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Abstract

Background: Malaria causes a reduction in haemoglobin that is compounded by primaquine, particularly in

patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. The aim of this study was to determine the

relative contributions to red cell loss of malaria and primaquine in patients with uncomplicated Plasmodium vivax.

Methods: A systematic review identified P. vivax efficacy studies of chloroquine with or without primaquine

published between January 2000 and March 2017. Individual patient data were pooled using standardised

methodology, and the haematological response versus time was quantified using a multivariable linear mixed

effects model with non-linear terms for time. Mean differences in haemoglobin between treatment groups at day

of nadir and day 42 were estimated from this model.
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Results: In total, 3421 patients from 29 studies were included: 1692 (49.5%) with normal G6PD status, 1701 (49.7%)

with unknown status and 28 (0.8%) deficient or borderline individuals. Of 1975 patients treated with chloroquine

alone, the mean haemoglobin fell from 12.22 g/dL [95% CI 11.93, 12.50] on day 0 to a nadir of 11.64 g/dL [11.36,

11.93] on day 2, before rising to 12.88 g/dL [12.60, 13.17] on day 42. In comparison to chloroquine alone, the mean

haemoglobin in 1446 patients treated with chloroquine plus primaquine was − 0.13 g/dL [− 0.27, 0.01] lower at day

of nadir (p = 0.072), but 0.49 g/dL [0.28, 0.69] higher by day 42 (p < 0.001). On day 42, patients with recurrent

parasitaemia had a mean haemoglobin concentration − 0.72 g/dL [− 0.90, − 0.54] lower than patients without

recurrence (p < 0.001). Seven days after starting primaquine, G6PD normal patients had a 0.3% (1/389) risk

of clinically significant haemolysis (fall in haemoglobin > 25% to < 7 g/dL) and a 1% (4/389) risk of a fall in

haemoglobin > 5 g/dL.

Conclusions: Primaquine has the potential to reduce malaria-related anaemia at day 42 and beyond by

preventing recurrent parasitaemia. Its widespread implementation will require accurate diagnosis of G6PD

deficiency to reduce the risk of drug-induced haemolysis in vulnerable individuals.

Trial registration: This trial was registered with PROSPERO: CRD42016053312. The date of the first registration

was 23 December 2016.

Keywords: Plasmodium vivax, Chloroquine, Primaquine, Haemoglobin, Pooled analysis, Haemolysis

Background

Outside of sub-Saharan Africa, Plasmodium vivax is a

significant cause of morbidity and mortality in malaria-

endemic regions [1–3], resulting in approximately 10

million cases of malaria each year [4]. Anaemia is a com-

mon manifestation of vivax malaria, with parasitaemia

causing loss of infected and uninfected red blood cells

(RBC), as well as reduced RBC production due to dyser-

ythropoiesis [5]. The haematological burden of the dis-

ease is compounded by P. vivax’s ability to form

dormant liver stages (hypnozoites) that can reactivate

weeks to months after the initial infection, causing mul-

tiple relapses [5, 6]. Radical cure of both the erythrocytic

and hypnozoite stages of the parasite can prevent recur-

rent symptomatic P. vivax infections and thus reduce

the cumulative risk of anaemia [7].

Primaquine (PQ), an 8-aminoquinoline compound in

use for over 60 years, remains the only widely available

drug with activity against hypnozoites, although another

8-aminoquinoline, tafenoquine, was recently licenced by

the FDA [8]. 8-Aminoquinolines can cause severe haem-

olysis in individuals with glucose-6-phosphate dehydro-

genase deficiency (G6PDd), an inherited enzymopathy

caused by genetic polymorphisms in the X chromosome.

The risk of drug-induced haemolysis relates to the dose

of PQ and an individual’s genetic polymorphism [9–11].

In general, routine testing for G6PDd is unavailable in

most endemic areas and concerns regarding severe

haemolysis are a major barrier to widespread clinical use

of PQ [12, 13].

The relative contributions of malaria itself and PQ

treatment to haemoglobin reductions in patients with

vivax malaria are poorly defined. This study aimed to de-

termine the degree of haemoglobin reduction following

chloroquine (CQ), the standard blood schizontocidal

treatment of vivax malaria [14] and to quantify any add-

itional reduction relating to haemolysis from PQ co-

administration.

Methods
Search strategy and selection criteria

A systematic search was undertaken in MEDLINE, Web

of Science, Embase and the Cochrane Database of Sys-

tematic Reviews according to the Preferred Reporting

Items for Systematic Reviews and Meta-Analyses

(PRISMA) guidelines (Additional file 1: Checklist S1).

