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Abstract. We present a simulation of the motion of electrons in a mesoscopic Hall bar, scattered 
by a local inhomogeneous magnetic field. In the low-field regime, the Hall resistance is found 
to be determined precisely by the average magnetic field in the cross junction, which implies a 
valuable device application of non-invasive access for measuring magnetic flux, like SQUIDs do, 
but on a rather small (submicron) scale. The bending resistance is found to depend sensitively 
on the local magnetic field profile, which may also imply certain device applications, such as 
detecting the local magnetic properties of small objects. We also discuss briefly the asymmetric 
effect due to non-identical leads and asymmetric location of the field profile in the cross junction.

1. Introduction

The Hall effect has been a very successful technique for obtaining information on the 
properties of charge carriers, e.g. the sign of the charge carriers and their density. With the 
improvement of the quality of the two-dimensional electron gas (2DEG), the well known 
phenomena of the integer quantum Hall effect (IQHE) and the fractional quantum Hall effect 
(FQHE) have been discovered [1], which has stimulated the progress of low-dimensional 
physics greatly* In recent years, with the further development of the MBE and micro­
fabrication techniques, the quasi-one-dimensional (Q1D) semiconductor system has been 
realized. The study of the Hall effect in the Q1D system has shown a lot of interesting 
transport phenomena such as the quenching of the Hall resistance at low magnetic fields, 
the last Hall plateau, and other anomalies [2-6]. Extensive theoretical efforts have also 
contributed to the understanding of these novel phenomena [7-9],

Usually the Hall system is studied under a uniform magnetic field. However, the 
Hall problem in the presence of an inhomogeneous magnetic field has become important 
recently for the composite fermion theory in the FQHE [10], since for a density-modulated 
2DEG, which is in the FQHE regime, the problem can be mapped onto the modulation of 
the magnetic field. Moreover, due to the experimental progress, various inhomogeneous 
magnetic fields can now be generated on a nanometre scale. For example, by using MBE 
growth, semiconductor materials (e.g. GaAs) can be doped with magnetic ions (e.g. Mn). 
Under specific growth conditions these ions conglomerate and form ferromagnetic clusters 
(e.g. MnAs) with controllable diameters in the range of 5-30 nm [11]. If such a magnetic 
particle is placed in the cross of a Hall bar, the Hall response signal can provide us with 
magnetic information on the particle. This is a novel technique, which provides non-invasive
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access to the magnetic properties of very small (submicron) objects of any desired form, 
size and material [12]. In this context, the mesoscopic Hall probes work effectively as 
micro-fluxmeters, similar to SQUIDs, but with an effective detection loop of only about a 
square micron.

In this work, we present a theoretical investigation of the magnetic response of a Hall 
bar device to an individual submicron magnetic sample placed in the cross junction. We 
noticed that in the regime of high and uniform magnetic field, the ballistic transport in a Hall 
bar is dominated by the quantized edge states, which lead to quantized Hall conductance. 
However, in the low-magnetic-field regime a classical approach developed by Beenakker 
and van Houten in reference [9] worked very well as regards providing an understanding of 
the anomalies in a Hall bar, and was in good agreement with the quantum lattice Green’s 
function method [8]. Therefore, in the present work we will apply this classical approach, 
since our main interest is in the low-magnetic-field regime. Furthermore, for considering 
inhomogeneity of a magnetic field, which implies the absence of well defined edge states, 
this classical approach appears to be quite appropriate. In our model simulation, we will 
also assume sharp comers and hard-wall geometry for the system. The former assumption 
will not influence our conclusions qualitatively; see reference [12], where slightly rounded 
comers were considered. The Hard-wall assumption, which has been used widely even 
in quantum calculations, is expected to be a better approximation in the present classical 
computation, since a finite-height barrier is the same as a hard wall to a classical particle, 
provided that the barrier is higher than the particle’s kinetic energy.

IXm

2W 
* -----------»

Figure 1, The four-terminal Hall bar, where an inhomogeneous magnetic field is present, which 
is circularly symmetric and is placed at the centre of the cross junction.

