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Abstract. We present the analysis of the halo bispectrum in redshift-space in terms of its multipoles,
monopole, quadrupole and hexadecapole, measured from a large set of simulations. We fit such
measurements with a tree-level model in perturbation theory that depends on linear and nonlinear
bias parameters as well as on the growth rate f of density fluctuations. The likelihood analysis
takes advantage of a very large set of mock catalogs, enabling a robust estimation of the covariance
properties for all multipoles. We compare the numerical estimate of the covariance matrix to its
Gaussian prediction finding discrepancies of 10% or less for all configurations with the sole exception
of the squeezed triangles in the monopole case. We find the range of validity of the tree-level model, for
the total simulation volume of about 1000h−3 Gpc3, reaches a maximum wavenumber of 0.08hMpc−1

for the monopole, while it is limited to 0.06 and 0.045hMpc−1 respectively for quadrupole and
hexadecapole. Despite this, the addition of the quadrupole to the analysis allows for significant
improvements on the determination of the model parameters and specifically on f , similarly to the
power spectrum case. Finally, we compare our numerical estimate for the full covariance with its
theoretical prediction in the Gaussian approximation and find the latter to work remarkably well in
the context of simulation boxes with periodic boundary condition.
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experiments
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1 Introduction

As the next generation of spectroscopic galaxy surveys [1–3] will cover unprecedented cosmological
volumes, increasing attention is currently being payed to the full exploitation of the information
they are expected to provide. Recent measurements and analyses of higher-order statistics such as
the 3-point correlation function in configuration space [4, 5] or its counterpart in Fourier space, the
bispectrum [6–12], go precisely in this direction, with the goal of extending and strengthening the
results from the standard analyses of the 2-point correlation function and power spectrum.

However, while the analysis of the power spectrum takes full advantage of redshift-space distor-
tions by means of a multipoles expansion with respect to the angle between the wavenumber k and
the line-of-sight (see, e.g. [13, 14]), in the case of the bispectrum past data analyses have always been
limited to the monopole. On the other hand, the potential offered by the galaxy bispectrum measured
in future surveys to further constrain cosmological parameters has been explored in several papers
[15–23]. A subset of these works specifically considered the relevance of the anisotropic bispectrum
signal [15–17, 20, 22] remarking that we can expect additional information in the higher-order multi-
poles of the bispectrum, although the exact extent of such improvement on parameters constraints,
typically of the order of tens of percents, highly depends on the assumptions on the observable, its
covariance and the survey specifications.
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A first theoretical modelling of the redshift-space bispectrum at tree-level in Perturbation The-
ory can be found in [24] (see [25] and references therein for earlier work on the matter and galaxy
bispectrum in real space). Early comparisons against measurements of the bispectrum monopole in
numerical simulations are presented in [26–28] with [27] including as well a first test of the quadrupole.
The analysis of the BOSS data-set of [6, 29, 30] includes the bispectrum monopole and takes advan-
tage of a phenomenological model [31], based on fits to simulations, to extend the validity of the
tree-level expression to smaller scales, reaching 0.15hMpc−1 with a 5% accuracy on the halo bispec-
trum monopole at redshift z = 0.55 (to contrast 0.06hMpc−1 in the case of tree-level PT). A similar
approach is adopted as well in [32] where the monopole and quadrupole of the power spectrum,
bispectrum and integrated trispectrum are compared to simulations.

Ref. [33] goes beyond the tree-level expression presenting a one-loop PT model for the redshift-
space matter bispectrum multipoles (but defined differently from [27]), including additional corrections
along the lines of those introduced by [34] for the power spectrum. The comparison with numeri-
cal simulations shows an agreement up to k ∼ 0.15 - 0.2hMpc−1, with the maximum range of this
agreement depending on the redshift of the sample and on the shape of the specific triangular con-
figuration considered. On the other hand, the corresponding tree-level approximation typically fails
already around k ∼ 0.07 - 0.08hMpc−1 for both the monopole and the quadrupole.

More recently, [8] re-analysed the BOSS bispectrum monopole adopting a tree-level model up
to 0.1hMpc−1, although no comparison with simulations or details on model validation are pro-
vided. A further analysis, extending the model to include one-loop corrections and corrections due
to primordial non-Gaussianity is presented in [10]. A comparison with large-volume simulations can
be found instead, again for the monopole only, in [23] for measurements obtained from the very
large simulation set already adopted for the challenge paper [35], corresponding to a cumulative
volume of 566h−3 Gpc3: in this case as well the reach of the tree-level expression is found to be
kmax ∼ 0.08hMpc−1. The same pipeline for the bispectrum monopole analysis is applied to the
BOSS data in [9, 11, 12].

It appears that, despite the recent attention, tests of the redshift-space galaxy bispectrum model
have been rather limited. In fact, the current literature is for the most part focused on the bispectrum
monopole with only partial assessments of higher-order multipoles predictions in PT.

The main goal of this paper is to provide a rigorous and extensive comparison of the tree-
level predictions for the halo bispectrum monopole, quadrupole and hexadecapole (as defined in [27])
against measurements in a very large set of numerical simulations (∼ 1, 000h−3 Gpc3) while taking
advantage of a robust estimate of their covariance properties from an even larger set of mock catalogs.
Our work constitutes the natural continuation of a series of papers exploring in details the challenges
of a joint analysis of the galaxy power spectrum and bispectrum, so far focused on real-space modelling
[36–38]. Since this work shares with these references both data-sets and methodology, we will refer to
[36] and [38] as Paper I and Paper II respectively. We test the model by means of a Bayesian analysis
in terms of bias parameters along with the growth rate of perturbations f , using the simulation input
and real-space results as reference values. The measurement uncertainties are reduced due to the large
combined volume of our simulations. For such small errors, we find that at z = 1 the model provides
a valid description up to a maximum wavenumber of 0.08hMpc−1 for the monopole, 0.06hMpc−1

for the quadrupole, and 0.045hMpc−1 for the hexadecapole. We show that, as in the power spectrum
case, the inclusion of the bispectrum quadrupole greatly improves the posteriors from the monopole
alone.

