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STELLINGEN

behorend bij het proefschrift

THE HAHN-EXTON q-BESSEL FUNCTION

door

RENE SWARTTOUW



STELLING 1. M. Rahman stelt in

mooiere eigenschappen hebben dan die
het tegendeel aan.

[1] dat Jackson’s g-Bessel functies waarschijnlijk
van Exton. De resultaten in dit proefschrift tonen

(1] - M. Rahman, A note on the orthogonality of Jackson’s q-Bessel functions, Canadian

Mathematical Bulletin 32, 1989, 369-376.

STELLING 2. De Hahn-Exton g-Bessel functies J,(z;

i9) en J,.1(z;q), gedefinieerd in
paragraaf 3.2.2 van dit proefschrift, hebben geen gemeenschappelijke nulpunten, behalve
eventueel r = ().

STELLING 3. Het onderzoek naa

t g-Bessel functies geeft tevens meer inzicht in de
theorie van gewone Bessel functies,

STELLING 4. De Wall-polynomen pa(z; a; q), gedefinieerd door

‘I,-T‘I) )

(44; Qnpu(29™; a3 9) = (24; ¢)npu(ag™; z;q).

-0
pu(z;a;q) = 1@, ( qaq

voldoen aan de symmetrierelatie

Als we de limiet n — oo nemen in bovenstaande relatie, vinden we de symmetrierelatie
voor 19;’s van stelling 3.1 in dit proefschrift.
STELLING 5. De Wall-

polynomen, gedefinieerd in stelling 2, hebben een genererende
functie

8

¢ - (690 (xt)~5=
+ (¢; q)npn(zq 9% 9) = (5 Qoo (6 Q) Ja(Vat;ig), Jt] < 1,

waarin Jo(v/zt; ¢) de Hahn-Exton q-Bessel functie is, gedefinieerd in paragraaf 3.2.2 van
dit proefschrift.

Deze formule is een

g-uitbreiding van de volgende genererende functie voor Laguerre
polynomen L, (z)

M +ag1) ~ @U77eVa(2vat).




STELLING 8. Definicer de g-hypergeometrische reeksen

¢ = ,d),(a,,...,a,;b;,...,b.;q,z)
¢(al+) = an(alq)QZV--1ar;bl)--')ba;qu)
ob-) = .9, (a.,...,a,;blq",bg,...,b,;q,z)

en voer de volgende notaties in:
T
A=1]] ap, B= 1]z,
m=1

U; ml;ll (am - bJ) Ui
3

T {a-by)

= j ) Vij
-1 n [
(l -bj) n (bm‘bj) H (bm_bj)
ms=1 m=j41
Een g-uitbreiding van de 2r + ¢ contigue relaties voor h

ypergeometrische reeksen (zie
Rainville [1]) wordt gegeven door (zie Swarttouw [2])

(a1 —ap)® = (1 - ax)a;(ar+) - (1 - a)ar®(ai+), k=2,... T
(a2 — bkq“l)fl) =(1- bkq'l)alq)(bk—) -(1- a;)bkq"lfb(al-i-), k=1,...,s,

{(1 - a,)(l - ZAB_l) + a2 (6,.,,4.] - AB_l - Z L;EU,) } ]
J=1 3

=(1-a)l - 2AB™")®(a;+) — alzi %Q(bj+),

i=1Y;
3 W
(1=2¢7"AB™)® = ¢(ay—) — ag 'z Y -Eé—*@(bﬁ), k=1,...,r
i=1 7
(1] - E.D. Rainville, The contig
man’s J** and Rice’s H,(z,p,
714-723.

uous function relations for »Fy with applications to Bate-
v), Bulletin of the American Mathematical Society 51, 1945,

[2]- R.F. Swarttouw, The contiguous function relations for the basic hypergeometric series,
Journal of Mathematical Analysis and Applications 149, 1990, 151-159.



STELLING 7. Aangezien hypergeometrische reeksen in zeer veel onderdelen van de
wiskunde voorkomen, dient een cursus hypergeometrische reeksen in het curriculum van
iedere wiskunde studie te worden opgenomen.

STELLING 8. De wiskunde vakgroepen van de faculteit Technische Wiskunde en In-
formatica van de Technische Universiteit Delft zouden zich duidelijker moeten profileren
als een dienstverlenende instantie waar andere faculteiten terecht kunnen met wiskundige
problemen.

STELLING 9. Net als voor de apelers dient er bij een voetbalwedstrijd voor de supporters
van een bepaalde club een gele en rode kaarten regeling te zijn. Na drie lichte onregel-
matigheden, die elk met een gele kaart bestraft dienen te worden, volgt automatisch dat de
eerstvolgende thuiswedstrijd van die betreffende club zonder publiek wordt gespeeld. Bij
ernstige onregelmatigheden, door een arbitrale commissie met een rode kaart te bestraffen,
volgen één of meerdere wedstrijden zonder publiek.

STELLING 10. Uit commerciéle overwegingen dient Sint Nicolaas zijn verjaardag voor-
taan een maand eerder te vieren.
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Introduction

Bessel functions are probably the most frequently used special functions. Broadly speaking
they occur in connection with partial differential equations, usually when the variables are
separated, or else in connection with certain definite integrals. In Watson’s book [53], which
is the standard work on Bessel functions, the history of these functions is traced back to
James Bernoulli (about 1700). Since Euler (1764) and Poisson (1823) Bessel functions are
associated most commonly with the partial differential equations of the potential, wave
motion, or diffusion, in cylindrical or spherical polar coordinates. In chapter 1 of this
thesis we will mention some well-known relations involving Bessel functions.

At the beginning of this century F.H. Jackson ({20]-[25]) started the investigation of a
generalization of the Bessel function of integer order. This generalization is based on the
simple fact that

where 1~1:_3£ is called the basic number of a and ¢ is called the base (in chapter 2 we will
give an extensive introduction to this ¢-theory). Roughly speaking Jackson replaced each
number and each variable in the Bessel function by its basic number. The resulting function
is called a g¢-extension or a g-analogue of the Bessel function. Jackson also considered
a second g-extension of the Bessel function. He wrote several papers concerning these
functions, in which he derived many results, which, of course, tend to the classical results

when ¢ tends to 1.

After Jackson’s sequence of papers the subject of ¢g-Bessel functions remained untouched
nearly half a century until W. Hahn [14] started to investigate a more general g-analogue
than Jackson did. He considered two g-extensions of the Bessel function of general order.
He was able to generalize most of the relations that Jackson found to the general order
case. He also gave a nice relation between his two g-Bessel functions.

A few years later Hahn [15] wrote a paper on a g-extension of a certain second order
differential equation. He found his g-difference equation by considering the equations of
motion of a swinging rope with infinitly many masspoints in a homogeneous gravitation
field. The power series solution appeared to be a g-extension of the Bessel function of order
zero. This ¢-Bessel function however differs from the g-analogues that Jackson and Hahn

ix
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investigated before. Hahn neither gave any formulas involving this ¢-Bessel function in his
paper nor wrote more papers on this subject.

In 1978 H. Exton [10] considered a g-analogue of the Bessel-Clifford equation. The

power series solution of that g-difference equation is a g-analogue of (}z " times the
Bessel function of order a. The special case o = 0 is the g¢-Bessel function that Hahn
derived in [15]. Exton found a recurrence relation, some mixed formulas and a generating
function for his functions. He also derived a ¢g-analogue of the Fourier-Bessel orthogonality
relations. '

Recently Vaksman and Korogodskii [49] gave an interpretation of the ¢g-Bessel functions
that Exton investigated as matrix elements of irreducible representations of the quantum
group of plane motions. Their paper, which does not contain proofs, implicitly contains
some orthogonality relations for these functions.

In part II of this thesis we will study a slightly modified form of the ¢-Bessel function
which was introduced by Hahn (in a special case) and by Exton (in full), and which we
will call the Hahn-Exton q-Bessel function.

In chapter 3 we will give some general properties and derive several recurrence and
difference recurrence relations for this function. Some of them are due to Exton. Further
we will state the two types of orthogonality relations that Vaksman an Korogodskii found
explicitly, we will show that the first type is immediately implied by the generating function
of the Hahn-Exton ¢-Bessel function and that the second type can be obtained from the
first one by a simple transformation. These results are also published in {35]. Several other
new relations are included and some limit transitions with g-orthogonal polynomials are
discussed.

In chapter 4 we will consider a g-extension of the Bessel differential equation. We will
discuss a second solution and we will introduce a g-analogue of the Wronskian.

In chapter 5 we will show that the second orthogonality relation which Vaksman and
Korogodskii gave, yields a ¢g-analogue of Hankel’s Fourier-Bessel integral. As a special case
we will discuss g-analogues of the Fourier-cosine and sine transforms. Most of its contents
was published before in [35].

In chapter 6 three g-analogues of addition formulas for the Bessel functions are dis-
cussed. First we will generalize the considerations which led to the orthogonality relations
in chapter 3. The resulting formula will turn out to be a g-analogue of Graf’s addition
formula and, at the same time, of the discontinuous integral of Weber and Schatheitlin.
The second addition formula has originally been discovered by H.T. Koelink {30] using the
interpretation of the Hahn-Exton ¢-Bessel functions on the quantum group of plane mo-
tions as established by Vaksman and Korogodskii. Koelink’s proof is formal, so a rigorous
proof is needed, which is established in section 6.3. Finally a g-extension of Gegenbauer’s
addition formula is obtained. As additional results some product formulas and an integral
representation are found. This result was published before in [46].
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Chapter 1

Bessel Functions

1.1 Introduction

The Bessel function is probably the best known special function, both within pure and
applied mathematics. Numerous books have been written on the subject of which Watson’s
book [53] is often considered as the standard work. The Bessel function needs therefore
hardly any introduction.

In part II of this thesis a generalization of the Bessel function is considered. We will
derive many new relations for this generalized Bessel function. In order to show that these
results are extensions of the classsical formulas, we frequently refer to the well-known
results. The main objective of this chapter therefore will be to present several formulas,
involving Bessel functions, without giving the proof. For a proof of most of the formulas
the reader is referred to [53].

1.2 The differential equation

In many books on Bessel functions, they are introduced by their differential equation. It
18
,d%y dy
2 7 p— 2 — 2 = U. B
xd$2+$d$+($ vi)y =20 (L.2.1)

The point z = 0 is a regular-singular point, so we can find solutions of the form
oQ
=z* Z cpz”.
k=0

Substituting this in (1.2.1) we find with ¢ = the solution

1
2¢T(v+1)

_ (2 (=L)r(=/2)*
a2 = (5) 2T+ k4 DR (1.2.2)

3



4 CHAPTER 1

Solution (1.2.2) is called the Bessel function of order v. It is easy to verify that J_, is also
a solution of the differential equation of Bessel (1.2.1). To determine if this second solution
is linearly independent of the solution (1.2.2) we can apply the determinant of Wronski

(see [5])

def | Y1 Y2 dy: . dn
W(ylayZ) - y; y; - ld.’L' Y2 d.’ll, (1.2v3)
where y; and y; are solutions of the linear second order differential equation
LY a2 1 by =0
dz? TN gy y="=
A nice general result concerning the Wronskian is Abel’s theorem (see [5] §3.2)
W' (y1,92) + (&)W (y1,92) = 0. (1.24)
Applying the Wronskian (1.2.3) to the solutions J, and J_, we find
W (Jos ) = —Zsin (mv) (1.2.5)
vydJ—p) = — V), L
—sin

so that W (J,,J_,) # 0 if v € Z and thus the solutions are linearly independent if v ¢ Z.
If v € Z however, the solutions are linearly dependent. This fact can also be obtained from
the series expansion. We find with (1.2.2) for n € Z

J_n(z) = (=1)"Jn(x). (1.2.6)

To determine a second solution that is linearly independent of J, for all ¥ we define for

vEZ

cos (mv)J,(z) — J_.(x) '

Y.(z) = 1.2.7
(2) sin (7v) ( )
For n € Z we define
Ya(z) = lim Y. (z). (1.2.8)
If we compute the Wronskian of J, and Y, we find for all »
2
W (J,,Y,)=— (1.2.9)

’
T

so that J, and Y, are indeed linearly independent for all v.
In chapter 4 we shall discuss a generalization of the Bessel equation.
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1.3 Recurrence relations

By writing out the series expansion (1.2.2) we can prove that the Bessel function satisfies
the three term recurrence relation

2?VJ,,(JIU) = Jyp1(z) + L1 (z). (1.3.1)

Another recurrence relation can be found by differentiating (1.2.2) term by term. This
yields
2']‘,,(13) = J,,_l(.’L') - Jy+1(.’l3). (1.3.2)

By (1.2.6) we find for » = 0 the nice relation
Jo(z) = —Ji(x). (1.3.3)

By elimination of J,_; and J,4; from (1.3.1) and (1.3.2) respectively, and by iterating the
resulting formulas we obtain the generalized formulas

zdr

k
(li) (e~ 0(2)) = (~D e Joas(a), (1:3.4

and

k
<£Ed;) (e¥J(2)) = $U_kJu—k($)' (1.3.5)

1.4 A generating function and an orthogonality re-
lation

The generating function for the Bessel function of integer order is

2= = 3 ], (a). (1.4.1)

n=—oo

An important formula that can be obtained from the generating function is an orthogonality
relation due to Hansen and Lommel. Substitute in (1.4.1) ¢! for ¢ and multiply the
resulting identity with (1.4.1) to obtain

1= 3 3 7 () ().

Nn=—00 mM=—00

Equality of coeficients of equal powers of ¢ at both sides yields the Hansen-Lommel or-
thogonality relation

5 i@kt (2) = b (1.42)

k=—co




6 CHAPTER 1
where the Kronecker delta function é,, ., is defined by
{ 0 ifm#n

1 fm=n

for m,n=10,1,2,.... (1.4.3)

6m,n -

1.5 Addition formulas

There are two types of expansions of Bessel functions which are known as addition theo-
rems. The first type, which is due to Graf, is related to the theory of cylindrical waves.
Graf’s addition formula reads

=) Yo (e ) = 3 L. 08

Yy —sr k=—oo

A special case of Graf’s addition formula is Neumann’s addition formula. For v = 0 we
have

Jo (\ﬂy —s7lz)(y — sx)) = i s*Ji(2)Tr(y). (1.5.2)

k=-o00

The second type, which was obtained by Gegenbauer, is more connected with the theory
of spherical waves (in 2v + 2 dimensions). It is

($2 + 4% — 22y cos qS)_%V J, (\/12 + y% — 2zy cos ¢) (1.5.3)
= 2TW) 20 + B)e a2y Do) CLlcos 8,
k=0

where Cf(cos ¢) are the ultraspherical polynomials (see [47]).

1.6 Integrals and an integral representation

Numerous integrals involving Bessel functions have been found. Watson [53] for example
devoted three chapters to this subject. In this thesis we will derive several new generaliza-
tions of integrals involving Bessel functions. In this section we will list the integrals which
we will extend in the next chapters.

The first integral we will derive is an extension of an integral of Weber and Sonine. Their
integral, which is valid for —1 > Re(t) > —Re(a) — 1, reads (see [53] §13.24 (1))

2T(3(a+141))
T(3(a+1-1))

735']0(:1:) dz = (1.6.1)
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A second integral involving a Bessel function is due to Sonine. This integral, which is valid
for Re(a) > —1 and Re(v) > 0 is (see [53] §12.11 (1))

A 1
Jarr(y) = 5}\—_% O/x"“(l — 21, (zy) da. (1.6.2)

Finally we will extend the discontinuous integral of Weber and Schafheitlin (see [53] §13.4
(2)). It is, for Re(a+ f — v+ 1) > 0 and Re(y) > —1,

27 / e~y (az)Jp(be) de (1.6.3)

0
@I (G e+ B -7+ 1) |, ( 3B —a—7+1),5(@+B-7+1) l’_2) b<a
[((a-B+7+)IE+D B+1 @)’
= a® T (Ma+ B —v+1)) F ( sla=B—y+1),a+B—-7+1) a_2) c<b
T —aty+))la+ )™ o+l )

We will also derive a generalization of an integral representation for the Bessel function of
integer order. For J,(z), with n € Z, we have

2r

Jn(@) = 5= / wsinde=ind gy (1.6.4)
0

This integral representation can be derived from the generating function. Substitute in
(1.4.1) t = ", multiply by e™, and integrate both sides from 0 to 27. This yields
(1.6.4).



Chapter 2

Basic Hypergeometric Series

2.1 Introduction

The main objective in this chapter is to introduce the reader into the world of the g¢-
analogue, and to present most of the definitions and formulas that we will need in the
following chapters. We will begin by defining the hypergeometric series and giving some
itportant special cases. Next we will define the basic hypergeometric series which contains
an extra parameter ¢, called the base. Basic hypergeometric series are called g-analogues
(or basic analogues or q-extensions) of hypergeometric series because a hypergeometric
series can be obtained from a basic hypergeometric series as the ¢ 7 1 limit case.

The binomial theorem is the basis of most of the summation formulas for hypergeo-
metric series. Therefore it seems natural to start the derivation of the summation and
transformation formulas for the basic hypergeometric series by introducing a g-analogue
of the binomial thcorem. Then we will use this theorem to derive Heine’s ¢-analogue of
Euler’s transformation formulas and summation formulas that are g-analogues of those for
hypergecometric series due to Chu and Vandermonde, Gauss, Pfaff and Saalschiitz.

We will also introduce g-analogues of the exponential and the gamma functions, as well
as the concept of g-differentiation and ¢-integration. Many additional identities are given
in appendix A.

2.2 Hypergeometric Series

Iu 1812 it was Gauss [13] who considered the infinite series

ab ala+ 1)b(b+1) , ala+1)(a+2)b(b+1)(b+2) ,
e T er ) T T T2 g e et Z o

as a function of «, b, ¢, z where it is assumed that ¢ # 0,—1,~2,..., so that no zero factors
appear in the denominators of the terms of the series. In view of Gauss’ paper, this series

9




10 CHAPTER 2

is frequently called Gauss’ series. Since the special case a = 1,b = ¢ yields the geometric
series

142+224224....