Prospective therapeutic efficacy trials of treatment of un-

complicated vivax malaria with a minimum of 28 days

follow-up, published between 1 January 2000 and 22

March 2017, in any language were identified (Add-

itional file 1: Box S1) [15]. Investigators of eligible stud-

ies were invited to participate in an individual patient

data meta-analysis and contribute data from similar un-

published studies.

Studies were included in the analysis if they enrolled

patients with P. vivax monoinfection treated with CQ,

alone or with PQ, and recorded haemoglobin (Hb) or

haematocrit at baseline. Studies of pregnant women and

treatment with adjunctive antimalarials were excluded.

Individual patient data were shared on the WorldWide

Antimalarial Resistance Network (WWARN) repository,

anonymised and standardised [16]. The review protocol

was registered in the International Prospective Register

of Systematic Reviews (PROSPERO: CRD42016053312).

Procedures

The doses of CQ and PQ were calculated from the num-

ber of tablets given to each patient, or the study protocol
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if tablet numbers were unavailable. Patient records were

excluded if CQ was not administered; PQ was adminis-

tered after day 0; no Hb or haematocrit was recorded on

day 0; adjunctive antimalarials were administered; P.

vivax was not present at day 0; information on the dose

given, parasitaemia, age or gender was unavailable; the

CQ treatment course was incomplete; mixed infections

were present at day 0; or PQ was dosed intermittently.

G6PD status was recorded when reported, and defi-

ciency was diagnosed by either a qualitative assay

(fluorescent spot test or the CareStart® rapid diagnos-

tic test) or a quantitative assay (spectrophotometry).

G6PDd was defined as an enzyme activity less than

30% (Additional file 1: Table S1).

Study sites were categorised into regions of long or

short P. vivax relapse periodicity [17], with regions of

short relapse periodicity considered to have a median

time to relapse of ≤ 47 days. To avoid confounding from

early treatment failure, recurrence was defined as vivax

parasitaemia between days 7 and 42. Daily PQ mg/kg

dose was defined as low dose if < 0.5 mg/kg/day and high

dose if ≥ 0.5 mg/kg/day.

When only the haematocrit was available, it was con-

verted to Hb according to the equation [18]:

Hb g=dLð Þ ¼ haematocrit %ð Þ � 5:62ð Þ=2:6

Where multiple Hb measurements were recorded on a

single day, the minimum value was used.

Statistical analysis

Linear mixed effects modelling of the Hb versus time

profiles (described below) was used to derive the pri-

mary endpoint of the mean drop in Hb from day 0

(baseline) to the day of the nadir and the secondary end-

points of the mean change in Hb from baseline to day 7

and day 42. In addition, two safety outcomes identified

patients at risk of poor clinical outcome: a Hb fall of >

25% from a baseline of ≥ 7 g/dL to a Hb < 7 g/dL (de-

fined as a clinically significant fall) and an absolute fall

in Hb of > 5 g/dL. The safety outcomes were assessed at

day 2 or 3 (day 2/3), day 7 ± 2 days (day 7) and day 28 ±

3 days (day 28).

Statistical analyses were done using Stata v15 (Stata-

Corp) and R version 3.4.0 (R Foundation for Statistical

Computing), according to an a priori statistical analysis

plan [19]. The mean Hb-time response following treat-

ment was estimated using a linear mixed effects model

[20] with non-linear terms, derived by fractional polyno-

mial regression [21, 22]; with fixed effects for age, gen-

der, baseline parasitaemia, total CQ dose (mg/kg),

relapse periodicity and PQ use; and with random effects

fitted to the terms for time according to an individual

within each study site. The interaction between PQ use

and time was included in order to capture the different

time course of Hb responses following the two regimens

CQ or CQ+PQ. In the subgroup of patients treated with

PQ, the effect of the daily mg/kg PQ dose on Hb re-

sponse was estimated using a similar linear mixed effects

model. The primary analysis was repeated in subgroups

of patients with documented normal G6PD status and

unknown G6PD status and by gender. Additional factors

associated with the change in haemoglobin between day

0 and day of nadir were assessed using a linear regres-

sion model with shared frailty for the study site.

A sensitivity analysis was undertaken to assess poten-

tial selection bias, removing one study at a time and cal-

culating the coefficient of variation in the estimates of

the primary analysis. Baseline characteristics of included

studies were also compared to studies that were targeted

but not available for inclusion.