The paper is organised as follows. In section 2 we introduce the theoretical background for the
tree-level prediction of the bispectrum multipoles in Perturbation Theory. Section 3 describes the
numerical simulations and mock catalogs adopted as well as the bispectrum estimator. In Section
4 we present the set-up for our likelihood analyses and in Section 5 the corresponding results. We
present our conclusions in Section 6.
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2 Theoretical background

2.1 Model

Given the halo number density contrast δh(x) ≡ [nh(x) − n̄h]/n̄h defined in terms of the number
density nh(x) and its expectation value n̄ = 〈nh(x)〉, and its Fourier transform1 δh(k) we can define
the halo power spectrum Ph and bispectrum Bh respectively as

〈δh(k1)δh(k2)〉 ≡ (2π)3δD(k12)Ph(k1) (2.3)

〈δh(k1)δh(k2)δh(k3)〉 ≡ (2π)3δD(k123)Bh(k1, k2, k3) , (2.4)

where k12 = k1 +k2, k123 = k1 +k2 +k3, and the Dirac deltas δD result from the assumed statistical
homogeneity and isotropy. For the same reason Ph(k1) is a function of one variable, k1 = |k1| and
Bh(k1, k2, k3) is a function of the three sides of the triangle formed by k1, k2 and k3 and independent
of its orientation.

In redshift-space, peculiar velocities v induce distortions in the galaxy distribution along the
line-of-sight (LOS) n̂. The observed position s will then be related to real position x by

s = x +
v · n̂
aH(a)

n̂ . (2.5)

As a result, clustering properties, and in particular galaxy correlation functions estimated in a given
region of the sky, will depend on the local LOS. Since our focus is to test the modelling of the bispec-
trum based on measurements in simulation boxes with periodic boundary conditions, we will assume
throughout this work the plane-parallel approximation for redshift-space distortions and therefore a
global, constant LOS. The halo bispectrum will then be a function of the wavenumbers defining the
triangular configuration k1, k2 and k3 plus the LOS n̂, that is Bs = Bs(k1,k2, n̂).

Our model for the redshift-space halo bispectrum is the sum of a deterministic and stochastic
contribution, as

Bs(k1,k2,k3) = B(det)
s (k1,k2,k3) +B(stoch)

s (k1,k2,k3) , (2.6)

corresponding to the tree-level expression in Perturbation Theory (PT) resulting from the halo density
given, in turn, by the sum of a deterministic and a stochastic component

δs = δ(det)
s + δ(stoch)

s . (2.7)

In Fourier space and up to the relevant order the deterministic contributions are given by

δ(det)
s (k) = Z1(k) δL(k) +

∫
d3q1d

3q2δD(k− q12)Z2(q1,q2) δL(q1) δL(q1) , (2.8)

where δL is the linear matter overdensity and the redshift-space kernels are given in terms of the local
(b1, b2) and tidal (bG2) bias parameters and the linear growth rate f by [24, 26, 27, 39–42]

Z1(k) = b1 + fµ2 , (2.9)

Z2(k1,k2) =
b2
2

+ b1F2(k1,k2) + bG2S(k1,k2) + fµ2
12G2(k1,k2) +

+
fµ12k12

2

[
µ1

k1
Z1(k2) +

µ2

k2
Z1(k1)

]
(2.10)

1We adopt the convention for the Fourier transform

δ(k) ≡
∫
d3x e−ik·x δ(x) , (2.1)

with the inverse given by

δ(x) ≡
∫

d3k

(2π)3
eik·x δ(k) . (2.2)
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with F2 and G2 representing the usual matter density and velocity quadratic kernels and

S(k1,k2) =
(
k̂1 · k̂2

)2

− 1 (2.11)

while µi ≡ ki · n̂/ki is the cosine of the angle formed by the wavenumber ki with the LOS, specifically,

µ12 =
k12 · n̂
k12

= −k3 · n̂
k3

= −µ3 , (2.12)

for a closed triangle with k123 = 0. The expansion of eq. (2.8) leads to the tree-level prediction for
the bispectrum

B(det)
s (k1,k2, n̂) = 2Z1(k1)Z1(k2)Z2(k1,k2)PL(k1)PL(k2) + 2 perm. (2.13)

where PL(k) is the linear matter power spectrum.
The stochastic contribution to δs is given instead, following [42] and their notation, by

δ(stoch)
s (x) = ε(x) + εδ(x) δ(x) + εη(x)η(x) , (2.14)

where ε, εδ and εη are stochastic fields uncorrelated to the density perturbations. The composite terms
are limited to those linear in the matter density δ and in the l.o.s. derivative of the velocity component
projected on the n̂-axis η ≡ ∂n̂(v · n̂), as these are responsible for the leading order contributions to
the bispectrum. We neglect any higher-derivative operator in the stochastic contribution and we note
that the last term should appear only due to selection effects [42]. In the large k limit, we expect to
recover the Poisson predictions for the power spectrum and bispectrum of the stochastic fields, that
is [43]

〈ε(k1)ε(k2)〉 → δD(k12)
1

n̄
, (2.15)

〈ε(k1)ε(k2)ε(k3)〉 → δD(k123)
1

n̄2
, (2.16)

〈ε(k1)εδ(k2)〉 → δD(k123)
b1
2n̄

, (2.17)

〈ε(k1)εη(k2)〉 → δD(k123)
1

2n̄
, (2.18)

where the first term only appears in the halo power spectrum, while the last three all contribute to the
halo bispectrum. In principle we can expect independent departures from the Poisson prediction for
all three terms, which in the large-scale limit can be described in terms of three constant parameters2.