Gauss’ series is also called the (ordinary) hypergeometric series or the Gauss’ hypergeo-
metric series. An extension of Gauss’ series is the generalized hypergeometric series (or
generalized hypergeometric function). It has a series representation

)
2
n=0

with ¢nq1/c, a rational function of n. The ratio ¢a,41/c. can be factored, and is usually
written as

Cnt1 (n+a) --(n+a)z
L . 2.2.1
Cn (m+b)--(n+b)n+1) ( )
To solve this equation introduce the shifted factorial
1 ifn=0,
(a), & (2.2.2)
ala+1)---(a+n—-1) ifn=12,....
Then if ¢p = 1, equation (2.2.1) can be solved for ¢, as
= (o) ()2 (2:2.3)

= by)m e (Be)an!

The definition of the generalized hypergeometric series , F; now reads

_ ai,...,d, def N (@1)n - (@r)n2"®
Fy=,F, ( ) Z —_—(bl)n- NARTR (2.2.4)

bi,... by =

Gauss’ hypergeometric series is the special case 7 = 2,5 = 1 of (2.2.4). Sometimes the
notation , Fy(ay,...,a,;by,...,bs;2) is used. Notice the “ ; ” that separates the parameters
in the numerator, the parameters in the denominator and the argument z. In (2.2.3) and
(2.2.4) it is assumed that the parameters by, ..., b, are such that the denominators of the
terms of the series are never zero. Since

(-m), =0, fn=m+1,m+2,...,

the generalized hypergeometric series terminates if one of its numerator parameters is zero
or a negative integer. By the ratio test of d’Alembert the , F, series converges absolutely
for all z if r < s, and for |z| < 1 if r = s 4+ 1. By an extension of the ratio test (see [6]) it
converges absolutely for [z| = 1if r = s+ 1 and Re[b; + ...+ b; — (a1 + ...+ a,)] > 0. If
r>s+1and z#0orr=s+1and |z| > 1, then this series diverges, unless it terminates.
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Some important functions which can be expressed by means of generalized hypergeometric
series are the binomial theorem

(I—Z)_a =1F0( i

z) , 2] < 1, (2.2.5)

the exponential function

Cz=oF()< _

z) , (2.2.6)

and the Bessel function

(z/2) - z? ,
J(z) = =——=oF -—. 2.2.
(2) T+ '\ v+l | 4 (2:2.7)
When a “ — 7 is put in a hypergeometric series it is there to indicate the absence of either

numerator (when r = 0) or denominator (when s = 0) parameters.

In his paper Gauss proved the summation formula

JF ( a,b 1) Fe)l'(c—a-8)

¢ - I'(c —a)[(c—b)’ Re(c—a—1b)>0. (2.2.8)

Before Gauss, Chu [7] in 1303 and Vandermonde [51] in 1772 had proved the terminating
case a = —n of (2.2.8)

2Fl(_"’b‘l)=(C_b)",n=0,1,..., (2.2.9)

c

which is now called the Chu-Vandermonde formula. Two other important results are due
to Euler [9]. In 1748 he proved the transformation formulas

2F1( a5 z) =(1 —Z)_a2F1< a,c—b

c c z—1

z > (2.2.10)

where 2| < 1,]|2/(2 —1)] < 1 and

LF ( a,cb IZ) :(I—Z)C_a_b2F1< C—a,C—b

c

z) , |z] < L. (2.2.11)
Note that (2.2.11) is an iterated form of (2.2.10).

The first important result for ,F, with p > 2,4 > 1 is probably Pfaff’s sum. This result
from 1797 (see [36]) reads

= =0,1,.... 2.2.1-
(Onlc—a—b) n=0,1, (2.2.12)

P —n,a,b 1 (¢ —a)u(c—b),
32\ a4+ b4+1—c—n
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This summation formula was rediscovered by Saalschiitz [41] in 1890 and is usually called
Saalschiitz formula or the Pfaff-Saalschiitz formula. Note that if n — oo we obtain Gauss’
summation formula (2.2.8).

Another important formula for the generalized hypergeometric series , F, with p > 2,4 > 1
is Whipple’s transformation formula, which he discovered in 1926 (see [54]). It is

P —n,a,b,c 1 = (e — a)n(f — @)n I —n,a,d —b,d—c
e dye, f - (€)n()n Bl dl+a—e—nlta—f—n

wherea +b+c+1=d+e+ f+n

1) ,
(2.2.13)

Quadratic transformations for hypergeometric series are very old, going back to Gauss and
Kummer. They are usually given in books as consequences of the differential equation for
the hypergeometric series. One fundamental formula is (see [8])

— 1
2 Fy ( ab 3’32) =(1 _x)~2a2F1 ( a,a - b+ 2

(1'_42)2) . (2.2.14)

In the special case @ = —n, with n a non-negative integer, we can read the sum on the
right hand side backwards to obtain
-n,b 2\ a(20), —n,n+2b (1—=z)?

In the next section we will derive g-analogues of these formulas.

2.3 Basic Hypergeometric Series

2.3.1 The history

While Euler, Gauss and Riemann and many other great mathematicians wrote important
papers on hypergeometric series, the development of basic hypergeometric series was much
slower. Euler and Gauss did important work on basic hypergeometric series, but most of
Gauss’ work was unpublished until after his death and Euler’s work was more influential
on the development of number theory and elliptic functions. The study of basic hyperge-
ometric series essentially started in 1748 when Euler considered the infinite product

1
(1-g)(1—=¢*)(1—¢%--

as a generating function for p(n), the number of partitions of a positive integer n into
positive integers. But it was not until about a hundred years later that the subject acquired




BASIC HYPERGEOMETRIC SERIES 13

an independent status. It was Heine who used the simple fact that
. 1-q°
lim =
=1 1—g¢q

a, (2.3.1)

to develop a systematic theory of bastc hypergeometric series parallel to the theory of
Gauss’ 5 F7 hypergeometric series. The number 11—‘_9—'1— is often called the basic number of a.
Apart from some work by J. Thomae and L.J. Rogers, there was not payed much attention
to the subject until in the beginning of this century F.H. Jackson started to develop the
theory of basic hypergeometric series in a systematic way. He studied ¢-differentiation and
g-integration and derived g-analogues of many hypergeometric summation and transforma-
tion formulas. W.N. Bailey derived many important results on basic hypergeometric series
during the 1930’s and 1940’s. The interest in basic hypergeometric series kept growing
during the 1950’s and 1960’s, witness the fact that D.B. Sears, L. Carlitz , W. Hahn and
L.J. Slater spent a lot of their research in developping the theory of the basic hypergeo-
metric series.

But it was not until G.E. Andrews and R. Askey started to collaborate in the mid
1970’s that basic hypergeometric series became the active field of research as it is today.
Since then many researchers have produced a substantial amount of interesting work on
basic hypergeometric series. In fact the interest in this field has grown so much over the
last fifteen years, that one already says that these mathematicians are affected by the
g-disease.

An extensive list of publications on ¢-series of the authors mentioned above is included
in [12].

2.3.2 Definitions and notations

The basic hypergeometric series has a series representation of the form

> e,

n=0
with ¢,41/¢, a rational function of ¢™ for a fixed parameter g, called the base, which usually
satisfies |g| < 1 or 0 < ¢ < 1. Here and everywhere else in this thesis it is assumed that

0 < ¢ < 1 unless stated otherwise. The ratio c¢,41/¢c, can be factored, and is usually
written as

Cn (1 =b1g")--- (1 = byq™)(1 — gm*1)

The factor (—¢™)'**~" will be explained later. To solve this equation introduce the
g-shifted factorial

1 — ") e (1 — apq™
vt (1—ayg") - (1 — a.g") (—g") . (2.3.2)

! ifn=0,
(a59) < (2.33)
(1—a)(l—aq)- (1l —-ag™!) ifn=12....
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Then if ¢ = 1, equation (2.3.2) can be solved for ¢, as

_(a59)n (ar; @)n 2" 1451
(b1 @n e (b5 @) (45D {( " ()} : (2.3.4)

The definition of the basic hypergeometric series ,®, now reads

lll,...,a.,-
rq)szrq)s(

de al, (an‘I)n ((—'l)n (;))1+s_rzn
o o) 5 q

=0 (by; q)n - (bs;q)n (@ On (2.3.5)

In (2.3.4) and (2.3.5) it is assumed that the parameters by, ..., b, are such that the denom-
inators of the terms of the series are never zero. Since

(™ q)n=0, fn=m+1,m+2,...,

the basic hypergeometric series terminates if one of its numerator parameters is of the form
¢~ with m = 0,1,2,.... The ,®, series converges absolutely for all z if » < s and for
lz| < 1if r = s+ 1. It diverges for z # 0 if r > s + 1, unless it terminates.

In order to see that the basic hypergeometric series (2.3.5) is an extension of the generalized
hypergeometric series (2.2.4), replace in (2.3.5) a; by ¢* and b; by ¢% fori =1,...,r and
7 =1,...,s and replace z by (¢ — 1)**~"2. Then take the hmlt ¢ 71 and use (2 3.1) to
obtam (2 2 4).

Sometimes, when the parameters of the basic hypergeometric series (2.3.5) satisfy certain
relations, we give the ,®, series a special name. We call an ,41®, series balanced (or
Saalschiitzian) if byby - - - b, = garaz - - - ar41 and z = q. An 1,1 ®, series is called well-poised
if its paramaters satisfy the relations

qa; = a2b1 = a362 =...= a,+1br.

Balanced and well-poised basic hypergeometric series frequently appear in this thesis. They
usually have nicer properties than other ,®, series.

ny ) 1+s—7
Now we will explain the factor {(—1)”q(2)} . Observe that the basic hypergeometric
series (2.3.5) has the property that if we replace z by z/a, and let a, — oo, then the
resulting series is again of the form (2.3.5) with r replaced by r — 1. Because this is not the

) 17

case for the ,®, series defined without the factors {(—1)"q(2)} in the books of Bailey
[4] and Slater [43] and since we want to handle such limit transitions, we have chosen to
use the series defined in (2.3.5). There is no loss in generality, since the Bailey and Slater
series can be obtained from the r = s + 1 case of (2.3.5) by choosing s sufficiently large
and setting some of the parameters equal to zero.
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For negative subscripts the g-shifted factorial is defined by

) def 1 _ 1 .
O = a0 —ag 7). (0 —aq) (g "= 0P B89
We also define -
de n
(@;9) < TI(1 - ag™). (2.3.7)

In this thesis we will often use identities involving g-shifted factorials. Most of them can
be checked easily by writing out the factors and rearranging them in a different order. We
will give an example:

(a7'¢" ™ q) = (1-a7¢'" ")(1 o™l (1 —a™)
= a ]ql n(aq l)a -1 2-—-n "_2—1)---a_1(a—1)

= (a;9)n(—a)"g"(3),

This identity and other similar identities that will be used in this thesis are listed in
appendix A. Since products of g-shifted factorials occur very often, we shall use the more
compact notation

(a1,@2,- -, Qm; ¢)n def (a1; )n(a2; @n - - (@m; @)n- (2.3.8)

More properties of the basic hypergeometric series can be found in the book by G. Gasper
and M. Rahman [12]. We shall frequently refer to this book because it contains the vast
majority of the known formulas and their proofs of basic hypergeometric series. It also
contains an extensive reference list and a lot of exercises are included after each chapter.
This makes it both very useful for those who want to get acquainted with the g-theory and
an outstanding entrypoint for the vast amount of references.

2.3.3 Summation and transformation formulas

As already said in the introduction, the binomial theorem is the basis of most of the
summation and transformation formulas for hypergeometric series. Therefore it scems
natural to start this section with the g-extension of (2.2.5) i.e. the ¢-binomial theorem

1‘I’o(

which was derived by Cauchy and IHeine and by other mathematicians. If we replace in
(2.3.9) a by ¢* and let ¢ T | we obtain the binomial theorem (2.2.5)

az; oo a ,
ot (7o) (-

& (@;¢)n o az;q)oo o
) 3 q’q) = ((Z_’qq)) 2l < 1, (2.2.9)
n=0 b n b o0

z) =(l-2z)" (2.3.10)
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Like most of the formulas in this chapter, we will not give a proof of (2.3.9). An elegant
proof can be found in the book by G. Gasper and M. Rahman [12]. If we set a = 0 in
(2.3.9) we obtain

n

eq(2) défloo( E q,z) =y = 2 < 1, (2.3.11)

=G0 (%9

which can be seen as a g-analogue of the exponential function (2.2.6) since
ligleq((l —q)z) =€ (2.3.12)
q

Another important g-analogue of the exponential function can be obtained from the
g-binomial theorem by setting z equal to —z/a in (2.3.9) and letting « — co. We find

= g(3)
def ) = ——q——z" = (—2z: 3.
EQ(Z) - 0¢0 ( _ {qi ) n§=0: (q’ q)n ( ’q)(XH (2 3 13)

with the limit relation
ligl E,((1 —q)z) =¢". (2.3.14)
q

Observe that e (z)E;(—z) = 1.
A terminating case of the ¢-binomial theorem is

(=2)k¢(®)
o (6 Ok(g; ¢)n-

(2, 9)n

(459)n

It can be proved by using the identity (A.9) and the g-binomial theorem (2.3.9). Because
the sum (2.3.15) is finite, z can be any complex number.

(2.3.15)

uM:

The g-binomial theorem can be used to prove Heine’s g-analogue of Gauss’ summation
formula (2.2.8). Heine’s summation formula reads

a,b| ¢\ (c/a,e/bjq)eo ¢
2@1 ( ¢ q, ab) = (c,c/ab;q)w N | I < 1. (2316)

As an example of the importance of the g-binomial theorem in deriving summation and
transformation formulas we will give the proof of (2.3.16).

Proof.

€Y _ (5390 X (49)n(cq"1 )0, € 1
! ) B (C'q)ooE)(q;q)n(bq";q)oo(ab)
(ba ‘1)00 Z vq)n Z (C/b Q)k )

(60)o0 25 (43 9)n ab” =5 (0:9)%
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(63 9)oo <= (/65 @)k e < (a;q)n(g’c)n
(oo f=o (G = (459)n ab

(65 9)oo < (/b )k 1 (c0*/b;9)oo

(Do iz GOk (cg¥/ab; q)o
(b,c/biq)oo <~ (c/abi @iy _ (e/ar¢/bq)o

(e;¢/ab; Qo t=y (459)k (¢;¢/ab;q)oe

Here the ¢g-binomial theorem is used three times. a

The terminating case a = ¢~ of (2.3.16) becomes

g0 | "\ _ (e/biq)n
—_— ) = = 37
29, ( c ‘q, b ) (C;q)n (2 3 )
By changing the order of summation it follows from (2.3.17) that
b (c/b; )n
o, 7 = 31
2 1( c %‘1) (& @)n (2.3.18)

Both (2.3.17) and (2.3.18) are g-analogues of Chu-Vandermonde’s formula (2.2.9).

In 1847 Heine [16] derived the following transformation formula

'y ( a,b q,z) _ (b,az;q)mzq)1 ( z,¢/b

¢ (¢,2,¢)e0 az

q,b> , (2.3.19)

where 2| < 1 and |b| < 1. The proof is similar of that of (2.3.16). Note that the
argument z has moved into the parameters and that the parameter b has become the new
argument. Applying (2.3.19) twice to the right hand side, we find a g-analogue of Euler’s
transformation formula (2.2.11)

" ( a,b q’z) _ (abz/c;q)mz(bl( c/a,c/b ‘%“_bz), (2.3.20)

¢ CHI c c

where |z| < 1 and [abz/c| < 1.

Besides (2.3.19) and (2.3.20) we will also use in the next chapters some limit cases, which
we shall list here. First replace z by z/a in (2.3.19) and let a — oo to obtain

b .
a, ( : W) _ (59 ¢1< ¢/b,0

(€ 9o * z
Then let b — 0 in (2.3.21) to obtain an important symmetry relation for the ;®,

q,b) 18] < 1. (2.3.21)

(c;q)wlq)l ( ?: "LZ) = (Z;q)oo1¢l ( g Q,C) . (2322)
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A straightforward proof of (2.3.22) will be given in chapter 3.

Another important relation follows from (2.3.20). Replace in (2.3.20) z by z/ab and let
a — oo and b — co. We obtain

0<I’1( .

A g-analogue of (2.2.10), with a = —n (n € N), was found by Jackson [23]. His transfor-
mation formula is

24,1( q ",

0,0
C

0:2) = (efeia)osts

a, z) |z/c| < 1. (2.3.23)

q7"¢/b,0

¢ ¢, cq/bz

q, 2> = (cq/bz; q)n(—l)"(i—(z])"q'(g)s@z (

q,q) . (2:3.24)

A g-analogue of the Pfaff-Saalschiitz summation formula (2.2.12) was first discovered by
Jackson [27] in 1910. He derived the following sum of a terminating balanced 3®; series:

¢ a,b _ (efac/big)n
3®2 ( c, abclgt— q’q) - (C, c/ab;q)n ,n=0,1,.... (2325)

A g-analogue of Whipple’s transformation formula (2.2.13) was first derived by Sears [42]
in 1951, and hence is called Sears’ transformation formula. It reads:

) _ (/0 f[a@)n 1 g ( g™, a,dfb,d/c

q_n7a’ b7c
LR ( dye, f 9,9 (e, f:0)m d,aq'"/e,aq'" "/ f q, q) ,  (2.3.26)

where abc = defq™ 1.

The last basic transformation formula we shall consider is a g-extension of the quadratic
transformation (2.2.15). It is (see [2])

—n’ b
Zq)l ( qtll—nb—]

Note that this relation transforms a well-poised ;®; into a balanced 4®3. If we replace

bby ¢* and let ¢ T 1 we find (2.2.15).

mzq) 2" (% g)a (q-ﬂ,qnbz,b%w,b%x—l
——1 P,

D) T i (bq)n bq*, —bg, —b

q,q) . (2327)

2.3.4 The ¢-Gamma function

The ¢-gamma function is defined by

T,(z) %".(1 )T 0<g<, (2.3.28)
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and was introduced by Thomae [48]. When = = n + 1 with n a nonnegative integer, this
definition reduces to

Tn+ 1) =11+ q)(1+g+4¢")...(01+g+...+¢" "),
which clearly tends to n! =T'(n 4+ 1) as ¢ T 1. To show that

imTDy(z) = I'(z) (2.3.29)

q11

for complex z, we refer to [12] where a simple proof due to Wm. Gosper is given. For a
rigorous justification of that proof the reader is referred to Koornwinder [33].