The effect of delayed parasite clearance (defined as

persistence of parasitaemia until day 2 or later) on Hb at

day of nadir and day 42 and the effect of recurrence be-

tween days 7 and 42 on Hb at day 42 were assessed

using separate linear mixed effects models similar to the

model above with the interaction between PQ and time

replaced by interactions between delayed parasite clear-

ance or recurrence and time. In the model of recurrence

between days 7 and 42, patients with early treatment

failure, late clinical failure prior to day 7 or persistent

parasitaemia between days 4 and 6 were excluded from

the analysis.

A descriptive table of safety outcomes was presented

to provide commonly reported parameters of the Hb re-

sponse in published clinical trials; the numbers of pa-

tients available for these summary statistics varied

according to the time point presented. There were insuf-

ficient numbers of patients experiencing either of the

safety outcomes to conduct multivariable analyses of the

haemolytic risk attributable to PQ.

Results
Between 1 January 2000 and 22 March 2017, there were

168 published P. vivax clinical trials of which 134

(79.8%) included patients treated with CQ and 56

(33.3%) provided information on Hb concentration or

haematocrit. Individual patient data were available for

5150 (46.9%) patients from 25 of these studies plus 1892

additional patients (1780 from four unpublished studies

and 112 from published studies). Of the 7042 patients

with available data, 2813 (39.9%) were not treated with

CQ, 306 (4.3%) were treated with PQ after day 0 and

502 (7.1%) were excluded for other reasons (Fig. 1 and

Additional file 1: Table S1–S3). Of the remaining 3421

patients, 1975 (57.7%) were treated with CQ alone and

1446 (42.3%) with CQ+PQ [23–51].
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Patients were followed for 28 days in 14 studies (n =

1841), 29 to 42 days in seven studies (n = 388) and more

than 42 days in eight studies (n = 1192). In total, G6PD

status was normal in 1692 (49.5%) patients, deficient or

borderline deficient in 28 (0.8%) and unknown in 1701

(49.7%) (Additional file 1: Table S4). All G6PD-deficient

and borderline patients were identified prior to treat-

ment and were administered CQ alone, except for one

deficient patient who was treated with CQ+PQ and was

diagnosed post hoc. Target PQ regimens are described

in Additional file 1: Table S5.

The majority of patients were male (64.6%, 2211/3421).

The median age of patients was 19 years (inter-quartile

range (IQR) 9–32), with 1314 (38.4%) patients younger

than 15 years (Table 1). Most of the patients were enrolled

from the Asia-Pacific region (2247, 65.7%), with 598

(17.5%) enrolled from The Americas and 576 (16.8%) from

the Horn of Africa (Additional file 1: Figure S1). Com-

pared to patients treated with CQ, those treated with

CQ+PQ tended to be older, have lower baseline parasitae-

mias and be more likely to come from areas of short re-

lapse periodicity (Table 1). Baseline characteristics of

G6PD normal patients and patients with unknown G6PD

status are described separately in Additional file 1:

Table S6–S7. Compared to the studies that were tar-

geted but not included, included studies were con-

ducted more recently, enrolled younger populations

and included more equal proportions of male and fe-

male patients (Additional file 1: Table S8).

Baseline haemoglobin

The mean Hb at baseline was 12.2 g/dL (SD 2.1) in

patients receiving CQ and 12.7 g/dL (SD 2.1) in pa-

tients receiving CQ+PQ. Overall, 11.3% (385/3421) of

patients were anaemic at baseline (Hb < 10 g/dL), in-

cluding 13.1% (259/1975) in those subsequently

treated with CQ and 8.7% (126/1446) in those treated

with CQ+PQ. Severe anaemia (Hb < 7 g/dL) was present

in 0.8% (26/3421) of patients. The odds of anaemia at

baseline was greater in females (adjusted odds ratio

(AOR) = 1.34 [95% CI 1.05, 1.71]) and patients who were

younger than 5 years (AOR = 10.37 [6.09, 17.67]), G6PD

deficient (AOR = 2.88 [1.14, 7.32]) and enrolled in regions

of short relapse periodicity (AOR = 1.94 [1.01, 3.71])

(Additional file 1: Table S9).

Fig. 1 Study flowchart
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Haemoglobin-time profile

The Hb profile between baseline and day 42 was mod-

elled from 9684 Hb measurements in 1975 patients

treated with CQ alone and 6029 Hb measurements in

1446 patients treated with CQ+PQ. Patients treated with

CQ alone had a median [IQR] of 7 [5-9] Hb measure-

ments, and patients treated with CQ+PQ had a median

[IQR] of 9 [3-10] Hb measurements.