The corresponding stochastic contribution to the bispectrum at tree-level will then read

B(stoch)
s (k1,k2, n̂) =

1

n̄

[
(1 + α1) b1 + (1 + α3) f µ2

]
Z1(k1)PL(k1) + 2 perm.+

1 + α2

n̄2
, (2.20)

where the parameters αi vanish in the Poisson limit3.
In this work we do not consider any modelling of Finger-of-God effects as we expect them to be

negligible at large scales and for a halo distribution.

2In [23] the authors follow [44] in the modelling of the stochastic contribution assuming

δ
(stoch)
s = d1 εP + d2 b1 εP δ + d1 εP η , (2.19)

where the coefficients d1 and d2 parameterize the corrections to the Poisson prediction represented by field εP (for
which the limits (2.15) and (2.16) hold as equalities). The Poisson case is recovered for d1 = 2 d2 = 1. This implies that
〈εε〉 = 〈εεη〉 and their corrections to Poisson are therefore described by a single degree of freedom. They also relate 〈εε〉
and 〈εεε〉 but it does not seem justified. Such relation also appears inconsistent with the expansion above and it does
not seem to be supported by the halo model description of [45].

3The notation for the αi parameters is chosen in order to be consistent with Paper I and Paper II, where α2 already
appeared as correction to the 1/n̄2 term, while α3 was not present.
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2.2 Bispectrum multipoles

We adopt the definition of the redshift-space multipoles of the bispectrum introduced by [27] (and
assumed as well by [46] and [16]) where the vector configurations covering the domain of Bs(k1k2, n̂)
are given in terms of the variables k1, k2, k3, µ1 ≡ cos(θ) and ξ, with θ1 being the angle between k1

and the LOS while ξ is the azimuthal angle describing a rotation of k2 around k1.
Bs is then expanded in spherical harmonics as

Bs(k1, k2, k3, θ, ξ) =
∑
`

∑̀
m=−`

B`m(k1, k2, k3)Y m` (θ, ξ) (2.21)

with the coefficients of the expansion given by

B`m(k1, k2, k3) =

∫ +1

−1

dcos θ

∫ 2π

0

dξBs(k1, k2, k3, θ, ξ)Y
m
` (θ, ξ) . (2.22)

We only consider m = 0, even multipoles as the loss of information coming from excluding the
m 6= 0 terms is negligible [16, 47]. In this case the spherical harmonics reduce to Legendre polynomials
L` and only depend on µ1 ≡ cos θ,

Y 0
` (θ, ξ) =

√
2`+ 1

4π
L`(µ1) (2.23)

and the expansion of eq. (2.21) is replaced by

1

2π

∫
dξBs(k1, k2, k3, θ, ξ) =

∑
`

B`(k1, k2, k3)L`(µ1) (2.24)

where

B`(k1, k2, k3) =

√
2`+ 1

4π
B`0(k1, k2, k3)

= (2`+ 1)
1

2

∫ +1

−1

dcos θ
[ 1

2π

∫ 2π

0

dξBs(k1, k2, k3, θ, ξ)
]
L`(cos θ) . (2.25)

3 Data

3.1 N-body simulations

The analysis is performed on redshift-space, halo bispectrum measurements from the set of 298 Min-
erva N -body simulations [48] whose real-space counterpart was already studied in Paper I and Paper
II. These follow the evolution of 10003 dark matter particles in a cubic box of side L = 1500h−1 Mpc
and correspond to a total volume of about 1, 000h−3 Gpc3. Each halo catalog is defined by a minimal
mass of M ' 1.12 × 1013 h−1M�. We refer the reader to Paper I for a more detailed description of
the simulations and of the halo catalog construction.

Paper II provides us with an estimate of the bias parameters characterising the halo population
obtained as posteriors from the joint analysis of the halo power spectrum and bispectrum in real
space. We will use these here as a reference for our redshift-space analysis, in addition to the value
for the linear growth rate expected from the fiducial cosmology.

3.2 Bispectrum multipoles estimator

Our estimator of the bispectrum multipoles follow the definition of [27] for the m = 0 case and
constitutes an implementation of the one described in [46] based on Fast-Fourier Transforms. In
our case, however, we assume a constant line-of-sight n̂, corresponding to an exact realisation of the
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plane-parallel or distant observer approximation. The estimator reduces therefore to the following
expression

B̂` = (2`+ 1)
k3
f

NB

∑
q1∈k1

∑
q2∈k2

∑
q3∈k3

δK(q123) δs(q1) δs(q2) δs(q3)L`(q̂1 · n̂) , (3.1)

where the sums, accounting for the discrete nature of the Fourier Transform δs(q) of the halo density
in a simulation box, are over all wavenumbers qi falling into the bin centered at ki of radial size ∆k,
that is, such that ki −∆k/2 ≤ |qi| < ki + ∆k/2. Also, δK(q) is a Kronecker symbol equal to unity
for q = 0 and vanishing otherwise, while the normalisation factor

NB(k1, k2, k3) =
∑

q1∈k1

∑
q2∈k2

∑
q3∈k3

δK(q123) , (3.2)

provides the number of “fundamental triangles” {q1,q2,q3} present in the “triangle bin” {k1, k2, k3}.
The grid-interpolation of the halo density δs(q) is obtained by means of a fourth-order mass as-
signment scheme and adopts the interlacing technique for aliasing reduction [49]. All bispectrum
measurements, unless otherwise stated, assume a wavenumber bin size ∆k = kf , that is correspond-
ing to the fundamental frequency characterising the simulation box, kf ≡ 2π/L. This leads to the
measurement of 1475 triangular configurations up to kmax = 0.1hMpc−1 for each multipole4.