2.3.5 g¢-Differentiation and ¢-integration

A g-extension of the derivative operator % was introduced by Jackson [26]. The g¢-differeuce
operator D, is defined by

S = J9%) o 4,
D, f(z) ¥ (1=g)z (2.3.30)
£(0) itz =0,
and
Dy f(z) = Dy (D37 f(=), (2.3.31)

where the function f is (n times) differentiable in a neighbourhood of z = 0. By I’'Hépital’s
rule it is easy to see that '

Hﬁl D, f(z) = f'(z). (2.3.32)
q
As an example we will show how D, acts on a power of z:

n__ .n,n 1 —qg"
qunzz °9 _ g
(I-q)z 1—g¢

which is the basic number of n times z"!.

xn—l,

Two easy consequences of definition (2.3.30) are
c(Dqgf)(ca) = D, f(cx), (2.3.33)
and the ¢g-analogue of the product rule for differentiation

Dy[f(z)g(z)] = [flqz)Dyg(z) + g(z)D, f(z) = (2.3.34)
f(z)Dqg(2) + g(€) Dy f(z) — 2(1 — ) Do f(x) Dyg().

ll



20 CHAPTER 2

It is also possible to define a g-integral. J. Thomae [48] and F.H. Jackson [28] introduced

] J(2) dgt = (1~ q) zf(q )" = 3 (@) — ¢, (2:3.35)

n=0

Again as an example we show how this g-integral acts on a power of z. Choose a > —1,
then

1
o e 1—
[t == D@ = (1= 0 D@ = =
A n=0

n=0

which tends to 1/(a+1) if ¢ T 1.

Jackson gave also a more general definition than (2.3.35):

/b f(t)d fb F(t) dyt — / £(t) dyt, (2.3.36)
a 0
where

/ f()dyt = a1 — ) S Flag™)q (2.3.37)

n=0

If we replace a by ¢ in (2.3.37), then shift the sum on the right hand side and finally let
k — oo we obtain a g-integral defined on (0, 00)

/f(t dyt = (1 - q) _Z_: FCRLE (2.3.38)

For suitably restricted functions f it can be shown that

hm/f dt_/f 1) di. (2.3.39)

A similar limit holds for (2.3.37). Although g-integrals are in fact sums, the g-integral
notation is quite useful in symplifying various formulas and, of course, necessary if we
want to take the limit ¢ T 1.

2.3.6 The Askey-Wilson integral

An important extension of the Beta integral was found by Askey and Wilson [3]. Since it has
five degrees of freedom, four free parameters and the parameter ¢ from basic hypergeometric
functions, it has enough flexability to be useful in many situations. The integral is

]h(cos ¢;l,—1,q%,—q%;q)d _ 27 (abed; ¢)oo

= 3.4
h(cos & a,b,¢,d;q) (¢, ab, ac, ad, be, bd, od; )" (23.40)
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where
max(|al, [b],]c|, |d], |q]) < 1, (2.3.41)

and
h(cos ¢; a, as, . .., ai; q) = h(cos ¢; ar; ¢)h(cos ¢; az; q) - - - h(cos ¢; ax; ),

h(cos ¢;a;q) = H(l ~2aq" cos ¢ 4 a*¢™) = (ae'®, ae™; ¢) o (2.3.42)

n=0

Askey and Wilson deduced (2.3.40) from a contour integral. Simpler proofs where found
by Ismail and Stanton [19] and Rahman [37]. In [12] the proof of Rahman is given and
also the limit relation from (2.3.40) to the Beta integral is discussed. Gasper and Rahman
also considered the case when the absolute value of one of the parameters is greater than
one. We shall however only need the Askey-Wilson integral with the restrictions (2.3.41)
and will therefore not discuss the other cases.
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Chapter 3

The Hahn-Exton g-Bessel function

3.1 Jackson’s g-analogue of the Bessel function

At the beginning of the century F.H. Jackson, at the time chaplain in the British Royal
Navy, introduced in a series of papers basic analogues of the Bessel function (see [20]-[25]).
In our modern notation the most general form reads

00 (_l)r/\n+2rm[n+‘2'r](1 _ q)n+2'r

def
Jra(, \) 3.1.1)
() 2:; (65 D@ Drtr (4 De (G Drtr” (
where [n] = 11__?: and n is a non-negative integer. It is easy to verify that (3.1.1) tends to

the Bessel function of integer order if ¢ 7 1. We have the limit relation

lim Jp(z, A) = Ju(Az),
im Jpy(x, ) = Ju(Az)
where J,(z) is the Bessel function (1.2.2) with v =n € N.

Notice that (3.1.1) has two variables, z and A, and is thus more general than one would
expect it to be. This fact is probably explained as follows. It is likely that Jackson was
not satisfied with the fact that his g-analogue has no longer a series expansion in (integer)
powers of z as it has in the ¢ = 1 case, but in “basic” powers of z. Now that he had
introduced an extra parameter A, (3.1.1) still has a series representation in powers of one
of its variables, i.e. A. The fact that Jackson has chosen the powers of = to be basic
numbers, is understandable if one looks at the derivative. One can easily verify that

d

E{M@A&:—UM&AL
which tends for A = 1 to (1.3.3) if ¢ T 1. This relation will not hold anymore if we would
replace "% by 2"+ Jackson found a lot of results for these functions including a

recurrence relation, a differential equation and a generating function.

25
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The concept of a series expansion in basic powers of z turned out to be not very useful.
The introduction of the basic difference operator (2.3.30) however, was a big step forward.
Now Jackson could define his g-analogue of the Bessel function with only one variable by

def o0 (_l)rwn+2r(l _ q)'n+2'r
Jolz;q) = ,
SR P RPN et N e N ey
with n = 0,1,..., and he could find an even nicer g-analogue of {1.3.3), i.e.
Dy Jo(; ) = —Ji(z; 9)-

Jackson found many results for this g-Bessel function, including recurrence relations, a
differential equation and a generating function. A lot of his results could of course be
obtained by the results for (3.1.1) by replacing « and A by ! and z respectively.

(3.1.2)

Jackson also introduced a second g-analogue of the Bessel function with only one vari-
able. If we replace in (3.1.2) q¢ by ¢7! and use (A.4) we find

« 2 (4 Dr(4; Drtr (— 6 Or (=45 Qe

There is however an easy relation between J,(z;¢q) and J,(z;¢), which we will give later
when a more modern definition of Jackson’s ¢-Bessel functions is given.

(__l)rw2r+nq272+2nr(1 _ q)n+2r

def q"zjn(a:; q). (3.1.3)

After Jackson’s sequence of papers the subject of g-Bessel functions remained untouched
nearly half a century until W. Hahn [14] started to investigate a more general g-analogue

of Jackson’s g-Bessel functions. He defined for complex v (in the modern notation of
M.E.H. Ismail)

v+1. v 9
def \g yq)oo [T 0,0 T
J,El)(x7q) -—-j (—(‘# <§) 2(1)1 ( q,,+1 Q7_Z) ) (314)
" J(z;q) Y CRT I (f)u & . _gta? (5.1.5)
v 4) = (q; q)oo 2 0¥1 qv+1 q, 4 . 1.

Notice that (3.1.4) converges only if || < 2. Hahn also proved a relation between the two
q-Bessel functions (3.1.4) and (3.1.5). It reads

IO a3 ) = (=24 @)oo D(239), [2] < 2. (3.16)
It can be proved by using the transformation formula (2.3.23).
Jackson’s g-Bessel functions (3.1.2) and (3.1.3) do not differ very much from the func-

tions that Hahn defined. If we replace in (3.1.4) v by n and replace ¢ by ¢* we find with
(A.6), (A.13) and (A.16)

00 —_1}¢ z 2k+n
J’(‘I)(z;qz) =y (=D*(=/2)

26 (6 D@ Qs k(=4 Dr(~ 3 Ok’
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so that the relation
JP@2(1 = 0);¢%) = Ju(z39)
holds. A similar relation holds between (3.1.5) and (3.1.3). Although Hahn introduced

(3.1.4) and (3.1.5) these functions are now known as the Jackson g-Bessel functions. Hahn
derived a recurrence relation and a g¢-difference equation for the J(! and J(® and some
other results that are mostly generalizations of Jackson’s results, where v = n € N.

After Hahn’s paper again the subject remained untouched for a few decades until
M.E.H. Ismail restarted the investigation of the Jackson ¢-Bessel functions in the 1980’s
([17], {18]). Ismail found a basic analogue of the Lommel polynomials, could prove several
theorems about the zeros of the J{? and derived some results on modified g-Bessel func-
tions. A few years later M. Rahman started his investigation on the subject of ¢-Bessel
functions. He derived an addition formula, found some integral representations and com-
puted some infinite integrals for the functions (3.1.4) and (3.1.5) (see [38], [39] and [40]).
Recently H.T. Koelink [29] found two g-analogues of the Hansen-Lommel orthogonality
relations for the Jackson ¢-Bessel functions.

3.2 The Hahn-Exton g-Bessel function

3.2.1 Introduction

In 1953 W. Hahn [15] wrotc a paper on a certain second order g¢-difference equation. He
found this equation by considering the equations of motion of a swinging rope with infinitly
many masspoints in a homogeneous gravitation field. The power series solution V(z) is of
the form

) (;) o

Vie) = ; (g; q) (g:9)

Hahn observed that if we replace in (3.2.1) z by z—(l—ﬂ)— and let ¢ T 1 that we obtain the
Bessel function of order zero. The function (3.2.1) is therefore a g-extension of the Bessel
function of order zero. However it differs from the g-analogues that Jackson investigated.
Hahn neither mentioned this fact nor wrote more papers about this ¢-Bessel function.

(3.2.1)

In 1978 H. Exton [10] considered a basic analogue of the Bessel-Clifford equation. The
power series solution Cy(z; g) of that g-difference equation is of the form

(6°H; @)oo & (=1)7q(ar(1 — g)2r+e
(G D = (q"’rl ) (g9).

Calz;9) = (3.2.2)

Exton observed that if we replace in (3.2.2) z by %mz and let ¢ T 1 we obtain (%x) " times
the Bessel function of order a. So z%C,(x;q) is a ¢g-extension of the Bessel function of
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order a (1.2.2). The case o = 0 leads us to the ¢-Bessel function that Hahn investigated
in [15]. Exton found a recurrence formula, a generating function and derived a ¢g-analogue
of the Fourier-Bessel orthogonality relations:

1
/w“Ca(uiqz;q)Ca(p,-qm;q)dq:v =0, i#£3 a>-—1, (3.2.3)
0

where pq, po, ... are the roots of the equation
Ca(p;9) = 0.

Later Exton considered in his book [11] a slightly different form of a g-Bessel analogue
than (3.2.2). Again he obtained his g-analogue as a solution of a basic Sturm-Liouville
equation. He derived a recurrence relation, a generating function, some mixed relations
and a g-analogue of the Fourier-Bessel orthogonality relations, similar to (3.2.3).

In the rest of this thesis we will investigate a slightly modified form of the ¢-Bessel
functions that Exton (in full) and Hahn (in a special case) investigated. Some results in
the next subsections are due to Exton, but most of them are new. The next chapters will
give new results for this, what we have called, Hahn-Ezxton q-Bessel function.

3.2.2 Definition and some elementary relations

We define the Hahn-Exton ¢-Bessel function by

oyl @ & (15 (Mg, o (0
Jlaia) = ( g( k(G (69w e ( ¢

This function is well-defined for z,v € C (z = 0 being excepted if Re(v) < 0 or if Re(v) =
and v # 0) since the factor (¢“*!; ¢), removes the zeros that will occur in the denominators
of the terms of the series (3.2.4) when v = —1,—2,.... It is easy to see that the Hahn-
Exton g¢-Bessel function tends to the ordinary Bessel function when ¢ T 1. With (2.3.28)
and (2.3.29) we have the (formal) limit relation

q, zzq) . (3.2.4)

12%1 J(z(1 — q)/2;q) = J.(z). (3.2.5)

In order to find the classical analogue corresponding to a g-formula, we will sometimes
replace the base ¢ by ¢%, to make the notations easier. In that case we will use the limit
relation

13{1{1 J(z(1 - q); ¢*) = J.(z). (3.2.6)

For a rigorous proof of these limit relations see theorem B.1.
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We will now consider an estimate and a symmetry relation for the ;®; basic hypergeo-
metric series, which will lead us to some important properties of the Hahn-Exton ¢-Bessel

function.

Theorem 3.1. The series

q,z) = i (_1)kq(2)(qu;q)°°zk (3.2.7)

0
W; q)oo1 P (
(Wi aea®r{ =0 (45D

defines an entire analytic function in z,w, which is also symmetric in z, w:

0
(waq)oolq)l ( w

0
q,z) = (2;¢)o01®1 ( ; }q,w)A (3.2.8)
Both sides can be majorized by

(—l2l; @)oo (= wl; ¢)oo- (3.2.9)

Proof. Substitute for (wg*; ¢)e in (3.2.7) the (@ series given by (2.3.13) to obtain

m

X (= k(;)z — m(';)wm
(w;q)ool'bl(glq,z)zzz( 1)*qlz) 2k (—1)mg k

iom=o (GO (4 9)m
The summand of the double series can be majorized by

dDz|* g o
(G (6Dm

Thus the double sum converges absolutely, uniformly for z,w on compacta, and is sym-
metric in z,w. Using again (2.3.13) it proves that (3.2.7) can be majorized by

(=12}, @)oo =[w]; §)oo-
a

Corollary 1. The Hahn-Exton g¢-Bessel function (3.2.4) is an analytic function in z for
all values of z (z = 0 being excepted if ¥ ¢ N) and it is an analytic function in v for all
values of v.

Corollary 2. If we substitute w = ¢ and z = ¢®*! in (3.2.8) we can obtain a symmetry
relation for the Hahn-Exton g-Bessel function from the resulting formula. It is

Jala%?;9) = Js(g3% q)- (3.2.10)
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If v = n € Z we can obtain a relation between J_, and J,,. In order to derive that relation,
we will first give a formula connecting two ;@1 basic hypergeometric series of a special

form.

Theorem 3.2. For n € Z the basic hypergeometric series 1®, satisfies the relation

-n 0 n_in(n-1) n n 0
(4" 9)o01®1 ( i q,Z) = (=1)"gz (gt ;Q)oolq)l( e

q, q"z) . (8.2.11)

Proof. We assume that n > 0. Since

1-n.
(( e ?):o = (¢ ™* Qe =0ifk<n—1,
?

the first n terms of the series vanish, so the summation starts with k = n. We obtain with

(A.13)

1-n, 0 & (DR (R )
(¢ aq)oolq)l( ¢ ‘172) = k;ﬂ (q;‘I)k
3 00 1)n+k (n+k)(q1+k q) zn+k
- kz=0 (qu)lc+n

k ( ) k nk
1+n, n e —n(n—l) ( l) z
yq
(1 E a5 k(g ‘I)k

() (g g) 8, ( q,q"z) |

The case n < 0 follows from the case n > 0 of (3.2.11) by changing z into z¢™". o

= (q

0
ql +n

Corollary. For n € Z the Hahn-Exton ¢-Bessel function satisfies the relation
J_n(z;9) = (=1)"q*" Ju(2g5"; ). (3.2.12)
For ¢ 71 this relation tends to (1.2.6).

Remark 1. Because of (3.2.11), the behaviour of the two equal sides of (3.2.8) as |w| — oo
drastically improves when w runs over the values ¢ ™, n = 1,2,.... For such w we have,

using (3.2.9)
9 Z) q,q”Z)
¢ (~1214%; D)ool =4 D)o

l(q1 " ) lq)l ( qlo_n
g 2" (=215 )ool — 5 0)oo- (3.2.13)

n (%).n n 0
’(—1) ¢ 2" (¢ @)1 @1 ( gt

IA

IA
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Remark 2. In terms of the Hahn-Exton ¢-Bessel function J,(z;q) the estimates (3.2.9)
and (3.2.13) can be rewritten as

(=4ql]* @)oo (=5 D)oo 2"

ifn>0,
(45 9)o0 =
|Jn(z; )| < , (3.2.14)
(_(lel (’q)o;(_qv q)oo le—nq%n(n—l) ifn <0.
q,9)0

The estimates (3.2.14) play an important role in the next chapters where we frequently
change the order of summation in double and triple sums.

3.2.3 Recurrence and difference-recurrence relations

Theorem 3.3. The Hahn-Exton q-Bessel function satisfies the three term recurrence
relation:

(1—¢" +2%)J(z;9) = z {Joo1(z;59) + Josa(z;9)} - (3.2.15)

Proof. It is possible to prove this theorem by writing out the series expansions of J,,, J,_;
and J,41, but one can also use the contiguous relations for the basic hypergeometric series
(see [45]). We will use the first method. Starting with the right hand side we have

z{Jo-1(2;9) + Jora (25 9)}
_ (€50)0 & (—D)FqU )22 (42 ), & (= 1)) g2heees
(6D iz (459)K(g )k (6D =0 (@5 0)k(g; 0
_ @50 b 5 [(959)e (%) (@ 9) ¢ 1 )kg2ht
(@0 §(<q;q)m @@ @ @@ i)

T i ((‘I"“;q)oo - (9w D¢ ) (=1)Fa?+v,

BT S\ @GDe (@@ (60w (@5 0)k(a )

Now since
k41 k+1 k

(1= ¢)q(3) — (1 = ¢*)g®) = (1 — ¢")q("T) = (1 = ¢*4)(1 = ¢¥)g®),

we have

z{Jo1(z;9) + Lo (259)} = (40 T+

| - o
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(" 0)oo i ( q(k“)(l —q¥) (:)(1 —¢“tF)(1 - ‘Ik)) (=1 )k a2+
(

* 69w =\ @ ousae (@ 50kg ok
_ (] 3 U ,q)oo Z 1)kq(k+1) 2k+v (q"‘“,q) (_1)k—1q(;‘)$2k+u
B (qu (@@ (@D i (@5 Dr-1(g59)k

= (1 —q" +2%)J(z5q).
a
The recurrence relation (3.2.15) tends to (1.3.1) if we replace z by 3z(1 —¢) and let ¢ T 1.

By using the basic difference operator (2.3.30) we can derive a g-analogue of the recurrence
relation (1.3.2).

