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We introduce the notion of a half-ribbon Hopf algebra, which is a Hopf algebra

H along with a distinguished element t ∈ H such that (H, R, C) is a ribbon

Hopf algebra, where R = (t−1 ⊗ t−1)1(t) and C = t−2. The element t is closely

related to the topological “half-twist”, which twists a ribbon by 180 degrees. We

construct a functor from a topological category of ribbons with half-twists to

the category of representations of any half-ribbon Hopf algebra. We show that

Uq(g) is a (topological) half-ribbon Hopf algebra, but that t−2 is not the standard

ribbon element. For Uq(sl2), we show that there is no half-ribbon element t such

that t−2 is the standard ribbon element. We then discuss how ribbon elements

can be modified, and some consequences of these modifications.
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1. Introduction

Let RIBBON (S) be the category whose morphisms consist of tangles of ori-

ented directed ribbons up to isotopy, each labeled with an element of some set S.

There is a notion of a ribbon Hopf algebra H (see [Chari and Pressley 1994], for

example), which is related to this topological category by the fact that there is a

monoidal functor F ′ from RIBBON (H-rep) to the category of representations

H-rep. This allows one to construct invariants of oriented framed links, and from

there invariants of ordinary links.
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There is a morphism in RIBBON (S) which twists a ribbon by 360 degrees, but

not one that twists a ribbon by 180 degrees (since negatively oriented objects are not

allowed). We propose that one should consider a slightly larger category, denoted

HRIB(S), where this 180 degree twist, the “half-twist,” is allowed. The half-twist

can be applied to several ribbons at once, and all morphisms in HRIB(S) can be

constructed out of half-twists, along with various caps and cups. The following

isotopy shows how the crossing in HRIB(S) is constructed out of the half-twist:

U V

V U

≃

U V

V U

(1)

Recall that a ribbon Hopf algebra H is a Hopf algebra along with two extra

features:

• A universal R-matrix R ∈ H⊗H. The functor F ′ takes a simple crossing of

ribbons labeled V and W to Flip ◦R acting on V ⊗ W .

• A central “ribbon” element C ∈ H. The functor F ′ takes a 360 degree twist

of a ribbon labeled V to C acting on V .

The elements R and C must satisfy various compatibility conditions (see Section

4A).

In the present work we define a half-ribbon Hopf algebra to be a ribbon Hopf

algebra along with a distinguished element t such that

(i) R = (t−1 ⊗ t−1)1(t),

(ii) C = t−2.

We show that, if H is a half-ribbon Hopf algebra, then F ′ can be extended to a

functor F from HRIB(S) to H-rep.

Our main interest is the case where H is the quantized universal enveloping

algebra Uq(g) of a finite-dimensional complex simple Lie algebra g. In this case

Uq(g) is actually a topological ribbon Hopf algebra, meaning that R and C only

lie in some completion, not in Uq(g) itself. We define a topological half-ribbon

Hopf algebra by allowing t to lie in a completion of H, and show that Uq(g) has

this structure. The main ingredient is a formula for the R matrix of Uq(g), due

to Kirilov and Reshetikhin [1990] and Levendorskiı̆ and Soibelman [1991], of the

form

R = (X−1 ⊗ X−1)1(X). (2)
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The correspondence to condition (i) above should be clear, and we show that X

is in fact a half-ribbon element for Uq(g). Interestingly, X−2 is not the standard

ribbon element, and in fact we show that in certain cases it is not possible to find

a half-ribbon element t for Uq(g) such that t−2 is the standard ribbon element.

In Section 5 we discuss the different ribbon elements for Uq(g), and in some

small cases we describe exactly which ones arise from half-ribbon elements. We

then discuss some consequences of using X−2 in place of the usual ribbon ele-

ment. In particular, it simplifies the correspondence between certain skein theoretic

constructions of link invariants and the quantum group constructions of the same

objects, essentially by explaining some annoying negative signs that appear in, for

example, [Ohtsuki 2002] or [Kuperberg 1996].

We feel it would be of considerable interest to study which ribbon Hopf algebras

can be given the structure of half-ribbon Hopf algebras. It would also be nice to

give straightforward conditions on an element t in a general Hopf algebra H, such

that H along with t is a half-ribbon Hopf algebra (that is, H is a ribbon Hopf

algebra, with R = (t−1 ⊗ t−1)1(t) and C = t−2). At the end of the paper we

discuss these and other possible future directions.

2. Conventions

We first fix some notation. For the most part we follow conventions from [Chari

and Pressley 1994].

• g is a complex simple Lie algebra with Cartan algebra h, and A = (ai j )i, j∈I

is its Cartan matrix.

• 〈 · , · 〉 denotes the paring between h and h⋆ and ( · , · ) denotes the usual sym-

metric bilinear form on either h or h⋆. Fix the usual bases αi for h⋆ and Hi for h,

and recall that 〈Hi , α j 〉 = ai j .

• di = (αi , αi )/2, so that (Hi , H j ) = d−1
j ai j . Let B denote the matrix (d−1

j ai j ).

• qi = qdi .

• ρ is the element of h∗ such that (αi , ρ) = di for all i .

• ρ∨ is the element of h such that 〈αi , ρ
∨〉 = 1 for all i .

• si is the element of the Weyl group which is defined by

si (α j ) = α j − 〈αi , α
∨
j 〉αi . (3)

• θ is the diagram automorphism such that w0(αi ) = −αθ(i), where w0 is the

longest element in the Weyl group.

• Uq(g) is the quantized universal enveloping algebra associated to g, generated

over C(q) by Ei , Fi for all i ∈ I , and Kw for w in the coweight lattice of g. As

usual, let Ki = K Hi
. We actually must adjoin a fixed kth root of q to the base field,

for some k depending on g. This causes no real difficulty, and for the most part
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we ignore it. For convenience, we recall the exact formula for the coproduct and

antipode:





1Ei = Ei ⊗ Ki + 1 ⊗ Ei ,

1Fi = Fi ⊗ 1 + K −1
i ⊗ Fi ,

1Ki = Ki ⊗ Ki ,





S(Ei ) = −Ei K −1
i ,

S(Fi ) = −Ki Fi ,

S(Ki ) = K −1
i .

(4)

• [n] = (qn − q−n)/(q − q−1), and X (n) = (Xn)/([n][n − 1] · · · [2]).

• Vλ is the irreducible representation of Uq(g) with highest weight λ, and vλ is

a highest weight vector.

• P is the weight lattice for g and Q is the root lattice.

• The standard ribbon element C for Uq(g) acts on Vλ as the constant

q−(λ,λ)−2(λ,ρ).

• Uq(g)-rep is the category of finite-dimensional Type 1 representations.

• (H, R) is a quasitriangular Hopf algebra over a field F , where

(i) µ : H⊗H → H is multiplication;

(ii) ι : F → H is the unit;

(iii) 1 : H → H⊗H is the comultiplication;

(iv) ε : H → F is the counit;

(v) S : H → H is the antipode.