3.3 Measurements

Figure 1 shows the mean of the bispectrum multipoles measured from the 298 Minerva N-body
simulations for all triangular configurations. In these type of plots, the ordering of the configurations
is determined by increasing values of k1, k2, k3 which obey the requirement, k1 ≥ k2 ≥ k3 (see Paper I
for a more detailed explanation). Vertical gray lines mark the triangle where the value of k1 changes,
so that all configurations on the left correspond to triangles made up with sides smaller or equal to
such value of k1. All measurements include shot-noise. The bottom half of each panel shows the
relative error on the mean, along with the ratio between the expected Poisson shot-noise contribution
and the overall signal (black, dashed lines).

We notice that the relative error on the mean for the bispectrum monopole is at the ten-percent
level and just slightly smaller at smaller scales. The shot-noise level is comparable to the statistical
error at large scales and it is larger at smaller scales, as it happens in real-space for this halo population
(see Paper I). The relative error on the quadrupole and hexadecapole mean is instead of the order of
tens of percent and hundreds of percent, respectively. Because of the first term on the r.h.s. of (2.20),
all multipoles receive a shot-noise contribution. This is comparable to the error on the mean for the
quadrupole and lower by an order of magnitude for the hexadecapole.

4 Covariance

4.1 Numerical estimate

As for Paper I and Paper II, the covariance properties of our observables are estimated from a much
larger set of 10,000 measurements from mock halo catalogs obtained with the Pinocchio code [50–
52]. The mocks share the same cosmology, box size and resolution with the Minerva simulations and
298 realisations also adopt the same initial conditions. The mass threshold for the mocks is chosen to
reproduce (below percent level) the amplitude of the large-scale halo power spectrum (including shot-
noise) of the numerical simulations (see Paper I for details). This quantity, in fact, determines the
Gaussian contribution to the bispectrum covariance, the leading one for most triangular configurations
(see also [53, 54]).

4We include “open triangle bins”, that is those where the bin centers cannot form a closed triangle such as
{k1, k2, k3} = {6, 3, 2}kf but that nevertheless contain closed fundamental triplets {q1,q2,q3}. See section 2.2 of
Paper I for a detailed description of the binning definition.
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Figure 1. Mean measurements of the halo bispectrum multipoles (including shot-noise) from the 298 N-body
Minerva simulations, shown for all triangular configurations. For each multipole moment, the bottom half
of each panel shows the relative error of the mean (in color) along with the relative (Poisson) shot-noise
contribution (in black).

The covariance matrix for each bispectrum multipole and their cross-covariance is defined as

C`1`2(ti, tj) ≡ 〈B̂`1(ti) B̂`2(tj)〉 − 〈B̂`1(ti)〉〈B̂`2(tj)〉 , (4.1)

where ti = {k1i, k2i, k3i} and tj = {k1j , k2j , k3j} represent two triangle configurations. We will denote

as Ĉ`1`2(ti, tj) its estimate from the 10,000 mock catalogs.
The left column of figure 2 shows the ratio between the mean of each bispectrum multipole

measured in the numerical simulations and the mean of the same quantity measured in the Pinocchio
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Figure 2. Left column: ratio between the mean bispectrum multipoles from the 298 N-body simulations and
the mean of the same quantity from the corresponding Pinocchio mocks with matching initial conditions.
Right column: ratio between the bispectrum multipoles variance estimated from the simulations and the one
estimated from the corresponding mocks.

mocks, limited to the 298 mocks with matching initial conditions. We find for the monopole the same
discrepancy, as large as 7-8% depending on the triangle shape, already encountered in real space (see
Paper I). The noise in the measurements for the higher-order multipoles, on the other hand, does
not allow to clearly identify systematic differences at the level of 10% or below. The right column
of figure 2 shows instead the ratio between the variance ∆B`(ti) ≡ C``(ti, ti), estimated again from
the numerical simulations and the one estimated from the Pinocchio mocks. Again, the Pinocchio
set is limited here to the 298 realisations with matching seeds. Despite possible systematics on the
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Figure 3. Ratio between the theoretical prediction of the multipoles covariance C`1`2(ti, ti) in the Gaussian
approximation and its numerical estimate from the Pinocchio mocks.

observables, the variance is recovered by the Pinocchio mocks with an error below 10% and no
apparent systematic difference for all multipoles. This is expected, given the close match of the power
spectra and the fact that the leading contribution to the bispectrum covariance is fully determined
by the power spectrum, see Eq. (4.3).

4.2 Theoretical Gaussian covariance

In addition to the numerical estimate of the covariance we consider as well the analytical prediction
in the Gaussian approximation. The Gaussian contribution enters the variance of each multipole,
∆B` ≡ C``(ti, ti), but also the correlation C`1`2(ti, ti) between B̂`1(ti) and B̂`2(ti) with `1 6= `2 but
measured for the same triangle ti.
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From the definition of the multipoles estimators, eq. (3.1), we can write

C`1`2(k1, k2, k3) ≡ 〈B̂`1B̂`2〉 − 〈B̂`1〉〈B̂`2〉

= (2`1 + 1)(2`2 + 1)
k6
f

N2
B

∑
q1∈k1

∑
q2∈k2

∑
q3∈k3

δK(q123)
∑

p1∈k1

∑
p2∈k2

∑
p3∈k3

δK(p123)

× L`1(µq1)L`2(µp1)
[
〈δq1 δq2 δq3δp1 δp2 δp3〉 − 〈δq1 δq2 δq3〉〈δp1 δp2 δp3〉

]
. (4.2)

In the Gaussian approximation, from the expectation values on the r.h.s. of the equation above, we
retain only the contributions depending on the power spectrum. Assuming (without loss of generality)
that k1 ≥ k2 ≥ k3, these are given by

CG`1`2(k1, k2, k3) =
(2`1 + 1)(2`2 + 1)

N2
B k

3
f

∑
q1∈k1

∑
q2∈k2

∑
q3∈k3

δK(q123)Ptot(q1)Ptot(q2)Ptot(q3)

×
[
(1 + δKk2,k3)L`1(µq1)L`2(−µq1) + (δKk1,k2 + δKk2,k3)L`1(µq1)L`2(−µq2)+

+ 2 δKk1,k3 L`1(µq1)L`2(−µq3)
]
, (4.3)

where Ptot(q1) = P (q1) + PSN is the anisotropic halo power spectrum including a shot-noise contri-
bution while δKki,kj is the Kronecker symbol equal to one for ki = kj , and vanishing otherwise. Notice
that the terms in the square brackets correspond, in the case `1 = `2 = 0, to the usual factor equal
to 6, 2 and 1 respectively for equilateral, isosceles and scalene triangles.