Theorem 3.4. The Hahn-Exton q-Bessel function satisfies the mixed relation

(1 = @)Dy (259) = ¢ {Jcr(2qF19) = Joaa(wgdia) }- (3.2.16)

Proof. Using the fact that 1 — ¢?** = ¢*(1 — ¢***) + 1 — ¢* we obtain
e(1 —q)DgJu(z59) = Ju(m3q) — Ju(2g;9)
(qu+l;q)oo:cu o (_l)kq(";‘)xﬂc(l . q2k+u)
(6D iTo ¢+ @)r(g5 9)x

(qu;q)ooxu ( l)kq( l)xzk k
(G0 izo (¢°9)k(@ D

(¢"*%q “'22 (" Ve 2k g
(g; Q)oo ”“, 9)x(g; q):c
L(1—y 1 1
= 2g 0 {J,_i(2¢%;q) — T (za?;q)} -
Here we have shifted the index of the second sum. 0

Using relations (2.3.33) and (2.3.32) we can easily see that (3.2.16) tends to (1.3.2) if we
replace z by $z(1 —¢) and let ¢ T 1.

Again by using the basic difference operator (2.3.30) we can derive some mixed relations
for the Hahn-Exton g-Bessel function. This time however, we will use the operator Dq%,

which we define, for z # 0, analogous to (2.3.30), by

_ @)= flzh),

gy (3.2.17)
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Using (3.2.17) and the fact that 1 — gktr =1 — q%” + q%"(l — ¢*), we obtain
(1= ¢4)D 4 J(2:0) = Ju(x39) = Ju(2g¥;q)
@0, 2 (DR )at gt

(q,q)oo k=0 (2% k(5 O

(ql/-{-l.q) 00 l)k (k+l) 2k
= 1 1/, V -~ /7 v 4
(45 oo ; (2% Dil(g; )k
( "I)oo 22 1+ uZ (“l)k ( 2 ) quk
(@9 = (% 0)k(g9)x
In the last step, we have shifted the summation index of the second sum. We thus have
z(l - q%)Dquu(w; q)= (1 - q¥)J,(2;q) — 2¢5 J,41 (2475 9). (3:2.18)

Now since by (2.3.34) we have
D 3 f(2)g(z) = f(z4%)D 39(z) + g(=)D 3 /(=),

we can rewrite (3.2.18) as

—v=1

-1 - g2z )
{’” Dq%}{’” J"(””;q)}:'—Tﬁ—Jm(w;q). (3.2.19)

Iterating (3.2.19) we have proved a g-extension of formula (1.3.4):

Theorem 3.5. The Hahn-Exton gq-Bessel function satisfies the following basic difference-
recurrence relation:
k (__l)kx—-u—kq%k(l—u) .
-1 -v . _ k.
{x Dq,}} {x J(z; q)} = T Jurr(zq?*; q). (3.2.20)

A g-analogue of (1.3.5) can be obtained in a similar way. Again we start with the operator
D y acting on J,(z;¢). This time however, we use the fact that 1 — gkt =
7

=g (1 — ¢*F) + 1 — ¢"3*. We find
(1 —q%)Dq%JV(m;q) = J(z;¢9) - J, (a:q%;q)
(@ Do x> (= 1)'= () g2k(1 — gr+ivy
(459)e0 Z VST CHAR
(@D o _1, & (—1)kq("“) 2%
(@@ X-% (¢ k(g5 9)x
( V+1,q)oo %u ) (_I)kq(k;l)xzk

@ LT L

+
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This gives
2(1 = ¢5)D 4 J,(w5q) = og7 Jumr(z;0) + (1 = ¢ 3) Lu(a3 ). (3.2.21)

We can rewrite (3.2.21) as

v—1

{m"Dq%} (" J(z;q)} = Iz—%J,,_l(m; 9. (3.2.22)

Iterating (3.2.22) gives us a g-analogue of (1.3.5):

Theorem 3.6. The Hahn-Exton q-Bessel function satisfies the following basic difference-
recurrence relation:

u—k

{w—l pq%} ("I (z;q)} = (—;);JV_ o(z3 9)- (3.2.23)

3.2.4 Generating functions and orthogonality relations

Exton [10] found a generating function for his g-analogue of the Bessel function (3.2.2)
by expanding a product of two g-analogues of the exponential function. We will use this
method to derive the following generating function:

Theorem 3.7. For x,t € C such that 0 < |t| < |z|™! there is the absolutely convergent
expansion

eq(zt) Ey(—qat™) = (—q(a—:t_T _z_: t"Ju(; q). (3.2.24)

Proof. Using (2.3.13) and (2.3.11) we expand the left hand side of (3.2.24) to obtain

4 B © 0 (_l)kq(Z)tm—kwm-i-qu
BT = 2 Y T g on
00 1)‘: ()tm—kxm+qu

-3 ¥ !

hmome—co OG5 Om

Y

since (g; ¢)7! = 0 if m < 0. This is an absolutely convergent double sum for 0 < [¢| < |z|™!
Now introduce the new summation variables k,n by substituting m = k + n. This yields

e o]

-1y _ nl,n( yq)oo
eq(zt)Ey(—qxt )—ng_:wt @0 Z(q

) (*31) jok
)*q x
t"J.(z; q).
n+11q) q q n—E—-oo
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(]

If we replace in (3.2.24) « by #(1 — ¢)/2 and let ¢ T 1 we find with (2.3.12), (2.3.14) and
(3.2.5) the generating function (1.4.1)

ba(-t=) _ %
ez” = Y t"Ju(z).
Replace in (3.2.24) ¢ by t~1¢q and multiply the new identity with the original identity. The
resulting formula

> 2 T u(w0) ()
n=—0o0 m=—00
is absolutely convergent for z,¢ € C such that ¢ # 0 and |zq| < |t| < |z|™!. So equality of
coefficients of equal powers of ¢ at both sides yields a ¢g-analogue of the Hansen-Lommel
orthogonality relation (1.4.2):

Theorem 3.8. For [z| < q~7 and n,m € Z we have

> " (@ 0) k(23 9) = Sy (3.2:25)
k=—00
where the sum at the left hand side is absolutely convergent, uniformly on compact subsets

of the open disk |z| < ¢7%2.

Remark. Recently Vaksman and Korogodskif [49] gave an interpretation of the Hahn-
Exton ¢-Bessel functions as matrix elements of irreducible representations of the quantum
group of plane motions. Their paper which does not contain proofs, implicitly contains the
orthogonality relation (3.2.25).

Because of the symmetry relation (3.2.8) we can find a second generating function and a
second orthogonality relation. In terms of the ;®; basic hypergeometric series we have

Theorem 3.9. For z,t € C such that 0 < [t| < |z|™! there is the absolute convergent
expansion

eq(xt)E'( q(IJt— ) (qiﬂt 7q Z tn n -T q; q)oolq)l ( z(z)q

n+1
Tt = @0 T4 ) (3.226)

1

Theorem 3.10. For |z| < g% and n,m € Z we have

ki (kn) (2205 @)oo ( 0
z"t"q2 =0
k_X_:oo (G0 '\ 2%¢

g, q"*’““) x (3.2.27)

b o herm) (PG Doo o ( 0
¢ (@D T\ 2

q,q’"“‘“) = b,
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where the sum at the left hand side is absolutely convergent, uniformly on compact subsets
_1

of the open disk |z} < ¢72.

The proofs of theorems 3.9 and 3.10 follow easily from (3.2.24) and (3.2.25) by the
symmetry relation (3.2.8). In chapter 5 we will show that the orthogonality relation (3.2.27)
is a g-version of Hankel’s Fourier-Bessel integral.

In order to find the classical formula corresponding to (3.2.26), we replace in (3.2.26)
4 by ¢%, and rewrite (3.2.26) in terms of the Hahn-Exton ¢-Bessel function. We obtain

1437 )0 o in 1n 101
U075 9o _ $ ng, (gt q), 0 < Jt] < Jgbo| "
(197 @)oo n="oo

Now replace ¢ by ¢? to make the notations easier and then replace ¢t by ¢**'. This yields

("7 5w . & . )
(o145 q2) o = n_z_oo q"q"Ja(q"; q%), Re(t) > —Re(a) — 1.

Under the side condition that lo—‘f&%ql € Z we can replace ¢™ by (1 —¢)q™ and we can rewrite
the relation above with (2.3.38) and (2.3.28) in the basic integral notation

1+ Tat(a+1+1) T, o
Ta(i(a+1-1)) = /z Jal(1 — g)z; ¢%) dyz.

0

Formally, as ¢ T 1, we find with (3.2.6) the integral of Weber and Sonine (1.6.1)

o0

2T(3(a+141) [,
T((at1-10) 0/”5 Ja(z) dz,

which is valid for —% > Re(t) > —Re(a) — 1.

3.2.5 A multiplication theory and a related integral

The generating function provides us with a g-extension of the multiplication theorem of
the Bessel function:

Theorem 3.11. For |z] < q"% and n € Z the Hahn-Exton g-Bessel function satisfies the
multiplication theorem:

A A=k k(qz'\;q)k
Jn(2¢Y;9) = ¢ Y 2t ¢ = Tngi(25 ). (3.2.28)
k=0 (g 9)k
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Proof. Replace in the generating function (3.2.24) z and t by z¢* and tg™ respectively.
Then for g|z| < |¢| < |z|~! we have

S g (g q) = (M oo (@71 )0 (27105 9)
S0 Y (2t;9)oo (@74 9)e0  (2t59)o0

Now use the generating function (3.2.24) and the g-binomial theorem (2.3.9) to expand the
right hand side of the equation above. This yields:

E tnq—/\an(xq/\;q) — z Z ’Dk ktm k 7q) m("t,q)

n=—00 k=0 m=—00 (Q? )
= ) q)k
= " = Jnsk(25 9).
n;m Z (q, Dt
So equality of coefficients of equal powers of ¢ at both sides yields (3.2.28). m]

Corollary. When we let A — oo in (3.2.28) we obtain for |z] < ¢~ % the expansion

k

n

Jntk(z; 9). (3.2.29)

—

4 q q,Q)k

When we replace in (3.2.28) z by qz°, 2\ by A and apply the symmetry relation (3.2.8) to
the resulting formula, we find a g-analogue of an integral of Sonine:

Theorem 3.12. For Re(a) > —1 and n € Z the Hahn-Exton q-Bessel function satisfies
the relation

by
Ly 1\475 9 Lip
Jarr(g";q) = 2™ EL ity )——((q‘q)):Ja(q“ ) 9). (3.2.30)

In order to find the classical formula corresponding to (3.2.30), we replace g by ¢* to make
the notations easier and then rewrite (3.2.30) in terms of the basic integral (2.3.35). With
(A.6) we find

nA a+1 2) 2 2,2, .2
n q q oo(T%¢% ¢%)oo n
Jair(q"5¢%) = 1—q/ (:ﬂ(q“ ; (% ) 2 Jo(zq"; ¢*)d,z. (3.2.31)
0

Under the side condition that %q—qz € Z we can replace ¢" by (1 — ¢)q™. Further we use
the facts that as ¢ T 1

(=g (¢* 6% ! 1

(@ 0%)os T TR TOY
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and that by the ¢-binomial theorem (2.3.9) and the limit (2.3.10) we have
(22% ¢%)oo 2-2) 1=\ B
(z‘zqz,\’; 7%)oo =1%o ! ¢, 2*¢? ) = 1 F _ ) = (1 -2}
Substituting this results in (3.2.31) and letting n depend on ¢ in such a way that ¢™ tends
to y if ¢ T 1, we obtain at least formally (1.6.2)

N 1
_ Yy atlpq _ 2\A-1
Jesl®) = 55509 0/ 2 (1 = 22V, (2y) da, (3.2.32)
which is valid for Re(a) > —1 and Re()) > 0.

3.2.6 An integral representation

In this subsection we will derive an integral representation for the Hahn-Exton ¢-Bessel
function of integer order. It is a ¢g-extension of (1.6.4) and can be obtained in a similar
way as the derivation of (1.6.4).

Theorem 3.13. The Hahn-Exton g-Bessel function J,(z;q), with n € Z, satisfies the
integral representation

27 .
1 7 (gze™; q)w

Jo(z;q) = : —iné dg, 1. .2.33
(z59) 2] (w0 e ¢, |z| < (3.2.33)

Proof. Replace in the generating function (3.2.24) t by €' to obtain

(gze™;q) & in
et =2 ()
14 Joo n=—00

Multiply both sides by e~™?/2r and integrate from 0 to 2r. Using the fact that

27
1 .
o [T ds = b,
2m J

we obtain (3.2.33). |

3.2.7 Limit transitions with ¢g-orthogonal polynomials

Bessel functions are limit cases of some orthogonal polynomials. A well known limit tran-
sition is the one between the Legendre polynomial and the Bessel function Jo(z). It is (see

[53] §5.71)
lim P, <cos(§)) = Jo(2), (3.2.34)
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where the Legendre polynomial P,(z) is defined by

_ 1—

A more general limit transition than (3.2.34) is the relation between the Jacobi polynomial
and the Bessel function of order a. The normalized Jacobi polynomial is defined by

-n,n+at+f+1|1-z
a+1 2 ’

Prga"g)(.’ﬂ) = 2F1 (

So we have the limit

lim PA)(1 - ;j”vz) =oF ( ajrl l— (12”5)2) = (%f)-ar(aJr VJa(z)),  (3.2.35)

N—oo

where ny /N tends to A for N — oo.

The g-analogue of limit transition (3.2.35) starts with the little ¢-Jacobi polynomials, which
are defined by

_",(lb n+1
Pa(z;0,b;9) = 2@, ( 1 aq"

and which satisfy the orthogonality relation

q, qx) , (3.2.36)

(aq,bq;q)c0 k k k (5 @)oo
e m(q"; 0,6 4)pn(q"; a, b5 9) (aq)"
(abg?, ¢; 4)oo ,g,” (q 2)pa(d 7) (aq) (bg*+1; ¢) oo

_ (aq)™(1 — abq)(bg,q; q)n - (3.2.37)

(1 — abg**1)(aq, abg; ¢)n
where 0 < a < ¢7' and b < ¢g7'. See Andrews and Askey [1].

It is clear that we formally have the termwise limit

Jim py_n(2q™;a,b9) =19 ( (? q,xq"“) : (3.2.38)

q
See theorem B.2 for a rigorous proof of this limit result. Also, when we replace in the
orthogonality relation (3.2.37) n,m,k by N —n, N — m, N + k, respectively (so the sum
runs from —N to o0), and when we let N — co, we obtain as a formal (termwise) limit
the orthogonality relations (3.2.27).

Another limit transition from orthogonal polynomials to the Bessel function, starts
with the Krawtchouk polynomials. These polynomials are defined by

)
p b

-n,—2

Kao(z;p, N) =2 F3 < -N
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with 0 < p < 1 and N € N. For z € R they satisfy the limit relation (see [31])
i ENTE .
N V(k+ N)X( k+N)'(n+N)'(—n+N) 41\“

)2N+ z(n+k) %

2

22 3(kn) z
X (_) I{n+N(k+N7]~_W72N)=Jk+n(z)

4N?

Several g-analogues of the Krawtchouk polynomials have been studied. We will consider
two g-extensions of the Krawtchouk polynomials, which have a limit relation with the
Hahn-Exton ¢-Bessel function. The first one is defined by (see [32])

Ko(q7%;p, Niq) = 2@ ( 1 q:,% ’q,pq"“), (3.2.39)

where N € N, and is known as the quantum ¢-Krawtchouk polynomial. It satisfies the
orthogonality relation

N

(Pg:9)n-z_ (3) (

DN Ka(g™% 0, N;0) K (a7 0, N3 q 3.2.40
0 (659)=(q59)n- ) ( Him( ) ( )

_ (GONAGHPG D yn N v (M} N3
oy P Smn:

In order to find the limit relation with the Hahn-Exton g-Bessel function, we read the
2®, in (3.2.39) backwards. We have with (A.10) and (A.7)

-n -
z‘I’l( 1 q_’gz q,pq"“)

_ i OGS Dk k)
= (@0 O

K.(¢7";p, N3 q)

_ (q ,q n-k( % Dk _nk SR )
Z P
aq n— k(q, q)n—k

_ (q_l-' )"1( 7q)" n n(n+1) (q1+N naq)k —k k(r—N)
- ( aq) (q! ) Z 1 n+z Q)k(qa ) I

_ @5, q‘“,q”N‘” oW

- (Q'N,q)n( P) ( ) ( ql—n+z 9.p 9 )

Now replace z, N,n,p by L+ k,2L, L —n,z~2¢72.~1 respectively. With (A.10), (A.7) and
(A.12) we find



THE HAHN-EXTON ¢-BESSEL FUNCTION 41

“Lek g=2g=2L-1 op. 0y (q;.q)m(q;'q)m 2?3 gm0y =(5)
(45 Dtk 9)2r

-L _1+L
o, [ 9 g
X2 qn+k+l

[t is casy to see that we formally have the termwise limit

I\,L—-n(q

q, quL+k+1) .

lim (—m2)Lq(L;1)quKL_n(q_L_k; 7271 2L q) (3.2.41)

L—oo

ey 0 "
:( n+k+1 ) ( 12) ( ) k ch( qn+k+1 q,x'lq +k+1)

See theorem B.3 for a rigorous proof of this limit. The right hand side can be seen as a
factor times the Hahn-Exton g¢-Bessel function J, 4 (zq2(+%); q).

