deviations between

experimental determinations of precision observables and theoretical predictions based on

the Standard Model. One of the most prominent examples for the latter is the value of

the anomalous magnetic moment of the muon, aµ = 1
2(g− 2)µ, which exhibits a persistent

deviation of 3.6σ at the current precision of 0.5 ppm [1]. It is well known that the theo-

retical uncertainty is dominated by hadronic contributions, more specifically the hadronic

vacuum polarization and hadronic light-by-light scattering contributions, ahvpµ and ahlblµ ,
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respectively. The estimate for ahvpµ which enters the Standard Model prediction is typi-

cally obtained from dispersion theory using the experimentally determined cross section

e+e− → hadrons as input [2–7]. Recently it was proposed to extract the photon vac-

uum polarization in the spacelike region from Bhabha and µe scattering data [8, 9], which

would allow for a direct comparison with lattice results. Other approaches that combine

phenomenological constraints with information from lattice QCD employ expansions of

ahvpµ in terms of Mellin-Barnes moments [10–12] or finite energy sum rules [13, 14]. The

hadronic light-by-light scattering contribution has so far only been determined via model

estimates (as reviewed in [5, 15–17]), although efforts have been undertaken to move to-

wards a data-driven [18–27] approach as well.

The determination of the hadronic contributions to the muon (g − 2) from first prin-

ciples using lattice QCD has been the focus of many recent studies. This concerns both

ahvpµ , studied in [28–40], as well as ahlblµ [41–49]. Lattice calculations of ahvpµ proceed by

evaluating a convolution integral over Euclidean momenta Q2 [28, 50]. The integral re-

ceives its dominant contribution from the region where Q2 ≈ m2
µ, which is far below the

smallest Fourier momenta that can be realized on typical lattice sizes. Therefore, lattice

calculations of ahvpµ suffer from the additional difficulty of controlling the small-momentum

regime. Various strategies for a model-independent description of the small-Q2 regime have

been discussed in the literature [32, 34, 51–56].

In this paper we present results for ahvpµ in lattice QCD, using two complementary

approaches: the first is based on the standard determination of the vacuum polariza-

tion function Π(Q2) via a four-dimensional Fourier transform of the vector correlator.

The second method uses the so-called “time-momentum representation” (TMR) discussed

in [51, 54, 57]. As another variant we consider time moments of the vector correlator [34]

to describe the low-momentum region of Π(Q2). We focus primarily on controlling the

various sources of systematic uncertainties associated with the lattice approach to ahvpµ ,

and in particular the problem of constraining the deep infrared region.

Our work is based on QCD with two light degenerate dynamical quarks. The inclusion

of the effects from isospin breaking and from dynamical s, c and b quarks is left for future

work. Clearly, for a precision determination of ahvpµ in lattice QCD it is necessary to include

dynamical strange and charm quarks. However, the collection of results for a wide range

of quantities in [58] suggests that the effects from the strange and charm quarks in the sea

can be expected to be subleading at our level of precision. While the calculation of quark-

disconnected diagrams has only been performed on a subset of our ensembles, this has still

allowed us to derive an upper bound on their overall influence which is included in the final

error estimate. Our main result, stated in eq. (5.5), is the determination of ahvpµ with an

overall precision of 6%. While this is still significantly larger than the quoted uncertainty of

the dispersive approach, our study provides valuable insights for future lattice calculations

of this important quantity.

This paper is organized as follows: in section 2 we discuss different approaches for

computing the hadronic vacuum polarization contribution to (g − 2)µ. Simulation details

are described in section 3, and in section 4 we present a detailed discussion and compar-

ison of our results obtained on individual ensembles. The extrapolation of our results to
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the physical point is described in section 5, including a detailed discussion of systematic

errors. We state our conclusions in section 6. In a series of appendices we present further

details on the current renormalization, the efficient evaluation of the QED kernel in the

TMR, the estimation of finite-volume effects and the calculation of quark-disconnected

diagrams, respectively.

2 Lattice approaches to a
hvp
µ

The hadronic vacuum polarization contribution, ahvpµ , to the muon anomalous magnetic

moment can be obtained from the vacuum polarization function Π(Q2) convoluted with a

known kernel function K(Q2;m2
µ) (defined in appendix B) and integrated over Euclidean

momenta Q2 [28, 50, 59], as

ahvpµ = 4α2

∫ ∞

0
dQ2K(Q2;m2

µ)
{
Π(Q2)−Π(0)

}
, (2.1)

where α and mµ are the electromagnetic coupling and muon mass, respectively. The vac-

uum polarization function Π(Q2) is obtained from the vacuum polarization tensor Πµν(Q),

which is given in terms of the correlator of the electromagnetic current Jµ(x) as

Πµν(Q) =

∫
d4x eiQ·x 〈Jµ(x)Jν(0)〉 ,

Jµ(x) =
2

3
ū(x)γµu(x)−

1

3
d̄(x)γµd(x)−

1

3
s̄(x)γµs(x) + . . . , (2.2)

where Q denotes the Euclidean momentum. Euclidean O(4) invariance and current con-

servation imply

Πµν(Q) =
(
QµQν − δµνQ

2
)
Π(Q2). (2.3)

The subtracted vacuum polarization Π̂(Q2), defined by

Π̂(Q2) ≡ 4π2
(
Π(Q2)−Π(0)

)
, (2.4)

which appears in the integrand, is free of UV divergences. Using the explicit expression

for the kernel function [28, 60] one infers that the integrand in eq. (2.1) is peaked near

Q2 ≈ m2
µ ≈ 0.01GeV2. To access such small momenta on a finite lattice directly would

require volumes corresponding to a linear extent of O(10 fm) or more, which is difficult

to achieve with currently available resources. Therefore, the exact shape of Π(Q2) in

the small-momentum region, as well as the value of Π(0) are difficult to determine with

sufficient accuracy.

Several methods for accurately constraining the small-momentum regime have been

proposed and studied. This includes the use of twisted boundary conditions [61–63] that

are designed to penetrate more deeply into the region near Q2 = 0 [32, 64, 65], and the direct

determination of the additive renormalization Π(0), either via operator insertions [53] or

by computing time moments of the vector correlator [34]. In order to avoid introducing any

model dependence it has been proposed to represent Π(Q2) by either Padé approximants
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or conformal polynomials in a sub-interval 0 ≤ Q2 ≤ Q2
cut and to evaluate the convolution

integral for momenta Q2 > Q2
cut using the trapezoidal rule [56]. Such a “hybrid strategy”

requires accurate data for sufficiently small values of Q2
cut.

In the so-called “time-momentum representation” (TMR) discussed in [51, 54, 57]

the subtracted vacuum polarization function Π̂(Q2) is directly obtained from the spatially

summed two-point correlator G(x0) of the electromagnetic current, i.e.

Π̂(Q2) = 4π2
∫ ∞

0
dx0G(x0)

[
x20 −

4

Q2
sin2

(
1

2
Qx0

)]
, (2.5)

G(x0)δkl = −
∫
d3x 〈Jk(x)Jl(0)〉 . (2.6)

When inserted into eq. (2.1), the hadronic vacuum polarization ahvpµ is given by

ahvpµ =
(α
π

)2
∫ ∞

0
dx0G(x0) K̃(x0;mµ), (2.7)

where the x0-dependent kernel function K̃(x0;mµ) is obtained by performing the integral

K̃(x0;mµ) = 4π2
∫ ∞

0
dQ2K(Q2;m2

µ)

[
x20 −

4

Q2
sin2

(
Qx0
2

)]
, (2.8)

and K(Q2;m2
µ) is the same kernel function as in eq. (2.1). A representation of K̃(x0;mµ)

suitable for a numerical evaluation is given in appendix B. The main technical difficulty in

this approach arises from the fact that the vector correlator G(x0) is integrated to infinite

Euclidean time. Therefore, the large-x0 behaviour of G(x0) must be accurately constrained.

For light enough pion masses the vector correlator is dominated by the two-pion state as

x0 → ∞, and thus one has to resort to elaborate calculations of G(x0) including multi-

particle states [51].

A closely related method for determining the subtracted vacuum polarization function

Π̂(Q2) is based on the calculation of the time moments of the vector correlator [34]. The

starting point is the expansion of Π(Q2) at low Q2, i.e.

Π(Q2) = Π0 +

∞∑

j=1

ΠjQ
2j . (2.9)

When Q is chosen as Q = (ω,~0) one obtains the vacuum polarization function (VPF) from

the spatially summed vector correlator G(x0) according to

ω2Π(ω2) =

∫ ∞

−∞
dx0 e

iωx0G(x0). (2.10)

The expansion coefficients Π0,Π1,Π2, . . . in eq. (2.9) can be determined from the derivatives

with respect to ω2 which are, in turn, related to the time moments G2j of the vector

correlator via

G2j :=

∫ ∞

−∞
dx0 x

2j
0 G(x0) = (−1)j

∂2j

∂ω2j

{
ω2Π(ω2)

}
ω2=0

. (2.11)
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In this way one obtains

Π(0) ≡ Π0 = −1

2
G2, Πj = (−1)j+1 G2j+2

(2j + 2)!
, j = 1, 2, . . . . (2.12)

The time moments can be used to construct the Padé representation of the subtracted VPF

Π̂(Q2) ≡ 4π2(Π(Q2) − Π(0)) in the low-momentum regime. There is also a close relation

between time moments and the TMR: by expanding the sine function in eq. (2.5) as a

power series in Q2 one recovers the time moments as expansion coefficients in accordance

with eq. (2.9).

For later use it is also convenient to consider the decomposition of the electromagnetic

current into an iso-vector (I = 1) and an iso-scalar (I = 0) part, according to

Jµ(x) = Jρ
µ(x) + JI=0

µ (x), (2.13)

Jρ
µ(x) =

1

2
(ūγµu− d̄γµd), JI=0

µ (x) =
1

6
(ūγµu+ d̄γµd− 2s̄γµs+ . . .),

where we use the superscript ρ to denote the iso-vector (I = 1) contribution. The corre-

sponding correlator is defined by

Gρρ(x0)δkl = −
∫
d3x

〈
Jρ
k (x)J

ρ
l (0)

〉
, (2.14)

and the iso-spin decomposition of the vector correlator reads

G(x0) = Gρρ(x0) +GI=0(x0). (2.15)

Note that only quark-connected diagrams contribute to the iso-vector correlator Gρρ(x0).

3 Simulation details

Our calculations have been performed on a set of ensembles with Nf = 2 flavours of dynami-

cal, mass-degenerate, O(a)-improved Wilson quarks and the Wilson plaquette action. The

improvement coefficient csw was tuned according to the non-perturbative determination

of ref. [66]. The gauge configurations have been generated as part of the CLS (Coordi-

nated Lattice Simulations) initiative, using the deflation-accelerated DD-HMC [67, 68] and

MP-HMC [69] algorithms.

In table 1 we have compiled the parameter values, system sizes and overall statistics

used in our determination of the hadronic vacuum polarization contribution. The values

for the lattice scale reported in the table have been determined using the kaon decay

constant [70, 71]. In order to enhance statistics we have used four source positions per

configuration, except for the most chiral ensembles G8 and O7 for which up to 16 different

sources were chosen. The resulting number of measurements for each ensemble is shown in

the right-most column of table 1.