Similarly to the power spectrum variance case, see e.g. [48], we can expand the anisotropic power
spectra in multipoles to obtain

CG`1`2 =
(2`1 + 1)(2`2 + 1)

N2
B k

3
f

∑
`3,`4,`5

∑
q1∈k1

∑
q2∈k2

∑
q3∈k3

δK(q123)Ptot, `3(q1)Ptot, `4(q2)Ptot, `5(q3)

×
[
(1 + δKk2,k3)L`1(µq1)L`2(−µq1) + (δKk1,k2 + δKk2,k3)L`1(µq1)L`2(−µq2)+

+ 2 δKk1,k3 L`1(µq1)L`2(−µq3)
]
L`3(µ1)L`4(µ2)L`5(µ3) . (4.4)

This is the expression we adopt in our evaluation of the Gaussian variance, with the sums over the
k-shells performed exactly over the discrete wavenumbers q defining the Fourier-space density grid5.

5It is possible to simplify further this expression in the thin-shell approximation so that

CG`1`2 '
(2`1 + 1)(2`2 + 1)

NB k
3
f

∑
`3,`4,`5

Ptot, `3 (k1)Ptot, `4 (k2)Ptot, `5 (k3)R`1,`2;`3`4,`5 (k1, k2, k3) . (4.5)

where we defined

R`1,`2;`3`4,`5 (k1, k2, k3) ≡ 1

NB

∑
q1∈k1

∑
q2∈k2

∑
q3∈k3

δK(q123)

×
[
(1 + δKk2,k3 )L`1 (µq1 )L`2 (−µq1 ) + (δKk1,k2 + δKk2,k3 )L`1 (µq1 )L`2 (−µq2 )+

+ 2 δKk1,k3 L`1 (µq1 )L`2 (−µq3 )
]
L`3 (µ1)L`4 (µ2)L`5 (µ3) . (4.6)

In the continuum limit, we can replace the sums over the shells with integrals and reduced them to a simple average
over the orientation of the triangle {q1,q2,q3}, that is

1

NB

∑
q1∈k1

∑
q2∈k2

∑
q3∈k3

δK(q123) ' 1

NB k
6
f

3∏
i=1

∫
ki

d3qi δD(q123) =
1

4π

∫ 1

−1
dµ1

∫
dξ , (4.7)

with an integrand that is now only a function of powers of µ1, µ2 and µ3. Then, assumming only even values for `3, `4
and `5 (and clearly for `1 and `2), we can use the expansion for the Legendre polynomials

L(µ) =
1

2`

`/2∑
n=1

(−1)n(2`− 2n)!

n!(`− n)!(`− 2n)!
µ`−2n ≡

`/2∑
n=1

C`,nµ
`−2n (4.8)
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The comparison between the numerical estimate and analytic prediction for these quantities is
shown in figure 3. One can see how the Gaussian prediction for C00, C22 and C44 is able to describe
the measured ones at the level of 5%, with a slight deficit noticeable in the monopole and quadrupole
case for squeezed triangles, due to the missing non-Gaussian contribution [53, 54]. The agreement in
the case of the cross-covariance C`1`2(ti, ti) is also rather good, with the theory underestimating the
measurements by an overall 10%. In these cases the ratio can take large values when the denominator
is close to zero, as it is the case particularly for C0,4.

Finally, figure 4 shows a subset of the correlation matrix, defined as

r`1`2(ti, tj) =
C`1`2(ti, tj)√

C`1`1(ti, ti)C`2`2(tj , tj)
. (4.10)

Each data-set B̂`(ti) is restricted, for illustration purposes, to its first 32 triangular configurations
ti, denoted in the figure in terms of the three sides in units of the fundamental frequency, that
is {k1, k2, k3}/kf . It follows that while the block-diagonal matrices show the correlation coeffi-
cients r``(ti, tj) for each multipoles, the off-diagonal matrices depict their relative cross-covariance
r`1`2(ti, tj). In addition, the top-right half is estimated from the full set of 10,000 Pinocchio mocks,
while the bottom-left half is the theoretical prediction in the Gaussian approximation, vanishing for
all elements with ti 6= tj . The bottom panels compare in more detail the predicted and measured
coefficients r`1`2(ti, ti) with `1 6= `2 as a function of the selected triangles ti. On these quanti-
ties the agreement between theory and numerical estimates is truly remarkable and extends up to
kmax ∼ 0.1hMpc−1, that is over the full range of scales that we will consider in the analysis described
in the following sections.

Regarding the structure of the correlation coefficient, it is clear that only the elements corre-
sponding to the expected Gaussian contributions appear to be relevant at these large scales. These,
however, are not limited to the diagonal for the full data vector D = {B0, B2, B4}, but obviously
include all elements corresponding to the correlation between different multipoles sharing the same
triangles.