Haemoglobin profile following treatment with

chloroquine alone

In patients treated with CQ alone, the mean Hb fell

from baseline to a nadir on day 2, with a fall of 0.58

g/dL from a mean of 12.22 g/dL [95% CI 11.93,

12.50] to 11.64 g/dL [11.36, 11.93] (Fig. 2). Following

the nadir, the Hb rose thereafter. By day 42, the mean

Hb was 12.88 g/dL [12.60, 13.17], 0.67 g/dL above

baseline.

The magnitude and direction of the change in Hb

from baseline to day 2 or day 7 varied with the baseline

Hb, with a high baseline Hb correlated with a large fall

in Hb (Figs. 3 and 4 and Additional file 1: Figure S2).

Only 32.8% (136/415) of patients with a baseline Hb <

11.5 g/dL fell below their baseline Hb during the first 7

days compared with 70.9% (565/797) of those with a

baseline Hb ≥ 11.5 g/dL (Fig. 2).

Table 1 Demographics, baseline characteristics and baseline haemoglobin measurements

Chloroquine alone Chloroquine plus primaquine Overall

Number
(%)*

Mean Hb
(SD)

Range Number
(%)*

Mean Hb
(SD)

Range Number
(%)*

Mean Hb
(SD)

Range

Overall 1975 (100) 12.2 (2.1) 6.0 to 18.7 1446 (100) 12.7 (2.1) 4.0 to 19.0 3421 (100) 12.4 (2.1) 4.0 to 19.0

Parasitaemia, parasites
per uL; median (IQR)

3400 (1261,
8290)

2700 (912,
7040)

3104 (1137,
8000)

Gender

Female 772 (39.1) 11.8 (1.9) 6.0 to 17.4 438 (30.3) 11.7 (1.8) 4.0 to 17.4 1210 (35.4) 11.7 (1.9) 4.0 to 17.4

Male 1203 (60.9) 12.5 (2.1) 6.6 to 18.7 1008 (69.7) 13.1 (2.1) 4.9 to 19.0 2211 (64.6) 12.8 (2.1) 4.9 to 19.0

Age category, years

< 5 225 (11.4) 10.7 (2.0) 6.0 to 16.6 72 (5.0) 10.3 (1.8) 4.9 to 14.1 297 (8.7) 10.6 (2.0) 4.9 to 16.6

5 to < 15 691 (35.0) 11.6 (1.8) 6.6 to 17.4 326 (22.5) 11.5 (1.6) 5.5 to 16.3 1017 (29.7) 11.6 (1.8) 5.5 to 17.4

≥ 15 1059 (53.6) 13.0 (1.9) 6.2 to 18.7 1048 (72.5) 13.2 (2.0) 4.0 to 19.0 2107 (61.6) 13.1 (2.0) 4.0 to 19.0

Weight category, kg

5 to < 15 195 (9.9) 10.4 (1.9) 6.0 to 16.3 83 (5.7) 10.3 (1.6) 5.2 to 13.4 278 (8.1) 10.4 (1.8) 5.2 to 16.3

15 to < 25 440 (22.3) 11.5 (1.9) 6.9 to 16.6 172 (11.9) 11.1 (1.6) 4.9 to 15.9 612 (17.9) 11.4 (1.8) 4.9 to 16.6

25 to < 35 182 (9.2) 11.7 (1.6) 6.6 to 16.2 94 (6.5) 11.7 (1.6) 7.5 to 15.1 276 (8.1) 11.7 (1.6) 6.6 to 16.2

35 to < 45 196 (9.9) 12.1 (1.9) 6.5 to 17.4 153 (10.6) 12.1 (1.9) 5.8 to 17.1 349 (10.2) 12.1 (1.9) 5.8 to 17.4

45 to < 55 404 (20.5) 12.9 (1.9) 6.2 to 18.7 338 (23.4) 12.9 (1.9) 5.4 to 18.1 742 (21.7) 12.9 (1.9) 5.4 to 18.7

55 to < 80 484 (24.5) 13.1 (1.9) 7.0 to 18.1 508 (35.1) 13.6 (1.9) 4.0 to 19.0 992 (29.0) 13.3 (1.9) 4.0 to 19.0

≥ 80 74 (3.7) 13.8 (1.3) 9.9 to 16.5 98 (6.8) 14.0 (1.7) 8.2 to 17.9 172 (5.0) 13.9 (1.5) 8.2 to 17.9