When we use the same substitutions in the orthogonality relation (3.2.40), and in addition
replace m by L — m, we obtain

(272¢72L; q)p_p(—1)"~*gML- l)q(2) kL
k=—L (11_2q ’q)L—n(qv )L+k(q,Q)L—k

Kia(qFF 2727271 215 ) x

X Kpom (5% 27221 21 ) = (6 9)14n(G DLn__aL g B gLmdg,

T
(9,4;9)21
Since
(@ )k _ (2 L“,Q)n( Z2Ykn gl k=m) o (5) = (3)
(272¢725q)p-n  (22qMH15 g0 ’
we find
L 2L+, 2(k—n) Jk—n  L(L+1) k(k—1) ,2kL 4L
( qz :z - q q q q z I{L_n(q—L—k;x—2q—2L—1’2L;q) x
) (22q"+%; )95 @) 144(95 @) Lk
XKp_m(qg L% 272~ %1 2L, ("—’(’M—)—éﬂ, . 3.2.42
L-m(q 0= (4,9, 9)2L n ( )

When we let L — oo we obtain with (3.2.41) as a formal (termwise) limit the orthogonality
relation

o0 nt+k+1 _mtk+1,
L2(k=n) k(k=1) k+m (¢ »q 1 9)oo 2yn (3) 0k ( 0
X q q —z°)"g\2)¢"" 19y |
,Em (9,4 Qoo ( grte!

q, qun+k+l) %

m m m. 0 m
X(—mz) ‘I(’)q k10, ( gt q,fﬂzq +k+1) =bun-
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With (3.2.4) this yields

00

3 (=2)" g Ik (265 ) ek (2gF ) ) = 6

k=—o00

Note that the factor z™ ™ can be removed. When we replace k£ by —k, use (3.2.12) and
next replace m,n by —m,—n we have found the Hansen-Lommel orthogonality relations
(3.2.25).

A second g-analogue of the Krawtchouk polynomial that tends to the Hahn-Exton
g-Bessel function, is the Affine g-Krawtchouk polynomial. It is defined by (see [12] ex.
7.11)

—n_a=% ()
KA.ff —1‘; N, — d) q ’Q_ b]
2(q7%5 P Niq) = 392 pq.q-N

where 0 < pg < 1. It satisfies the orthogonality relation

q,q) : (3.2.43)

_O%(pq) KA (g% p, Ny ) KA (¢7%;p, Nyq)  (3.2.44)
— (pqyr-N DG D
(pg; Onlg0)v "

In order to find the limit relation with the Hahn-Exton ¢-Bessel function, we transform
(3.2.43) to a @, with (2.3.24). This gives

B _1)nq—an(;) q—n pqz+1
KA (g™ %p,N;q) = Ve g o ’
w e ) (@ Vi) Pq

g, q" —f“) . (3.2.45)

Now replace in (3.2.45) n,N,z,p by L — n,2L,k + L,z* respectively, we obtain with
identities (A.9) and (A.12)

5'3‘1

Af!( —k-L, z ,2L: ) (‘114)n+L ,®, 4 .

( q—-L+n 2 k+L+1
(q1q)2L

q,qL"““) -

The formal (termwise) limit is now easily taken:

lim K771 (742 2L 0) =19 (

2% q, q”'k“) (3.2.46)

n—k+1. .

5 @)oo 0
=0
1 ( qn—k+1

(22¢; q)oo (2245 9) oo

Here the symmetry relation (3.2.8) is used. A rigorous proof is given in theorem B.4.
When we choose the same substitutions in the orthogonality relation (3.2.44), and when
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we replace in addition m by L — m, we obtain

z’q; ; k- ke ke
DI ek ] (b, 00 K2 %, 25 0)
k=-L ? ’ -

— ($2q)—L—n (q; q)L—n(q;q)L-{-n "
(22¢; q)1-n(q; 9)2L

The formal (termwise) limit is now easily taken. We obtain the (slightly rewritten) Hansen-
Lommel orthogonality relation (3.2.25):

> e k(25 ) Ik (€5 9) = G-

k=—00

Remark. Since we have the symmetry relation (3.2.8) it is obvious that the orthogonality
relation (3.2.44) also tends to the orthogonality relation (3.2.27).



Chapter 4

The Hahn-Exton g-Bessel difference
equation

4.1 Introduction

In mathematics very much attention is paid to the subject of differential equations. How-
ever, the theory of ¢-extensions of differential equations has not yet been developed to a
great extent. This can partially be explained by the fact that one is not very familiar with
g-theory and the fact that basic differential equations do not occur frequently in physics.
But the most important fact is probably the close relationship with difference equations in-
stead of differential equations. g-Differential (or g-difference) equations may even properly
be regarded as a part of the field of difference equations. Results on difference equations
may sometimes be transformed into results on g¢-difference equations and vice versa. How-
ever each subject has his own specific problems and it would therefore be desirable if a
book on basic difference equations would be available.

It is by no means our aim to give in this thesis such a general theory of ¢-difference
equations. We will restrict ourselves to the necessary theory in order to give g-extensions of
the results of secton 1.2. Therefore in this chapter we will consider only a g-extension of the
second order linear differential equation of Bessel (1.2.1). We will obtain a second solution,
which is a ¢ extension of (1.2.7). In order to obtain a g-extension of the relations (1.2.5)
and (1.2.9) we have to derive a ¢-extension of the Wronskian (1.2.3). To my best knowlidge,
this g-Wronskian has not been stated elsewhere. So it seems natural to give some general
results on the ¢g-Wronskian first, before we will discuss the Hahn-Exton g-Bessel difference
equation.

45



46 CHAPTER 4

4.2 The ¢-Wronskian

We will consider the second order linear g-difference equation
D y(2) + a(2) D, y(x) + b(a)y(aq) = 0, (4:21)

where D, and D? are defined by (2.3.30) and (2.3.31). The fact that the last term of the
g-difference equation is y(gz) instead of y(z) is a result of the definition of the ¢-difference
operator D,. It also agrees with the second order difference equation as it appears in the
literature

A?y(t) + a()Dy(0) + (D) y(t +1) = 0, (422)
where Ay(t) = y(t +1) —y(t).

Definition. If f; and f, are two solutions of the linear g-difference equation (4.2.1), we
define the g-Wronskian by

W, (@), fo(@)) € fi(2)Dofale) = fole) Dafi(a). (4.2.3)
It is easy to see that the ¢-Wronskian tends to the ordinary Wronskian (1.2.3) if ¢ T 1.

Remark 1. When we apply the definition of the g-difference operator (2.3.30) to the ¢-
Wronskian, (4.2.3) can be rewritten in the form

fi(zq) fa(z) — fi(z) f2(zq)
z(1 - q)

W, (fi(z), fa=)) = (4.2.4)

Remark 2. By writing out the definition it is easy to see that the ¢-Wronskian has the
properties

W, (f(2), c1g1(2) + 202(x)) = aW, (f(2), 1(2)) + W, (f(2), 9:2(2)) , (4.2.5)
and
W, (f(z), f(z)) = 0. (4.2.6)
A g-analogue of Abel’s theorem (1.2.4) is as follows.

Theorem 4.1. Let f, and f, be solutions of the g-difference equation (4.2.1) and let the
g-Wronskian be defined by (4.2.3), then it satisfies the g-difference equation

D, W, (f1(z), fo(=)) + a(z)W, (fi(2), fal2)) = 0. (4.2.7)
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Proof. By the g-product rule (2.3.34) and by (4.2.3) we have
DWW, (fi(z), fa(z)) = Dy (fi(2)Dyfa(z) — fa(z) Do fi(2))
= fi(zq) D} fa(z) + Dy fo(2) Dy fi(@) — fa(zq) DL f1(x) — Dy fi(2) Dy fo()
= fi(zq)(—a(2)D, fa(z) — b(z) f2(zq)) — f2(2q) (—a() Dy fi(z) — b(2) fi(zq))
= —a(z) (fi(zq) Dy fa(z) = fa(xq) De fi(2))
= —a(z) (filz)Dyfa(z) — fo(2) Dy fi(2))
= —a(x)W, (fi(z), fo(z)).

A theory concerning the linear independence of two solutions is as follows.

Theorem 4.2. Let f; and f; be solutions of the q-difference equation (4.2.1) and let the
q-Wronskian be defined by (4.2.3). If W, (fi(z), f2(2)) is not identically zero, then the
solutions are linearly independent.

Proof. We will prove that the Wronskian is identically zero if the solutions are linearly
dependent. Assume that fi(x) = cfy(z), with ¢ # 0. Then with properties (4.2.5) and
(4.2.6) we have

W, (fi(2), f(2)) = Wy (cfa(2), folz)) = W, (falz), fo(2)) = 0.

4.3 The Hahn-Exton g-Bessel difference equation

Theorem 4.3. The Hahn-Exton g-Bessel function satisfies the basic difference relation

Jo(zq;9) + 477 (2% = 1 — ¢*),(zq%; q) + Ju(z;q) = 0. (4.3.1)

Proof. We start with the recurrence relations (3.2.15), with z replaced by zq%, and
(3.2.16). When we eliminate J,44 (wq%; q) we obtain

¢ (g +1 = ¢*) L(2aF5 0) + Ll 0) = Ju(2g;q) = 205070,y (wghq). (43.2)
Next we use (3.2.21) with  replaced by zq?

221", 1 (2q? i q) = 7 I (2qF;q) — Ju (23 q). (4.3.3)
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Substituting (4.3.3) in (4.3.2) we obtain (4.3.1). m]

When we use the g-difference operator Dq%, we can rewrite (4.3.1) as
¢ba*(1 = ¢*)? D% Jo(z;9) + 2(1 = ¢¥)*D 3 (5 ) +
n (zzq1_§., +(1— gt - ‘1_%"» J.(zq%;q) = 0. (4.3.4)
So a g-extension of the Bessel equation (1.2.1) is
gba*(1 - g})? D%y y(@) +2(1 - )0 4u(x) +
n (x2q1_§u (1— g1 - q"%“)) y(zq?) = 0. (4.3.5)

If in (4.3.5) z is replaced by z(1 — ¢)/2 and if ¢ T 1 we find with (3.2.5) the differential
equation of Bessel (1.2.1).

A closer look at (4.3.5) shows that J_,,(acq’%"; q) also satisfies this g-difference equation.
Using the g¢-difference operator D.ﬁ we find for J_,,(a:q“%"; gq) the relation
T (g5 q) + ¢ (2% — 1 = ¢)o (2205 0) + T (wq7259) = 0. (4.3.6)

Now return to the rewritten ¢g-Wronskian (4.2.4) to obtain a g-analogue of (1.2.5). We
have

Wy (Ju(w;q),J—u(xq_%““I))

_ J(eq?; ) (zqTT5q) — Iz ) I (zg205q)  f(=)
- 1 = -
z(1 - ¢7) z(1 - ¢7)

Next consider f,,(:cq%). With (4.3.1) and (4.3.6) we obtain

(4.3.7)

fulzg?) = Jo(2¢;9)J-o(2¢?0;5q) — J,(2qt; ) (xg?? 3 q)
= ((¢7 (1 + ¢ - 2%) Ju(zg¥;0)) — Ju(z39)) T (2 ~50) +
— (7% (1 +¢" = 2%9) T (243075 9)) — Ju(2q7350)) Ju(2g?;9)
= J(eq?;q)J-u(2q 35 q) — L (23 0) - (24275 q) = fu(2).

Iterating this result gives f,(x) = flzg?) = ... = f,(zq#*). The limit klim f.(zq7*) can
be calculated by using the series expansions for J, and J_,. We find

lim f,(zq*) = _._____(qu“’q_m;q)m( Luoa1) _ o) — _ e (8597 0w
(zq?") = ; q q )=-q¢ —
k=0 (9,4 9 (2,4 D)oo
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It follows that

—grrv=1) (v v, —gav(v-1) 1 1
-3v q 9,49 19 )oo q +gq
Wy (u(2; ), J-u(zq™ 1q)) = ( o _ ( )

2(1 — 47)(4,4; 0)oo Fq(n)Te(1 - )
Note that the ¢-Wronskian is never zero if v ¢ Z. By theorem 4.2 this proves that the
solutions J,(z;¢) and J_,(zq” z ¥;q) are linearly independent. If v € Z however, the g-
Wronskian is identically zero. In that case we find with (3.2.12) a clear linear dependence.
These properties match with the ¢ = I case.

. (4.3.8)

If we replace in (4.3.8) = by z(1 — ¢)/2 and if we let ¢ T 1 and if we use the well known

relation
1 _sin(7v)

r(vyrl—v) = °
we obtain with the limits (2.3.29) and (3.2.5) the Wronskian (1.2.5).

(4.3.9)

Our next aim is to look for a second solution of the Hahn-Exton g-Bessel equation that
is a g-extension of Y, (z) given by (1.2.7). Let us consider the function Y,(z;¢) defined for
v & Z by
Iy (v)Ty(1 - ”)q%l/(’}“)
Lo(—v + %)Fq(’/ + %)
For n € Z we define

desq) - WL 2) 5 b (43.10)

Yu(m;q) = F,,(%)I‘ (%)

Yo(ziq) = lim Y, (2; q). (4.3.11)

It is easy to verify that (4.3.10) is a g-analogue of (1.2.7). The limits (3.2.5) and (2.3.29)
give

| T —v) LW —v)
1;%{1)’,,(.?(1 9)/2;9) = F(—U+%)F(’/+ ) =) = F(z)r(z) J-z)

Using relation (4.3.9) and the identity T'(1) = /7 we find (1.2.7).

The g-extension of (1.2.9) can now be derived in an easy way. With the properties (4.2.5)
and (4.2.6) we find with the ¢-Wronskian (4.3.8)
Wi (Ju(=; 9), Yolz; 9))

_ ) D)Lyl = p)gbeesn) v
- Wq% (JU(w,q)’ Fo(—v + %)Fq(’/ + %) Ilwia) = F—'I(%)F‘IT

Fq(’/)rq(l - v) . ~iv, _ ‘I%V(V—l)(l + q%)
_—qu%)—wq% (Ju(m,q)ae]_u(fcq 7q)) = m (4312)

Note that this g-Wronskian is never zero for all ». By theorem 4.2 this means that Jo(z;q)
and Y, (z;q) are linearly independent for all ». The limit ¢ T 1 gives with (2.3.29) the
classical result (1.2.9).



Chapter 5

g-Analogues of the Fourier and
Hankel transforms

5.1 Introduction
In this chapter we shall discuss some g-extensions of integral transforms. First we will

derive a g-analogue of the Hankel transform. As a special case we will discuss g-extensions
of the Fourier-cosine and the Fourier-sine transforms.

The Hankel transform of order o of a function f, denoted by f, is defined by
flt) = 7Ja(xt)f(:c)xd:c. (5.1.1)
If we multiply both sides of (5.1.1) by Joo,(yt)t and integrate from ¢ = 0 to co we obtain
7Ja(yt)f(t) tdt = 7Ja(yt)t 7Ja(:ct) f(z)z de dt. (5.1.2)
The integral on theoleft hand side of (50.1.2) is (foor suitable functions f) equal to f(y) by

the Hankel inversion theorem (see [44]). The resulting double integral is called the Hankel
Fourier-Bessel integral:

o0 o0
fly) = / Ja(yt) ( / Jo(zt) f(x);vdz) tdt. (5.1.3)
0 0
It is also common to write the integral (5.1.3) as the transform pair

g(t) = :foJa(yt) fW)ydy,
(5.1.4)
fly) = ofJa(yt)g(t)tdt.

In the next section we will give a g-extension of the Hankel Fourier-Bessel integral.
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5.2 The ¢g-Hankel transform

In this section we will show that the orthogonality relation (3.2.27) is a g-analogue of
Hankel’s Fourier-Bessel integral (5.1.3). First replace in (3.2.27) ¢ by ¢* to symplify the
notations and then replace z by ¢*. This gives for Re(a) > —1

00 2c+2, 2
@)k (071 %) oo ® ( 0 2 2n+2k+2) y
k=2_:°oq (qz;qz)oo 1¥1 q2c¢+2 q,9

2042 2 0
xgleDltm) (q(qz.q,zq) )w—ld’l ( gro+?
b oo
We can rewrite (5.2.1) as the transform pair
(4272 ¢%)oo 0
(@ Pw |\ P

q2,q2m+2k+2) — 6m,n- (521)

glgr) = 5 glotk+n)
k=—o00

q2, q2n+2k+2) f(qk),

2042, 2
By — S (at1)(k+n) (¢ 19%)oo ® 0 2 2n+2k+2 n
fle)= X q e 12| g2 |10 9(d"),
where f,g are L?-functions on the set {¢*|k € Z} with respect to the counting measure.
When we insert the J,(z; q) notation for the Hahn-Exton ¢-Bessel function and when we
replace f(¢*) and g(¢") by ¢*f(¢*) and ¢"g(¢") (this implies that z f(z) and zg(z) also
have to be L3-functions on the set {gF|k € Z}) respectively, this becomes

9(q") = kzz%_; *Ja(d*"; ¢%) F (),

(5.2.2)
fld) = ¥ a"Jald"*"5a%)e(q").

When we let ¢ T 1 under the side condition that l"—sta(%'l € 2Z we can replace ¢* and ¢" in

(5.2.2) by (1 — q)%q* and (1 — q)2q" respectively, and next f((1—g)3¢*) and g((1 — ¢)z¢™)
by f(g*) and g(q") respectively. With the g-integral notation (2.3.38), (5.2.2) takes the
form

9 = T F@)al(1 = a5 ) e,

1(@) = T gA)a((1 = g)Az; Ao,

where X in the first identity and z in the second identity take the values ¢",n € Z. For
g T 1 we obtain, at least formally, the Hankel transform pair (5.1.4)

g() = Z° f(2)Ja(A2) 2 dz,

flz) = Zog(/\)Ja()\x) Ad).
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5.3 g¢-Analogues of the Fourier-sine and the Fourier-
cosine transform

It is well-known that specialization of the parameter v in the Bessel function (1.2.2) tov = 1
or v = —%, leads to a factor times the sine-function and the cosine-function respectively.

We have

J_i(z) = V= cosz.

When we take the same specialization in the Hahn-Exton g-Bessel function (3.2.4) we
obtain g-analogues of the sine-function and cosine-function. First we replace in (3.2.4) ¢
by ¢* to simplify the notations. Then we specialize v to +1. We obtain with (A.15)

de 0
COS($§q2) e 1‘1)1((1 q27$2‘12)

00 1\ k(k+1) .2k
ZM (5.3.1)
prr S CHE )P
2, 2
q; oo L
= ﬁx?J_%(z;qz)) (5.3.2)
and
1 1—([ qS ’
o (_1)F k(k+1) ,2k+1
-y ) (5.3.3)
k=0 (qu)2k+1
2. 2
= %I%z%tlé(x;qz) (5.3.4)

The functions introduced above should not be confused with the functions cos, (z) and
sing (¢) considered in [12]. Clearly we have the formal termwise limits
liﬁl cos ((1 = ¢)z;¢%) = cos z, (5.3.5)
q
and

Iigl sin ((1 — ¢q)z;¢%) = sinz. (5.3.6)
7

Now we can derive g-analogues of the Fourier-cosine and Fourier-sine transform. When
we substitute (5.3.2) and (5.3.4) in (5.2.2) and replace f(¢*) and g(¢") by ¢~ 2*f(¢*) and
q_%“g(q") respectively, we obtain
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Theorem 5.1. A g-analogue of the Fourier-cosine and the Fourier-sine transform and
their inverse transformations can be represented by the transform pairs

9(q™) = {50)e i q* cos (¢**"; ¢*) F(¢"),

(4% Moo k=70
(5.3.7)
1) = B0 $ g cos (447 el

(4% %) oo no
and

(459%)0 S o sin (g ¢)f (¢,

9(q") = (@) 2

(5.3.8)

($6")0 = n "
f(g") = ) q" sin (¢**"; ¢*)g(q"),
0 n=—00
respectively.