• Flip : V ⊗ W → W ⊗ V is defined by Flip(v ⊗w) = w ⊗ v . For longer tensor

products, define rev : V1 ⊗· · ·⊗Vk → Vk ⊗· · · V1 by v1 ⊗· · ·⊗vk 7→ vk ⊗· · ·⊗v1.

• If V is a representation of a Hopf algebra H , then we define the left dual V ∗

to be the dual vector space with the action x ◦ f (v) = f (S(x)v), and the right dual
∗V to be the dual vector space with the action x ◦ f (v) = f (S−1(x)v). Note that

(∗V )∗ = V = ∗(V ∗).

3. Background

Much of the motivation for this paper comes from studying an expression for the

R-matrix

R = (X−1 ⊗ X−1)1(X), (5)

where X is an element in some completion of Uq(g). This was first introduced by

Kirilov and Reshetikhin [1990] and Levendorskiı̆ and Soibelman [1991], and has

recently proven useful in studying the relationship between the braiding and crystal

bases [Kamnitzer and Tingley 2009]. In this section we review this formula, and

also recall the definition and basic properties of a ribbon Hopf algebra.
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3A. A completion of Uq(g). The element X from (5) is not actually in Uq(g), but

only in a completion. In order to be precise, we briefly review the completion of

Uq(g) that we use.

Definition 3.1. Ũq(g) is the completion of Uq(g) in the weak topology generated

by all matrix elements of all (finite-dimensional Type 1) representations. Similarly,

˜Uq(g) ⊗ Uq(g) is the completion of Uq(g) ⊗ Uq(g) in the weak topology defined

by all matrix elements of representations Vλ ⊗ Vµ, for all ordered pairs (λ, µ).

Theorem 3.2 [Kamnitzer and Tingley 2009]. Ũq(g) is the direct product of the

endomorphism rings of all irreducible representations of Uq(g). That is,

Ũq(g) =
∏

λ∈3+

End(Vλ). (6)

Comment 3.3. It is straightforward to see that Ũq(g) is a topological Hopf algebra.

By Theorem 3.2, specifying an element of Ũq(g) is exactly the same as specify-

ing how it acts on each isomorphism class of irreducible representation. Similarly,

if we want to specify an element of Ũq(g)⊗2 we just need to say how it acts on

every tensor product of any two irreducible representations.

3B. A method of constructing commutativity constraints. The next result is a

development of an idea introduced in [Henriques and Kamnitzer 2006] to study

the crystal commutor; the proof is a straightforward exercise.

Proposition 3.4 [Kamnitzer and Tingley 2009, Proposition 3.11]. Let Y be an

invertible element in Ũq(g) such that the map CY : X → Y XY −1 restricts to an

algebra automorphism of Uq(g). Then CY is a coalgebra antiautomorphism if and

only if , for every pair of representations V and W , the map

σ Y
V,W : V ⊗ W → W ⊗ V

v ⊗ w → Flip ◦(Y −1 ⊗ Y −1)1(Y )v ⊗ w
(7)

is an isomorphism.

Given an element Y satisfying the conditions of Proposition 3.4, we use the

notation σ Y to denote the system of isomorphisms {σ Y
V,W }.

3C. The element X. We now explicitly describe the element X from (5). We will

need a way to specify a lowest weight vector of Vλ, depending linearly on a chosen

of highest weight vector. We do this using the action of the braid group on Vλ. We

very briefly review this theory, and refer the reader to, for example, [Chari and

Pressley 1994, Chapter 8.1.2] or [Lusztig 1993] for more details.



814 Noah Snyder and Peter Tingley

Definition 3.5 [Lusztig 1993, 5.2.1]. Ti is the element of Ũq(g) that acts on a

weight vector v by:

Ti (v) =
∑

a,b,c≥0
a−b+c=(wt(v),αi )

(−1)bqac−b
i E

(a)
i F

(b)
i E

(c)
i v.

By [Lusztig 1993, Theorem 39.4.3], these Ti generate an action of the braid

group on each Vλ, and thus a map from the braid group to Ũq(g). This realization

of the braid group is often referred to as the quantum Weyl group. It is related to

the classical Weyl group by the fact that, for any weight vector v ∈ V , wt(Ti (v)) =

si (wt(v)).

Definition 3.6. Let w0 = si1
si2

· · · siN
be a reduced expression for the longest word

w0 in the Weyl group. Then Tw0
= Ti1

Ti2
· · · TiN

.

It is clear that Tw0
is well defined because the elements Ti satisfy the braid

relations. Note that Tw0
interchanges the highest and lowest weight spaces of Vλ.

Definition 3.7. v low
λ is the element in the lowest weight space of Vλ defined by

Tw0
(v low

λ ) = vλ,

where vλ is the chosen highest weight vector.

Definition 3.8. J is the element of Ũq(g) defined by, for any weight vector v ∈ Vλ,

J (v) = q(wt(v),wt(v))/2+(wt(v),ρ)v.

Definition 3.9. X = J Tw0
.

Lemma 3.10 [Kamnitzer and Tingley 2009, Section 5.2]. The element X has the

following properties:

(i) X (v low
λ ) = q(λ,λ)/2+(λ,ρ)vλ.

(ii) X (vλ) = (−1)〈2λ,ρ∨〉q(λ,λ)/2+(λ,ρ)v low
λ .

(iii) X2 is central, and acts on Vλ as multiplication by the scalar

(−1)〈2λ,ρ∨〉q(λ,λ)+2(λ,ρ).

(iv) CX is given by 



CX (Ei ) = −Fθ(i),

CX (Fi ) = −Eθ(i),

CX (Ki ) = K −1
θ(i).

(8)

We next present a key result:
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Theorem 3.11 ([Kirillov and Reshetikhin 1990, Theorem 3; Levendorskiı̆ and

Soı̆bel’man 1991, Theorem 1]; see [Kamnitzer and Tingley 2009] for this exact

statement.). σ X is the standard braiding. Equivalently, the standard R-matrix for

Uq(g) can be realized as

R = (X−1 ⊗ X−1)1(X). (9)

In fact, we will take (9) as the definition of the universal R-matrix.

3D. Ribbon Hopf algebras.

Definition 3.12 [Chari and Pressley 1994, Definition 4.2.8]. A ribbon Hopf algebra

(H, R, v) is a quasitriangular Hopf algebra (H, R) equipped with an invertible

central element v such that

(i) v2 = uS(u), where u = µ(S ⊗ id)R21,

(ii) S(v) = v ,

(iii) ε(v) = 1,

(iv) 1(v) = (v ⊗ v)(R21 R12)
−1.