G6PD status

Normal 856 (43.3) 12.4 (1.9) 6.5 to 18.1 836 (57.8) 12.8 (2.0) 5.4 to 19.0 1692 (49.5) 12.6 (2.0) 5.4 to 19.0

Borderline 3 (0.2) 13.9 (1.1) 13.1 to 15.2 0 (0) – – 3 (0.1) 13.9 (1.1) 13.1 to 15.2

Deficient 24 (1.2) 12.4 (1.8) 8.6 to 15.7 1 (0.1) 14.0 (−) 14.0 to 14.0 25 (0.7) 12.4 (1.8) 8.6 to 15.7

Not known 1092 (55.3) 12.1 (2.2) 6.0 to 18.7 609 (42.1) 12.5 (2.2) 4.0 to 18.9 1701 (49.7) 12.2 (2.2) 4.0 to 18.9

Relapse periodicity

Long 1360 (68.9) 12.3 (2.1) 6.0 to 18.1 627 (43.4) 13.4 (1.9) 4.0 to 18.9 1987 (58.1) 12.6 (2.1) 4.0 to 18.9

Short 615 (31.1) 12.1 (2.0) 6.2 to 18.7 819 (56.6) 12.2 (2.1) 4.9 to 19.0 1434 (41.9) 12.2 (2.0) 4.9 to 19.0

Geographical region

Asia-Pacific 1114 (56.4) 11.9 (1.9) 6.2 to 18.7 1133 (78.4) 12.5 (2.1) 4.9 to 19.0 2247 (65.7) 12.2 (2.0) 4.9 to 19.0

The Americas 285 (14.4) 12.5 (2.0) 7.0 to 17.4 313 (21.6) 13.5 (1.8) 4.0 to 18.9 598 (17.5) 13.0 (2.0) 4.0 to 18.9

Africa 576 (29.2) 12.7 (2.2) 6.0 to 18.1 0 (0) – – 576 (16.8) 12.7 (2.2) 6.0 to 18.1

Hb haemoglobin, SD standard deviation, IQR inter-quartile range

*Number of patients (percentage of total patients in group) unless otherwise specified
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Haemoglobin profile following treatment with

chloroquine and primaquine

The nadir Hb in patients treated with CQ+PQ occurred

on day 3, with the mean Hb rising throughout the subse-

quent follow-up (Fig. 2).

Compared to patients treated with CQ alone, those

treated with CQ+PQ had a lower Hb at nadir (mean

difference − 0.13 g/dL [95% CI − 0.27, 0.01], p = 0.072)

and day 7 (− 0.34 g/dL [− 0.46, − 0.23], p < 0.001), but

higher Hb at day 42 (mean difference 0.49 g/dL [0.28,

0.69], p < 0.001; Table 2). In a sensitivity analysis, the re-

moval of one study site at a time did not identify signifi-

cant evidence of bias related to the included studies

(Additional file 1: Table S10).

A B

C D

Fig. 2 Mean haemoglobin-time profiles for a any baseline haemoglobin, b baseline ≥ 11.5 g/dL, c baseline < 11.5 g/dL and d normal G6PD status.

Figures derived from the linear mixed effects model with fractional polynomial terms for time. Profiles for chloroquine (CQ) alone and chloroquine

plus primaquine (CQ+PQ) adjusted to the same baseline haemoglobin. Shaded regions show 95% confidence intervals. In total, 1975 patients were

treated with CQ alone and 1446 with CQ+PQ; in patients with baseline Hb ≥ 11.5 g/dL, the corresponding figures were 1277 and 1063; in patients

with baseline Hb < 11.5 g/dL, the corresponding figures were 698 and 383; and in patients with normal G6PD status, the corresponding figures were

856 and 836

A B

Fig. 3 Relationship between haemoglobin at baseline and day 7 as a fractional change and b absolute change. One thousand two hundred

twenty-two patients were treated with chloroquine (CQ) alone and 539 with chloroquine plus primaquine (CQ+PQ). The open circle represents

the single patient with a clinically significant fall > 25% to < 7 g/dL at day 7 (female patient with normal G6PD status). The dashed orange line

represents a fractional fall of 25%. The baseline Hb correlated negatively with the fractional change in Hb at day 7 (r = − 0.521 [95% CI − 0.554 to

− 0.486], p < 0.0001)
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Of the 1446 patients treated with PQ, 38.2% (553)

were treated with a high daily dose and 61.8% (893) with

a low daily dose. There was no significant difference in

mean Hb between patients treated with a high or low

daily PQ dose, either at day 3 (mean difference 0.14 g/dL

[− 0.05, 0.33], p = 0.161) or day 7 (mean difference 0.18

g/dL [− 0.11, 0.46], p = 0.227).