5 Bayesian analysis

5.1 Likelihood function

Following Paper I and Paper II, we fit all measurements together assuming their independence. This
means that our total log-likelihood function corresponds to the sum of the log-likelihood for each
individual realisation,

lnLtot =

NR∑
α=1

lnLα , (5.1)

where NR is the total number of realisations considered.
We work under the assumption of Gaussianity for the individual likelihood Lα. However, we

follow [55] in order to account for possible uncertainties in the determination of the precision matrix
due to a limited number of mocks. The log-likelihood for a single realisation is then, modulo an
additive, normalization constant,

lnLα = −NM
2

ln
[
1 +

χ2
α

NM − 1

]
, (5.2)

to get an expression that can be automatically evaluated with a software allowing for symbolic manipulation,

R`1,`2;`3`4,`5 (k1, k2, k3) '
5∏
i=1

`i/2∑
ni=1

C`i,ni

[
(1 + δKk2,k3 )I`1+`2+`3−2(n1+n2+n3), `4−2n4, `5−2n5

+ (δKk1,k2 + δKk2,k3 )I`1+`3−2(n1+n3), `2+`4−2(n2+n4), `5−2n5

+ 2 δKk1,k3 I`1+`3−2(n1+n3), `4−2n4, `2+`5−2(n2+n5)

]
, (4.9)

, where the integrals Iα,β,γ are defined in Appendix A.
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Figure 4. Subset of the correlation matrix r`1`2(ti, tj), defined in eq. (4.10) for ` = 0, 2 and 4, restricted to
the first 32 triangular configurations ti. The top-right half is estimated from the full set of 10,000 Pinocchio
mocks, while the bottom-left half is the theoretical prediction in the Gaussian approximation. The bottom
panels compare the predicted (blue) and measured (red) coefficients r`1`2(ti, ti) with `1 6= `2 as a function of
the selected triangles ti. The two estimates overlap almost exactly.

where NM is the number of mock catalogs used for the numerical estimation of the covariance matrix
(we refer the reader to Paper I for further details). In this expression χ2

α represents the chi-square
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statistic for the individual realisation, given by

χ2
α =

ND∑
i,j=1

[
D̂

(α)
i −D(theory)

i

]
C−1
ij

[
D̂

(α)
j −D(theory)

j

]
, (5.3)

where, in the most general case, D̂(α) ≡
{
B̂0, B̂2, B̂4

}
is the data vector, of size ND, encompassing the

three bispectrum multipoles while D(theory) and Cij are, respectively, the corresponding theoretical
model and covariance matrix.

We should notice that given the large number of 10,000 Pinocchio realisations, even for the
largest data-set corresponding to the joint analysis of the three bispectrum multipoles up to kmax,B =
0.1hMpc−1, with a total of 1, 475 × 3 ' 4, 425 data-points, the difference w.r.t. the Gaussian case
is in fact negligible. The alternative approach of re-scaling the inverse covariance, as suggested in
[56, 57], gives rise to error bars up to 10% larger, although we have checked that these do not lead to
any appreciable differences in the recovered parameter posteriors that we discuss below.

5.2 Model evaluation

Our main goal is assessing the validity and reach of the tree-level bispectrum model, eqs. (2.13) and
(2.20) leaving the exploration of their potential to constrain cosmological parameters to a future work.
For this reason, in our Bayesian analyses we assume galaxy bias, shot-noise and the growth rate f as
the only free parameters. The bispectrum multipoles defined in eq. (2.22) can be written as a linear
combination of several contributions where the dependence on these parameters can be factorised,
leading to a quick exploration of the likelihood function since each term only needs to be computed
once for the fiducial cosmology.

This allows as well for an exact binning of the theoretical model, taking advantage of the discrete
Fourier-space grid characterising numerical simulations in boxes with periodic boundary conditions.
In this case we can sum Bs(q1,q2,q3, n̂) over all discrete modes qi forming a close triangle q123 = 0
and belonging to the bin {k1, k2, k3}. This leads to

B
(binned)
` (k1, k2, k3) =

2`+ 1

NB

∑
q1∈k1

∑
q2∈k2

∑
q3∈k3

δK(q123)Bs(q1,q2,q3, n̂)L`(q̂1 · n̂), (5.4)

where the sums account for the angle-average defining the bispectrum multipoles.
This approach requires the evaluation of the bispectrum model over a very large number of

triangular configurations, making it unfeasible in a Bayesian analysis where cosmological parameters
are explored. An approximate solution would be to evaluate the model B` on a single triangle
defined by effective values of the wavenumbers. This approach, that takes advantage of the analytical
evaluation of the angle integrals in (2.25) described in Appendix A, is presented in Appendix 6.6 along
with a quantification of the systematic errors resulting in the parameters determination.

5.3 Goodness of fit and model selection

We will assess the goodness of the fits that we will perform in terms of the posterior predictive p-value
(ppp) and the posterior-averaged reduced chi-square 〈χ2

ν〉post. The ppp assumes values between 0
and 1, and we use the treshold ppp ≥ 0.95 to reject the model. The 〈χ2

ν〉post is compared to the
95 percent (upper) confidence limit associated to a number of degrees of freedom equal to the total
number of data points fitted: when 〈χ2

ν〉post is greater than this value, the model fails to describe the
data. For the comparison between different models and assumptions on the bias parameters, we use
the Deviance Information Criterion (DIC) computed from the MCMC simulations. For details on the
choice of these diagnostics, we redirect the reader to Paper I.

6 Results

6.1 Maximal model

We start with a test of the full model in which all seven bias and shot-noise parameters are free to vary.
We compare the fit to the bispectrum monopole to the joint analysis of monopole and higher-order
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Parameter Prior (uniform)
b1 [0.9, 3.5]
b2 [−4, 4]
bG2 [−4, 4]
α1 [−1, 2]
α2 [−1, 2]
α3 [−5, 2]
f [0.1, 1]

Table 1. Uniform prior intervals of the model parameters.

multipoles, assuming the full volume of the 298 Minerva simulations. The first goal is to identify the
set of parameters that can effectively be determined by our data-set, and the relative importance of
the different multipoles in setting their constraints. We assume uniform priors on all parameters, with
bounds specified in table 1.

The main results are shown in figure 5. The left panels show the marginalised, 68.3% credibility
regions for the model parameters as a function of the maximum wavenumber included in the triangle
selection. Two-dimensional marginalised contours are shown in the bottom-right panel for the kmax =
0.06hMpc−1 case (indicated as the vertical, dotted line in the other two sub-panels). Finally, the
top-right panel shows the posterior-averaged, reduced chi-square, 〈χ2

ν〉 and the posterior predictive
p-value.