The bare values of the strange quark mass used in this work are based on an update

of the analysis of ref. [70] where the physical values of the kaon mass and decay constant

were used to set κs. The updated analysis [72] includes improved determinations of the
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Run L/a β κ mπL a [fm] mπ [MeV] Ncfg Nmeas

A3 32 5.20 0.13580 6.0 0.0755(9)(7) 495 251 1004

A4 32 5.20 0.13590 4.7 0.0755(9)(7) 381 400 1600

A5 32 5.20 0.13594 4.0 0.0755(9)(7) 331 251 1004

B6 48 5.20 0.13597 5.0 0.0755(9)(7) 281 306 1224

E5 32 5.30 0.13625 4.7 0.0658(7)(7) 437 1000 4000

F6 48 5.30 0.13635 5.0 0.0658(7)(7) 311 300 1200

F7 48 5.30 0.13638 4.2 0.0658(7)(7) 265 250 1000

G8 64 5.30 0.13642 4.0 0.0658(7)(7) 185 325 4588

N5 48 5.50 0.13660 5.2 0.0486(4)(5) 441 347 1388

N6 48 5.50 0.13667 4.0 0.0486(4)(5) 340 559 2236

O7 64 5.50 0.13671 4.2 0.0486(4)(5) 268 149 2384

Table 1. Details of the lattice ensembles used in the calculation of the hadronic vacuum polariza-

tion, showing the lattice extent, L, where T = 2L, the values of the bare coupling β and light quark

hopping parameter κ in the lattice action, as well as the lattice spacing and pion masses in physical

units. Ncfg and Nmeas denote the number of gauge configurations and measurements, respectively.

renormalization factors ZA of the axial current, increased statistics, as well as a new mea-

surement of κs for the ensembles B6 and G8. In the charm sector, we used the bare quark

masses determined from the experimental value of the Ds-meson mass in ref. [73] for the

two finest values of the lattice spacing. Based on these results, at β = 5.2 we estimated

the hopping parameter κc of the charm quark from the a2 dependence of the ratio, mc/ms.

Values for κs and κc are listed in table 2.

In our calculation we have considered a mixed vector correlator including the conserved

point-split vector current

V ps
µ,f (x) =

1
2

(
ψf (x+ aµ̂)(1 + γµ)U

†
µ(x)ψf (x)− ψf (x)(1− γµ)Uµ(x)ψf (x+ aµ̂)

)
, (3.1)

and the local vector current

V loc
µ,f (x) = ψf (x)γµψf (x), (3.2)

where f denotes one of the quark flavours u, d, s and c. The local current is neither

conserved nor improved, yet it can be renormalized in a fashion that is consistent with

O(a) improvement [74]

V R
µ,f = ZV(1 + bVamf )(V

loc
µ,f + acV∂νTµν,f ) . (3.3)

Here mf denotes the bare subtracted quark mass of quark flavour f , bV and cV are im-

provement coefficients, and Tµν,f (x) = −ψf (x)
1
2 [γµ, γν ]ψf (x) is the tensor current. The

conserved vector current, while not subject to renormalization, requires O(a) improvement

even at tree level, which was not considered in this work. Since we did not determine the

matrix elements containing the derivative of the tensor current, our results for ahvpµ are not

fully O(a) improved.

In the light quark sector the mass-dependent factor in eq. (3.3) is usually a small

correction. However, since we compute the contribution from the charm quark to ahvpµ , the

– 6 –
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corresponding mass dependence is sizeable and must be included for a reliable extrapolation

to the continuum limit. We have considered two different procedures for the determination

of the renormalization factor of the local vector current, including the mass dependence:

1. Determine ZV using the interpolating formula in ref. [75] and evaluate the one-loop

expression for the improvement coefficient bV from [76] using the boosted coupling

g2 ≡ g20/
1
3Tr 〈UP 〉.

2. Fix the (mass-dependent) renormalization factor Z
(mf )
V of the local vector current

from a ratio of two- and three-point correlation functions, where the latter involve

the local current V loc
0,f .

Details of the second procedure and a full set of results can be found in appendix A. For

our main results reported in section 4 we have adopted Z
(mf )
V as determined via the second

procedure. As will be discussed in detail in section 5, we observe large lattice artefacts in

the case of the charm quark contribution to ahvpµ . In order to check for the stability of the

continuum extrapolation we have compared the results obtained using both procedures to

determine the current normalization and found very good agreement.

With the above definitions of the currents, the vacuum polarization tensor can be

expressed in terms of the mixed vector correlator as

Πµν(Q̂) = a4
∑

f,f ′

qfqf ′Z
(mf ′ )

V

∑

x

eiQ(x+aµ̂/2)
〈
V ps
µ,f (x)V

loc
ν,f ′(0)

〉
, (3.4)

where qf , qf ′ denote the electric charges of quark flavours f and f ′, and Q̂µ = 2
a sin

(
aQµ

2

)

is the lattice momentum. Like in our previous publication [32] we have used twisted

boundary conditions [61–63] in order to apply an additive shift to the momentum of the

quark propagator. In this work we used a single value of the twist angle, chosen such as to

provide three equidistant values of Q2 between the lowest two Fourier momenta, as well as

one additional data point below (2π/L)2. The imposition of twisted boundary conditions

induces the breaking of isospin symmetry and modifies the Ward identity of the vacuum

polarization tensor that guarantees its transversality [64]. We have checked explicitly [77]

that the violation of the Ward identity has a negligible effect on the determination of Π(Q2).

It has been noted in [51, 78] (see also [44, 79]) that the vacuum polarization tensor

does not vanish at Q = 0 in finite volume, Πµν(0) 6= 0. In order to reduce finite-volume

effects it is then advantageous to subtract the contribution Πµν(0), which is easily effected

via a simple modification of the phase factor in eq. (3.4), i.e.

Πµν(Q̂)−Πµν(0̂) = a4
∑

f,f ′

qfqf ′Z
(mf ′ )

V

∑

x

(
eiQ(x+aµ̂/2) − 1

)〈
V ps
µ,f (x)V

loc
ν,f ′(0)

〉
. (3.5)

In addition to computing Πµν(Q) we have also considered the spatially summed vector

correlator, given by

G(x0)δkl = −a3
∑

f,f ′

qfqf ′Z
(mf ′ )

V

∑

~x

〈
V ps
k,f (x)V

loc
l,f ′ (0)

〉
. (3.6)
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Run amπ amρ mπ/mρ κs amV (ss̄) κc amV (cc̄)

A3 0.1893(6) 0.3937(29) 0.481(4) 0.135364355 0.4399(22) 0.12552 1.1719(6)

A4 0.1459(7) 0.3619(31) 0.403(3) 0.135303471 0.4291(15) 0.12525 1.1816(5)

A5 0.1265(8) 0.3490(41) 0.363(5) 0.135275643 0.4259(26) 0.12515 1.1848(7)

B6 0.1073(7) 0.3265(82) 0.328(9) 0.135257096 0.4133(22) 0.12506 1.1831(8)

E5 0.1458(3) 0.3208(29) 0.455(4) 0.135802302 0.3704(13) 0.12724 1.0264(3)

F6 0.1036(3) 0.2928(38) 0.354(5) 0.135766419 0.3624(17) 0.12713 1.0295(5)

F7 0.0885(3) 0.2779(49) 0.318(6) 0.135755498 0.3546(18) 0.12713 1.0272(5)

G8 0.0617(3) 0.2578(39) 0.239(4) 0.135740236 0.3503(20) 0.12710 1.0280(6)

N5 0.1086(2) 0.2331(27) 0.466(5) 0.136275891 0.2727(15) 0.13026 0.7628(3)

N6 0.0838(2) 0.2244(28) 0.374(5) 0.136263492 0.2710(09) 0.13026 0.7611(3)

O7 0.0660(1) 0.2172(77) 0.304(11) 0.136256771 0.2664(17) 0.13022 0.7621(5)

Table 2. Masses of the pion, the ρ-meson masses, as well as the ss̄ and cc̄ vector states as

determined from single exponential fits.

The sum
∑

f,f ′ . . . in equations (3.4) and (3.6) runs over all quark flavours included in

the electromagnetic currents. Here we focus on the quark-connected contributions to the

vector correlator. In order to quantify individual flavour contributions to ahvpµ it is useful

to define

Gf (x0) = −a
3

3

3∑

k=1

∑

~x

q2f Z
(mf )
V

〈
V ps
k,f (x0, ~x)V

loc
k,f (0)

〉
, f = (ud), s, c, . . . , (3.7)

where q2ud = 5/9, and it is understood that the expectation value is restricted to quark-

connected diagrams. The vector correlator in the long-distance regime is constrained by

the mass spectrum of the theory. Depending on the value of the light quark mass on a

given ensemble, the lowest-lying state corresponds either to the vector meson or to a two-

pion state. For a reliable determination of the energy levels in the vector channel, we have

computed additional correlators using standard Gaussian smearing [80] in the calculation

of quark propagators, with APE-smeared link variables [81] in the spatial directions. The

mass in the vector channel and also the pion mass used in this study were determined from

the appropriate correlation functions with smearing applied both at the source and sink.

The corresponding mass estimates are listed in table 2.

All statistical errors were estimated using a bootstrap procedure with 10,000 samples.

For the estimation of systematic errors we employed the so-called “extended frequentist

method” [82, 83] and determined the distributions of results obtained from a set of varia-

tions of our analysis procedure. Details are provided in the sections describing our results.

4 Calculation of ahvp
µ

In this section we report on the determination of ahvpµ for all our ensembles, employing

different methods, in order to check for systematic effects.
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4.1 a
hvp
µ

from the hybrid method

Our calculation of ahvpµ from the vacuum polarization tensor proceeds by evaluating the

vacuum-subtracted tensor defined in eq. (3.5) and factoring out the tensor structure ac-

cording to eq. (2.3). In order to determine the additive renormalization Π(0) and describe

the data in the small momentum regime, we have employed the ansatz

Π(Q2) = Π(0) + P[n,m](Q
2), (4.1)

where P[n,m] denotes the Padé approximant of order [n,m]. Following ref. [52] we consider

n = m or n = m+ 1 and write P[n,m] as

P[n,m](Q
2) = Q2

{
A0δn,m+1 +

m∑

k=1

Ak

Bk +Q2

}
. (4.2)

In accordance with the discussion of the “hybrid strategy” in [56] the main task is to deter-

mine the Padé representation in an interval 0 < Q2 . Q2
cut. Here we have adopted two pro-

cedures: the first proceeds by determining the coefficients Ak and Bk from fits to the VPF,

the second uses time moments to construct the Padé approximation for 0 < Q2 . Q2
cut.

Ideally, the Padé representation of Π(Q2) should be constructed by considering a se-

quence of approximants of increasing order [52]. However, when confronted with actual

simulation data one often finds that the latter are not constraining enough to allow for a

systematic investigation whether successive Padés converge towards the actual VPF. One

therefore resorts to constructing low-order Padé approximations, i.e. one-pole ansätze that

are not much different from a vector meson dominance description. To minimize the bias in-

curred from using a particular Padé approximant, the value of Q2
cut should be chosen much

smaller than m2
ρ. However, one has to balance this requirement against fit stability and

statistical accuracy. In order to have sufficiently many data points available so that stable

correlated fits with acceptable χ2/dof can be performed, we have chosen Q2
cut ≈ 0.5GeV2.

At our level of statistical precision we find that the data are well described by a Padé [1,1]

ansatz and exhibit values of the correlated χ2/dof of order unity, except for ensembles E5

and N6 for which χ2/dof > 6. Using a Padé [2,1] ansatz gave consistent results but larger

statistical errors.