Proposition 3.13 [Chari and Pressley 1994]. The element g := v−1u is grouplike

(where u is as in Definition 3.12(i)). �

The following four maps are crucial to studying ribbon Hopf algebras:

Definition 3.14 [Chari and Pressley 1994, page 163]. Let (H, R, v) be a ribbon

Hopf algebra, and (V, π) a representation of H. Let f ∈ V ∗ and v ∈ V . Let ei and

ei be dual bases of V and V ∗ respectively. Then

(i) ev( f ⊗ v) = f (v);

(ii) ẽv(v ⊗ f ) = f (gv);

(iii) coev(1) =
∑

ei ⊗ ei ;

(iv) c̃oev(1) =
∑

ei ⊗ g−1ei .

Recall that V ⊗ V ∗ can be identified with End(V ). Under this identification ẽv

is the quantum trace of [Reshetikhin and Turaev 1991].

We will be working with Uq(g), which is not a ribbon Hopf algebra according

to the above definition, since the elements v and R actually lie in the completions

Ũq(g) and ˜Uq(g) ⊗ Uq(g) discussed in Section 3A. This is known as a topological

ribbon Hopf algebra. The theory goes through just as well in the topological case.

Definition 3.15. Let C be the element of Ũq(g) which acts on the representation

Vλ as multiplication by q−(λ,λ)−2(λ,ρ).

The following is well known (see [Chari and Pressley 1994, Corollary 8.3.16],

for example).

Theorem 3.16. (Uq(g), R, C) is a topological ribbon Hopf algebra. �
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3E. The Temperley–Lieb category. The unoriented Temperley–Lieb category TL

has as objects collections of points on the real line up to isotopy, and a morphism

from A to B is a formal linear combination of “planar arc diagrams” each of which

is a collection of nonintersecting segments in R × [0, 1] whose boundary consists

of A × 0 and B × 1 modulo isotopy in the plane and the following relation:

✖✕
✗✔

−→ −q − q−1. (10)

As discussed in, for example, [Goodman and Wenzl 2002], TL is a rigid monoi-

dal category, where composition is given by vertical stacking, tensor product is

given by disjoint union, and the dual is given by 180-degree rotation. Since the

double dual acts trivially, this is a pivotal category with the trivial pivotal structure.

4. Half-ribbon Hopf algebras

This section contains the definition of a half-ribbon Hopf algebra. It also explains

the relationship with the topological category HRIB(S).

4A. Definition and basic properties.

Definition 4.1. A half-ribbon Hopf algebra is a Hopf algebra, together with a dis-

tinguished element t ∈ H, such that (H, R, v) is a ribbon Hopf algebra, where

R = (t−1 ⊗ t−1)1(t) and v = t−2.

In the case where t only exists in a completion of H, we say H is a topological

half-ribbon Hopf algebra.

Proposition 4.2. A half-ribbon element t in a half-ribbon Hopf algebra has the

following properties:

(i) The algebra automorphism Ct : H → H defined by x → t xt−1 is also a

coalgebra antiautomorphism.

(ii) ε(t) = 1. Equivalently, t acts as the identity on the trivial representation.

(iii) S(t)2 = t2.

Proof. (i) follows from R1(x) = 1op(x)R.

(ii) follows from the fact that R acts as the identity on 1⊗ V , where 1 is the trivial

representation.

(iii) follows because t−2 is a ribbon element so S(t−2) = t−2. �

Proposition 4.3. The various important elements in a ribbon Hopf algebra can be

written in terms of a half-ribbon elements t as follows:

R v u g

(t−1 ⊗ t−1)1(t) = 1op(t)(t−1 ⊗ t−1) t−2 S(t−1)t−1 S(t)t−1 = S(t−1)t
(11)
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Proof. (R): The first formula is part of the definition of a half-ribbon element. The

second formula follows by Proposition 4.2(i) since this implies that, for all x ∈H,

(t−1 ⊗ t−1)1(x)(t ⊗ t) = 1op(t−1xt).

(v): This is part of the definition of a half-ribbon element.

(u): By definition, u = µ ◦ (S ⊗ 1)R21, where µ is multiplication. Thus:

u = µ ◦ (S ⊗ 1)([(1op(t)(t−1 ⊗ t−1)]21) (12)

= µ[((S ⊗ 1)(1(t))(t−1 ⊗ t−1)] (13)

=
∑

S(t−1)S(t1)t2t−1 (14)

= S(t−1)[ι ◦ ε(t)]t−1 (15)

= S(t−1)t−1. (16)

In (14) we have used Sweedler’s notation 1(x) =
∑

x1 ⊗ x2. The equality (15)

follows from the antipode axiom of a Hopf algebra, and (16) follows by Proposition

4.2(ii).

(g): By definition, g = v−1u. Recall that v is central. To get the second equation,

apply Proposition 4.2(iii). �

Comment 4.4. For historical reasons the ribbon element v represents a negative

twist. We use t for the positive half-twist, which explains the fact that v = t−2.

4B. A topological category of ribbons with half-twists. There is a functor from a

certain topological category to the category of representations of any ribbon Hopf

algebra, which allows one to construct topological invariants. For a half-ribbon

Hopf algebra, this functor can be extended to a larger topological category. In this

section we define the two relevant categories, beginning with the large one.

Definition 4.5. The category HRIB(S) of topological half-ribbons with labels in

some set S is defined by:

• Objects in HRIB(S) consist of a finite number of disjoint closed intervals

on the real line, each labeled with an element of S, each with a choice of shading

(shaded or unshaded), and each directed (up or down). These objects are considered

up to isotopy of the real line. For example:

A B B C A D . (17)

• A morphism between two objects A, B ∈ HRIB(S) consist of a “tangle of

orientable, directed ribbons” in R
2 × I , whose loose ends are exactly

(A, 0, 0) ∪ (B, 0, 1) ⊂ R × R × I,
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along with a choice of direction and shading of each ribbon. These must be such

that the direction (up or down) of each interval in A ∪ B agrees with the direction

of the ribbon whose end lies at that interval, and the shading (light or dark) of each

interval agrees with the shading on the visible side of the ribbon near that interval.

These are considered up to isotopy.

• Composition of two morphisms is given by stacking them on top of each

other, and them shrinking the vertical axis by a factor of two. Note that we read

our diagrams bottom to top. For example:

V U

U V

◦

V U

U V

=

U V

U V

(18)

Definition 4.6. RIBBON (S) is the full subcategory of HRIB(S) consisting of

those objects all of whose intervals are unshaded.

The definition of HRIB(S) can easily be made rigorous, in the same way as

is done for the subcategory RIBBON (S); see for example [Chari and Pressley

1994]. If fact, as with RIBBON (S), HRIB(S) is a rigid monoidal category,

where tensor products and duals are shown below:

(
A B

)
⊗
(

A C C
)
= A B A C C ,

(
A B C B

)∗
= B C B A .