2. The model and formalism

The four-terminal geometry for the Hall measurement is shown schematically in figure 1, 
where the four leads are connected to reservoirs each at chemical potential Here we 
show the system with four identical leads and a circular magnetic field profile situated in 
the middle of the cross junction. In most of the present paper we will focus our discussion 
on this geometry; however, the effect of non-identical leads and asymmetric location of 
the magnetic field profile will also be discussed briefly. Three types of circular magnetic 
field profile are considered. First, we consider a superconducting disc placed in an external 
constant magnetic field above the centre of the junction. Because of the Meissner effect,
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we model the field profile as zero inside a region of radius d , and constant outside it. The 
scattering on this profile and the consequent physical results will be studied in considerable 
detail. Another two magnetic field profiles will also be discussed briefly: one is that of a 
single magnetic dipole which is placed a distance 20 above the cross junction in the absence 
of an external magnetic field; another is a magnetic flux in the centre of the cross region 
which we model by a Gaussian magnetic field profile.

The Hall resistance is calculated numerically using the semi-classical formalism. The 
current in lead i is denoted by ƒ,, which can be expressed according to the Landauer-Biittiker
formula

h
le 

h
(Ni -  Ri)(li -  TijiMj (1)

where is the probability of transmission for an electron from lead j  to lead /, and Ri 

the probability of reflection back into the same lead i. In practice, these probabilities are 
calculated at the Fermi energy €py and satisfy YL&i ^b’+ ^ t =  Ni, according to the condition 
for the current conservation, where N\ is the number of propagating modes in lead i. For 
the four-lead Hall geometry with identical leads, the Hall resistance RH can be found from 
equation (1) by setting 1\ ~  —I3 =  I  and I2 =  h  =  0:

2D _  (*¿2 -  M4>/« _  h r 22, -  r 4I
RH = --------}-------=  ^ — 2  —

and the bending resistance Rb by setting I\ =  — h  — I  and /3 =  I4 =  0:

(2)

(3)

where Z =  [7^ + 1£ +  IT ^ T ^  +  T?\ +  r 4i)](72i +  T41). For the asymmetric Hall system 
with either non-identical leads or an asymmetric magnetic field in the cross junction, the 
simple formulae (2) and (3) break down. In this case, the Hall resistance and bending 
resistance should be solved from equation (1) by setting the same boundary conditions for 
the currents as in deriving equations (2) and (3).

To obtain the probabilities 7)j and R i, we follow the semi-classical approach developed 
by Beenakker and van Houten in reference [9]. In our numerical simulation, we inject a 
large number of electrons (Ne > 10s) towards the junction through lead 1, and follow their 
classical trajectories to determine the probabilities: 7}i =  Nj/N e, where Nj is the number of 
electrons collected in lead j .  Note that for the case of non-identical leads or an asymmetric 
magnetic field profile, similar procedures should be followed for each of the four leads. The 
electrons are injected uniformly over lead 1, with the Fermi velocity vp =  *j2meFi and an 
angular distribution P(0) =  ^cosfl, where 6 6 (—tt/2, tt/2) is the injecting angle with 
respect to the channel axis. Here the angular distribution weight function P(0) ~  cos 6 
simply results from the slight shift of the Fermi surface of the reservoirs in the linear 
response regime. The factor 1 /2  is from the normalization condition.

3. Results and discussion

In the following we express the magnetic field in units of Bo =  mvp/2eW , and the resistance 
in R0 =  (h/2e2)n/2kF W, where W  is the half-width of the lead, m the mass of the electron,
kp =  ^2m<=F/h2 the Fermi wave vector, and Vp =  fikpjm the Fermi velocity. For electrons 
moving in GaAs (m =  0.067m*) and for a typical channel width of 2W =  1 /xm and a 
Fermi energy of eF =  10 meV, we obtain Bq =  0.087 T and Rq =  0.308 k£X
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Figure 2. (a), (b) Hall and bending resistances in the presence of a superconducting disc in 
the cross junction, where the results for different sizes of the disc are shown, (c) The linear 
behaviour of the Hall resistance in the low-magnetic-field regime, (d) The Hall coefficient 
of =  Rh / B  (soliS curve) and a* =  Rh / {B)  (dashed curve) as functions of the disc radius, 
where {B} is the average magnetic field in the cross junction.