In order to calculate the light quark contribution to the anomalous magnetic moment,

(ahvpµ )ud, we have evaluated the convolution integral of eq. (2.1) in the interval 0 ≤ Q2 ≤
Q2

cut by inserting Π(Q2)ud − Π(0)ud as determined by the Padé [1,1] fit. The contribution

from the region Q2 > Q2
cut was computed using trapezoidal integration, and the resulting

values of (ahvpµ )ud are shown in the third column of table 3. To check for stability against

variation of the scale Qcut we have computed (ahvpµ )ud for Q2
cut ≈ 0.3− 0.35GeV2. We find

agreement within slightly larger errors with the numbers reported in table 3.

For the determination of the strange quark contribution to the vacuum polarization,

Π(Q2)s −Π(0)s, and the anomalous magnetic moment, (ahvpµ )s, we have followed the same

procedures as for (ahvpµ )ud. Concerning the influence of variations in the value of Q2
cut and

the order of the Padé ansatz we came to the same conclusions. The results for (ahvpµ )s
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Run Q2
cut

[
GeV2

] (
ahvpµ

)ud (
ahvpµ

)s
Q2

cut

[
GeV2

] (
ahvpµ

)c

A3 0.484 272(09) 40.4(6) 0.222 7.6(4)

A4 0.484 345(14) 41.9(5) 0.222 7.1(3)

A5 0.484 357(32) 43.0(7) 0.397 6.7(1)

B6 0.501 386(08) 44.0(3) 0.146 7.2(3)

E5 0.522 326(09)∗ 44.2(6)∗ 0.364 7.9(1)

F6 0.500 390(10) 46.1(3) 0.192 7.8(2)

F7 0.500 459(17) 46.8(4) 0.245 8.1(1)

G8 0.499 504(10) 47.5(4) 0.138 8.1(3)

N5 0.497 321(11) 43.5(6) 0.282 9.4(2)

N6 0.497 373(18)∗ 46.9(5) 0.353 9.4(1)

O7 0.496 421(11) 47.6(4) 0.253 9.4(2)

Table 3. Results for the hadronic vacuum polarization contributions to the muon anomalous

magnetic moment (in units of 10−10) from the light, strange and charm flavours, determined via

the hybrid method, where the low-momentum representation of the VPF was determined from a fit.

Results marked by an asterisk are associated with unacceptably large values of χ2/dof (see text).

determined for Q2
cut ≈ 0.5GeV2 are listed in the fourth column of table 3. For ensemble

E5 we again found χ2/dof ≈ 7, both for the Padé [1,1] and [2,1] fits. The corresponding

entry is marked by an asterisk in table 3 and is excluded from the subsequent analysis.

The Q2-dependence of the charm quark contribution to Π(Q2) shows a lot less cur-

vature compared to the lighter flavours. We have therefore applied a slightly different

procedure, by fitting Π(Q2) not only to a Padé [1,1] ansatz but also to a linear function in

Q2. Starting from Q2
cut ≈ 0.5GeV2 we have gradually lowered Q2

cut until the two different

ansätze gave consistent results. The corresponding estimates of (ahvpµ )c are listed alongside

with the respective values of Q2
cut in table 3. A striking but not unexpected feature of

(ahvpµ )c is the strong dependence on the lattice spacing. This is seen easily by comparing

the estimates for (ahvpµ )c for ensembles B6, F7 and O7: at approximately constant pion

mass in physical units the results for (ahvpµ )c vary by 30–40% within the range of lattice

spacings considered in this work.

An alternative determination of the low-momentum representation of Π̂(Q2) is achieved

by computing time moments of the vector correlator. These are linked to the coefficients

Πj in the Taylor-series expansion of the vacuum polarization function and also to the

additive renormalization Π(0) (see eq. (2.12)). The Πj ’s can then be used to construct

the coefficients Ak, Bk in the Padé representation of eq. (4.2). For instance, the Padé [1,1]

approximant written in terms of the expansion coefficients reads

P[1,1](Q
2) = Q2 Π2

1

Π1 −Π2Q2
, (4.3)
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Time moment Π0

Figure 1. The u, d contributions to the vacuum polarization function in the range 0 < Q2 ≤
0.5GeV2 for ensembles G8 (top) and O7 (bottom). Data points corresponding to Fourier momenta

are represented by filled red circles, while open black circles denote data points computed using

twisted boundary conditions. The curves represent the fits using a Padé approximant of order [1, 1].

Blue filled squares indicate the value of Π(0) determined from the second time moment.

and expressions for higher-order Padés can easily be worked out. The determination of the

time moments proceeds by summing the vector correlator over all Euclidean times. As in

the case of the TMR, which is discussed in detail in the next subsection, this requires some

sort of modelling of the long-distance regime of Gf (x0). To this end we have assumed that

Gf (x0) is described by a single exponential for x0 > xcut0 (see eq. (4.6) below). A more

detailed discussion is presented in section 4.2.

It is instructive to compare the Padé representation of Π(Q2) as determined from time

moments to that obtained from fits to Π(Q2) below Q2
cut discussed earlier. Such a com-

parison is shown in figure 1 for the ensembles G8 and O7. In particular, we compare the

intercept Π(0)ud as obtained from a Padé [1,1] fit for 0 < Q2 ≤ 0.5GeV2 to its determi-

nation from the second time moment. As is apparent from the figure the two procedures

agree very well, which is an important cross check. Typically, the estimate of Π(0)ud from

the fit has a smaller error. Having computed the coefficients Π0,Π1, . . . ,Π4 from time

moments we constructed the Padé [1,1] and [2,1] representations of Π̂(Q2) in the interval

0 ≤ Q2 ≤ Q2
cut. As before we determined ahvpµ by performing the convolution integral

over Π̂(Q2) for Q2 > Q2
cut using trapezoidal integration. Thus, our way of employing

time moments differs from the procedures applied in refs. [34, 39], where the subtracted

vacuum polarization function Π̂(Q2) is constructed from time moments within the entire

momentum interval.
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Run Q2
cut

[
GeV2

] (
ahvpµ

)ud
Q2

cut

[
GeV2

] (
ahvpµ

)s
Q2

cut

[
GeV2

] (
ahvpµ

)c

A3 0.263 287(3) 0.328 42.8(3) 0.156 8.7(3)

A4 0.222 354(3) 0.328 44.7(3) 0.156 8.3(3)

A5 0.277 360(7) 0.263 44.7(4) 0.156 8.1(4)

B6 0.152 410(8) 0.394 46.6(3) 0.123 7.9(6)

E5 0.451 319(3) 0.451 45.1(2) 0.105 9.0(4)

F6 0.470 397(5) 0.233 47.4(4) 0.130 8.8(4)

F7 0.346 478(9) 0.245 48.4(4) 0.154 9.0(4)

G8 0.195 497(7) 0.138 49.5(7) 0.304 9.1(1)

N5 0.238 327(3) 0.497 45.1(3) 0.282 10.3(1)

N6 0.497 377(4) 0.427 47.5(2) 0.238 10.4(1)

O7 0.365 427(11) 0.451 48.8(4) 0.167 10.2(4)

Table 4. Results for the various flavour contributions to ahvpµ (in units of 10−10) determined via

the hybrid method. For Q2 < Q2
cut the VPF is represented by a Padé [1,1] constructed from the

time moments.

In order to guarantee a smooth transition between the low-momentum representation

and the actual data for Π̂(Q2) = 4π2(Π(Q2)− Π0) we have chosen Q2
cut so as to minimize

the difference between the Padé approximation of Π̂(Q2) and the data within the interval

Q2 = 0.1− 0.5GeV2. Results for ahvpµ obtained via this procedure are listed in table 4. We

found the differences between the Padé [1,1] and [2,1] descriptions of the low-Q2 regime to

be negligible.

4.2 The TMR method for a
hvp
µ

The integral representation of the subtracted vacuum polarization function, Π̂(Q2), is

shown in eq. (2.5), and the hadronic vacuum polarization contribution of quark flavour f =

(ud), s, c to aµ is then obtained as [51],

(ahvpµ )f =
(α
π

)2
∫ ∞

0
dx0G

f (x0) K̃(x0;mµ). (4.4)

In appendix B we derive an explicit expression which describes K̃(x0,mµ) with an accuracy

of O(10−6). The kernel is proportional to x40 at small x0, and to x20 at large x0. The

integration must be performed over all Euclidean times x0, and thus the challenge in this

method is to control the long-distance behaviour of the spatially summed vector correlator

Gf (x0) defined in eq. (3.7). The main issues are that

(a) the relative error of Gf (x0) increases at large x0,

(b) the lattice extent is finite in the time direction, and

(c) the tail of the correlator is most affected by the finite spatial size of the box L.
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In order to handle the large-x0 part separately, we define our estimator

Gf (x0) =

{
Gf (x0)inter x0 ≤ xcut0 ,

Gf (x0)ext x0 > xcut0 .
(4.5)

The subscript “inter” denotes that the vector correlator has been obtained from a local cu-

bic spline interpolation of the numerical data. The long-distance part Gf (x0)ext is obtained

by extending the correlator by one of the methods specified below.

Items (a) and (b) can be dealt with by extrapolating the correlator using a sum of expo-

nentials. Indeed, in a finite volume, the spectral representation implies that the correlator

is exactly given by an infinite sum of exponentials exp(−Enx0). The lowest few energy-

eigenstates1 dominate at large x0. Therefore the simplest incarnation of this method is to

use a single-exponential extension of the correlator,

Gf (x0)ext = A e−mV x0 , x0 > xcut0 . (4.6)

The parameters (A,mV ) depend on the flavour composition f = (ud), s, c of the vector

current. Clearly, the systematic error incurred by using a single exponential must be inves-

tigated. Since the energy levels only depend on the quantum numbers of the interpolating

operator, they can also be determined from auxiliary correlation functions. In our bench-

mark analysis, whose preliminary results have been presented in [84], we extract mV from

the two-point function of a smeared vector operator, obtaining the masses reported in ta-

ble 2. The amplitudes A are then determined from a one-parameter fit to eq. (4.6) using

these masses as input. A compilation of results for ahvpµ extracted via the TMR is shown in

table 5 along with the respective values of xcut0 . As an illustration of the method, we plot

the integrand of eq. (4.4) for the light-quark connected contribution on the two ensembles

with the lightest pion masses, G8 and O7, in figure 2. The extension method just described

is labelled as ‘1–exp’. Various coloured bands represent other methods (discussed below)

to constrain the long-distance behaviour of the vector correlator.

The choice of xcut0 affects the accuracy of ahvpµ since larger values of xcut0 increase the

statistical error because of the quickly rising noise-to-signal ratio in the correlator data.

By contrast, a smaller cutoff implies that estimates of ahvpµ will be more strongly affected

by systematic effects arising from assumptions regarding the asymptotic behaviour of the

correlator. We have chosen xcut0 as the value beyond which the statistical signal deteriorates

to such an extent that the original data do not accurately constrain the correlator anymore.

In terms of statistical accuracy this represents the most conservative choice, since the in-

terpolation of Gf (x0) is used within the maximum Euclidean time range where the signal

is not lost. We have checked explicitly that our estimates are not affected by the particular

choice of xcut0 . Moreover, in the case of the strange and charm quark contributions we have

found that the correlators fall off so rapidly that the effect of truncating the integral in

eq. (4.4) at x0 = xcut0 on the estimates of (ahvpµ )s and (ahvpµ )c is insignificant. We conclude

that in this case the systematic error arising from the modelling of the long-distance contri-

bution is negligible for xcut0 & 1.2 fm. In the future, variance-reduction strategies, such as

1These states belong to the irreducible representation T1 of the cubic group.