4C. A functor from HRIB(S) to H-rep. We will now show that the category

of representations of a half-ribbon Hopf algebra admits a natural functor from

HRIB(H-rep). This theorem is an extension of the corresponding result relating

ribbon Hopf algebras and RIBBON (H-rep), so we begin by stating this known

result.

Theorem 4.7 (see [Reshetikhin 1989], [Shum 1994], or [Chari and Pressley 1994,

Theorem 5.3.2]). Let (H, R, C) be a ribbon Hopf algebra. There is a unique

monoidal functor F ′ from RIBBON (H-rep) to H-rep satisfying the following

conditions:

(i) F ′( V ) = V and F ′( V ) = V ∗,
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(ii)

F ′




V V


 = ev, F ′




V V


 = coev,

F ′




V V


 = ẽv, F ′




V V


 = c̃oev.

(iii) F ′

( )
= C ,

thought of as a morphism from V to V or from V ∗ to V ∗, depending on the

orientation.

(iv) F ′

( )
= Flip ◦R

as a morphism from the tensor product of the bottom two objects to the tensor

product of the top two objects, regardless of labeling and orientation.

Comment 4.8. Warning: this functor is not a strict rigid functor. Notice that

F ′( V ∗) = F ′( V ) = V , while F ′( V )∗ = (V ∗)∗ = V ∗∗.

Our main result for this section is that F ′ can be extended to a functor F :

HRIB(H-rep) → H-rep as follows.

Definition 4.9. Let V be a representation of a half-ribbon Hopf algebra H and

for each x ∈ H let πV (x) be the element of End(V ) defined by x . Define a new

representation V Ct which is equal to V as a vector space, but with the action of

x ∈ H defined by πV Ct (x) = πV (t xt−1).

Definition 4.10. The topological half-twist is the morphism In in HRIB which

takes n ribbons of any shading and orientation, and twists them all together by 180

degrees: ...

...

Theorem 4.11. There is a unique monoidal functor F from HRIB(H-rep) to

H-rep satisfying:

(i) F( V )= V , F( V )= V ∗, F( V )= V Ct and F( V )= (V ∗)Ct .

(ii) On unshaded caps and cups F agrees with F ′.

(iii) The topological half-twist on n ribbons is sent to rev ◦ 1n(t) acting on F of

the bottom object, regardless of shading and orientation.

Furthermore, the restriction of F to RIBBON (H-rep) agrees with F ′.
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The proof of Theorem 4.11 requires several lemmas, and will occupy the rest of

this section.

Comment 4.12. Like F ′, F is not a strict rigid functor. In particular, we have

F( V ) = (V ∗)Ct ,

which is not equal to (V Ct )∗ (although these two representations are isomorphic).

In fact, (V ∗)Ct is equal to the right dual ∗(V Ct ). To see why, notice that, as vector

spaces, both (V ∗)Ct and ∗(V Ct ) are equal to HomF (V, F). Each comes with a

chosen action of H, and, using the fact that Ct is a coalgebra antiautomorphism,

one can show that these two actions are identical.

Comment 4.13. A good mnemonic for remembering what F does to objects is

to think of the ribbon as always being labeled with a representation on its light

side, so that when you look at the dark side you see that label rotated 180 degrees

around the y axis. For example, instead of V
Ct

i you would see iV . This works for

remembering how duals interact with half twists since when you rotate V ∗
i by 180

degrees about the y axis you see i
∗V .

Comment 4.14. There is more than one extension of F ′ from RIBBON (H-rep)

to the larger category HRIB(H-rep), but only one satisfies Theorem 4.11(iii).

We first prove the following different characterization of F . This is simpler to

prove, and is also more general than Theorem 4.11. However, this result is less

satisfying in other ways. For instance, Proposition 4.15 does not imply that all half

twists are sent to t acting on F of the bottom object.

Proposition 4.15. Let (H, R, v) be a ribbon Hopf algebra, and let t ∈ H be an

invertible element. There is a unique monoidal functor F from HRIB(H-rep) to

H-rep such that:

(i) F agrees with F ′ on the full subcategory RIBBON (H-rep).

(ii) F( V ) = V Ct and F( V ) = (V ∗)Ct .

(iii) F

( )
= t as a morphism from V to V Ct or from V ∗ to (V ∗)Ct depending

on orientation.

F

( )
= t−1 as a morphism from V Ct to V or from (V ∗)Ct to V ∗ depending

on orientation (notice that this is a negative half-twist, hence the use of t−1).

Proof. This is the simplest case of Reshetikhin and Turaev’s [1990] more general

extension of F ′ to ribbon graphs with coupons, where we think of the half-twists

defined above as coupons on a single ribbon. So we just sketch the proof. Every

morphism in HRIB(H-rep) is isotopic to ribbon in the following standard form:

every shaded object at the bottom has a positive half-twist next to it, then in the
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middle of the diagram there’s a ribbon tangle, then at the top of the diagram every

shaded object has a negative half-twist next to it. Furthermore two such diagrams

are isotopic if and only if the ribbon tangles in the middle of their standard diagrams

are isotopic. Hence there is at most one possible functor F . That F is in fact a

functor follows from the fact that t and t−1 are inverses of each other, so that

composition of diagrams is just given by composing their middle parts. �

The following lemma shows how F acts on those elementary morphisms not

already specified in the statement of Proposition 4.15.

Lemma 4.16. Let (H, t) be a half-ribbon Hopf algebra, and define F as in Propo-

sition 4.15.

(i) F sends any positive half-twist to t acting on F of the bottom object regardless

of orientation or shading. F sends any negative half-twist to t−1 regardless

of orientation or shading.

(ii) F takes any simple crossing to Flip ◦R acting on F of the bottom object,

regardless of orientations and shadings.

(iii) F sends shaded caps and cups to the following maps:

F




VV


= ev∗(V Ct ) : v ⊗ f 7→ f (v), (19)

F




V V


= ẽv∗(V Ct ) : f ⊗ v 7→ f (πV (g)v), (20)

F




V V


= c̃oev∗(V Ct ) : 1 7→

∑

i

πV (g)−1vi ⊗ v i , (21)

F




VV


= coev∗(V Ct ) : 1 7→

∑

i

v i ⊗ vi . (22)

For the explicit formulas, we have used the fact that V Ct and (V ∗)Ct are iden-

tical to V and V ∗, respectively, as vector spaces, and chosen dual basis vi

and v i for V and V ∗.

Comment 4.17. In order to apply the maps ev∗(V Ct ), etc. above, one must use the

canonical isomorphism (∗(V Ct ))∗ ∼= V Ct , and the equality (V ∗)Ct = ∗(V Ct ) from

Comment 4.12. It is a straightforward exercise to show that these maps are given

in coordinates by the above formulas.
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Proof of Lemma 4.16. We prove each of these formulas by a direct calculation.