We will show that (5.3.7) and (5.3.8) are g-analogues of the Fourier-cosine and Fourier-

sine transform. Under the side condition that k%;%ql E 27, we replace ¢* and ¢" by

(1 —q)¢* and (1 — g)3q" respectively, and next f((1 — q)*¢*) and g((1 — q)2¢™) by f(¢*)
and g(q") respectively. Then, with the g-integral notation (2.3.38) and the ¢-Gamma
notation (2.3.28), (5.3.7) and (5.3.8) take the form

9(A) = (;Jr i 1q%) dyz,

) = G [ con (1 = i) o,

and
o) = (e [ 16e)sin (0 = s ) e
f(z) = 411))5 /g (M) sin ((1 = g)Az; ¢%) dgA,

respectively, where A and z take the values ¢",n € Z. Formally, as ¢ T 1, we obtain the
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classical Fourier pairs

[ 900 = \/§:f°f(m) cos (Az) de,

f(@) = /2 T 9(3) cos (Az) d,

and
9(8) = ] f(z) sin (Az) dz,
flz) = \/-f-:f’g(x) sin (Az) dA,
respectively.

With the g-difference operator (2.3.30) we obtain from (5.3.1) and (5.3.3) that

(1 —gq)Dycos(z;¢*) = —gsin(qz;q®)
(1 —q)Dysin(z;9%) = cos(z;q%)

Hence we can find the second order ¢-difference equations
—¢* A\ f(z) if f(z) = cos (Az;¢?),
—g\f(z) if f(2) = sin (Az;¢%),

So the two systems of functions z — cos(¢"z) (n € Z) and z + sin(¢"z) (n € Z) have
different eigenvalues with respect to the operator which sends f to the function

2 (1= @)X (Df)(g7"2) = gz (af (¢7"2) = (1 + 9)f (z) + f(42)).

(1-¢)*(Dif g 'z) = {

Observe that the g-deformation of d*/dz® considered above yields a symmetry breaking.
The two-dimensional eigenspaces of d?/dz? are broken into one-dimensional eigenspaces
associated with different eigenvalues. Therefore it does not seem very useful to consider a
g-exponential built from the functions defined by (5.3.1) and (5.3.3). A linear combination
f(z) of cos (Az; ¢*) and sin (Az; ¢%) will no longer satisfy an eigenfunction equation

(1-@)*(D*f)(g'z) = pf(=).



Chapter 6

Addition formulas

6.1 Introduction

In this chapter we will derive several addition formulas for the Hahn-Exton g-Bessel func-
tion. First we find a g-analogue of Graf’s addition formula (1.5.1) by expanding a quotient
of g-shifted factorials as a Laurent series in two different ways. A special case of this
addition formula is a ¢-analogue of Neumann’s addition formula for Bessel functions J.

The second addition formula that we will derive is also a g-extension of Graf’s addition
formula. This formula has been originally discovered by a quantum group theoretical
approach. In this chapter a straightforward and analytic proof is given.

The last addition formula that we will consider in this chapter is a g-analogue of Gegen-
bauer’s addition formula (1.5.3).

We will also obtain some product formulas and integrals involving the Hahn-Exton
q-Bessel function as additional results during the derivation of the addition formulas.
6.2 A g-extension of Graf’s addition formula
In this section we will generalize the considerations that led to the orthogonality relations
(3.2.25) and (3.2.27). The resulting formula will turn out to be a g-analogue of Graf’s
addition formula (1.5.1) and, at the same time, of the discontinuous integral of Weber and

Schafheitlin (1.6.3)

We will start by expanding the expression

(257"t @)oo (¥ 715 9o ‘
(yt; @)oo 25t @)oo (6.2.1)

57
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as a Laurent series in ¢ with (|sz| < |t| < |y|™") in two different ways. On the one hand,
(6.2.1) can be expanded by twofold substitution of the ¢g-binomial formula (2.3.9) as

s=1gy=1 s~lyz-1 ~
1Po ( _y q,yt) 1%0 < g g, zst™!

o0 o0

ZZ(S yxr~ )q) (3 Ty~ 7q)mskkmtmk

k=0 m=0 (g5 ) (¢; 9)m

f: i S lym-l;Q)k(s-lx'y—l;Q)m(q ,q)wskrkymtm—k
S (45 9)%(¢; @)oo

n+k+1.

S tnynz (s7'yz™ Y (s 2y Qnrilg

ne—to (4 9)x(¢; 9)oo

‘I)OO(

szy)*,

where we used identity (A.6), substituted m = n+ k and changed the order of surnmation.
Since the inner sum in the last part can be expressed in terms of a ;@ series after applying
identities (A.6) and (A.13), we obtain the identity

(57 ooyt ™3 @)oo i tn MR T T )
. -1. - y no—1agmq—1
(¥t Q)oo(25t7 Q)0 W Z0 (qns—tzy ,q,q)oo
ns—-lx _1,8_1 :1:—1
%29, ( 1 yqn+l y

qﬁwypﬂ<M<m*.wzm

Remark 1. This identity reduces to (3.2.24), with z and ¢ replaced by yq'% and tq%
respectively, in the special case z = 0. It also reduces to (3.2.24), with = and ¢ replaced
by zq~% and st~1¢? respectively, in the special case y = 0. However in the latter case we
have to apply (3.2.11) after we have taken the limit y — 0.

Remark 2. Formula (6.2.2) is a g-analogue of (1.4.1) with z and ¢ replaced by
2y — s~ 12)i(y — sz)* and t(y — s7'z)5(y — sz)~% respectively.

Remark 3. For n < 0 we use an interpretation of the ,®; similar to our convention in
subsection 3.2.2. The analogue of (3.2.11) becomes

(s7'yz™', 0" ™ @)oo ®, (q”"s‘lyz“l,S‘lwy‘l
? q

n , ST 6.2.3
(g5 Yz, ¢;¢)oo ! 1 y) (62.3)

4 sxy) .

= (szy)"

(s7'zy!, ¢ ,q)oo o, ( g s lzy~!, s yz?
(g"s 12y, ¢; )oo - gt

Proof. Assume that n > 0. Since

(6™ oo

@5 0)n = (¢ e =0ifk<n—1,
bl
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the first n terms of the series vanish, so the summation starts with k = n. We obtain with

(A.13)

(3_1?/3:_1’()1 n’q) q'"s"ly:t"l,s"xy‘l
2@

(775 yz7Y, 43 @)oo ¢

_ Ty g)e 3 (a7 vz~ @e(s™ 2y @)le" ™ @)oo (s21)*
(7" 'yz7, ¢ 9) 22, (0 9)k
T e (7T e @)ken(sT 2y T @kan(g' S @)oo (smy) Y
(g7 Yz, 43 @)oo (= (0 @Dtn
-1 -1 147, —-n_.-1,,..-1 -1 ~-1.
_ Ty M @)ool Ty T 57 ey 2 Dn(gay) x
(s~ 'y 1 ¢ @)oo
. i (s7'ya ™ e ey 71 g"; q)u(sey)”
k=0 (@'t @)ulqs @)k
When we apply identity (A.6) we find (6.2.3) The case n < 0 follows easily from the case
n > 0 of (6.2.3). ]

On the other hand we expand (6.2.1) by twofold substitution of the gencrating function

(3.2.24). The first time z and ¢ are replaced by z¢~% and st=lq7 respectively, and the
second time z and ¢ are replaced by yq‘% and tq% respectively. This yields

(57t q)oo(yt ! Z Z ek % (6.2.4)

(yt;q)w($3t l n=—00 k=—o0
n (q”+’“+‘;q)oo 0 (7 @)oo 0
“ W“’ v |00 ) # T e [ 007)

When we compare coefficients of equal powers of ¢ in (6.2.2) and (6.2.4), we obtain

Theorem 6.1. For |szy| < 1 a q-analogue of Graf’s addition formula is

5—1 -1 _n+l, no—1 -1 -1 -1
2372y " ) o, [ Ty s T

(s 2y~ ;@)oo ¢t
k+1 o 0
9,y ) (_‘;q)lq)l ( qk+1

00 n+k+1
-3 Skynwﬁ_q_q)oolq,l( 0

i, .172)

W (45 9)oo gt (45 9)oo
Nk L _1 L .
= ¥ St (yaE )q T2 E ). (6.2.5)
k=—o0

To show that (6.2.5) is a g-analogue of Graf’s addition formula we replace z and y by
z(1 — ¢)/2 and y(1 — ¢)/2 respectively and let ¢ T 1. We obtain
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y—slzx
y— sz
The special case n = 0 of (6.2.5) is a g-analogue of Neumann’s addition formula (1.5.2)

for Bessel functions Jy. In the special case £ = y and s = 1 the left hand side of (6.2.5)
becomes y"8, 0 so then (6.2.5) reduces to the orthogonality relation (3.2.25).

1
zn 0

1 (=s0— ) = 5 s un(u)e(a) (6.2.6)

k=—00

When we apply the transformation formulas (6.2.3) and (2.3.19) to the left hand side
and the symmetry relation (2.3.22) to the right hand side of (6.2.5), and replace n by n—m
and next k by k + m then we obtain an equivalent identity:

Theorem 6.2. For |szy| < 1 we have

. mem 872y Y% @)oo sz 'y, sz -1 —
s my ( 2 ? ) 2q)1 q g7 y q,9 s lxy 1

(52Y, 45 @)oo Y
-1 -1 2. -1
N Gl Latoal ) Y ( gszy”, sy q,qm—ns-lyx—x) 6.2.7)
(52Y, 45 ¢)oo T
[e's) 2 2
k n+k(y 3‘1)00 ( 0 ﬂ.+k+l> mtk (z §q)oo ( 0 m+k+1)
= sy —‘“—““‘lq)l q,9q9 T _—‘—“ld)l q,9 .
k;m (45 9)oo y? |7 (¢59) oo z?

Let us look for the classical analogue of formula (6.2.7). Replace in (6.2.7) first ¢ by ¢*
to make the notations easier. Next replace z,y,s by ¢®+!, ¢°+1, ¢~ respectively. Then
formula (6.2.7) can be rewritten as

k1) )k (7% 6o 0
Z q q 191 q

2 2n+2k+2
9,9 ) X

k=—00 (‘12§ qz)oo 2h+
2a+2, 2
(@t1)ontk) (% ¢ oo 0 2 2m42k+2
Xl @ T g AL
= 3 O™ ) s ¢ = (6.2.8)

k=—o0

qrPHDgm=F) 7,9

3

(qa—ﬁ+w+1’ q2P+; 7%)oo gP-oTH1 gotBovh
(g2 +P—+1, g% ¢%) oo 2® q2ﬁ+2

2 2n—2m+a—,@+'y+l)

qm(a+1)qn('y—a)

9,9

(qﬁ—a+'y+l7q2a+2;q2)ooz 1 ( qa—ﬁ—'v+1,qa+ﬁ—'y+1
9

(qoth=7+1 ¢2 g2) o, g*ot?

where Re(a+ 8 — v+ 1) > 0. Now replace ¢* by ¢¥(1 — ¢) (with 260=9 ¢ Z) and let m,n

lo|

depend on ¢ such that, as ¢ T 1, ¢™ tends to ¢ and ¢" tends to b. *Fhe left hand side of

2 2m—2n+ﬁ—a+—y+1)
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(6.2.8) can then be rewritten in the g-integral notation (see (2.3.38))

e Jo(2(1 = ¢)q™; ¢%)Js(z(1 — 9)¢"; ¢*)d, .

/-\
=
I3
=3
=2
<2
0\8

Depending on whether b < a or b > a we make the formal limit transition ¢ 7 1. Then, for
Re(w+ 8 —~v+1) > 0,Re(y) > —1, we obtain the discontinuous integral of Weber and
Schafheitlin (1.6.3)

97 / e"Jo(az)J5(be) do (6.2.9)
0
a"‘ﬁ‘lbﬁf‘(%(a—%ﬂ—’y—l—l))F(%(ﬂ—a—’y+l),%(a+ﬁ—7+1) b_2) b<a
T(j(a—B+y+1)T(B+1)"" B+1 )’ ,
@b (e + - v+1) L ( dla=B-y+1) 3@t B-y+1)|a®)
rGB-—a+y+1)I(a+1)"" a+t1 By

Note that the two analytic expressions at the right hand side of (6.2.9) are no longer equal,
as they were in the g-case.

6.3 A second ¢-extension of Graf’s addition formula

The main objective in this section is to prove the following theorem.

Theorem 6.3. For z,y,z € N, n € Z and R > 0 we have the addition formula
(=1)"q7" Joon(g?; ) Ju(RgEH4+; )

= 3 " T(BgFH; ) Jeon(RatY; ) Jo(q3 ). (6.3.1)

k=—0c0

This addition formula has originally been discovered by Koelink [30] using the interpre-
tation of the Hahn-Exton g-Bessel functions on the quantum group of plane motions as
established by Vaksman and Korogodskii [49]. The derivation of (6.3.1) is similar to the
group theoretic derivation of Graf’s addition formula for the Bessel function (see [52]). So
this addition formula should be a g-analogue of Graf’s addition formula (1.5.1), but it is
not clear how to obtain (1.5.1) from (6.3.1) as ¢ T 1. Van Assche and Koornwinder [50]
solved a similar problem for the addition formula for the little ¢-Legendre polynomials.

Koelink’s method of proof is analogous to the quantum group theoretic proof of the
addition formula for little ¢-Legendre polynomials given by Koornwinder [34], but the proof
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is formal. The special case n = 0, R = ¢~7 of (6.3.1) can be found at least formally from
Koornwinder’s addition formula for little g-Legendre polynomials [34] by taking limits term
by term.

In this section we will give a straightforward and analytic proof of theorem 6.3. However,
in order to derive the addition formula (6.3.1), we shall use neither limit transitions nor
quantum group techniques, but we shall only use summation and transformation formulas
for the basic hypergeometric series. The first step in the derivation of (6.3.1) is the proof
of the following theorem

Theorem 6.4. For m,n € Z, z,y € N and R > 0 we have the product formula

- L(4m 1, L(z4n
= Y @A™ ) Joon(q7%; @) Jn(RgZET ) ). (6.3.2)

Z2==00

Proof. Starting with a constant times the left hand side of (6.3.2) we have with (3.2.12)
(=1)"g™ 2" ], (Rq?Y; ) Jm( Rz s )
= (=1)mg E ) g (RgEUHT™, ) (R g)

™ n-~-m+1, m+1.,
— (_l)man%(yn+zm)q—nmq( o ) (q ) q)oo(q ) q)OO %
(45 9)oo (45 9)oo

m 0
q, quy+n +1) 191 ( gmH!
n %(yn-{-xm) (';) —nm 00 o (_ 1\k+h (ktl) (h;'l) k(z+y) 4h(ytn—m) R2(h+k)
R*q q\2'q (=1)**"q\ 2 g\ 2 /g q R
(=)™ Dn-m(6 Dm iz (@™ 0k(6 Dr(a™ ™5 0alg5 O

Rrgdtmtem) o(F)gmnm oo oo (_1)ig("1) gok (72 gui gli-m)n—m) p2i

= (- 3 . EZ

D™(¢; On-m (g Om (25 1= (q’"“,q (q,q) (g™ )i-k(a5 @)i—x

0
x1®4 ( qn—m+l

q, qu””“)

an%(yn+:cm)q(r;)q—-7im 0 (—l)jq(J;I)qj(y+n_m)R2j
()™ On-m G D 1= ("™ 9)i(e5 0);

I (g7 q)r(gI T ) K(z+5+1) _
“ =: P(z,ylq).
k=0 ( m+17Q)k(q1q) 1 ( | )
In the last step identity (A.9) was used. Now since by (A.9)

X

—j—n. —J-n. . . -1y
(q_] n+m,q) (q aq)lc+m — (q 7q)k+m(q)q)1+ﬂ‘m( 1) , (633)

(77 O)m (6 @)s4ng(FgmG+n)
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and since by (A.13)

(6 Dn-m (@™ 0)5 = (45 Ditn-m (6.3.4)
and
"k = (¢ Omerk (6.3.5)

we find with the terminating ¢-binomial formula (2.3.15)

(¢:9)mlq

NEFEES A .
X o (—1)ig(F) gitvin) goi
P(z,ylg) = R*q0+=m)
(= vla) E, (45 9);54n(9:9);

—1)kg(2)g=Hi+n)

fl)k 5 Qkm—h (G @)n
Since by (AG)
1 (qk+m—h+] ; q)oo .
— —0ifh>k+m, 6.3.6
(95 @k4m—h (¢ 9)o0 (6.3.6)

we can sum from h = 0 to co. Changing the order of summation we obtain

£ gt
P(z,ylq) = R gFomtem) ?uﬁ_ y

X

[ i (It ] n— , g -3 cm—
(—1)iqU)gln-m g2 I (g ];Q)qu(x+j+l)(qk+ M @)oo
= (45 9)5+(459); = (GO (45 9)o0
s " _hn oo TS AN e .
_ an%(ynﬂm) Z (_l)hq(2)q R Z (_I)Jq( 2 )qJ(y+ Y R23 y
i wor I (6Di(69);
; 1 ntxm o0 h —hn
M Uit )Py ( a0 | qz+,-+1> _ Rrgilmtem) & (—)hg(G)gt
(45 9)oo U (9 = (GO

X

X Z qz+1

0 (_l)jq(’il)qj(wn—h)R?j (qx+l;q)0° 1%( qz+j+1
=0 (459)i4n(g5 9); ("1 @)oo

q, qm_"“)

= R ghtmtom) (@ @)oo & (=1)tgla) g y
(G 1= (@G
00 (_1)jq(j§1)qj(y+n—h)32j (=t q)p(—1)kq("F) ghtm=h)
2 (465 0)in(09)i (6" @)oo £ (=15 0)k(g; D '

Here we have used (2.3.21). Now by formula (2.3.11) we have
() 1 2, geletitht)

(@ 0w (@590 2 (giq)
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0 gl+m)(Etithtl) xR etith1)
T2 @0 e (@0
since by (A.6) et
- ql)m _ (q;q);:)‘” —0ifz< —h. (6.3.7)

Substituting this result and changing the order of summation we obtain

an%($m+yn)(qa:+l;q)oo i qz(a:+1)(qz+l.q) %
(¢ 945 Qoo Do 5700 '

x> (_(
h=0

R q%(zm-t-yn) (qr+l

P(z,ylq) =

1)hq(:)qh(r-ﬂ+l) 0 (_1)jq(’§1)qj(z+n+y)R2j o0 (_1)kq("§‘)qk(m+z)
Lol = (@h9ilea) = (@ o(g Ok

Qo 2(z+1) (241
q 9 39)eo X
(45 (23 9)o0 (43 O)oo z;_:oo (@"59)

0 —n 0
X191y ( P 9,9 +1> 1®1< s

" 0
q’quzi» +y+1> 194 ( e

q qm+z+l )
y .