– 13 –



J
H
E
P
1
0
(
2
0
1
7
)
0
2
0

Run xcut0 [fm]
(
ahvpµ

)ud

1−exp

(
ahvpµ

)ud

GS

(
ahvpµ

)ud

GS,inf

(
ahvpµ

)s

1−exp

(
ahvpµ

)c

1−exp

A3 1.13 278(04) 41.8(4) 8.05(4)

A4 1.13 342(06) 43.5(3) 7.78(3)

A5 1.13 350(16) 347(14) 355(14) 43.6(4) 7.56(4)

B6 1.13 397(12) 403(13) 407(13) 45.3(4) 7.52(5)

E5 1.38 314(04) 44.7(2) 9.28(2)

F6 1.38 392(10) 392(11) 395(11) 47.1(4) 9.15(3)

F7 1.38 469(17) 474(18) 481(18) 48.0(4) 9.17(4)

G8 1.32/1.18 477(12) 506(07) 521(07) 49.0(5) 9.18(4)

N5 1.17 323(05) 44.7(4) 10.49(3)

N6 1.17 372(08) 373(05) 383(04) 47.0(3) 10.57(2)

O7 1.17 420(13) 428(07) 436(07) 48.2(5) 10.45(5)

Table 5. Results for ahvpµ in units of 10−10 determined from the time-momentum representation

along with the Euclidean time xcut0 that marks the switch from a cubic spline interpolation of the

correlator to its long-distance representation. The label “1–exp” refers to the single exponential

of eq. (4.6), while “GS” and “GS, inf” refer to the Gounaris-Sakurai-based extensions in finite and

infinite volume, respectively. For the latter a slightly smaller value of xcut0 was used on ensemble

G8 to stabilize the fit. At heavy pion mass only the one-exponential extension was considered.

those described in [85, 86] may be used to suppress the strong growth of the noise-to-signal

ratio of Gf (x0), thereby reducing the need for modelling the large-x0 behaviour.

We now return to the issue of the extension of the correlator Gud(x0). On all our

ensembles except for G8, a single exponential already provides a remarkably good descrip-

tion of the correlator for x0 ≥ xcut0 . The reason is that the lightest energy-eigenstate in

the box has a large amplitude relative to the other states. This fact is well understood:

the finite-volume energies and amplitudes are directly related to the timelike pion form

factor [87, 88]. The latter peaks at the ρ-resonance, E = mρ, and one state in the finite

box almost always lies nearby in energy. It happens to be the lightest state on all but one

ensemble. Thus the reason that the light-quark correlator Gud(x0) is dominated by a single

exponential is closely related to the ideas underlying the vector-meson dominance model

(VMD) used in hadron phenomenology.

Obviously, the one-exponential extension has its limitations. This becomes most ev-

ident on ensemble G8, where one expects to find, below the energy level E2 associated

with a large amplitude, an energy level E1 < E2 with a smaller amplitude. This conclu-

sion is easily reached by initially neglecting the interactions between two pions in the T1
representation, Eππ ≡ E1 = 2

√
m2

π + (2π/L)2 (≈ 695MeV on G8). The non-vanishing

scattering phase leads to a modest shift of the energy level. Obviously the result for ahvpµ

incurs a bias if one ignores this low-lying state, but it is difficult to determine its precise

energy and amplitude from Gud(x0), because the amplitude is small. These observations

also show that the finite-volume correlator behaves drastically differently at large x0 than
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Figure 2. Data for the light quark contribution to the integrand K̃(x0;mµ)G
ud(x0), scaled in

units of the muon mass for ensembles G8 (top) and O7 (below). The coloured bands, which show

the various methods to constrain the long-distance behaviour, start at the respective value of xcut0

as indicated by the vertical lines.

in infinite volume: in the latter case, Gud(x0) is dominated by a two-pion continuum start-

ing at E = 2mπ (≈ 370MeV on G8) rather than by discrete energy levels. Thus the issue

of extending the correlator Gud(x0) to long distances is intimately related to the question

of the finite-size effects on lattice determinations of ahvpµ (see item (c) above).

To prepare for a more sophisticated treatment of the long-distance behaviour of the

vector correlator, it is useful to recall the isospin decomposition of eq. (2.15), i.e. G(x0) =

Gρρ(x0)+G
I=0(x0). The iso-vector part G

ρρ is directly proportional to the quark-connected

light-quark contribution Gud, i.e.

Gρρ(x0) =
9

10
Gud(x0). (4.7)

The ω-resonance is the lowest-lying state in the iso-scalar channel, which has a much smaller

width compared to the ρ. In particular, the decay of the ω into three pions is strongly

suppressed, and thus the single exponential

GI=0(x0) ∝ e−mωx0 (4.8)

– 15 –



J
H
E
P
1
0
(
2
0
1
7
)
0
2
0

is a good approximation for evaluating the iso-scalar contribution to the convolution inte-

gral in eq. (2.7). By exploiting the fact that the ρ − ω splitting is small, we arrive at our

final ansatz for the long-distance contribution to the quark-connected light quark vector

correlator, i.e.

Gud(x0)ext = Gρρ(x0)ext +
1

10
Gud(x0)1−exp. (4.9)

In other words, we replace the light iso-scalar correlator by a single exponential with

mV = mρ in the long-distance regime.2 In the following subsection we describe how

Gρρ(x0)ext can be constrained via the Gounaris-Sakurai model.

4.3 Gounaris-Sakurai based extension of the vector correlator

As already advocated in [51], the calculation of the vector correlator for ahvpµ should ideally

be accompanied by a dedicated study of the timelike pion form factor Fπ(ω). This has

been the subject of a few recent lattice calculations [89–91]. With the pion form factor

at hand, the long-distance part of the iso-vector correlator Gρρ(x0)ext can be obtained

straightforwardly. Moreover, one can compute the infinite-volume iso-vector correlator via

Gρρ(x0)ext =

∫ ∞

0
dω ω2 ρ(ω2) e−ωx0 , ρ(ω2) =

1

48π2

(
1− 4m2

π

ω2

) 3
2

|Fπ(ω)|2, (4.10)

thus correcting model-independently for the dominant finite-size effects in ahvpµ . Eq. (4.10)

assumes that the 2π channel saturates the iso-vector correlator, which is a good approxima-

tion if xcut0 is sufficiently large. However, lacking a full-scale calculation of the timelike pion

form factor, we apply a simplified version of this strategy (at the cost of a certain model-

dependence). Based on the success of the Gounaris-Sakurai (GS) model [92] in describing

experimental data for e+e− → π+π− data, we assume that the timelike pion form factor is

well approximated by this model at the pion masses used in our ensembles. Since the GS

model only contains two parameters (the ρ-mass and its width Γρ), the same number as

the one-exponential ansatz eq. (4.6), this simplified approach allows us to go beyond the

one-exponential extension whilst remaining numerically viable given the available lattice

data. The procedure can be summarized as follows:

1. Fix the GS parameter mρ by identifying it with one of the energy levels determined

from the smeared-smeared correlator.

2. Determine the GS parameter Γρ from the iso-vector correlator Gρρ(x0), using mρ

as input.

3. Determine the low-lying energy levels and their amplitudes using the GS model and

the Lüscher formalism. The finite-volume correlator can then be computed beyond

xcut0 as the sum of the corresponding exponentials, and from there (ahvpµ )ud is obtained.

2The iso-scalar contribution, GI=0(x0), to which the second term in eq. (4.9) belongs, will be analyzed

separately, including its disconnected contribution. More details are provided in appendix D.
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4. In addition, the correlator Gρρ(x0) can be calculated in infinite volume beyond xcut0

via eq. (4.10), and from there ahvpµ is obtained. This estimator corrects for the

dominant finite-size effects.

A discussion of the systematic error associated with the procedure is presented in ap-

pendix C. In steps 3 and 4, the lattice data Gf (x0)inter is used directly up to xcut0 . We

remark that the parameters describing the pion form factor must, in general, be deter-

mined simultaneously from the spectrum and finite-volume matrix elements; however in

the present case we exploit the fact that the lowest two energy levels are only weakly

dependent on Γρ.

To determine the GS ρ-mass from the smeared-smeared correlator (step 1) we have

proceeded in the following way. For ensembles O7, N6, F7, F6, B6 and A5, the ρ-mass

parameter of the GS model was extracted from a single-exponential fit to the smeared-

smeared correlator. We have checked in these cases that, if the form factor is described by

the GS model, identifying the lowest-lying energy-level with the GS ρ-mass is an excellent

approximation, almost irrespectively of the value of Γρ. On ensemble G8, we have applied

a two-exponential fit where the first energy level is set to E1 = 2
√
m2

π + (2π/L)2 by hand

and the second exponential is fitted and its mass identified with mρ. In addition, both

amplitudes A1 and A2 are fitted. Even with this three-parameter fit, we encountered a

few bootstrap samples where the fit was unstable. Therefore we stabilized the fit in the

following way: based on the ensembles with mπ < 400MeV, we performed an extrapolation

of the GS ρ-mass linearly in m2
π to the pion mass of the G8 ensemble, resulting in mxtrap

ρ =

(797± 15)MeV. We then used this information as a Bayesian prior, adding ∆χ2 = (mρ −
mxtrap

ρ )2/σ2 to the χ2, where σ was varied between 15 and 120MeV. We found that the

fit result was stable as long as σ ≤ 60MeV.

Figure 2 shows the effect of describing the long-distance part of the correlator using

the GS model as compared to using a single exponential for ensembles O7 and G8. Both

the finite-volume and the infinite-volume versions are displayed. While the differences do

not seem very dramatic, their impact on ahvpµ is significant, particularly because the effect

of the two-pion continuum increases as the chiral limit is approached. By inserting the GS-

based extensions of the iso-vector correlator Gρρ for x0 > xcut0 in finite and infinite volume

into eq. (4.9) one can compute the corresponding estimates of (ahvpµ )ud. The results are

summarized in table 5.

4.4 Comparison of ahvp
µ

We are now in a position to compare the estimates for ahvpµ obtained from different pro-

cedures described in the previous subsections. Obviously, this comparison refers only to

the data without finite-volume corrections, since the latter have only been quantified for

the TMR. The results listed in tables 3, 4 and 5 show certain trends regarding their statis-

tical errors. For instance, all three methods yield comparable statistical accuracy for the

strange quark contribution (ahvpµ )s. The light quark contribution (ahvpµ )ud is equally precise

when determined via the TMR or via Padé [1,1] fits below Q2
cut. By contrast, constraining

the low-Q2 behaviour via time moments yields much smaller errors for (ahvpµ )ud. Finally,
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the TMR is statistically by far the most precise method for determining the charm quark

contribution (ahvpµ )c.

One might expect the results obtained using all three variants to agree for each indi-

vidual ensemble. However, it is easy to see from tables 3–5 that this is not always the case.

The largest differences, which amount to about 10%, are observed for the charm quark

contribution. By contrast, one mostly finds agreement among the estimates for (ahvpµ )ud

at the level of one or two standard deviations. Another interesting observation is the fact

that the differences among estimates determined via the three methods decrease at smaller

lattice spacing. Thus, the spread of results among individual ensembles can be attributed

to a large part to the presence of lattice artefacts. This interpretation is further supported

by the observation — discussed in the next section — that the estimates for ahvpµ at the

physical point agree within the quoted uncertainties.