For the half-twists and ribbon full-twists we only use that t2 = v−1. For exam-

ple, the positive half-twist going from unshaded to shaded is a composition of the

negative half-twist with the full twist. So this result follows from t−1v−1 = t .

The formulas for F applied to a crossing with one or both of the ribbons shaded

all follow from the naturality of the braiding. For example, to find F of a crossing

where one strand is shaded, consider the following isotopy:

≃

Thus F of the left side must be equal to (t ⊗ 1) ◦ Flip ◦R ◦ (1 ⊗ t−1). By the

naturality of the braiding,

(t ⊗ 1) ◦ Flip ◦R ◦ (1 ⊗ t−1) = Flip ◦R ◦ (1 ⊗ t) ◦ (1 ⊗ t−1) = Flip ◦R. (23)

This holds independently of the orientations of the ribbons. A similar argument

gives the same formula for crossings where the other ribbon is shaded, or where

both are shaded.

It remains to compute the formula for shaded cups and caps. These equations

use g = S(t)t−1 = S(t−1)t . We explicitly show two of the four cases. The other

two are similar.

By the definition of F , one has

F




VV


 (v ⊗ f ) = F




VV




(v ⊗ f ) (24)

= ẽv(tv ⊗ t−1 f ) (25)

= t−1 f (gtv) (26)

= f (S(t−1)gtv) (27)

= f (v). (28)

Here (24) is an isotopy, (25) follows from functoriality and our computation of F

on all half-twists, (26) is the definition of ẽv, (27) is the definition of the action on

the dual space, and (28) uses the formula g = S(t)t−1.
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Now for a cup. Notice that, if ei ∈ V ∗ and e j ∈ V are dual bases and x is an

invertible element in H, then v i = xei and vi = S(x)−1ei are also dual bases. By

the definition of F , we have:

F




V V


 (1) = F




V V 


(1) (29)

=
∑

tei ⊗ t−1ei (30)

=
∑

t S(t−1)vi ⊗ v i (31)

=
∑

g−1vi ⊗ v i . (32)

Here (29) is an isotopy, (30) follows from functoriality and our computation of F

on all half-twists, (31) is the change of dual bases described above with x = t , and

(31) uses the formula g = S(t)t−1. �

Note that above we used the formulas relating t to g (which was derived using

the formula relating R and t), but we did not use the formula for R directly. That

formula is used in the following proposition which computes how F acts on the

half-twist applied to many strands.

Proposition 4.18. Suppose that (H, t) is a half-ribbon Hopf algebra, let F be the

unique functor guaranteed by Proposition 4.15. Then, F(In) = rev ◦ 1n(t).

Proof. We proceed by induction on n, the case n = 1 being trivial. Consider the

isotopy

...

...

≃

...

...

Thus, by the definition of F ,

F(In) = (t ⊗ t ⊗ · · · ⊗ t)F(T (n)
w0

), (33)

where T
(n)
w0 is the braid group element corresponding to the longest element of Sn .

Let σ (n) be the braid group element

...

...
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Let s(n) be the image of σ (n) in Sn , and let rev(n) denote the longest element of Sn .

Clearly T
(n)
w0 = (T

(n−1)
w0 ⊗ 1) ◦ σ (n). Hence

F(In) = (t ⊗ t ⊗ · · · ⊗ t) ◦F(T (n)
w0

) (34)

= (t ⊗ t ⊗ · · · ⊗ t) ◦ (F(T (n−1)
w0

) ⊗ 1) ◦F(σ (n)) (35)

= (F(In−1) ⊗ t) ◦F(σ (n)) (36)

= (rev(n−1)1n−1(t) ⊗ t) ◦ s(n) ◦ (1 ⊗ 1n−1)(R) (37)

= (rev(n−1)1n−1(t) ⊗ t) ◦ s(n) ◦ (1 ⊗ 1n−1)((t−1 ⊗ t−1)1(t)) (38)

= rev(n)1n(t). (39)

Here (36) follows from (33) in the case n − 1, (37) follows from the inductive

assumption and the quasitriangularity of R, (38) holds because t is a half-ribbon

element, and (39) is a straightforward calculation.

This proof works regardless of the orientations and shadings of the ribbons. �

Proof of Theorem 4.11. Using the isotopy from (1), the crossing is a composition of

the two strand topological half-twist and two copies of the inverse of the one strand

topological half-twist. Thus the conditions in the statement uniquely determine F

on all the elementary morphisms listed in the condition of Proposition 4.15. So

Proposition 4.15 shows that there is a unique candidate for F . Proposition 4.18

shows that this F satisfies the remaining condition of the theorem. �

5. Ribbon and half-ribbon elements for Uq(g)

We show that Uq(g) is always a topological half-ribbon Hopf algebra. That is,

there exists an element X in a completion of Uq(g) such that (X−1 ⊗ X−1)1(X)

is the standard R-matrix, and X−2 is a ribbon element. Interestingly, X−2 is not

the standard ribbon element C . We also classify the different ribbon elements for

Uq(g), and discuss how one might decide which of these arise from half-ribbon

elements. In particular, we show that the standard ribbon element for Uq(sl2)

does not arise from a half-ribbon element. We then explain some consequences of

varying the ribbon element. It turns out the ribbon element X−2 is in some ways

particularly nice (see Lemma 5.7 and Section 5E).

5A. A half-ribbon Hopf algebra structure on Uq(g). We first need the following

result relating different ribbon elements for the same quasitriangular Hopf algebra.

Lemma 5.1. Let (H, R, v) be a ribbon Hopf algebra, and s ∈ H be a central

grouplike element that squares to 1. Then (H, R, vs) is also a ribbon Hopf algebra.

Furthermore all ribbon elements for (H, R) are of the form vs for some such s.

Proof. This is a straightforward application of the definition of a ribbon element

[Barrett and Westbury 1999, Remark 3.4]. �



The half-twist for Uq(g) representations 825

Theorem 5.2. Let X be the element from Theorem 3.11. Then (Uq(g), X) is a topo-

logical half-ribbon Hopf algebra. Furthermore (X−1 ⊗ X−1)1(X) is the standard

R-matrix.

Proof. By Theorem 3.11, (Uq(g), R) is a quasitriangular Hopf algebra, where

R = (X−1⊗ X−1)1(X) is the standard R matrix. Thus it suffices to show that X−2

is a ribbon element for this quasitriangular Hopf algebra. We already know that

(Uq(g), R, C) is a ribbon Hopf algebra. Thus by Lemma 5.1 it suffices to show

that (i) X2C is central; (ii) X2C is grouplike; and (iii) (X2C)2 = 1.

(i) By Lemma 3.10(iii) and Definition 3.15, X2C acts on Vλ as multiplication by

the scalar (−1)〈2λ,ρ∨〉. Thus it is clearly central.