The tree-level model described in section 2.1 provides a good fit to the data up to a kmax '
0.08hMpc−1 for the monopole, while the reach is restricted to 0.06 and 0.045hMpc−1, respectively,
when B2 and B4 are also considered.

For kmax = 0.06hMpc−1, the combination B0 + B2 properly recovers the best-fit values of the
bias parameters obtained from the joint analysis of the real-space power spectrum and bispectrum
along with the fiducial value of the linear growth rate f , which are shown by the gray, dashed lines
in the bottom-right panel.

The addition of the quadrupole B2 greatly reduces the large degeneracy between the linear bias
b1 and the growth rate f , as well as with the quadratic bias parameters, characterising the monopole-
only constraints. This qualitatively confirms the expectation that the bispectrum monopole does not
fully capture the information potentially present in the anisotropic, redshift-space bispectrum [17, 58].
On the other hand, including as well the hexadecapole leads to no significant improvement for any
parameter and we will drop it for all the tests that will follow.

6.2 Shot-noise

It is clear that, despite the large total simulation volume, the data set is not able to provide meaningful
constraints on all shot-noise parameters. This was true as well, for the same halo catalogs, in real
space, even including power spectrum information (see Paper II).

In this section we compare different options to reduce the shot-noise parameters to a single one.
In addition to the maximal model, characterised by seven parameters in total, we will consider the
following models

• α2 = 0 (6 parameters); this is justified by the posteriors obtained for the maximal model, which
show that this parameter is simply not constrained by the data and can therefore be set to zero
without affecting the overall fit;

• α3 = −1 (6 parameters); this corresponds to setting εη = 0, as expected under the assumption
of no velocity bias and no selection effects [42].

Another option is to set α1 = α3. This is implicit in the Poisson prediction for the shot-noise
of a generic distribution in redshift space, where both corrections vanish. This prediction is also
the outcome of a count-in-cell estimate of the shot-noise contributions to the bispectrum [59, 60] and
corresponds to the standard shot-noise correction often implemented in bispectrum estimators [46, 61]
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Figure 5. Results for the analysis of the whole 298 Minerva simulations data-set in terms of the full,
seven-parameters model. Left panels: marginalised, 1-σ posteriors for each parameter as a function of kmax.
Top-right panels: posterior-averaged, reduced chi-square, 〈χ2

ν〉 and the posterior predictive p-value (ppp) as a
function of kmax. The blue, red and green dashed lines in the 〈χ2

ν〉 panel represent the 95% confidence limits
for the three combinations of multipoles considered. Bottom-right panel: two-dimensional, marginalised 1-σ
contours for kmax = 0.06hMpc−1 case (corresponding to the vertical line in the other panels). In all panels,
the B0-only analysis (blue) is compared to the joint B0 +B2 (red) and B0 +B2 +B4 (green). All posteriors are
compared with the results from the joint analysis of the real-space power spectrum and bispectrum derived
in Paper II, whose best-fit values are shown by the gray, dashed lines.

and implicitly assumed in some data analysis [6, 29]. We will therefore consider the two, additional
5-parameters models (both assuming α2 = 0):

• α3 = α1 and α2 = 0 (5 parameters);

• α3 = −1 and α2 = 0 (5 parameters).

The top left panel in figure 6 shows a general comparison between all the models described in
the bullet points above in terms of the difference in their DIC w.r.t. the maximal model with seven
parameters, as a function of the maximum wavenumber kmax, again for the monopole and quadrupole
analysis. Differences larger than 5 are usually considered relevant. The top right panel of the same
figure shows instead the effective number of parameters we are able to constrain from the data also as a
function of kmax. For a value of kmax < 0.05hMpc−1, we do not have enough information to determine
even 5 parameters and the ∆DIC simply favours the simplest models. These are still favoured up to
kmax ∼ 0.08hMpc−1, where the additional degrees of freedom of more complex models are probably
accounting for missing nonlinear corrections. The test does not clearly indicate a preference for the
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Figure 6. Top-left panel: difference in the DIC of the various shot-noise models with respect to the maximal
one with seven free parameters, as a function of the largest wavenumber kmax for the analysis of the monopole
plus quadrupole. Top-right panel: effective numbers of parameters as a function of kmax for the same shot-
noise models and the same dataset, B0+B2. Bottom panel: contour plots for B0+B2 at kmax = 0.06hMpc−1,
showing the 68.3 and 95.4% credible intervals on the bias and shot-noise parameters for the maximal model
compared to the two 5-parameter models defined by setting α3 = α1 and α3 = −1 (both with α2 = 0). Dashed
lines represent the true value of growth rate f and the best-fit values for the bias parameters obtained in real
space in Paper II.

5-parameter model with α3 = α1 over the one with α3 = −1, except for kmax > 0.08hMpc−1, where
we know that none of the models provides a good overall fit anymore. A comparison of the 2D
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marginalised posteriors from the monopole and quadrupole analysis at kmax = 0.06hMpc−1 is shown
for the two 5-parameters models and the maximal one in the bottom panel of figure 6. Both models
improve the constraints on the growth rate, with minimal differences on the posteriors for the other
parameters. The α3 = −1 case provides a slightly better agreement with the fiducial value of f and
the real-space estimate of b1.

We will assume the α3 = −1 (i.e. εη = 0) and α2 = 0 case as our default model in all following
tests. This implies the expression for the shot-noise contribution

B(stoch)
s (k1,k2, n̂) =

1 + α1

n̄
b1 Z1(k1)PL(k1) + 2 perm.+

1

n̄2
, (6.1)

only depending on the parameter α1. We assume that this model provides an accurate description
of the stochastic contribution to the bispectrum, consistent with the large-scale expectation, in a
relatively restricted range (k . 0.08hMpc−1) where the Poisson limit (α1 = α3 = 0) does not apply.