5 Chiral and continuum extrapolations

We now describe our procedure for determining ahvpµ at the physical point, i.e. for van-

ishing lattice spacing and at the physical pion mass. We start by noting that there is no

theoretically preferred ansatz which describes the chiral behaviour of ahvpµ in the range of

pion masses which is usually considered in lattice simulations. We have therefore subjected

the sets of results listed in tables 3, 4 and 5 to simultaneous chiral and continuum extrap-

olations, using a variety of functional forms that parameterize the dependence on the pion

mass and the lattice spacing, i.e.

Fit A: α1 + α2m
2
π + α3m

2
π lnm

2
π + α4a, (5.1)

Fit B: β1 + β2m
2
π + β3m

4
π + β4a, (5.2)

Fit C: γ1 + γ2m
2
π + γ3a, (5.3)

Fit D: δ1 + δ2a, (5.4)

with fit parameters α1, α2, . . . , δ2. All four ansätze contain a term of order a, since the

operators whose matrix elements determine the vacuum polarization are not fully O(a)

improved. The terms proportional to m2
π lnm

2
π and m4

π in fits A and B, respectively,

account for the curvature in the chiral behaviour of the light-quark contribution (ahvpµ )ud.

By contrast, the pion mass dependence of (ahvpµ )s and (ahvpµ )c is mostly linear or even

constant, which motivates the absence of such terms in fits C and D.

In order to estimate systematic errors associated with variations of our fitting and anal-

ysis procedures we have employed the so-called “extended frequentist’s method” (EFM) [82,

83]. When combined with the bootstrap method designed for the estimation of statistical

errors one obtains the fit result from the median of the joint distribution, while statistical

and systematic errors are represented by the lower and upper bounds of the central 68%.

An overview of all fitting and analysis variants which enter the EFM are presented in ta-

ble 6. As regards variations of the ansatz for the chiral fit, we note that two additional

functional forms were discussed in ref. [93], namely a fit including one inverse power of m2
π,

as well as a ChPT-inspired function containing a term proportional to lnm2
π (i.e. without
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Hybrid Method light strange charm

Fit ansatz A, B A, B, C C, D

Cuts in mπ no cuts no cuts no cuts

and a cut 1∗ cut 1 cut 1

cut 2† cut 2 cut 2

cuts 1 and 2 cuts 1 and 2 cuts 1 and 2

IR regime Q2
cut ≈ 0.5GeV2 Q2

cut ≈ 0.5GeV2 Polynomial

Q2
cut < 0.5GeV2 Q2

cut < 0.5GeV2 Padé

Current Z
(mc)
V

renormalization
Z

(mud)
V Z

(ms)
V ZV(1 + bVamc)

TMR light strange charm

Fit ansatz A, B A, B, C C, D

Cuts in mπ no cuts

and a cut 1

cut 2 cut 2 cut 2

cuts 1 and 2 cuts 1 and 2 cuts 1 and 2

IR regime single exponential‡ single exponential single exponential

Gounaris-Sakurai

Current Z
(mc)
V

renormalization
Z

(mud)
V Z

(ms)
V ZV(1 + bVamc)

∗Cut 1: mπ < 400MeV
†Cut 2: a < 0.07 fm
‡ Single exponential is not used as a variation with the GS model including the FV correction

Table 6. Overview of variants of the fitting and analysis procedures which enter the estimation

of systematic errors via the extended frequentist method. We focus on the hybrid method with

the low-Q2 behaviour determined by fits, as well as the TMR. The meaning of the various cuts is

explained below the table.

the factor of m2
π multiplying the logarithm). We note that an ansatz containing lnm2

π has

a compelling justification only for mπ < mµ [93] and does not apply to the situation real-

ized in our simulations. While an inverse power of m2
π does arise in the slope of Π(Q2) at

Q2 = 0 via the numerically subdominant pion loop contribution [50], it may over-amplify

the dependence of ahvpµ on m2
π near the physical pion mass [93]. We have therefore excluded

terms like 1/m2
π and lnm2

π from our EFM analysis. As a further check we have performed

tentative fits based on a modified version of fit A, in which α3m
2
π lnm

2
π was replaced by

α3 lnm
2
π. The resulting estimates for ahvpµ at the physical point are well within the total

error obtained by the EFM procedure. Thus, we conclude that the uncertainty associated

with the chiral extrapolation has been quantified reliably.

The systematics of the chiral and continuum extrapolation can be investigated by

varying the fit ansatz and by imposing different cuts in the maximum pion mass and the
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Hybrid Method TMR TMR + FV
(
ahvpµ

)ud
556.6± 25.3± 16.9 551.3± 24.7± 28.9 588.2± 31.7± 16.6

(
ahvpµ

)s
51.9± 2.1± 1.7 51.1± 1.7± 0.4 51.1± 1.7± 0.4

(
ahvpµ

)c
13.9± 0.8± 0.9 14.3± 0.2± 0.1 14.3± 0.2± 0.1

(
ahvpµ

)udsc
623.1± 25.4± 19.7 616.7± 24.8± 28.9 653.6± 31.8± 16.6

Table 7. Summary of results for the hadronic vacuum polarization contribution (in units of 10−10)

at the physical point. The first error is statistical while the second denotes the systematic uncer-

tainty as estimated via the variations listed in table 6. The rightmost column contains the estimate

for (ahvpµ )ud including corrections for finite-size effects.

lattice spacing a. Another important systematic effect is associated with constraining the

deep infrared regime of the vacuum polarization: in the case of the hybrid method we have

used different values of the momentum scale Q2
cut below which the vacuum polarization

function is described by a low-order Padé approximant.

For the TMR we have included two different variants for extending the vector correlator

Gud(x0) beyond x
cut
0 , the first being the single-exponential ansatz, with the GS model (ex-

cluding the finite-volume correction) as an alternative. The GS-parameterization including

the finite-volume shift was extrapolated separately. In this case we did not study effects

of another ansatz for describing the infrared behaviour. For the strange and charm quark

contributions we only used the single-exponential extension, since the estimates for (ahvpµ )s

and (ahvpµ )c do not depend strongly on the details of the corresponding vector correlators

for x0 & 1.2 fm.

The contribution from the charm quark to ahvpµ is particularly sensitive to the dis-

cretization and renormalization effects. This can be inferred already from the fact that

the estimates for (ahvpµ )c differ by 30–40% between our coarsest and finest lattice spacing

(see tables 3–5). Furthermore, combined chiral and continuum fits of the data including all

three lattice spacings produce large values of χ2/dof, which is particularly pronounced for

the data obtained using the TMR. We have therefore consistently excluded the TMR-data

for (ahvpµ )c computed at the coarsest lattice spacing from the extrapolations to the physical

point. Furthermore, in order to study whether the details of fixing the renormalization

factor of the local vector current have a noticeable systematic effect on the extrapolation

we have repeated the fits of (ahvpµ )c using the factor ZV(1 + bVamf ) instead of Z
(mf )
V .

Another comment on the use of time moments to constrain the low-Q2 dependence of

Π(Q2) is in order. We found that the combined fits to the results listed in table 4 produced

values of χ2/dof between 5 and 10 , regardless of the fit ansatz or of any other procedural

variation. The most likely explanation is the smallness of the statistical errors relative

to the intrinsic fluctuations in the chiral and continuum behaviour among the ensembles.

Therefore we will focus on the TMR and the Hybrid method as implemented via Padé fits

in the following.
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Figure 3. Examples of chiral and continuum extrapolations of the light, strange and charm quark

contributions to ahvpµ for the hybrid (above) and TMR (below) methods. Yellow bands correspond

to the chiral behaviour in the continuum limit, while the dark red and blue curves represent the

pion mass dependence at β = 5.5 and 5.3. The physical value of the pion mass is indicated by the

vertical lines.
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Figure 4. Comparison of results for the different flavour contributions to ahvpµ in units of 10−10.

Open circles denote the results based on the finite-volume corrected estimates of the light quark

contribution. The yellow vertical band denotes the result obtained from dispersion theory [3].
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Examples of our chiral and continuum extrapolations are shown in figure 3 while

table 7 contains an overview of results for the individual flavour contributions to ahvpµ at

the physical point. We observe good agreement between the Hybrid and TMR methods.

We also note that the inclusion of the finite-volume correction via the GS model produces

a sizeable upward shift in (ahvpµ )ud. This is also apparent from figure 4.

There are two additional sources of systematic error which we discuss separately. The

first concerns the impact of the uncertainty in the lattice scale: in order to make contact

between the kernel function K(Q2;m2
µ) and the VPF Π̂(Q2) computed on the lattice one

must express the dimensionless momentum scale (aQ) in units of the muon mass. In our

calculation the lattice spacing is known with a precision at the level of 1% (see table 1). To

assess the systematic error associated with scale setting we have repeated the chiral and

continuum fits for the Hybrid method, using the upper and lower values of a as defined by

the 1-σ bands. The variation of the lattice scale by ±1% increased the overall systematic

error in (ahvpµ )ud as estimated via the EFM by 1.8%. Given the ultimate precision goal of less

than 1% uncertainty, this is a rather large systematic effect. For the TMR we have derived

an entirely consistent estimate of the scale setting uncertainty using the representation of

the kernel function K̃(x0;mµ). Details are presented in appendix B.2.

The second additional uncertainty is associated with the contributions from discon-

nected diagrams. In appendix D we present our calculation of quark-disconnected contri-

butions on a subset of our ensembles (E5 and F6). The main result of that investigation

is the derivation of a conservative upper bound on the magnitude of the disconnected con-

tribution. Our findings indicate that quark-disconnected diagrams decrease the estimate

of ahvpµ by at most 2%.

As our final estimate for the hadronic vacuum polarization contribution we

quote the result from the TMR including the finite-volume corrections based on the

GS-parameterization. Adding the contributions from the light, strange and charm quarks

we arrive at

ahvpµ = (654± 32 stat ± 17 syst ± 10 scale ± 7FV
+ 0
−10 disc) · 10−10. (5.5)

The quoted systematic error was estimated via the EFM considering the variations listed in

the lower part of table 6. The scale uncertainty (third error) amounts to the increase in the

systematic error estimate when the lattice spacing is shifted by ±1σ and the corresponding

variations are included in the EFM procedure for the Hybrid method. As described in

appendix C, we assign an uncertainty of 20% to the determination of the finite-volume

shift in (ahvpµ )ud. This produces an additional systematic error of ±7 · 10−10. Finally, we

estimate that quark-disconnected diagrams reduce the value of ahvpµ by at most 10 · 10−10

when the latter is computed using connected correlators only.

Our calculation has been performed in two-flavour QCD, and hence our results will

be affected by the quenching of the strange and, to a lesser extent, the charm quark.

Since we know of no reliable way of estimating the associated systematic effect, we leave it

unspecified and caution the reader that this has to be taken into account when comparing

our result to phenomenology or other lattice determinations. We add that our results are in

good agreement with those of refs. [33, 39] which were performed for Nf = 2+1+1 flavours.
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6 Conclusions

We have presented a lattice calculation of the hadronic vacuum polarization contribution

to the muon g − 2 addressing all sources of systematic error, except isospin breaking and

the effects of dynamical strange and charm quarks. Given the overall uncertainty of 6%

it is unlikely that our result, presented in eq. (5.5), is strongly biased by the omission of

these effects. Our estimate is lower than the current value from dispersion theory but in

agreement within the error of our calculation. Lattice determinations of ahvpµ have become

more accurate in recent years, yet the target precision of . 1% has not been reached so far.