(ii) Any highest weight ν for Vλ ⊗ Vµ has weight λ+µ−γ for some γ in the root

lattice. Since 〈2γ, ρ∨〉 is an even integer for any γ in the root lattice, it follows

that X2C is grouplike.

(iii) (X2C)2 acts on Vλ by (−1)2·〈2λ,ρ∨〉 = 1. �

5B. The Frobenius–Schur indicator. We must now discuss a tool for comparing

ribbon elements. The following definition of the Frobenius–Schur indicator for a

pivotal category was given by [Ng and Schauenburg 2007] (see also [Linchenko

and Montgomery 2000] for the case of Hopf algebras and [Fuchs et al. 1999] for

C∗ sovereign categories).

Recall that a pivotal structure is a natural collection of maps pV : V → V ∗∗

which defines a natural isomorphism Id → ∗∗ of monoidal functors [Barrett and

Westbury 1999]. The category of representations of a ribbon Hopf algebra is always

pivotal with the pivotal structure being given by the grouplike element g = v−1u

as follows: fix v ∈ V . Then pV (v) is the element of V ∗∗ defined by, for all f ∈ V ∗,

pV (v)( f ) = f (gv) (see for example [Chari and Pressley 1994]).

Definition 5.3. Given an F-linear category with a chosen pivotal structure p, de-

fine the Frobenius–Schur indicator of an absolutely simple object V as follows: if

V 6∼= V ∗, then F Sp(V ) = 0. Otherwise, choose an isomorphism f : V → V ∗. By

Schur’s lemma there exists some constant, which we define to be F Sp(V ), such

that f = F Sp(V ) f ∗ ◦ p.

Comment 5.4. As shown in [Ng and Schauenburg 2007], F Sp(V ) does not depend

on the choice of f , and we have F Sp(V ) = ±1 (or 0).

Comment 5.5. Notice that the Frobenius–Schur indicator depends on the pivotal

structure, which in turn depends on the choice of ribbon element. As described

in [Ng and Schauenburg 2007], we use F Sv(V ) to denote the Frobenius–Schur

indicator for V , calculated with the ribbon element v .
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Comment 5.6. The reason for the term Frobenius–Schur indicator is that in the

case of groups (and indeed involutory Hopf algebras [Linchenko and Montgomery

2000]) with the trivial pivotal structure, it agrees with the usual Frobenius–Schur

indicator, which is 1 when there is an invariant orthogonal form on V ⊗ V , −1

when there is an invariant symplectic form on V ⊗ V , and 0 otherwise.

Lemma 5.7. Let Vλ be an irreducible representation of Uq(g) and assume Vλ is

self-dual. Then F SX−2(Vλ) = 1.

Proof. Let f : Vλ → V ∗
λ be an isomorphism. It suffices to show that f = f ∗ ◦ pVλ

.

Since both f and f ∗ ◦ pVλ
are isomorphisms, it suffices to show that their actions

on v low
λ agree. But f (v low

λ ) is in the lowest weight space of V ∗
λ , which is one-

dimensional and pairs nondegenerately with vλ. Thus, it in fact suffices to show that

f (v low
λ )(vλ) = f ∗ ◦ pVλ

(v low
λ )(vλ). (40)

Using the formula for g given in Proposition 4.3,

S(X) = Xg−1 = gX. (41)

Let k = (−1)〈2λ,ρ∨〉q(λ,λ)/2+(λ,ρ). By Lemma 3.10(ii), X (vλ) = k(v low
λ ). Thus the

left side of (40) can be simplified as follows

f (v low
λ )(vλ) = f (k−1 X (vλ))(vλ) (42)

= k−1(X f (vλ))(vλ) (43)

= k−1 f (vλ)(S(X)vλ) (44)

= k−1 f (vλ)(Xg−1vλ) (45)

= k−1 f (vλ)(gXvλ) (46)

= k−1 f (vλ)(kgv low
λ ) (47)

= f (vλ)(gv low
λ ). (48)

Here (43) follows because f is an isomorphism, (45) and (46) follow by (41) and

(47) by the above formula for the action of X on vλ.

Now consider the right side of (40). By definition, pVλ
(v low

λ ) is the element of

V ∗∗
λ which takes φ ∈ V ∗

λ to φ(gv low
λ ). Thus

f ∗ ◦ pVλ
(v low

λ )(vλ) = f (vλ)(gv low
λ ). (49)

We have shown that the two sides of (40) agree, so the result follows. �

Turaev [1994] calls the property that Lemma 5.7 holds unimodality and requires

it when defining geometric 3j and 6j symbols.
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Lemma 5.8. F SC(V ) is the usual Frobenius–Schur indicator of the corresponding

classical representation.

Proof. Since the Frobenius–Schur indicator is a discrete invariant, it doesn’t change

under continuous deformation. �

5C. Which ribbon elements for Uq(g) arise from half-ribbon elements? Here

we classify ribbon elements for Uq(g). We then prove that the standard ribbon

element for Uq(sl2) is not equal to t−2 for any half-ribbon element t .

Definition 5.9. Suppose that φ is a character of P/Q, where P is the weight lattice

of g, and Q is the root lattice. Define s(φ) ∈ Ũq(g) to act on Vλ as multiplication

by the scalar φ(λ).

Theorem 5.10. The central grouplike elements of Ũq(g) are precisely the s(φ).

Proof. Suppose that s is a central grouplike element of Ũq(g). Since it is cen-

tral, s acts by a scalar on any irreducible representation. Furthermore, since it is

grouplike, s acts by the same scalar on any two irreducible representations that

appear in the same arbitrary tensor product of irreducible representations. Thus

such an s gives a function of P/ ∼, where ∼ is the equivalence relation on weights

generated by λ ∼ µ if Vλ and Vµ appear in the same tensor product of irreducible

representations. It suffices to show that λ∼µ if and only if λ+ Q =µ+ Q ∈ P/Q.

One can easily see that ∼ respects the additive structure of the weight lattice, so

it is enough to prove that Vλ appears in some tensor product also containing the

trivial representation V0 precisely when λ is in the root lattice.

Since the Littlewood–Richardson coefficients are the same in the quantum and

classical cases, this reduces to the same question in the classical case. So let G be

the simply connected Lie group attached to U (g), and let Z(G) be the center of

G. The central character map gives a pairing between Z(G) and the weight lattice

mod the root lattice. Since any tensor product of irreducible representations has a

well-defined central character, we see that Vλ is equivalent to V0 only if λ is in the

root lattice.

To see the other direction, let V be a faithful representation of the compact

adjoint form K of G.

Claim: For any λ in the root lattice, there exists N so that, for all n > N , Vλ

occurs as a subrepresentation of V ⊗n .