In subgroup analyses, the mean Hb at the day of nadir

was significantly lower in patients treated with CQ+PQ

than in those treated with CQ in females (mean differ-

ence − 0.25 g/dL [− 0.43, − 0.07], p = 0.007), and patients

with unknown G6PD status (mean difference – 0.65 g/

dL [− 0.82, − 0.47], p < 0.001), but there was no signifi-

cant difference between treatment groups in males or

patients known to be G6PD normal (Table 2). In G6PD

normal patients, the following factors were associated

with a greater reduction in Hb at day of nadir: younger

age, higher baseline Hb, higher baseline parasitaemia,

female gender and short relapse periodicity

(Additional file 1: Table S11). By day 42, the mean Hb

was higher following CQ+PQ compared to CQ alone for

females (mean difference 0.45 g/dL [0.18, 0.72], p =

0.001), males (0.62 g/dL [0.29, 0.94], p < 0.001) and pa-

tients with normal G6PD status (0.89 g/dL [0.53, 1.26],

p < 0.001) (Fig. 2 and Additional file 1: Figure S3). None

of the patients with unknown G6PD status treated with

CQ+PQ had a Hb measure at day 42, precluding day 42

comparison between treatment groups in this subgroup.

Overall, 17.4% (344/1975) of patients treated with CQ

had recurrent parasitaemia between days 7 and 42, com-

pared to 2.0% (29/1446) of those treated with CQ+PQ.

The mean Hb at day 42 was significantly lower in

A B

Fig. 4 Fractional change in haemoglobin between baseline and day 7 following a chloroquine and b chloroquine plus primaquine. In patients

treated with chloroquine alone, 608 had normal G6PD status and 588 had unknown G6PD status. In patients treated with chloroquine plus

primaquine, 389 had normal G6PD status and 150 had unknown G6PD status. The open circle represents the single patient with a clinically

significant fall > 25% to < 7 g/dL at day 7 (female patient with normal G6PD status). The dashed orange line represents a fractional fall of 25%

Table 2 The mean difference in haemoglobin between patients treated with and without primaquine

Day of nadir Day 7 Day 42

Patient group Mean difference* (95% CI,
g/dL)

p value Mean difference* (95% CI,
g/dL)

p value Mean difference* (95% CI,
g/dL)

p value

Overall (n = 3421†) − 0.13 (− 0.27, 0.01) 0.072 − 0.34 (− 0.46, − 0.23) < 0.001 0.49 (0.28, 0.69) < 0.001

Normal G6PD status
(n = 1692)

0.05 (− 0.14, 0.24) 0.577 − 0.23 (− 0.39, − 0.07) 0.004 0.89 (0.53, 1.26) < 0.001

Unknown G6PD status
(n = 1701)

− 0.65 (− 0.82, − 0.47) < 0.001 − 0.44 (− 0.66, − 0.21) < 0.001 Not calculable‡ –

Females (n = 1210) − 0.25 (− 0.43, − 0.07) 0.007 − 0.36 (− 0.54, − 0.18) < 0.001 0.45 (0.18, 0.72) 0.001

Males (n = 2211) − 0.11 (− 0.30, 0.08) 0.241 − 0.33 (− 0.48, − 0.18) < 0.001 0.62 (0.29, 0.94) < 0.001

CI confidence interval

*The difference in the mean haemoglobin comparing patients treated with or without primaquine. A negative mean difference equates to a lower haemoglobin

when treated with chloroquine plus primaquine. Linear mixed effects models with non-linear terms for time were used to derive estimates of mean haemoglobin

at day of nadir, day 7 and day 42

†n represents the number of patients who contributed at least one follow-up haemoglobin measurement for the linear mixed effects modelling of the

haemoglobin trajectories

‡no day 42 haemoglobin measurements were available for patients treated with chloroquine plus primaquine
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patients with recurrent parasitaemia compared to those

with no recurrence (mean difference − 0.72 g/dL [− 0.90,

− 0.54], p < 0.001). The only G6PD-deficient patient

treated with CQ+PQ had a haemoglobin fall from 14 g/

dL at day 0 to 6.6 g/dL at day 14 but was not tested in

between (Additional file 1: Table S12-S13).

Effect of delayed parasite clearance on haemoglobin

profile

In total, 37.1% (1000/2698) of patients had cleared their

parasitaemia by day 1, 76.9% (2076/2698) had cleared by

day 2 and 23.1% (622/2698) had parasite clearance de-

layed until after day 2. The proportion with delayed

parasite clearance after day 2 was 17.6% (290/1646) fol-

lowing CQ and 31.6% (332/1052) following CQ+PQ.