When we apply the symmetry relation (2.3.22) to the first ;®; we have

an—;-(rm+yn) q:c+l. q
P(z,4la) = e

)00 o z(z4+1) s z—n+l
q q y G oo X
(4 9)n(%5 @)oo @)oo z:;oo ( )

0 P 0
x1®q ( o 9,9 +1) 19, ( ot

= ¢ Y @I(qFE™;q)Joon(g77; @) Ju( RgFEH) 5 ).

=00

. 0
q, qu +n+y+l) 19, ( #H

q qm+z+1)

This completes the proof of theorem 6.4. a

Remark 1. L.L.Vaksman and L.I. Korogodskii [49] mentioned product formula (6.3.2) in

the special case m =n =0and R = ¢~% without a proof. They found this result by using
quantum group techniques.

Remark 2. The product formula (6.3.2) can be regarded as a g-Hankel transform. When
we replace in (6.3.2) ¢ by ¢2, we find with (5.2.2) that (=1)"¢ ™" Jm—n(Re¥; ¢*)Jm(Rq"+Y; ¢%)
is the g-Hankel transform of J,_.(q%; ¢*)Jn( Rg*t"*Y; ¢*).

Now the proof of theorem 6.3 follows easily.
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Proof. Since we have the (rewritten) orthogonality relation (3.2.27)
> R ) () g) = B, (6.3.8)
and the product formula (6.3.2), it is natural to look for a series expansion of the form
Jo-n(q7%; q)Ju( RgFE"); g) kz Az, ylg) Ja(43 93 q). (6.3.9)

If we multiply both sides of (6.3.9) by ¢ T (gFEm); q) and if we sum both sides over z
from —oco to co we obtain with (6.3.8)

An(zylg) = Y ¢ L(q7 ™, ) Jomn(q7%5 @) Ju(RgEETYT™; ), (6.3.10)

2=— 00

Now the right hand side of (6.3.10) is a constant times the right hand side of the product
formula (6.3.2). Using (6.3.2) we find

Am(2,9lg) = (—=1)"¢"™ T Jnn(Rq?; ) Jm( RgTEHY; g). (6.3.11)

This proves theorem 6.3. |

Remark. This derivation is in fact the search for the inverse ¢-Hankel transform. With
this observation, we could have derived (6.3.1) immediately from (6.3.2) with the theory
of chapter 5, instead of going through the derivation above.

6.4 A g-analogue of Gegenbauer’s addition formula

The main objective in this section is the proof of the following theorem.

Theorem 6.5. For a,b > 0,2 > 0,Re(v) > 0 and 0 < ¢ < 7« we have a g-analogue of
Gegenbauer’s addition formula

0 (a—lbeiéq%(l—n)’a—lbe—icbq%(l—n); q)

n n ("H?
(¢ q9) (zalatyqH)
n=0 1y 449 /n

- (049 v =1 0,
= et g ) g)l——”q'z * (6.4.1)

x Jy1k(azqs®; ) +x(bzqt*; ) Cr(cos ¢; ¢"q).

Here Cy(cos ¢; 8|q) is Rogers’ g-ultraspherical polynomial defined by (see [2])

COS¢ ﬂlq E(ﬁsq)k ﬂa

N PN L (6.4.2)
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Since the g¢-ultraspherical polynomial Ci(cos ¢;¢*|q) tends to the ultraspherical poly-
nomial C¥(cos ¢) if ¢ 71, it can be calculated that (6.4.1), with a, b replaced by
30(1 — q), 3b(1 — g), tends to (1.5.3) if ¢ T 1. M. Rahman [39] has derived an addition for-
mula for the Jackson g-Bessel functions J{!)(z; ¢) and J(*)(z; ¢) similar to (6.4.1). The left
hand side of (6.4.1) is a differentiable function in cos ¢ (see [46]) and can not be expressed
as an P, series in an easy way.

In order to prove theorem 6.5 we shall first derive a product formula in the next subsec-
tion. Then we we will give an integral representation for this product. Finally the results
from subsections 6.4.1 and 6.4.2 can be combined to derive the addition formula (6.4.1).

6.4.1 A product formula

In this subsection we will derive a product formula for the Hahn-Exton ¢-Bessel functions.
Assume that a,b > 0,z > 0,Re(r) > —1,Re(v) > —1. Then

Ju(ax; q)Ju(bz; q) =

_ (@)@ @)oo & (—a222q(F) (b2)4(g9)e0 & (—222)mg("H)
(6D @G (G 20 (@D m(g)m

n—k+1)

0 ( 1 n 2kb2(n k)z2nq(k+1) ( 2

_l{,ﬂ Z5q ZZ

o sk (q”“,q k(q, ) (0" @Qn-ik(g; @)k

= KV’“(x;q)i( l)n(bz)M i ¢ ™ q ( "—“;Q)k ((_liq#+n+1) .

= (@S onlsn 2 ”“,q) (g \ P2

Here we have substituted m = n — k, changed the order of summation and used identity

(A.9). K, ,(z;q) is defined by

u+1 u+
WETE- U Do uppgetn, (6.4.3)

(q,q,q)oo

So in terms of basic hypergeometric series the general product formula for the Hahn-Exton
q-Bessel functions reads

(¢!, ¢!
(4,9 9)o0

o 5 CDreyng() ( T
= (@59)n(g;9)n g+t

J,(azx; q)J,(bz;q) = 19)e a’bretH x

%% q“+"+1> . (6.4.4)
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If we replace in (6.4.4) ¢ and y by 1z(1 — ¢) and 3y(1 — q) respectively, and let ¢ T 1, we
find with (3.2.5) and (2.3.29) the product formula (see [53])

2

75) . (6.4.5)

(az)"(bz)* & (—1)*(bz)*"4~" —n,—n—u
(am)J (bl‘) 2”+’“F(I/+ ]) Z F(/z—l—n+ l)n!zFl ( v+1

Now let us choose y = v in (6.4.4). The 2@, on the right hand side becomes well-poised
and can be transformed into a balanced 4@3 by formula (2.3.27). Then we apply Sears’
transformation formula (2.3.26) twice : in the first time a and d in (2.3.26) are chosen as
ab‘lq‘%("""’) and —¢~""" respectively, in the second time a and d in (2.3.26) are chosen as
—g¥ and ab~1¢5(1="*+") respectively. This yields

v+1 v+1,
Tulaz; @) (b q) = L2030 gy
(4 Doo
n+1
= (—1)"(be)q("F) ( ¢ | @
% (I) , v+n+1
72 (@5 Qu(g30)n © N T
_ (qVH’qVH;q)“(abg;z)" i (q—Zn—Zu;q)n(_l)n(abe)nq%n(2n+u+]) 5
(9,9 9o opr (0% D)alg5 On(a75 @)
-n ,—n—2v -1 ——(n+u -1 (-n+u)
a".q ,ab™lq7? b~z
X4(I)3< q_ﬂ ”+2,—-q“" u+2’ q_n v qaq>
vl o (—2m-2v —-1p d(1-n—v) __-—17 Ll(1-n-v).
— ( 7q ) (abe)uZ (q ,Cl bq2 l) a qu - 7q)n %
(q,q,q)oo n=0 (@t r, g e =TS g )
2 2 +1 —~q ab~1g 3 () _gh=1g=i(ny)
X(—(l .12) ( )4(1)3( b_ (1 ntv) —ab‘ q2(1 n+,,) _q_n v 9,9
v+l v+l —Zn 2V a~1b Ll-n-v) _ -1p L1-n-v). "
_ (q y q b:l:2) Z q? , —a q2 7q)n( 2)nq( +1)

(4,9 q)oo (¢4, ¢, g ™ ¥ 3 —q7" s gi q),,

(g (T ab R0 ), o g, —g¥, gt —qrtE
(—g—n—v —ab‘ g3t q) T ablgr(imnn) g-1pgi(i-ndy) v+l

CI,‘I)-

When we apply identities (A.7) and (A.17) we have found the following product formula
for the Hahn-Exton ¢-Bessel functions of order v in terms of balanced 4®5’s

(qu+1, qu+1

Ju(az; q)J,(bz;q) = )w(abwz)” X

(9,95 9)oo
) (a—lbq%(l—n—u)’a—lbq%(l—n+u);q)n
= (¢t 4;9)n

n+1

x (=1)"(az)*q("F)
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vt
" —¢", ¢y, —¢"t
X4q)3< ab_lf}’2(l n+u) a—lqu(] n+u) q2u+l

q, q) (6.4.6)

6.4.2 An integral representation

With the aid of the Askey-Wilson integral (2.3.40) we can find an integral representation
for a product of two Hahn-Exton g¢-Bessel functions. Since by Saalschiitz’s summation

formula (2.3.25)

v i —1i¢
2 e 2 e
R ( 97" q »q

_ (a7t e, a71bg ("M% ),
a—lqu(l+u n),ab 1,3(14v—n) %49

(a=1bgz (1) q=1pg3(-m=); gy,

, (6.4.7)

and since by (2.3.42) and (A.6)

(q%vei'b,q%ve—itﬁ; q)k _ 1 (6 4 8)
h(cos¢;q3*;q)  h(cos ¢ g7+ q)’
we have for Re(v) > 0
T 1 1
/ h(COS ¢; 17_17q2)—q2;q) (a—lbq%(l—n)eid) a-—lbq%(l—n)e—mﬁ,q)n d¢
h(cos ¢ g5*, —q3*, qF ¢+, —q2(+D); g) ’ ’

i " q)r(a b1 q-1bgz1-n1); g) g x
k=0

(a~1bg?(*++~"), ab1gz(++=") g1 ),

m 1 1
X/ h(COS¢§17—1,‘157—q2;‘1) ¢
h(cos ¢; g5+ +*, —gz*, gz 0+, —gilH1); q)

q)k(a"lbq2(1“"+") a—lqu(l n-v), q)nq
(a=1bgz 1+, ab1g2(+v=") g ),

27(g* ;5 ¢)oo
X i v i 4l [
(4, =g +%, q"tHF3, —q"th43, g% 3, — ¥z, —gviig)

||M:

o0
2m(g7TY @)oo MbgE ) 7 1bgz(0-m ) ),
= FA R S R

(¢, —¢", ¢ 2, —¢"*2,¢" 7, —¢"*7, -1 q) oo

o g, —g",¢"*E, —g*s
4%3 ab—lqz(l—n+u) a lbq2(1—'n.+u) q2u+1

‘Iy‘I)o

In the last step identity (A.6) was used. After applying (A.17) we find
T 1 N
/ h(clos ¢ lf_l’lqz’—q2;?) (a_lbq%(l_n)eifi”a—]bq%(l—n)e—w;q)" d¢ =
s h(COS(ﬁ;qi”,—qi”,qi("‘H)y_qg(u+1);q)
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2 v+l oo
- 7l'( ,4"59) (a—lqu(l n+u) lbq%(l—n—u);q)n x

(9%, 4; Qoo

® g%, g s, —g
X4®3 ab-lq 5(1 k) a—lbq,(l—nw) gt

q,q) (6.4.9)

When we compare (6.4.9) with (6.4.6) we see that we have found an integral representation
for a product of Hahn-Exton g¢-Bessel functions. Since by (A.17)

h(COs ¢; 17 _laq%,_q%;q) _ ( 2“» 6_21¢7Q) (6 4 10)
h(cos ¢; q3¥, —q3*, g3+, —g3 D) g) T (g¥e¥?, g e, q)og -
the integral representation for Re(rv) > 0 is:
(abz?)*(¢**1,q%; q Yoo o 2i¢ —zms,q)
J(az; q)J,(bz;q / X 6.4.11
) ( ) 27"(‘2 q,q J q 621(;5 ,q ve—2id. q)oo ( )

-1 bq%(l—n)ei(b’ a—lbqf(l—n)e—iqb; q)
(95 9)n

) i . %(—1)"(az)"q("*) dg

6.4.3 The addition formula

R. Askey and M.E.H. Ismail [2] proved the orthogonality relation for the g-ultraspherical
polynomials of Rogers. For Re(v) > 0 they found

T 2i¢ e—2i 7q) O , C , d
0/ (o i 5 Oolc08 836°10)C(cos i) d

2rl(2v)  1—¢¥ (f12”;<1)n5

_— 6.4.12
T, ()Ty(v + D)1= ¢ (g,0)s (6.4.12)

The g-ultraspherical polynomial of Rogers (6.4.2) can be expressed as a well-poised ;®;.
Using (A.9) we find

n(COS¢ ﬂlq) (ﬁiq)n m¢ ,®, ( —n”@

( q) ﬂ—l 1-n

q, ,H_lqe_%d’) . (6.4.13)

By (2.3.27) this can be transformed into a balanced 4®5:

(B On

(¢ 9)n g

—-n 2,.n % ih % —i
Cu(cos ¢; Blg) = <I>3( 7", 05" pre?, fre

ﬂq%7 _ﬁq%,_ﬂ

4 q) : (6.4.14)
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With the orthogonality relation (6.4.12) and the integral representation (6.4.11) it is natural
to look for a series expansion of the form

o a—lb %(l—n)ei(#’a—lbq%(l—n)e—itﬁ; " n L (nH 00 )
a0 S De (1) (a2fq(F) = 35 An(e)Cn(cos 45¢°l0).
n=0 (q >(I>‘1)n m=0
(6.4.15)

The series on the left hand side of (6.4.15) is a differentiable function in cos ¢ (see [46]).
Hence the Fourier series on the right hand side converges pointwise to the function on the
left hand side of (6.4.15). If we multiply both sides of (6.4.15) with

(e%%,e7%9; q) o
(g7e**, ¢ e %%; ) o0

Ci(cos ¢; ¢”|q)

and integrate from ¢ = 0 to m we find with the orthogonality relation (6.4.12) an expression

for Ag(z)

T(T(v + 1) 1= ¢ (g9)e [ (¥, 7% q)o
2rly(2v)  1-¢ (659 ] (g7€%%,q"e7 %% q)o0
0o (a—lbq%(l—-n)eiqs’ a—lbq%(l—n)e—id}; O
o (', ¢ 9)n

Ak(.’B) =

Cr(cos ¢; ¢"|q) x

(=1)*(az)™¢("T ) dp.  (6.4.16)

For fixed non-negative integers n and k, let us first compute the integral

s

(ezieb’e—m;q)w -1; 1a- )¢ a 1bg3(1-n)g—id.
I”'kz_/(que2i¢,que—-2i¢;q) (a7 bg? "¢ bg2" "™ q)n X

b q*, q2u+k’q%vei¢’ q%ue—ié
4%3 vt i v+t v
q,—q¢ %, —¢q

,q) dé. (6.4.17)

Using Saalschiitz’s summation formula (2.3.25) we have

(a—lbq%(l—n)eizb’ a——lbq%(l—n)e—icﬁ; q)n
(a‘lbq%“*“‘") ,a~1bg=3 (") q),,

Insert this in the integral (6.4.17) and use (6.4.8), (6.4.10) and (2.3.40). We find

" q%(u+1)ei¢ q%(u+1)e—-i¢ Q); qj
_lbq2(2+u n) ab 1q2(2+u n) . q)

" (77 9);4 (e 1bg ) a~1hgmH ), ),
k= Lo ntvy —1,.,5(2-n+v
D (amlbgiCnt) qh-1g3Cmnt) g.g);

e 1 1
X i ,q2u+k / h(COS ¢;l’_1’q21—q2;q) d¢
o (g ”*2 ,—¢"V3,—¢%,q;q)m 4 h(cos g; g2+, —gi¥, gz IHI i) g)
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] B Lintv - 17
= Xn: (07 9)iq*(a bz 3"+ a=1bg=2™ ) g), KO (7K, ¢ K Qg™ x
- li2—n 1.4 02-ntv vl v .
S (ambgrm) ab1g3CY) qig)s S (¢, — ¢ YR —Y, 4 @)m

2m (g2 tmritlg) o,

X

Y T Y T . .
(q,—gvtm,qvtmtite —grimty _gvtits gvta —grtitlg)

Now by identities (A.6) and (A.17) we can write the last factor as
il 4l sl I 41,
2m(q* s @)oo(—0", ¢"HH 7, =" 7 Ym(g7F 7, —¢" 2, —¢"H i g);
1 vl vl vl v+1. v+1. . 7+1-
(0=, 0"" 2, —¢"*7, "2, —¢"*%, =" ) o924 9)i (g% H 5 ¢)m

1 1 1
_2m(@ 9% @)oo (475, =g, M5 q); (—a%, —q* 3, ¢ )
(4%, 9)eo (415 9); (2445 q)m

When we also use the g-Gamma notation, the integral I, s reads

I 2rT,(2v)