First, in figure 2 we present the results from the superconducting disc above the 
symmetric junction. In figure 2(a) we show the Hall resistance as a function of the external 
applied magnetic field for different sizes of the disc. Notice that there exists a critical 
magnetic field BCi such that when B >  Bc the Hall resistance in the presence of the disc 
coincides with that for the case of a homogeneous magnetic field (i.e. d  =  0). When B <  Bc 
the Hall resistance is influenced by the presence of the disc. This critical magnetic field Bc 
is determined by the condition that at this value the diameter of the cyclotron orbit equals 
the distance between the edge of the dot and the corner of the cross junction. Therefore, 
for B > Bc, the motion of an electron is described by the skipping orbits which are located 
along the edge of the device, and do not sense the B =  0 region in the cross junction,
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and consequently give rise to a Hall resistance exactly the same as the classical 2D value 
Rh  =  IB / i t , which is also in the reduced units of R0 and B0, for both the presence and 
the absence of a superconducting disc above the Hall bar system. For B < Bc, the electron 
orbits are not strongly bent, so they move through the B =  0 region in the junction. This 
results in the following behaviour of the Hall resistance: there is a shoulder for a small dot, 
and it changes eventually to a rounded peak with increasing size of the dot. This feature 
can be understood as follows: with increasing magnetic field, the difference between the 
transmission probabilities Ti\ and T*\ increases first, and then decreases when the magnetic 
field is larger than a certain critical value. On the other hand, the quantity Z in equation
(2) is a monotonically decreasing function of magnetic field. Thus, a shoulder or rounded 
peak as in figure 2(a) occurs at around the maximum point of T21 — T̂\. This is also the 
reason for the non-linear behaviour in the intermediate region between the low and high 
magnetic fields in the absence of the superconducting dot (see the solid line in figure 2(a)), 
which connects the two linear regimes with different slopes.