After controlling for confounding factors including PQ

treatment, patients with delayed parasite clearance had a

significantly lower Hb at the day of nadir (mean differ-

ence − 0.26 g/dL [− 0.45, − 0.06], p = 0.010) and day 42

(mean difference − 0.23 g/dL [− 0.39, − 0.07], p = 0.004)

(Additional file 1: Figure S4).

Safety outcomes

None of the patients died. Whilst 1.1% (7/610) of pa-

tients treated with CQ and 5.7% (27/471) treated with

CQ+PQ had a fractional fall in Hb greater than 25%

from baseline at day 2/3, 94.1% (32/34) of these patients

started with a Hb greater than or equal to 11.5 g/dl. On

day 2/3, none of the 610 patients treated with CQ alone

had a clinically significant fall (fall in Hb > 25% to < 7 g/

dL) or a fall greater than 5 g/dL. Of the patients treated

with CQ+PQ, one G6PD normal male patient had a clin-

ically significant fall and six patients with G6PD un-

known status had a fall greater than 5 g/dL, one of

whom was female (Table 3 and Additional file 1: Table

S12–S13). On day 7, G6PD normal patients had a 0.3%

(1/389) risk of clinically significant haemolysis and a 1%

(4/389) risk of a fall in haemoglobin > 5 g/dL. The risks

of safety outcomes occurring at day 28 and in patients

with unknown or deficient G6PD status are presented in

Table 3, Fig. 4 and Additional file 1: Table S14. No

patients were reported to have received a blood

transfusion.

In unadjusted analyses of G6PD normal patients, the

number needed to harm to have a clinically significant

drop in Hb at day 2/3 was 334 exposures to PQ and the

corresponding number needed to harm at day 7 was 389

patients.

Discussion

This meta-analysis of data from 3421 individual patients

enrolled in 29 studies provides the most detailed evalu-

ation of the haematological consequences of vivax mal-

aria treated with CQ, with and without PQ, in over 60

years. In patients with normal G6PD status, patients

treated with PQ had no additional clinically significant

haemolysis compared to CQ alone. However, patients

treated with PQ had higher haemoglobins by day 42

(0.5 g/dL higher), a difference likely attributable in part

to a reduction in recurrent parasitaemia.

Treatment with PQ reduces the risk of vivax recur-

rences at day 42 by up to 90%, predominantly because of

its ability to prevent reactivation of dormant liver stages

[47, 49, 52, 53]. Despite this benefit, clinician concern

regarding the risk of severe haemolysis in patients with

G6PDd, coupled with a lack of reliable point of care tests

for G6PDd, has prevented the widespread uptake of PQ

radical cure in many vivax-endemic regions [12]. The

risks of severe haemolysis attributable to PQ need to be

quantified and weighed against the underlying risk of an-

aemia attributable to malaria itself. Our analysis high-

lights that in a study population where the majority of

patients were confirmed or suspected to be G6PD nor-

mal, there was minimal additional haemolysis attribut-

able to PQ beyond the fall in Hb occurring after

treatment with CQ. In our analysis, the fall in Hb was

not influenced by the daily dose of PQ administered.

Consistent with previous studies, by day 42, patients

treated with PQ had a substantially higher Hb, likely

reflecting the prevention of relapse and potential recru-

descence [49, 54].

Previous antimalarial studies have used an arbitrary fall

in Hb of > 25% as a safety outcome [55, 56]. Whilst 5.7%

treated with CQ+PQ had a fractional fall in Hb > 25% at

day 2/3, almost all of these patients had a high baseline

Hb; hence, a large fractional fall in Hb may not necessar-

ily equate to clinically relevant morbidity. We explored

two alternative clinically specific safety measures: a com-

posite measure of a fall > 25% from baseline to a Hb < 7

g/dL, and a fall in Hb > 5 g/dL. The former reflects Hb

reduction to a level associated with rising risk of mortal-

ity [6], and the latter possible substantial intravascular

haemolysis leading to an increased risk of high cell-free

Hb and acute renal failure [57]. The overall risk of these

safety outcomes at day 2/3 was approximately 15 per

1000 patients treated, substantially less than the risk of

patients having a high fractional fall in Hb.

Reassuringly in this study population, no patients with

unknown G6PD status had a clinically relevant fall in

Hb at either day 2/3 or day 7. These patients were from

Brazil, Indonesia and Vietnam, where G6PD testing is

not routinely recommended in the National guidelines.