While the statistical accuracy can be straightforwardly improved by an increased numerical

effort, this is a lot more difficult for some of the various sources of systematics error.

In this paper we have investigated several complementary methods designed to control

the infrared regime. One important lesson is the observation that this issue is strongly

linked with the question of finite-volume effects. Our investigation of the long-distance

regime of the vector correlator by means of the Gounaris-Sakurai parameterization of the

pion form factor revealed that finite-volume effects are significant. They amount to a

5% shift in the value of ahvpµ for mπL ≈ 4 and near-physical pion masses. While this is

consistent with similar estimates based on effective field theories (see, for instance, refs. [39,

40, 78, 94]), a direct calculation, performed at sufficiently large mπL, which demonstrates

that finite-volume effects are under control is still lacking. Based on the Gounaris-Sakurai

model, we estimate that finite-volume effects are below the percent level when mπL & 6.

Another important issue is the individual contribution from the charm quark, (ahvpµ )c, which

amounts to about 2% of the total value. Given that (ahvpµ )c is quite sensitive to lattice

artefacts, it is of vital importance to reliably control the continuum limit if one aims at sub-

percent precision. Furthermore, scale setting has a large influence on the overall accuracy.

Our analysis has shown that an extremely precise calibration of the lattice spacing —

significantly below the percent level — is indispensable for a lattice determination of ahvpµ

that is competitive with the dispersive approach.
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Jülich, Germany, made available within the Distributed European Computing Initiative by

the PRACE-2IP, receiving funding from the European Community’s Seventh Framework

Programme (FP7/2007-2013) under grant agreement RI-283493. This work was supported

by the DFG through SFB1044, and by the Rhineland-Palatinate Research Initiative. MDM

was partially supported by the Danish National Research Foundation under grant number

– 23 –



J
H
E
P
1
0
(
2
0
1
7
)
0
2
0

DNRF:90. G.H. acknowledges support by the Spanish MINECO through the Ramón y Ca-

jal Programme and through the project FPA2015-68541-P and by the Centro de excelencia

Severo Ochoa Program SEV-2012-0249. V.G. acknowledges support from UK Consolidated

Grant ST/L000296/1.

A Renormalization of the vector current

Here we describe the procedure used to determine the (mass-dependent) renormalization

factor of the vector current from the quark-connected contribution to the three-point func-

tion

C3(t, ts) =
∑

~x,~y

〈
O(~x, ts)V

loc
0,f (~y, t)O

†(~0, 0)
〉
, (A.1)

and the two-point function

C2(t) =
∑

~x

〈
O(~x, t)O†(~0, 0)

〉
, (A.2)

where the operator O is given by O = ψf ′γ5ψf , and V
loc
µ,f is defined in eq. (3.2). Choosing

the source-sink separation ts as ts = T/2 one can form the ratio

R(t, T/2) ≡ C3(t, T/2)

C2(T/2)
, (A.3)

as well as the difference

d(t) ≡ R(t, T/2)−R(t+ T/2, T/2). (A.4)

By fitting d(t) to a constant QV over a Euclidean time interval one can determine the

renormalization factor Z
(mf )
V by imposing

Z
(mf )
V QV = 1. (A.5)

Table 8 shows a compilation of results for Z
(mf )
V computed on all ensemble used in

this study.

The renormalization condition of eq. (A.5) depends on the flavour f ′ of the spectator

quark. On ensemble E5 we have studied all possible combinations of f and f ′ (i.e. ud, s

and c). Our findings indicate that spectator quark effects are below 1%, with the strongest

influence seen in the case of the renormalization of the charm quark contribution to the

vector current.

B The QED kernel in the time-momentum representation

The vector correlator in the time-momentum representation is given in eq. (2.6). The

master equation to compute ahvpµ from it is [51]

ahvpµ =
(α
π

)2
∫ ∞

0
dt G(t) K̃(t;mµ), (B.1)

K̃(t;mµ) ≡ f̃(t) = 8π2
∫ ∞

0

dω

ω
f(ω2)

[
ω2t2 − 4 sin2

(
ωt
2

)]
, (B.2)
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Run Z
(mud)
V Z

(ms)
V Z

(mc)
V

A3 0.73228(29) 0.74625(30) 1.08944(62)

A4 0.72924(42) 0.74773(20) 1.09915(32)

A5 0.72724(43) 0.74803(21) 1.10167(68)

B6 0.72646(44) 0.74869(17) 1.10525(29)

E5 0.74418(33) 0.75829(22) 1.04630(43)

F6 0.74143(14) 0.75924(08) 1.04948(35)

F7 0.74011(23) 0.75950(12) 1.04968(30)

G8 0.73887(10) 0.75983(13) 1.05043(27)

N5 0.76524(07) 0.77513(08) 0.96698(16)

N6 0.76315(17) 0.77548(07) 0.96663(17)

O7 0.76193(14) 0.77562(08) 0.96749(16)

Table 8. Results for the mass-dependent renormalization factor Z
(mf )
V defined in eq. (A.5), com-

puted for degenerate active and spectator quarks, f = f ′ = ud, s, c. Numbers in parentheses denote

statistical errors.

with the momentum-space kernel given by3

K(s;m2
µ) ≡ f(s) =

1

m2
µ

· ŝ · Z(ŝ)3 · 1− ŝZ(ŝ)

1 + ŝZ(ŝ)2
, (B.3)

Z(ŝ) = − ŝ−
√
ŝ2 + 4ŝ

2ŝ
, ŝ =

s

m2
µ

. (B.4)

B.1 Derivation of a representation of the kernel function

Our goal is to obtain a simple and accurate representation of f̃(t) which can be used

straightforwardly in the expression for ahvpµ via eq. (B.1). Since f̃(t) has units of GeV−2

and only involves the muon mass as an external scale, it is clear that m2
µf̃(t) must be a

dimensionless function in the variable (mµt).

For the following derivation it is convenient to set the muon mass to unity and restore

the units by dimensional analysis at the end of the calculation. The function f(ω2) can be

simplified (ω > 0),

f(ω2) =
1

ω
√
ω2 + 4

− 1 +
ω

2

(√
ω2 + 4− ω

)
, (B.5)

and hence f(ω2)/ω goes like 1/ω2 at ω = 0.

The key observation is that f̃(t) can be expressed in terms of the auxiliary function

g̃ǫ(t) =

∫ ∞

0

dω√
ω2 + ǫ2

f(ω2 + ǫ2) cos(ωt), (B.6)

3Our kernel K matches the function f introduced in [28].
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as

f̃(t) = 16π2 lim
ǫ→0

(
g̃ǫ(t)− (g̃ǫ(0) + g̃′ǫ(0)t+

1
2 g̃

′′
ǫ (0)t

2)
)
. (B.7)

Note that ǫ > 0 serves as an infrared regulator which is removed at the end of the calcula-

tion. In fact, we note that the regulation is only necessary for the first two terms in f(ω2).

One finds that the contribution of the second and third term in eq. (B.5) to g̃ǫ(t) can be

expressed in terms of modified Bessel functions, K0 and K1. The first term in eq. (B.5) is

the most complicated: it involves the evaluation of the integral

Iǫ(t) =

∫ ∞

0

dω

ω2 + ǫ2
cos(ωt)√
ω2 + 4

, (B.8)

which satisfies

I ′′ǫ (t)− ǫ2Iǫ(t) = −K0(2t), Iǫ(0) =
π

4ǫ
− 1

4
+ O(ǫ), I ′ǫ(0) = 0. (B.9)

The two linearly independent solutions of the homogeneous equation are e±ǫt. A particular

solution Ip(t) of the inhomogeneous equation can be found using the standard integral

representation

K0(t) =

∫ ∞

1
du

e−tu

√
u2 − 1

, (B.10)

and the Laplace transform Ip(t) =
∫∞
0 du e−utĨp(u), which yields Ĩp(u) = − θ(u−2)

(u2−ǫ2)
√
u2−4

.

Realizing that ǫ can be set to zero, we arrive at the representation

Ip(t) = −
∫ ∞

2

du e−ut

u2
√
u2 − 4

= −
∫ ∞

0
dv

e−t
√
v2+4

(v2 + 4)3/2
. (B.11)

Noting that Ip(0) = −1/4 and I ′p(0) = π/4, we impose the initial conditions and obtain

the full solution up to terms of O(ǫ), i.e.

Iǫ(t) =
π

4

(1
ǫ
− t

)
+ Ip(t) + O(ǫ). (B.12)

The integral Ip(t) can be expressed in terms of Meijer’s G function [95]. In Mathemat-

ica [96], it can be evaluated by a built-in function

Ip(t) =
πt

4
+

1

8
MeijerG[{{3/2}, {}}, {{0, 1}, {1/2}}, t2]. (B.13)

Putting everything together, we have

g̃ǫ(t) =
π

4

(1
ǫ
− t

)
+ Ip(t)−K0(ǫt) +

1

2t2

(
− 2tK1(2t) + 1

)
+O(ǫ). (B.14)

From here one obtains straightforwardly, now restoring the units,

f̃(t) =
2π2

m2
µ

(
−2 + 8γE +

4

t̂2
− 2πt̂+ t̂2 − 8

t̂
K1(2t̂) + 8 ln(t̂) + 8Ip(t̂)

)
, t̂ = mµt, (B.15)
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where γE = 0.57721566490153286061 . . . is Euler’s constant. The expansion of f̃(t) around

the origin yields

m2
µf̃(t) =

π2t̂4

9
+
π2t̂6(120 ln(t̂) + 120γE − 169)

5400
(B.16)

+
π2t̂8(210 ln(t̂) + 210γE − 401)

88200
+
π2t̂10(360 ln(t̂) + 360γE − 787)

2916000

+
π2t̂12(3080 ln(t̂) + 3080γE − 7353)

768398400
+ O(t̂14).

Note that f̃(t) is not analytic at the origin, due to the appearance of terms proportional

to ln(t̂) beyond fourth order. The expansion at large t yields

m2
µf̃(t) = 2π2t̂2 − 4π3t̂+4π2(−1+ 4γE +4 ln(t̂)) +

8π2

t̂2
− 2π5/2√

t̂
e−2t̂

(
1+O(t̂−1)

)
. (B.17)

For a numerical evaluation, we propose the following. Up to t̂ = 1.05, the expansion of

eq. (B.16) around the origin provides an estimate of f̃(t) with a relative accuracy better

than 3.3 · 10−6. Beyond that point, the series

m2
µf̃(t) = 2π2t̂2 − 4π3t̂+ 4π2(4 ln(t̂) + 4γE − 1) +

8π2

t̂2
(B.18)

− 2π5/2√
t̂
e−2t̂

(
0.0197159(t̂−1 − 0.7)6 − 0.0284086(t̂−1 − 0.7)5

+ 0.0470604(t̂−1 − 0.7)4 − 0.107632(t̂−1 − 0.7)3

+ 0.688813(t̂−1 − 0.7)2 + 4.71371(t̂−1 − 0.7) + 3.90388
)

can be used. Its accuracy is also better than 3.3 · 10−6 for all t̂ ≥ 1.05. Note that the

integrand for aµ is expected to be very small beyond 4 fm, corresponding to t̂ > 2.14; see

figure 4 in [51].