In figure 2(b) the bending resistance is shown. The non-zero value of the bending 
resistance is a quite interesting feature of a mesoscopic Hall bar system, since for a 
macroscopic ohmic structure, two leads attached to the same point on the current path 
measure nearly the same voltage, so R$ ~  0. From figure 2(b), for the case of d =  0, 
we find a non-zero bending resistance in the low-magnetic-field regime. With increasing 
magnetic field, R b decreases, and becomes zero after B >  2Bq, which is in the classical 2D 
regime, where, in addition to the classical 2D Hall resistance, this zero bending resistance 
is expected. Therefore, here the zero bending resistance and the classical 2D Hall resistance 
reflect in an interesting way the fact that the magnetic field changes the system from the 
mesoscopic to the macroscopic regime. In the presence of a superconducting dot, we 
find that the behaviour of the bending resistance is quite different from the d =  0 case. 
In the low-magnetic-field limit, in addition to the geometry scattering, the scattering on 
the superconducting dot destroys the guiding of the magnetic field, and thus the bending 
resistance increases with increasing magnetic field. However, after the magnetic field 
has gone beyond certain critical value, which is proportional to the size of the dot, the 
guiding dominates the motion of electrons, and the bending resistance decreases with the 
magnetic field. We notice that, for a large size of the dot, the bending resistance exhibits 
further oscillation with increasing magnetic field. The region of increasing R b corresponds 
to the region of decreasing tf#, and vice versa. This feature is intuitively reasonable, 
since the stronger bending of the field towards the direction of motion of the electrons 
results in a larger Hall voltage, but a smaller bending voltage due to the better guiding 
of the motion along the current path. We also observe a sign reversal in R b , which is 
due to the incomplete guiding, at fields where R h is rapidly rising. Here, the main but 
somewhat complex structures of the bending resistance in figure 2(b) correspond exactly 
to the relatively smooth behaviours of the Hall resistance in figure 2(a), both of which are 
computed from the same data for 7}y by using equations (2) and (3), and can be understood 
quite physically. However, we are not very sure of the origin of the small structures in the 
bending resistance, which may result from the numerical accuracy limitation, although the 
accuracy has been examined carefully by changing the numbers and initial positions and 
directions of the injected particles for the Hall resistance in figure 2(a), and may not be so 
high for the bending resistance, due to its more sensitive dependence on the magnetic field 
profile in the cross junction. In this context, we point out that the bending resistance may 
be an important quantity in mesoscopic Hall measurement, because of its high sensitivity 
to the local magnetic field in the cross junction, which may lead to some useful techniques 
for detecting a local magnetization in the cross.
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Note that, even in the presence of the disc, the behaviour of the Hall resistance for 
low magnetic fields is linear—see figure 2(c), where the slope decreases with the disc size»
i.e. with the amount of the expelled magnetic flux. In this context, it is helpful for us to 
analyse the Hall coefficient a  =  Rh /B.  In figure 2(d), we show that the Hall coefficient 
decreases with increasing radius of the disc (see the solid curve), because of the reduction 
of the average magnetic field in the cross junction. Furthermore, if we use the average field 
(B) in the cross junction, (B) =  [1 -  7t(d/2W)2]B,  to define an effective Hall coefficient 
as a* =  /?///{#), we find that a* is independent of d  for d / W  <  1.0, which is shown by 
the dashed curve in figure 2(d). For d > W,  where only in the small regions near the four 
comers is the magnetic field non-zero, our simulation gives a decreasing behaviour for a* 
with the further increase of d. This breakdown is due to the ineffective scattering of the 
extremely corner-located magnetic field of the electrons. However, the remarkable result of 
constant a* in figure 2(d) indicates that in low-magnetic-field regime the Hall resistance is 
determined completely by the average field in the cross region, and is independent of the 
detailed distribution of the field. This is one of our major conclusions in this work, which 
will be confirmed further in the following by investigating other inhomogeneous magnetic 
field profiles.

P

20/* Pq/V

Figure 3. The Hall resistance from (a) a magnetic dipole, and (b) a magnetic vortex in the 
absence of an external magnetic field, where the small circles are obtained from Rh — (B)/2,

With this aim, we consider the scattering by another two types of magnetic field profile, 
namely a magnetic dipole and magnetic flux, in the absence of other external magnetic 
fields. First, for the magnetic dipole, the component of the magnetic field perpendicular to 
the 2D plane is given by B{p) =  Ai(3cos20 — 1 )//?3, where R2 =  p2j r z l  =  *2 +  y2 +  Zo> 
cos2 0 =  Zq/ R 2, Zo is the distance between the dipole and the 2D plane, and M  is the dipole 
moment. In figure 3(a) we show the scaled Hall resistance Rh / M  as a function of the 
distance zo* The results for M  =  1, 0.5, and 0.1 are given by the solid, dashed, and chain 
curves respectively. We see that for large zoi the Hall resistance Rh  scales perfectly with 
M. This feature proves that the Hall resistance is proportional to the average magnetic field 
over the junction region in low-field limit. In figure 3(a) we also present the result obtained 
from Rh  =  (B) /2, shown by the small circles, where we see clearly that this simple formula 
can give exactly the same result as is obtained from the numerical simulation. However, 
with decreasing zo, the Hall resistance deviates from the above simple formula, because of 
the more strongly non-uniform magnetic field. For small zo, B(p)  has a sharp positive core
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at the centre which is not sensed by the electrons; consequently a negative Hall resistance 
appears in this regime.