Proof of claim: since λ is in the root lattice, Vλ descends to a representation of

K . On this compact form we can use character theory. Because K has no center,

|χV (g)| < dim V for any g 6= 1. Let

kn =

∣∣∣∣
∫

K

χn
V dµ

∣∣∣∣ , (50)
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where dµ is the normalized Haar measure. Since K is compact and |χV (g)| <

χV (1) for all g 6= 1, we see that

lim
n→∞

〈χV ⊗n , χVλ
〉

kn

= lim
n→∞

1

kn

∫

K

χV (g)nχVλ
(g−1)dµ = χVλ

(1) = dim Vλ. (51)

In particular, for n ≥ N we see that 〈χV ⊗n , χVλ
〉 is nonzero, so Vλ occurs in V ⊗n .

Applying the above fact to 0 and an arbitrary root vector λ, we see that for a

sufficiently high power N ′ = max(N0, Nλ) the tensor power V ⊗N contains both V0

and Vλ, and hence 0 ∼ λ. �

Theorem 5.11. Ribbon elements of Ũq(g) are exactly elements of the form

s(φ)X−2,

where φ is a character of the weight lattice mod the root lattice of order ≤ 2.

Proof. This follows from Lemma 5.1 and Theorem 5.10. �

We have the following relationship between ribbon elements and the Frobenius–

Schur indicator.

Proposition 5.12. If Vλ is self dual, then F Ss(φ)X−2(Vλ) = φ(λ).

Proof. The only part of the definition of the Frobenious–Schur indicator that

changes when you change the ribbon element from X−2 to s(φ)X−2 is pVλ
, and

this is multiplied by φ(λ). Hence the proposition follows from Lemma 5.7. �

We wish to understand which of these ribbon element extend to a half-ribbon

elements on Ũq(g). As we shall see, the ratio of two half-ribbon elements is grou-

plike, so to classify all of them we need to understand the grouplike elements in

Ũq(g). In general this seems to pose some technical challenges, but we can do the

case of Uq(sl2).

Proposition 5.13. Let (H, R) be a quasitriangular Hopf algebra, and assume that

t1 and t2 are two half-ribbon elements. Then t1t−1
2 is grouplike. (Note that we do

not assume here that t−2
1 = t−2

2 .)

Proof. This follows from the equality (t−1
1 ⊗ t−1

1 )1(t1) = (t−1
2 ⊗ t−1

2 )1(t2). �

Lemma 5.14. Let V be the standard representation of Uq(sl2), with basis {v+, v−}

such that E(v−) = v+, K v+ = qv+, and K v− = q−1v−. Then V ⊗ V contains a

copy of the trivial representation V0. Furthermore, this is spanned by the element

v+ ⊗ v− − q−1v− ⊗ v+.

Proof. It suffices to check that 1(E)(v+ ⊗ v− − q−1v− ⊗ v+) = 0. This follows

from the definition of 1. �
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Definition 5.15. Let a ∈ C(q). Define Ka to be the element of Ũq(sl2) that acts

on any weight vector v ∈ Vλ by Ka(v) = awt(v). Note that Ka is grouplike.

Lemma 5.16. All grouplike elements in Ũq(sl2) are of the form Ka , for a ∈ C(q).

Proof. A grouplike element is determined by its action on the fundamental re-

presentation V . Suppose that σ is grouplike. Define constants a, b, c and d by

σv+ = av+ +bv− and σv− = cv+ +dv−. Since σ is grouplike it must act trivially

on the trivial subrepresentation of V ⊗ V . Thus by Lemma 5.14,

v+ ⊗ v− − q−1v− ⊗ v+ = σ ⊗ σ(v+ ⊗ v− − q−1v− ⊗ v+) (52)

= ac(1 − q−1)v+ ⊗ v+ + (ad − q−1bc)v+ ⊗ v− (53)

− q−1(ad − qbc)v− ⊗ v+ + (1 − q−1)bdv− ⊗ v−. (54)

Comparing coefficients we see that ac = bd = bc = 0 and ad = 1. Hence σ acts

on V in exactly the same way that Ka does. Since they are both grouplike and

V is a tensor generator for the category of representations of Uq(sl2), we see that

σ = Ka . �

Theorem 5.17. There is no topological half-ribbon element t for Uq(sl2) such that

t−2 is the usual ribbon element C.

Proof. By Theorem 3.16, X is a half-ribbon element for (Uq(sl2), R). By Propo-

sition 5.13, any other half-ribbon element is of the form Xα for some grouplike

element α. By Lemma 5.16, α = Ka for some a ∈C(q). Since X sends the λ weight

space to the −λ weight , it follows that Ka X Kav = Xv for any weight space v .

Therefore, we have that (X Ka)
−2 = X−2. Hence every half-ribbon element t for

Uq(sl2) has t−2 = X−2. But X−2 acts as −C on the standard representation, so is

not equal to C . �

5D. A summary of ribbon and half-ribbon elements for Uq(sl2), Uq(sl3) and

Uq(sl4). We now describe the possible ribbon elements of these three quantum

groups, and describe which are the squares of half-ribbon elements. Notice that

the three cases all behave differently.

• Uq(sl2). There are two ribbon elements C , and X−2. Only X−2 can be realized

using a half-ribbon element (see Theorem 5.17).

• Uq(sl3). In this case P/Q ∼= Z/3. Thus, there are no central grouplikes of

order two, so there can be only one ribbon element. This unique ribbon element

can be realized using the half-ribbon element X .

• Uq(sl4). In this case P/Q ∼= Z/4. This has two characters of order ≤ 2, so

there are two ribbon elements. In this case both come from half-ribbon elements.

A straightforward calculation on the standard representation of Uq(sl4) shows that

X−2 is not the standard ribbon element. To see the other half-ribbon element,
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consider the central element s ∈ Ũq(sl4) which acts on Vλ as multiplication by

i4(λ,λ), where i is the complex fourth root of unity. Recall that (λ, α) ∈ Z for any

root α, which implies that s is grouplike. Clearly we also have s4 = 1, and from

these two facts it follows that X ′ := s X is a half-ribbon element for (Uq(sl4), R).

One can check that s acts as multiplication by −i on the standard representation,

so X ′−2 = s2 X−2 6= X−2. Since X−2 is the nonstandard ribbon element, X ′−2 must

be the standard ribbon element.

5E. Varying the ribbon element and diagrammatic categories. Often you’ll find

a result in the literature saying that a certain diagram category “is the same as”

as certain category coming from quantum groups (for example, [Ohtsuki 2002,

Appendix H] and [Kuperberg 1996, page 11]). However, in the details of this claim

there’s an annoying sign difference between the diagram category and the quantum

group category. The reason for this is that, although the two categories match up

as braided tensor categories, they are different as pivotal categories. This can be

fixed by changing the ribbon element on the quantum group side, thus changing

the pivotal structure.