Although these study populations may be perceived to

have a low risk of G6PDd, these areas are known to in-

clude some patients with severe G6PD variants. In the

studies included in our analysis when patients were

screened for G6PDd, normal activity was defined as an

enzyme activity greater than 30%. This approach will not
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have excluded heterozygous females with intermediate

G6PD activity and is the likely reason that the mean

nadir Hb of female patients was lower following CQ+PQ

compared to females treated with CQ alone. Import-

antly, only one female patient had a clinically relevant

fall in Hb at day 2/3 or day 7. In the G6PD normal pa-

tients, PQ treatment was associated with one additional

patient with a clinically relevant fall in Hb at day 2/3 for

every 334 patients treated; these estimates are un-

adjusted for confounding factors. Hence, whilst PQ did

not cause a significant increase in the population risk of

haemolysis in patients with proven or suspected G6PD

normal status, there remains an appreciable risk of se-

vere haemolysis in vulnerable individuals. Our study

highlights the importance of reliable and accurate point

of care testing of G6PD status prior to radical cure of P.

vivax, in conjunction with clinical or laboratory moni-

toring for haematological recovery.

The day of nadir Hb occurred on day 2 in patients

treated with CQ alone and day 3 in those treated with

CQ+PQ, and yet less than half of the clinical studies

sampled Hb on these days routinely. Future studies aim-

ing to quantify PQ-induced haemolysis should consider

reviewing patients around day 3, after completion of

blood schizontocidal treatment, at which time patients

at greatest risk of clinically harmful haemolysis could be

identified and appropriate management initiated, if

indicated.

Our analysis included patients irrespective of their

G6PD status, all of whom were judged to be suitable for

treatment with PQ. Not all studies tested patients for

G6PDd, reflecting variations in regional protocols. Pa-

tients with unknown G6PD status treated with PQ had a

lower mean Hb at nadir which may reflect unidentified

patients with G6PDd. Furthermore, even in female pa-

tients with normal G6PD status, those treated with PQ

had a lower mean Hb at nadir which may reflect inclu-

sion of heterozygous individuals with intermediate

G6PDd who would have been screened as G6PD normal

by qualitative tests. A small number of adverse safety

outcomes occurred with and without primaquine treat-

ment across all patient groups; within the first 7 days,

53% (8/15) of adverse events occurred in patients with

normal G6PD status, 47% (7/15) in those with unknown

status and 27% (4/15) in female patients.

Our study has several important limitations. Lack of

PQ randomisation led to the potential for differences be-

tween patient groups and selection bias that could not

be adjusted for. For example, no patients from Africa

were treated with PQ. Inclusion of data from only half of

the patients from the targeted clinical trials is an add-

itional limitation. Despite minor epidemiological differ-

ences between the populations of studies included and

targeted (Additional file 1: Table S8), the studies in our

analysis were undertaken in a range of populations in

vivax-endemic areas. Furthermore, the mean baseline

Hb was similar between the included and targeted stud-

ies suggesting that differences in the haematological pro-

files of these populations were unlikely to be an

important source of bias. A sensitivity analysis did not

identify significant evidence of bias related to the in-

cluded studies (Additional file 1: Table S10). Whilst it is

likely that our findings can be generalised to G6PD nor-

mal patients in many vivax-endemic regions, the vari-

ation in G6PD variants across different regions and the

disproportionate number of male patients in the current

study prevent the overall estimates of risk including pa-

tients with unknown G6PD status from being general-

ised globally. Finally, restriction of follow-up to a

maximum of 42 days prevented us from being able to es-

timate the overall haematological benefit beyond day 42

related to prevention of multiple future relapses as op-

posed to just the first relapse.

Conclusions
In summary, PQ administration in G6PD normal pa-

tients was not associated with a greater acute fall in Hb

compared to patients not treated with PQ. The reduc-

tion in Hb after treatment for vivax malaria was primar-

ily associated with the disease itself rather than

haemolysis due to PQ treatment. Indeed, within 42 days,

patients treated with PQ had better haematological out-

comes than those treated with chloroquine alone, con-

sistent with the prevention of further haematological

insults caused by recurrent parasitaemia. There was a

small but clinically relevant risk of severe Hb reduction

after treatment with PQ, even in patients with normal

G6PD status. Our results highlight the public health

benefits of radical cure for the treatment of P. vivax

when this can be offered in combination with accurate

point of care testing for G6PDd.
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