Next, for the magnetic flux, we model it by a Gaussian magnetic field profile B(p) =  
bo  exp(—/>2/Po)> where p =  J x 1 +■" y2, po  describes the spread of the magnetic field, and bo  

describes the strength of the field. In figure 3(b) we show the Hall resistance as a function 
of the width po of the magnetic field profile, for several values of the strength. The solid 
lines are for the results from the numerical simulation, and the small circles are for those 
obtained from the formula RH =  {B)/2. Here we illustrate again that in low-magnetic-field 
regime the Hall resistance is determined precisely by the average magnetic field in the cross 
junction, and is independent of the detailed distribution of the field.
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Figure 4. The Hall resistance (a) and bending resistance (b) for an asymmetric Hall bar. The 
width ratio of two pairs of leads is denoted by y — W \ / W  (see the text for a more detailed 
description).

The above discussions are restricted to the symmetric systems. To show the asymmetric 
effects on the Hall and bending resistances, let us consider the asymmetric system with 
non-identical leads, for the specific case of a homogeneous magnetic field. To be definite, 
we denote the ratio of the widths of lead 2 (4) and lead 1 (3) (see figure 1) by y =  W\/W. 

The results are shown in figures 4(a) and 4(b) for y =  0.5 (dotted curve), 1.0 (solid curve), 
and 1.5 (dashed curve).

(1) In the high-magnetic-field regime, the Hall resistances overlap with each other 
precisely, and have the classical 2D value. Meanwhile, the bending resistance is zero. This 
is simply the classical 2D regime.

(2) There exists an intermediate regime for each case, where both the Hall resistance 
and the bending resistance depend on the geometry—namely, the ratio y. For the case of 
W\ < W , the critical field Bc for the transition to the classical 2D system is larger than that 
for W\ =  W. For W\ > W , the result is the opposite.

(3) In the low-magnetic-field regime, the Hall resistances again become the same for 
different values of y , while the bending resistances are quite different from each other.

The bending resistance, including its behaviour in the intermediate regime, can be 
understood as follows. Since the current flows from lead 1 to lead 2, the voltage measured 
between lead 3 and lead 4 would decrease with increasing width W\, because the geometry 
scattering is weaker for the current flowing into a wider lead than in the opposite case.
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Another type of asymmetry is the asymmetric location of the circular magnetic field 
profile in the cross junction. In the low-magnetic-fie Id regime, we found that the Hall 
resistance is still determined exactly by the average magnetic field in the cross junction, 
but the bending resistance depends on the location of the field profile sensitively. In the 
intermediate regime, both the Hall and bending resistances are influenced by the location 
of the magnetic field profile. In the high-field regime, in particular for the system with 
a superconducting disc studied above, a pure 2D classical feature is approached after the 
magnetic field goes beyond a certain value, which depends on the size and location of the 
disc.

4. Conclusions

In summary, we have applied a semi-classical approach to simulate the motion of electrons 
in a mesoscopic Hall bar, in the presence of an inhomogeneous magnetic field resulting 
from (1) a superconducting dot, (2) a magnetic dipole, and (3) a magnetic vortex. We 
found that in the low-magnetic-field regime the Hall resistance is determined completely by 
the average magnetic field in the cross junction of the Hall bar and is independent of the 
shape of the field profile. This finding may imply a novel technique which provides non- 
invasive access to magnetic properties over a very small scale—namely, systems working 
effectively as micro-fluxmeters similar to SQUIDs, but with an effective detection loop of 
only about a square micron. For the bending resistance, we showed its sensitive dependence 
on the magnetic field profile in the cross junction, which may in practice be helpful for 
detecting the inhomogeneity of the magnetic field effectively. However, because of its 
complicated manner of dependence on the field profile, further work to determine their 
relation is required, for various types of inhomogeneous magnetic field profile. We also 
discussed briefly the asymmetric effect on the Hall and bending resistances, due to the 
device geometry and asymmetric location of the circular inhomogeneous magnetic field 
profile. Finally, we mention that the present approach is essentially a classical method, 
which worked very well in the low-magnetic-field regime [8, 9]. Consequently, our results 
in the high-magnetic-field regime should be understood on the classical level, where we 
found a transition to classical 2D behaviour when the magnetic field goes beyond certain 
critical value.
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