_ —17 Y2-nt+v) _—17 —L(ntv).
= ——3" 7 b bg™2 n
S o o s L S R 0) X

n

— L 1 4 _. s L
(g, ¢"* %, —q"*7, —¢"*1; q);¢ z": kgt grtita g)qm

j:O( —1bq2(2 n+v) ab 1q2 (2—-n+v) q2u+] q; q il (q"+2 q2l/+_1+l q; q)m

The sum over m is a balanced 3@, and can thus be summed by Saalschiitz’s summation

formula (2.3.25). With identity (A.7) this yields

. ; 1 -7
o qF, g2k, grtith 0 (¢ * ¢t 5q) (79 Kt d)
STEN gutr, gerit ) T et g ), (@2 gk :
(6.4.18)
This gives
27T (21/) 1 1
[n — q —lb 5(2-n+tv) —lb —§(n+u); %
k —Fq(u)rq(u+1)(a q ya~ bg Dn
- (" qu+2 _q,,+2 —¢* )Jq (q~jQQ)k k(v+it})

20+ q
=0 (a—lbq%(2 ntv) ,ab- 1q2(2 n+u)’ qlu-{-l’ 7 q); (q2rtitt; Or

Because (¢77; q)x = 0if j < k, the integral vanishes unless n > k. So we can start summing
at j = k. After a shift in the summation index and after applying identities (A.7) and
(A.13), the integral becomes

I, = 27, (2v)

—lb L2—ntv) —lb —L(ntv). "
] Fq(V)Fq(V+1)(a q2 7a’ q 2 )q) X
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n—k —n _u4l v+1 v 1 i
(7" ¢ 2, —q"* 2, —¢"*; ) jpug’* (0775 Ok kurithsl)

= (a-lbq%(z—"’f"), ab—lq%(2—n+l/), 7, 43 Q)i (q2+itk+1; g),

__2mTy(20)  (qTMgE, R, =gt (e bgr ) atbg i),
Ly (v)Ly(v +1) (g%+1, a=1bgF 2=+, qh-1g7 -+, g,

(_1)/cq%k(k+2u+2) n—k (q—n+k, qu+k+15 , _qu+k+§’ _qu+k+1 : q)jqj
X

(¢ e+ q)e 125 (am1bghti@-ny) gh-1gh+i@=ntv) gavi2ki1 g g);
97T (2y ", V+%,_(IU+%,— v 0V (a=1b %(2—n+u)’a—lb —1(ntv). N
_ e q *iq q q T
Ly(v)Te(v + 1) (g2+1, a=1bg? 2=+ qb1g3 (2= b); g,
q,q) :

(_1)kq%k(k+2u+2) PR qu+lc+§- , _qu+k+% gk
(g2 +k+1; q), 3 gL a—lbqk+%(2—n+1/)’ ab—lqk+§(2-n+u)

When we substitute this result in (6.4.16), this leads to

1— ¢ (g3, —¢"+E, —¢" s gl
T—gq  (g*¥, ¢ q)k

2 (a7 b ), a b 304 g) (g7 )

720 (%1, ¢ q)n(a~1bgd 2mm) abm1q(2-nHe); g)

—n+tk k+i k+1 k41
x4 ®s q n+ ,qu+ +21’_qv+ +2’_qu+1+
q2v+2k+l’ a—lbqk+5(2—n+u)’ ab—lqk+5(2——n+u)

Ax() = (—1)Fghaan)

x (—l)"(aw)znq(";”) X
k

‘Ia‘I)-

Because (¢7™;¢)r = 0 if ¥ > n, we can start summing at n = k. Then we shift the
summation index and apply identities (A.7) and (A.13). This yields

k+v (

1— gkt (g5, =gt 3, ="+ g k(. N2k Lk(k+v+2)
Ax(z) = 1= qv (g, g2t gk, o), (=1)*(az)"q? X

) (a—l bq%(Z—n—k+u), a~! bq—%(n+k+u); q)n+k

2 (g g5 @)a(am1bgE k) gt gr ok, gy,
q, q) :

Now we apply Sears’ transformation formula (2.3.26), where in (2.3.26) ¢ and d are chosen

(—1)"(az)™q(") x

- +k4 L +h+1 k41
g g gty gt
xXa®3

q2u+2k+1 , a—l bq%(‘l—n+k+u) , ab—lq%(i’.—n+k+u)

1 .
as ¢"***t7 and ¢*+%+1 respectively. Then we have
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Au(z) = 1= A Vi T L))"
BT T g (g g L g,

y i (_l)n(aw)2nqn(l+k+u+;—n) (Da ( q—n’ qu+k1+%, _qu+k+;—, _qi/+k
= (g%, 4;q)n gL g ~1pgi(imntkty) gp-lqz(i-ntkty)

(a—lbq%(Z—n—k+u), a—lbq—%(n+lc+u); q)n+k(a—1bq%(l—n—k—u)’ab—lq%(l—n—k—u); D
(a_lbq%(z—n—lﬂ-u), ab—lq%(2—n+k+u); q)k(a_1bq%(2—n+k+u)’ ab"]q%(z'""'kﬁ/); Q)n .

(_l)k(aw)qu%k(k+u+2) X

)

The last factor in the formula above can be simplified by the following identities (here
(A.7) and (A.13) are frequently used):

Le—n—k4v
0) (a~tbgz 2=k gy, 1y _1
(a=1bgz(2-nk+0); g) (a-1bg2G-mtkdv) gy, 7

(a—lbq—%(n+k+u); q)n+k _ (a—lbq—-%(n+k+u); q)n(a—lbq%(n—k—u); q)k
(ab-1gz =kt g), (ab-1qs=n=k+v); ),

- lr(n—v— - —i(n v
= (—a'b)kqzHrmr T (g g2 (MR g

— (_a—lb)nq—%n(1+k+u),

(a7 'bg= (k) g),
(ab~1qz =k g,

d) (ab—lq%(l—n—k—u); Q)n — (_ab—-l)n _7"(k+u)(a_lbq%(l_n+k+");q)n.
Moreover by identity (A.17) we have

(¢*%,—¢"*8, "4 )i 1
(g+, g+, gttt g) (1, ¢ *15q)i

Applying identities a) t/m d) and (6.4.19) we finally have

(6.4.19)

pa(a) = Lo (b))

) =

* =g (¢t ¢ 5 )k

0 (a—lbq%(l—n+k+u),&—1bq%(l—njk—u); q)n

w0 (¢+**1, ¢, ¢)n

(—1)"(a2)*qiq(")

-n

vtk utk+) _ utktl
X AP q9 =99 y —4q
49P3 q2u+2k+l’ ab—-lq%(l—-n+u+k)’ a—lbq%(l—n+u+k)

q,q> . (6.4.20)
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When we compare the last sum with the sum in the product formula (6.4.6), we see
that they are the same if we replace in (6.4.6) v and z by v + k and :1:(]41’c respectively.
Substituting this result into (6.4.15) we have proved theorem 6.5:

(a—lbeiqﬁq%(l-—n), a—lbe—icbq%(l—n); Dn

oo n+1
(—a?2? nq( M
,; (g1, 45 9)n )
(2,99)o0 v L=
= ————m aba: v —_—(2 N X
(q”“,q”“;q)oo( ) ,g i—¢ !
1 1 v
xJ,+k(azqt*; ¢)J, 41 (bzq"*; q)Ci(cos 45 ¢“|q),

where a,b > 0,z > 0,Re(v) >0and 0 < < 7.
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Definitions and identities

involving ¢-shifted factorials:

Assume that n € N,k € N and k£ < n, unless stated otherwise.

(@5¢)n =

(459) =

(a1,a2,. -0k} Q) =
(457" =

(a5¢)-n =

(a4 q)n
(bg="; ¢)n

(@ @)t =

(a; q)n—k
(65 ¢)n—k

(G )

1 n=>0

n=1,2,... (A.1)
-1,-2,...

(1—a)(1—ag)---(1—ag"")

(1 —ag)(1 —ag™)...(1 —ag")]” n=

o5}

[1(1 - ag®)

k=0

(ar;9)n(a2;@)n - (ak;9)n mEZorn=o0

(a7 g)a(—a)"q~ ()
1
(@G5 ¢)n
(25 9) o0
(29™; @)oo
(a7 ¢; q)n(~ag™")"g~ ()

(a'g;9)n (a)"

net

(b71¢;9)n \b
(a;¢)n a\* (¥)-n
(a—lql—n;q)k (_E) q( ) ‘

(a;)n (67'¢" ™" @)k (b>k

(0;)n (a7 q)x \a

(7450} (_z)""“ JO-)

(e'g;9)e \ ¢

75



76

(ag™ ™ @)n
(@ @)nsk
(aq"; q)n—r

(a;9)2n
(a®¢)n

1 1
(a,—a,aq?,—aq?;q),

APPENDIX A
(a"q;q)2n< a)" ~a(3)
(a7lg;9)n \ ¢? 1
(@; q)nlag™; @)k
(a§‘I)n

(a;9)x
(a,aq;¢*)n n€Norn=o0
(a,—a;¢)n n€Norn=o0

(a*q)2n n€Norn=o00

(A.12)
(A.13)
(A.14)

(A.15)
(A.16)
(A.17)
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Rigorous proofs of some limit transitions:

Theorem B.1. For v > —1 we have

i) =an (7] -)

uniformly in z on compact subsets of C.

Proof.

0
lim &
1 1< q,,+1

qf1

o (_1)ka() (1 — )22
q’(l—q)zz)zz( 1)kql2) (1 — g)2*2*

= (@ O(g O

0
)
1 1( q,,+1

and the summand of the sum at the right hand side can be majorized by

(e T LD 22O g
! (=) — )

7=0

Now, by [33] Lemma A.1 (with —1 < g — X instead of 0 < p — ), we see that

q%(v+j) _ q%(u+:‘)+1

1 — qV+j+1

(B.1)

increases to (v+j +1)™" as ¢ T 1 if v+ j > 0. So, the expression in (B.1), for % <g<l1,

is dominated by

LT
v+ )kl " 7=
and by
k
const.ﬁﬁ if —1<v<0.

So the theorem follows by dominated convergence.

7
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Theorem B.2. For0 <a<q™!and0<b<q ' we have

q 7", abg™t! 2\ _ 0
( aq g, rq" | =19, aq

l]m 2(I>1

=00

).

uniformly on compact subsets of C.

Proof. Put

Ru(2)

( a7 abg™*!
‘2q>1 ( aq

0
q,wq") —1<I>1( aq q,w)
e

= > Lt T (—1 + 1:[(1 — ¢t - abq“""j)) :

it (aq; q)i(g5 )k

Here we have used (A.9). Since

k k
[Ml-2z)>21->z;if0<z;<1,j=1,...,k, (B.2)
j=1 j=1

we have

k
qﬂ-j+1 + Z abq"*‘l'j
Jj=t J=1

A
]

k
—1+ JT(1 = *77*)(1 — abg™*?)
j=1

fn_ﬂq ((1 = g"ab—1+¢7*).

Thus, for |z| < M:

Rate)] < £ 5ot

T 1—q 7 (ags0)e(g; )k

(1= g"ab—1+47¥),
where the infinite sum converges for all M > 0 by d’Alembert’s ratio test. O

Theorem B.3. Define the quantum g-Krawtchouk polynomial K,(¢~%;p, N; q) by (3.2.39).
Then for n,k € Z we have
L+1

tim (~2%)2q( TP Ky (g7t %5 27272071 215 )

L—oo

n+1

n n 0
= (¢"*; @)oo —2?) q( 2 )anl‘l’l ( g

2 nt+k+1
q,r°q ) )

uniformly on compact subsets of C.
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Proof. In subsection 3.2.7 we have shown that the quantum g-Krawtchouk polynomial
Kp_n(q7¥7%;272¢7271 2L; ¢) can be rewritten as
. . n n—L _1+L+n
(9 Dke(@5 Dusty aynet (3) ges1e-0) () 0, ( et
(45 Qa5 9)2L q

q, $2qL+k+l) .

Thus it suffices to show that

. . n—L 14+n+L
lim @ Q)k+L(97Q)n+L2¢1 ( ¢t
L—co (q;q)k+n(g59)at q

n 0
q,zqu+k+1) =(q +k+l;q)001¢)1 ( q""’k"']

q, m2qn+k+l )

Since we have

(qa q)k+L(q; q)n+L = ntk+1,
(45 9)k4n(q; Q)2L

if L — oo, we consider

qn L _14n+L
Ru(z) = 2‘1’1( o

0
q,wzq”"“) —1®y ( gt

q, x2qn+k+l)

_ i —1)mg(3) grinthn) gom 1+H(1 gb i) (1 — gty |
m=1 n+k+1, q)m(qa q)m

Now by (B.2) we have

m
L-n—j L+j
n—J +Zq1+n+ +7

j= j=1

-1+ JJ(1 = ¢" ) (1 — gt+mtit)

IA
i
-:z

= l—q_L-l; (@0 -g™) +qa™ ).

Thus, for |z| < M:

P (7) gr(ntk+1) pp2m
Ru(e) < 7= 3 T (@1~ q™ + g™~ 1),

4,52 (S )45 9)m

where the infinite sum converges for all M > 0 by d’Alembert’s ratio test. o

Theorem B.4. Define the Affine g-Krawtchouk polynomial KA/ (q=%;p, N; q) by (3.2.43).
Then for 0 < z%q < 1 we have

Lllm KM (g% 22 2L q) = 1(I>1( g

n—k+1
2%q 9,9 >

uniformly in z.



80 APPENDIX B

Proof. In subsection 3.2.7 we have shown that the Affine ¢-Krawtchouk polynomial
K{M(g=1=%; 22 2L; q) can be rewritten as

. —Ltn .2, k+L41
I{A,_ff _k_L'I2 2L_ — (QaQ)n+L2¢l ( q ,r'q q, qL—k+1) .
L n(q y Ly aq) ‘(q;q>2L xzq
Since
(4 Dntr 1
(7 9)21

if L — oo, we have proved theorem B.4 by applying theorem B.2. » (m]
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Summary

In this thesis we study functions J,(z; q) which are defined by

< (—1)kq h(k+1) 42k

Ju(z;9) = ((qy’q)m §W

where ¢, called the base, satisfies 0 < ¢ < 1, and

1 ifn=0,
(a;¢)n =
(1—a)l—agq)---(1—ag!) ifn=1,2,...,

and

QO

(4 9)e0 = [T (1 — ag™).

n=0

This function is a generalization of the Bessel function J,(z) since we have the limit relation
lim J,(z(1 - ¢)/2;9) = J.(2)-

In view of the base g, this function is called a basic analogue (or a g-analogue) of the Bessel
function.

This g-Bessel function was introduced by W. Hahn (in the special case v = 0) in 1953
and by H. Exton (in full) in 1978, so we called this function the Hahn-Exton g-Bessel
function. They obtained this function as the solution of a special basic Sturm-Liouville
equation. Exton also derived a generating function and some recurrence and difference-
recurrence relations for this function. Vaksman and Korogodskii implicitly gave some
orthogonality relations for this function in 1989.

In part I of this thesis we mention the classical results concerning the Bessel function,
which we generalize in part II, in chapter 1. Further, in chapter 2 we give a survey on
g-theory and state some known results that we need in the second part.

In part II of this thesis we study the Hahn-Exton ¢-Bessel function. In chapter 3 we
will give the results that Exton found and we derive some new results. We will also state
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the two orthogonality relations explicitly and prove them. In chapter 4 we study the ¢-
analogue of the Bessel differential equation. We also discuss a second solution, which is a
g-analogue of the classical Y,. In chapter 5 basic analogues of some integral transforms are
considered. We derive g-analogues of the Hankel transform, the Fourier-sine and Fourier-
cosine transform. In the last chapter three g-extensions of addition formulas are discussed.
Two of them are a generalization of Graf’s addition theorem. The third one is an extension
of Gegenbauers addition formula.



Samenvatting

In dit proefschrift bestuderen we de functie J,(z;¢) die wordt gedefinieerd door

(__l)lcq%k(k+l)$2k

v+1. o
I(zsq) = L Den e 5

(390 =5 (@ O0k(g59)k

waarin ¢, de basis genoemd, voldoet aan 0 < ¢ < 1, en

1 alsn =0,
(¢;¢)n =

(1—a)(l—ag) (1 —ag™!) alsn=12,...,

en
(@;59)00 = (1 - ag").
n=0
Deze functie is een generalisatie van de Bessel functie J,(z), omdat de limietrelatie
lim J,(2(1 - 4)/2;4) = Ju(2)

geldt. Vanwege de basis ¢, wordt deze functie een g-analogon van de Bessel functie ge-
noemd.

Deze ¢-Bessel functie werd geintroduceerd door W. Hahn (in het speciale geval v = 0)
in 1953 en door H. Exton (voor alle v) in 1978, en wordt daarom Hahn-Exton ¢-Bessel
functie genoemd. Zij vonden hun functie als oplossing van een speciale g-uitbreiding van een
Sturm-Liouville vergelijking. Exton vond ook een genererende functie en enkele recurrente
en differentie-recurrente betrekkingen voor deze functie. Vaksman en Korogodskii gaven
impliciet twee orthogonaliteitsrelaties voor de Hahn-Exton g-Bessel functie in 1989.

In deel I van dit proefschrift geven we de klassieke resultaten betreffende de Bessel
functie, die we in deel II zullen generaliseren, in hoofdstuk 1. In hoofdstuk 2 geven we een
beknopt overzicht van de g-theorie en noemen we enkele bekende resultaten die we in het
tweede deel zullen gebruiken.

In deel II van dit proefschrift bestuderen we de Hahn-Exton ¢-Bessel functie. In hoofd-
stuk 3 geven we de resultaten die Exton heeft gevonden en we leiden enkele nieuwe re-
sultaten af. We geven tevens de orthogonaliteitsrelaties van Vaksman en Korogodskif
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expliciet en bewijzen deze relaties. In hoofdstuk 4 beschouwen we het ¢g-analogon van de
differentiaalvergelijking van Bessel. We geven een tweede oplossing die een g-uitbreiding is
van de klassieke Y,. In hoofdstuk 5 worden g-analoga van enkele integraaltransformaties
beschouwd. We leiden een ¢-analogon van de Hankel transformatie af en geven als een spe-
ciaal geval de g-Fourier-cosinus en ¢-Fourier-sinus transformaties. In het laatste hoofdstuk
worden drie generalisaties van additieformules bewezen. Hiervan zijn er twee generalisaties
van Graf’s additie formule. De derde is een uitbreiding van Gegenbauers additieformule.
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