We illustrate this here by considering the case of Uq(sl2)-rep and the Temperley–

Lieb category (see Section 3E). In the correspondence discussed in [Ohtsuki 2002,

Appendix H], the standard representation of Uq(sl2) corresponds to the elementary

object (i.e. a single •) in the Temperley–Lieb category. We now use the Frobenius–

Schur indicator to show that, for any such statement to hold on the level of pivotal

categories, one must use the ribbon element X−2.

Proposition 5.18. Let • denote a single point in Temperley–Lieb (with the trivial

pivotal structure discussed in Section 3E). Then F S(•) = 1.

Proof. The single strand is an isomorphism between • and •∗ = •. The dual of the

single strand (given by rotating 180 degrees about the z axis) is again the single

strand. �

Proposition 5.19. Let V be the standard representation of Uq(sl2). Then

FSC(V ) = −1 and FSX−2(V ) = 1.

Proof. This is a straightforward calculation using the definitions of C (Definition

3.15) and Lemma 3.10(iii). It also follows from the discussion in Section 5C. �

If • in Temperley–Lieb is going to correspond to the standard representation,

the Frobenius–Schur indicators should agree. Clearly this can only happen if we

use the ribbon element X−2.

Comment 5.20. A similar difficulty arises in relating the type C quantum group

knot invariants with (a specialization of) the Kauffman polynomial. Once again,

one can fix the problem by switching to the ribbon element X−2.
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Comment 5.21. This difficulty can also be addressed by changing the diagram-

matic category. The Temperley–Lieb category has another pivotal structure p such

that p• =−id•. With this pivotal structure F S(•)=−1. This other pivotal structure

is given diagrammatically by the disoriented Temperley–Lieb category of [Clark,

Morrison and Walker 2009].

5F. The effect of varying the ribbon element on knot invariants. Suppose that

(H, R, v) is a ribbon Hopf algebra over a base field F . Fix a simple H-module V .

The functor from Theorem 4.7 sends a link with every component labeled with V

to an element of F , denoted by FV (L), which is an invariant of framed oriented

links. Note that FV (L) actually depends on the choice of ribbon element v , so

when we need to be clear about which ribbon element we are using we will denote

it by FV
v (L). Since V is simple the ribbon element acts by a scalar θv(V ) on V .

It follows as in, for example, [Ohtsuki 2002, Section 3.3] that θv(V )w(L)FV
v (L) is

an invariant of oriented but unframed links (where w(L) is the writhe of the link

diagram, as described in, for example, [Ohtsuki 2002, page 11] and the current

Wikipedia entry for “Writhe”).

Proposition 5.22. Suppose that H is a quasitriangular Hopf algebra with

End(1) = F,

and that V is a simple H-module. Suppose that v1 and v2 are two different ribbon

elements for H. Let θv1
(V ) and θv2

(V ) be the scalars by which v1 and v2 act on V .

Let FV
v1

and FV
v2

be the functors attached to these two ribbon Hopf algebras. Then

for any link L ,

θw(L)
v1

F
V
v1

(L) =

(
F Sv1

(V )

F Sv2
(V )

)#L

θw(L)
v2

F
V
v2

(L),

where #L is the number of components of L.

Proof. By Theorem 5.11, α := v1/v2 is central grouplike element of order 2. Let

αV be the scalar by which α acts on V . By Proposition 5.12,

αV = F Sv1
(V )/F Sv2

(V ).

Let gi = v−1
i u where u is the Drinfeld́ element. It follows immediately from defi-

nitions that ẽv2 = α−1
V ẽv1 and c̃oev2 = α−1

V c̃oev1.

The only elementary morphisms for which FV
v1

and FV
v2

disagree are left-going

cups (corresponding to c̃oev), left-going caps (corresponding to ẽv), and full-twists.

Thus,

θw(L)
v1

F
V
v1

(L) = (αV )−NL θw(L)
v2

F
V
v2

(L), (55)

where

NL := #{left going caps and cups} +w(L). (56)
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It is easy to see that NL (mod 2) is an invariant of oriented links (for ex-

ample, check all the Turaev moves [Ohtsuki 2002, Section 3.2]). Furthermore,

NL (mod 2) doesn’t change when you replace a positive crossing by a negative

crossing. Since every link can be unknotted by replacing positive crossings with

negative crossings, we see that NL (mod 2) depends only on the number of com-

ponents of L . By looking at the k-component unlink we see that NL ≡#L (mod 2).

�

6. Questions

Question 1. Which ribbon Hopf algebras can be endowed with a half-ribbon ele-

ment?

There are several aspects to this question. One could look for examples of half-

ribbon Hopf algebras other than Uq(g). One could also try to find nonexamples,

in the sense of finding ribbon Hopf algebras that do not contain the required ele-

ment t . Such examples exist (at least for topological ribbon Hopf algebras). For

instance we showed in Section 5C that Uq(sl2), with the standard ribbon element,

cannot be made into a half-ribbon Hopf algebra. However, it can be modified by

multiplying the ribbon element by a central grouplike element, and then it does

have the required t . One could also ask if there are examples of ribbon Hopf

algebras that cannot be made into half-ribbon Hopf algebras, even allowing this

sort of modification. More ambitiously, one could look for a general method of

determining when a ribbon Hopf algebra H contains an element t such that (H, t)

is a half-twist Hopf algebra.

In the current work we have mainly considered Uq(g), which is infinite-dimen-

sional, and only has a topological half-ribbon element in the sense that t only

belongs to a completion of Uq(g). We feel it would be interesting to look at the

case of finite-dimensional Hopf algebras as well.

Question 2. Fix a Hopf algebra H. Is there a natural set of conditions one can

impose on an element t ∈ H which guarantees that (H, t) is a half-ribbon Hopf

algebra?

We would like to be able to start with a Hopf algebra, which is not a priori

quasitriangular, and endow it with a ribbon (and half-ribbon) structure by finding

a certain t ∈ H. One can of course write down the conditions t needs to satisfy

by insisting that (t−1 ⊗ t−1)1(t) is a quasitriangular structure, and t−2 is a rib-

bon element. However, these are very difficult to deal with, so the real question

is to find nicer conditions on t . This would give a new method of constructing

quasitriangular Hopf algebras.

Question 3. What happens if you weaken the conditions on t?
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Checking that (t−1 ⊗ t−1)1t is a quasitriangular structure is difficult, but for

some applications one can weaken this condition by insisting only that

(i) for any representation V and W of H, the map

Flip ◦(t−1 ⊗ t−1)1(t) : V ⊗ W → W ⊗ V (57)

is an isomorphism; and

(ii) t−2 acts as a ribbon element, in the sense that

t−2 ◦ mult ◦(S ⊗ 1)
(
(t−1 ⊗ t−1)1(t)

)
(58)

is grouplike, and so can be used to develop a theory of quantum trace.

These conditions seem easier to check, and a Hopf algebra H with such a t already

has some nice structure. This could be used, for instance, in studying coboundary

categories [Drinfel’d 1989].
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