B.2 Sensitivity of ahvp
µ

to the lattice scale setting

The representation for the kernel function f̃ derived above can be used to study the sensi-

tivity of ahvpµ on the uncertainty in the determination of the lattice scale. Standard error

propagation implies that the uncertainty ∆Λ on the observable Λ that sets the lattice scale

translates into a corresponding uncertainty in ahvpµ according to

∆ahvpµ =

∣∣∣∣∣Λ
dahvpµ

dΛ

∣∣∣∣∣ ·
∆Λ

Λ
=

∣∣∣∣∣Mµ
dahvpµ

dMµ

∣∣∣∣∣ ·
∆Λ

Λ
, (B.19)

where Mµ ≡ mµ/Λ denotes the muon mass in units of Λ. To evaluate the derivative, we

note that tf̃ ′(t)− f̃(t) = J(t), with

m2
µJ(t)≡

2π2

t̂2

(
t̂4+(10−8γE)t̂

2+4t̂
((
t̂2+6

)
K1(2t̂)−2t̂ ln(t̂)+4t̂K0(2t̂)

)
−12

)
. (B.20)

– 27 –



J
H
E
P
1
0
(
2
0
1
7
)
0
2
0

A short calculation then leads to

Mµ
dahvpµ

dMµ
= −ahvpµ +

(α
π

)2
∫ ∞

0
dt G(t) J(t). (B.21)

As an example application, using the parameterization of the R-ratio in [51], which yields

ahvpµ = 672 · 10−10, we compute G(x0) and find Mµ
dahvpµ

dMµ
= 1.22 · 10−7. This means that

if the relative scale-setting error ∆Λ/Λ is one percent, the impact on the calculation is

∆ahvpµ /ahvpµ = 1.8%.

The scale uncertainty ∆Λ also enters via the implicit dependence of ahvpµ on dimen-

sionless ratios of quark masses, mu/Λ,md/Λ,ms/Λ . . ., where the largest effect is expected

to come from the light quarks. By studying the chiral behaviour of ahvpµ (see figure 3) we

have estimated that this produces only a small compensating effect of about −10% relative

to Mµ
dahvpµ

dMµ
.

C Finite-size effects in the time-momentum representation

In this appendix we address the finite-size effects on ahvpµ in the TMR and our ability to

calculate them. Finite-size effects on the time-momentum correlator Gρρ(x0) were com-

puted in [54] based on the Lüscher formalism and the relation between the timelike pion

form factor and finite-volume matrix elements [87, 88]. Here we employ exactly the same

method and therefore refer the reader to [54] for the relevant technical details. The goal

of this appendix is to study the finite-size effects we expect on theoretical grounds at the

simulation parameters used in the actual calculation presented in the main text. Several

groups have studied finite-size effects on the hadronic vacuum polarization by theoretical

means, see [78, 94]. In any comparison, one must keep in mind that the finite-size effects

depend on precisely which finite-volume representation of ahvpµ or the vacuum polarization

one is using. We will compare our predictions quantitatively to the leading prediction of

chiral perturbation theory.

The only input required in our analysis is the timelike pion form factor, including

its phase, which coincides with the iso-vector p-wave ππ scattering phase. We use the

phenomenologically successful Gounaris-Sakurai (GS, [92]) parameterization of the form

factor as described in [54], noting that alternative parameterizations are available (see [97]

and references therein). Clearly, the most important feature in the form factor is the ρ-

resonance. The main finite-size effect is that the finite-volume correlator falls off more

rapidly than its infinite-volume counterpart, because the finite-volume spectrum is discrete

and starts at a higher energy than 2mπ.

In order to proceed, we separate the correlator into two parts, t < ti and t > ti, with

ti ≈ 1 fm. The reason for doing so is that the long-distance part can be analyzed using

the low-lying energy-eigenstates on the torus. At shorter distances, the Poisson-resummed

expression based on non-interacting pions should provide a good approximation to the

finite-size effects for realistic mπL ≥ 4 [54]. As we show below, the finite-volume effects for

the contribution to aµ from t < 1 fm are negligible for mπL ≥ 4 and mπ . 300MeV.
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Run Mπ [MeV] mρ [MeV] Γρ [MeV] MπL ti[fm] meff(1 fm, L) [MeV]

P4 139.57 773 130 4.0 1.41 734

A5 331 912 61 4.0 0.60 927

B6 281 852 75 5.0 1.10 854

F6 311 879 64 5.0 0.99 885

F7 265 834 80 4.2 0.82 837

G8 185 790 113 4.0 1.07 770

N6 341 910 55 4.0 0.58 928

O7 268 835 79 4.4 0.89 838

Table 9. Parameters of the Gounaris-Sakurai model used to explore finite-size effects on the

various ensembles. P4 is a hypothetical ensemble at the physical pion mass. The width parameter

at the physical pion mass is taken from [54], and is estimated from there for the other pion masses

according to Γρ ∝ k3ρ/m
2
ρ, kρ ≡ 1

2 (m
2
ρ − 4M2

π)
1/2. We chose ti = (mπL/4)

2/mπ.

Specifically, we define the short- and long-distance contributions

ahvpµ (L) = a<µ (ti, L) + a>µ (ti, L) (C.1)

computed on a finite torus as follows,

a<µ (ti, L) ≡
(α
π

)2
∫ ti

0
dt G(t, L) f̃(t), a>µ (ti, L) ≡

(α
π

)2
∫ ∞

ti

dt G(t, L) f̃(t). (C.2)

Here f̃(t) is the QED kernel, given explicitly in appendix B. The Euclidean time ti repre-

sents the point beyond which the two-pion channel dominates the correlator.

Using the Gounaris-Sakurai model combined with the Lüscher formalism for a>µ , as

in [54], we obtain for the sets of parameters listed in table 9 the estimates of the finite-size

effects in table 10. The effects are sizeable compared to the ultimate sub-percent accuracy

goal. In addition to the lattice ensembles available to us, we also consider for illustration

an ensemble at the physical pion mass and mπL = 4, labelled P4. For a<µ , we use the

free-pion approximation to compute finite-size effects. Some details of this approximation

are given in the next subsection.

C.1 Finite-volume corrections for non-interacting pions

For non-interacting pions, finite-size effects can be obtained by an elementary computation.

We use eqs. (A.13)–(A.14) of [54], which can be written in terms of a non-oscillating

integrand as follows,

G(t, L)−G(t,∞)
t>0
=

1

3


 1

L3

∑

~k

−
∫

d3k

(2π)3




~k2

~k2 +m2
π

e−2t
√

~k2+m2
π (C.3)

=
m4

πt

3π2

∑

~n 6=0

{
K2(mπ

√
L2~n2 + 4t2)

m2
π(L

2~n2 + 4t2)
(C.4)

− 1

mπL|~n|

∫ ∞

1
dy K0(mπy

√
L2~n2 + 4t2) sinh(mπL|~n|(y − 1))

}
.
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Run aµ(∞) a>µ (ti,∞) a<µ (ti,∞) a>µ (ti,∞) a>µ (ti,∞)

−a<µ (ti, L) −a>µ (ti, L) −a>,xpol
µ (ti, tf , tcut, L)

P4 478 201 1.7 18.7 48.3

A5 260 218 0.32 11.1 11.6

B6 305 142 0.61 4.3 6.9

F6 280 146 0.50 4.1 5.6

F7 321 229 0.55 10.3 12.7

G8 408 241 0.98 15.0 26.0

N6 253 216 0.30 11.3 11.7

O7 316 207 0.58 8.4 10.9

Table 10. Estimates of the finite-size effects on ahvpµ in the TMR in units of 10−10, based on

non-interacting pions for the ‘short-distance’ contribution a<µ and on the Gounaris-Sakurai model

of the timelike pion form factor and the Lüscher formalism for the ‘long-distance’ contribution a>µ .

The last column is discussed in section C.3. We used the values ti = (mπL/4)
2/mπ, tf = 1 fm and

tcut = max(ti, 1.35 fm). The parameters used for the different ensembles are listed in table 9.

We compute the finite-size effect from the part t < ti using eq. (C.4) and obtain the values

quoted in table 10, column 4. The small values indicate that the finite-size effects from the

region below about 1 fm can be neglected for mπ . 300MeV and for mπL ≥ 4.

If we compute the finite-size effect at large Euclidean times using free pions (using

eq. (C.3)), we obtain for instance

1010 · [a>µ (ti,∞)− a>µ (ti, L)] =

{
12.6 (P4, ti = 1.41 fm)

8.0 (G8, ti = 1.07 fm)
(C.5)

We see that, although of the same order of magnitude as the finite-size effects in table 10

(column 5) estimated using the Gounaris-Sakurai model in conjunction with the Lüscher

formalism, the numbers in eq. (C.5) are smaller by a factor 1.5–2.0. For any fixed t,

we expect the free-pion theory to predict the leading finite-size effect (O(e−mπL)) for L

sufficiently large. However, at times t > 1 fm, many terms contribute significantly in the

winding expansion eq. (C.4) at realistic parameters. It is then more expedient to use the

sum over energy eigenstates as in eq. (C.3), however, with the energy levels and matrix

elements taking into account ππ interactions via the Lüscher formalism. We conclude that

the interactions between pions play an important role in estimating the finite-size effect in

the t > 1 fm region at the typical volumes mπL ≈ 4.

The Gounaris-Sakurai model also allows us to estimate a lower bound on the value of

mπL for which finite-size effects in ahvpµ are below the level of 1%. From table 10 we can

read off that finite-size effects from the region t > 1.4 fm are as large as 3% for ensemble

P4. By repeating the analysis for larger values of mπL we find that finite-size effects from

the region t > 1.4 fm are reduced to about 1% when mπL ≈ 6. By contrast, finite-size

effects from the region below 1.4 fm are already well below 1% for mπL = 4.
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G8: parameter varied 1010(aµ(∞)− aµ(L))

ti = 1.2 fm 15.8

ti = 0.9 fm 16.1

mρ = 780MeV 16.2

mρ = 800MeV 15.8

Γρ = 90MeV 16.0

Γρ = 136MeV 16.0

Table 11. Change in the size of the finite-volume effect under variations of the parameters. Only

one parameter is varied at a time. The default values of the parameters are those given in table 9;

they lead to aµ(∞)− aµ(L) = 16.0 · 10−10 (sum of column 4 and 5 in table 10).

C.2 Reliability of the estimate of finite-size effects

To discuss the dependence of our theory estimate of the finite-size effect on the parame-

ters, we focus on the ensemble G8, where the correction is sizeable. Using the GS model

combined with the Lüscher formalism, we obtain

t ·
(α
π

)2
(G(t,∞)−G(t, L))f̃(t) = 4.4 · 10−10 (G8) (C.6)

at t = ti = 1.07 fm, while for free pions, we get for the same quantity 3.3 · 10−10. Thus

at the turning point, where we switch from the free-pion to the interacting-pion case, the

difference between the two predictions is moderate. This is a first indication that the overall

prediction of the finite-size effect is not too sensitive to the turning point ti. Explicitly, we

explore the dependence of the predicted finite-size effect on various parameters in table 11.

The result hardly changes under reasonable variations of ti, mρ and Γρ. Of course the

small observed variations do not reflect the full uncertainty due to the use of the Gounaris-

Sakurai parameterization, the corrections to the finite-size effect at t < ti due to pion

interactions and internal structure, etc. We think that the genuine finite-size effects on

ahvpµ (i.e. the sum of column 4 and 5 in table 10) are correctly estimated to within 20% in

our approach.

We have also performed a sanity check by comparing our prediction for finite-size

effects to the direct lattice QCD data in [39], where at one set of quark masses, results for

ahvpµ at three volumes are available: within the uncertainties, our estimate for the volume-

dependence of dΠ
dQ2 |Q2=0 is fully consistent with the numerical data. In the comparison, we

assume that finite-size effects are dominated by the iso-vector contribution to ahvpµ , since

the iso-scalar ω and φ resonances are extremely narrow.

C.3 Single-exponential extension of the time-momentum correlator

Since in practice an extension of the vector correlator is used at long distances, we introduce

a>,xpol
µ (ti, tf , tcut, L) ≡

(α
π

)2
{∫ tcut

ti

dt G(t, L) f̃(t) +

∫ ∞

tcut

dt Gxpol(t; tf , L) f̃(t)

}
, (C.7)
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where tcut > ti is the point beyond which the one-exponential extrapolation of the finite-

volume correlator

Gxpol(t; tf , L) ≡ Aeff(tf , L) e
−meff(tf ,L)t (C.8)

is used, based on the effective mass and amplitude determined at time tf ; explicitly,

meff(t, L) ≡ − d

dt
logG(t, L), Aeff(t, L) ≡ G(t, L) emeff(t,L). (C.9)

The reason for considering a>,xpol
µ (ti, tf , tcut, L) is that due to the deteriorating signal-to-

noise ratio on the vector correlator at large distances, some form of extrapolation is required

in practice to be able to integrate to t = ∞.

We indicate in the last column of table 10 what error one incurs by replacing the

correlator by its one-exponential extension beyond tcut. As compared to the genuine finite-

size effect (column 5 of the table), the additional systematic error is relatively modest

until one reaches the ensembles with mπ below 200MeV. At this point, the result is also

quite sensitive to the time tf where the effective mass is determined. On ensemble G8 for

instance, we obtain

1010 ·
(
aµ(∞)− [a<µ (ti, L) + a>,xpol(ti, tf , tcut, L)]

)
(C.10)

=

{
31.1 tf = 0.85 fm, meff(tf , L) = 777MeV,

23.9 tf = 1.15 fm, meff(tf , L) = 764MeV.

Thus for ensembles with mπ . 200MeV, the single-exponential extension is clearly inade-

quate once the precision goal on ahvpµ is 5% or better.

C.4 Uncertainty in the determination of the ρ-mass and decay width

In the absence of a full dedicated study of the spectroscopy in the iso-vector vector channel,

in section 4.2 we have assumed the GS form of the timelike pion form factor and used a

simplified procedure to determine the parameters (mρ,Γρ) of the model. On our ensemble

G8 with the lightest pion mass, we assumed that the ground state had an energy of E0 =

2
√
m2

π + (2π/L)2 corresponding to non-interacting pions in a p-wave, while the energy of

the first excited state was identified with the parameter mρ of the GS model. We have

investigated how reliable these assumptions are using the GS model; see figure 5. Especially

the first excited state corresponds to the ρ-mass to sub-percent accuracy for a wide range of

parameters. The deviation of the ground state from the non-interacting-pions predictions

is at the 3-4% level. At our present level of accuracy, this is a sufficient level of control

to avoid a significant bias in the determination of the first excited state, since the ground

state contributes with a relatively weak amplitude to the vector correlator.

D Determination of the quark-disconnected contribution

In this appendix we provide the details of our calculation of the quark-disconnected con-

tribution to ahvpµ , which has been performed using the TMR formulation (see also contri-

bution 2.16 in [98]). Analytic analyses of disconnected contributions have been presented
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Figure 5. Corrections to energy levels relative to the naive expectation of a non-interacting, p-wave

two-pion state and a ρ-state, for parameters corresponding to ensemble G8 and assuming the GS

pion form factor. Left: correction to the expectation E0 = 2
√
m2

π + (2π/L)2 for the ground-state

energy as a function of the width Γρ, for three values of the mass mρ. Right: correction to the

expectation E1 = mρ.

in [99, 100]. For our discussion it is useful to recall the expression for ahvpµ in the TMR, i.e.

ahvpµ =
(α
π

)2
∫ ∞

0
dx0G(x0) K̃(x0;mµ), (D.1)

where K̃(x0;mµ) is defined in eq. (2.8). In the following we restrict the analysis to the

contributions from the u, d and s quarks only, so that the electromagnetic current is given by

Jµ(x) =
2

3
ū(x)γµu(x)−

1

3
d̄(x)γµd(x)−

1

3
s̄(x)γµs(x). (D.2)

After performing the Wick contractions one can identify the connected and disconnected

parts as

G(x0) = Gud(x0) +Gs(x0)−Gdisc(x0), (D.3)

whereGud andGs are defined according to eq. (3.7), and the total disconnected contribution

Gdisc(x0) is given by

Gdisc(x0) = Gud
disc(x0) +Gs

disc(x0)− 2Gud,s
disc (x0). (D.4)

The superscripts indicate whether the contribution involves only light (ud), strange (s) or

both (ud, s) quark flavours (note that we work in the isospin limit, mu = md).

In ref. [35] it was shown that Gdisc(x0) factorizes according to

Gdisc(x0) = −1

9

〈(
∆ud(x0)−∆s(x0)

)(
∆ud(0)−∆s(0)

)〉
, (D.5)

where ∆f (x0) for f = (ud), s is given by

∆f (x0) =

∫
d3xTr

[
γkS

f (x, x)
]
, (D.6)
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Run Ncfg Nr T/a x∗0 ∆ahvpµ

E5 1000 75 64 25 0.7%

28 0.3%

F6 300 45 96 22 1.8%

23 1.5%

Table 12. Details of the evaluation of quark-disconnected contribution Gdisc(x0) (see eq. (D.3)).

Nr denotes the number of stochastic sources per timeslice, while x∗0 represents the Euclidean time

at which the ratio Gdisc(x0)/C
ρρ(x0) is replaced by its asymptotic value. The upper bound on the

size of the quark-disconnected contribution to ahvpµ is given by ∆ahvpµ .

Figure 6. The quark-disconnected contribution Gdisc(x0) to the vector correlator (in lattice units)

computed on ensembles E5 and F6.

and Sf denotes the quark propagator of flavour f . Statistically accurate results for quan-

tities such as ∆f require “all-to-all” propagators which are commonly computed using

stochastic noise sources. In [35] it was shown that the statistical accuracy of Gdisc(x0) can

be significantly enhanced when ∆ud and ∆s are computed using the same random noise

vectors, since the correlations between the light and strange quark contributions largely

cancel the stochastic noise.

In our determination of Gdisc(x0) we have used stochastic sources in conjunction with

a hopping parameter expansion (HPE) of the quark propagator [101], suitably adapted

to the case of O(a) improved Wilson quarks [102]. The calculation was performed at our

intermediate value of the lattice spacing at pion masses of 437 and 311MeV, respectively

(ensembles E5 and F6). The all-to-all propagators for the light and strange quarks were

computed by employing a 6th order HPE in combination with Nr stochastic U(1) noise

vectors ηk(~x), k = 1, . . . , Nr on each timeslice. Further details are listed in table 12.

Results for Gdisc(x0) on the two ensembles under study are shown in figure 6. While a

small but non-zero signal is observed for x0/a . 8 the disconnected contribution Gdisc(x0)
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vanishes within errors for larger values of x0. At small times the disconnected contribution

is only about 0.005% of the connected one, and hence we conclude that the vector correlator

G(x0) is completely dominated by the connected part in the region x0 . 0.5 fm.

The fact that the disconnected contribution is small where it can be resolved does

not, however, imply that it is negligible. Using our data we can derive an upper bound

on the error which arises if one were to neglect the disconnected contribution altogether.

To this end it is useful to recall the isospin decomposition of the electromagnetic current

shown in eq. (2.13), which gives rise to the iso-vector (I = 1) correlator Gρρ and its

iso-scalar counterpart GI=0 (see eq. (2.15)). The iso-vector correlator Gρρ(x0) contains

only quark-connected diagrams; it is related to the connected light quark contribution

Gud(x0) via

Gρρ(x0) =
9

10
Gud(x0). (D.7)

By contrast, the iso-scalar correlator GI=0 contains both connected and disconnected con-

tributions, i.e.

G(x0)
I=0 =

1

10
Gud(x0) +Gs(x0)−Gdisc(x0). (D.8)

With the help of eqs. (D.3) and (D.7) one derives the expression

− Gdisc(x0)

Gρρ(x0)
=
G(x0)−Gρρ(x0)

Gρρ(x0)
− 1

9

(
1 + 9

Gs(x0)

Gρρ(x0)

)
. (D.9)

It is now important to realize that the iso-scalar spectral function vanishes below the

three-pion threshold, which implies that GI=0(x0) = O(e−3mπx0) for x0 → ∞. According

to eq. (D.8) this implies

Gdisc(x0) =

(
1

10
Gud(x0) +Gs(x0)

)
· (1 + O(e−mπx0)), (D.10)

G(x0) = Gρρ(x0) · (1 + O(e−mπx0)) (D.11)

in the deep infrared. With these considerations one determines the asymptotic behaviour

of the ratio in eq. (D.9) in the long-distance regime as

− Gdisc(x0)

Gρρ(x0)

x0→∞−→ −1

9
, (D.12)

where we have also taken into account that Gs(x0) drops off faster than Gρρ(x0) due to

the heavier mass of the strange quark. We expect the asymptotic value to be approached

from above, because [G(x0)−Gρρ(x0)] ∼ 1
18e

−mωx0 is likely larger than Gs(x0) ∼ 1
9e

−mφx0

for x0 & 1 fm.

In figure 7 we plot the ratio of eq. (D.9) versus the Euclidean distance. One can see

that the ratio is practically zero up to x0/a ≈ 26 on E5 and x0/a ≈ 22 at the smaller

pion mass of ensemble F6. Thus, there is no visible trend for distances x0 . 1.7 fm that

the ratio approaches its asymptotic value of −1/9. In order to derive a conservative upper

bound on the quark-disconnected contribution we assume that the ratio of eq. (D.9) drops

– 35 –



J
H
E
P
1
0
(
2
0
1
7
)
0
2
0

Figure 7. The ratio of the disconnected to the (connected) iso-vector contribution to the vector

correlator for ensembles E5 (left) and F6 (right).

to −1/9 at the time x∗0 where the accuracy of the data is insufficient to distinguish between

zero and the expected asymptotic value. In other words, we set

− Gdisc(x0)

Gρρ(x0)
=

{
0, x0 ≤ x∗0,

−1/9, x0 > x∗0
(D.13)

If we write the hadronic vacuum polarization contribution ahvpµ as the sum of the quark-

connected and -disconnected contributions, ahvpµ = (ahvpµ )con + (ahvpµ )disc, we can define

∆ahvpµ :=
(ahvpµ )con − ahvpµ

(ahvpµ )con
≡ −(ahvpµ )disc

(ahvpµ )con
, (D.14)

which is the relative size of the disconnected and connected contributions, and (ahvpµ )disc is

given by

(ahvpµ )disc =
(α
π

)2
∫ ∞

0
dx0 (−Gdisc(x0)) K̃(x0;mµ). (D.15)

After inserting eqs. (D.13) and (D.7) we obtain the maximum estimate of the quark-

disconnected contribution as

(ahvpµ )disc = − 1

10

(α
π

)2
∫ ∞

x∗

0

dx0G
ud(x0) K̃(x0;mµ). (D.16)

The resulting estimates for the relative contribution ∆ahvpµ are listed in table 12.
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