6.3 Bias relations

The parameter space can be further reduced by introducing relations among the bias parameters. In
Paper I and Paper II we considered a few of them, either theoretically motivated or extracted from
numerical simulations [62–66]. Of those, we select the two that provide the best improvement to the
fit of the power spectrum and bispectrum in real space and test them again here in redshift space.
The first is the fitting function for b2(b1, bG2) obtained in [63] from separate universe simulations.
The second is the fit to the excursion set prediction for the tidal bias parameter bG2(b1) proposed in
[65, 66]. For convenience we reproduce these two relations here:

b2(b1, bG2) = 0.412− 2.142 b1 + 0.929 b21 + 0.008 b31 +
4

3
bG2 , (6.2)

bG2(b1) = 0.524− 0.547 b1 + 0.046 b21 . (6.3)

In figure 7 we compare three cases with our reference 5-parameter model: applying each of the
bias relations b2(b1, bG2) and bG2(b1) individually, as well as the two of them combined. In the top-left
panel we show their difference in the DIC with respect to the reference model, as a function of the
largest wavenumber kmax for the analysis of the monopole plus quadrupole. The top-right panel shows
instead the effective numbers of parameters, again as a function of kmax and for B0 + B2. The DIC
shows a marginal preference for the bG2(b1) relation, for values of kmax close to 0.06hMpc−1, whereas
the combination of the two relations quickly becomes disfavoured beyond kmax = 0.05hMpc−1.

In the bottom panel of figure 7 we show the contour plots from the analysis at kmax = 0.06hMpc−1,
showing the 68.3% and 95.4% credible intervals on the bias and shot-noise parameters for the three
models. All three cases lead to tighter marginalised posterior contours, however, we notice how the
application of the tidal bias relation leads to constraints on b1 and f that are systematically offset
from the fiducial values, while the other two cases involving the b2(b1) relation significantly reduces
any potential tension. We caution that this outcome might in fact be fortuitous since the b2(b1) rela-
tion crosses the b1 - b2 contour of the reference model close to the fiducial value of b1 recovered from
the real-space analysis of Paper II. We should stress, in any case, that these systematic differences
are only evident due to the very large cumulative simulation volume: we leave for future work an
assessment for a volume that can be achieved in real surveys [67] .

6.4 Scale cuts

In section 6.1 we have shown that the range of validity of the tree-level model is more restricted for
higher-order multipoles with respect to the monopole, i.e. the model starts failing at larger scales.
This suggests the possibility to adopt different values of kmax for the different multipoles, pushing the
bispectrum monopole to smaller scales.

We illustrate this point in figure 8 where we compare the contour plots for the B0 +B2 analysis
under the following assumptions:

• kB0
max = kB2

max = 0.06hMpc−1 (blue);
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kmax = 0.06hMpc−1, showing the 68.3% and 95.4% credible intervals on the bias and shot-noise parameters
for the three models. Dashed lines represent the true value of growth rate f and the best-fit values for the
bias parameters obtained in real space in Paper II.

• kB0
max = 0.08hMpc−1 and kB2

max = 0.06hMpc−1 (yellow);

• kB0
max = kB2

max = 0.08hMpc−1 (magenta).
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(magenta). The gray, dashed mark the best-fit values from the real-space, joint analysis of power spectrum
and bispectrum of Paper II.

In all cases we adopt the reference, 5-parameter model.
We find that extending kB0

max to 0.08hMpc−1 can significantly reduce the errors on the bias
parameters in particular. However, for the kB0

max = kB2
max = 0.08hMpc−1 case, where the χ2 for the

fit is already above the 95% C.L., we notice that the f -b1 contour already shows a discrepancy with
the expected values at more than 95.4% credible regions. We will adopt the scale cuts defined by
kB0

max = 0.08hMpc−1 and kB2
max = 0.06hMpc−1 as our reference choice for most of the tests in the

following sections.

6.5 Covariance approximations

In section 4 we directly compared the Gaussian prediction for the bispectrum covariance with the
numerical estimate from the Pinocchio mocks, finding a remarkable agreement both in the variance
C`1`2(ti, ti) as in the correlation coefficients r`1`2(ti, ti).

Here we check if any residual difference could affect the parameters determination. The com-
parison is shown in figure 9 in terms of the contour plots for the reference analysis of B0 and B2

assuming, respectively, kB0
max = 0.08hMpc−1 and kB2

max = 0.06hMpc−1. The full numerical covari-
ance, Ĉ`1,`2(ti, tj) (blue contours) is compared to the numerical variance Ĉ`1,`2(ti, ti) (orange) and to
the Gaussian prediction (magenta). In the last two cases, all elements with ti 6= tj are set to zero.
We notice that the inclusion of such elements is responsible for constraints only slightly larger, while
the Gaussian prediction reproduces the results from the numerical variance case almost exactly, with
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Figure 9. Contour levels of the marginalised posterior distribution for the B0 +B2 reference analysis under
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the Gaussian theory prediction (magenta). The last two cases overlap almost exactly. The analysis assumes
kB0
max = 0.08hMpc−1 and kB2

max = 0.06hMpc−1.

no appreciable differences in the 1D or 2D marginalised posteriors. This is perhaps not too surprising
given that the analysis is restricted to relatively large-scales.

6.6 Effective binning of the theoretical model

All of our results assumed an evaluation of the theory predictions implementing the exact scheme
of eq. (5.4). Since this approach can be numerically quite demanding, particularly in likelihood
evaluations extended to several cosmological parameters, it is worth exploring the systematic errors
induced on the parameter posteriors by the more efficient choice of a single bispectrum evaluation on
the effective wavenumbers, after the analytical integration over the angles described in Appendix A.

In this case, the theoretical prediction is given by

Beff
` (k1, k2, k3) ≡ B`(keff,l, keff,m, keff,s), (6.4)

where the definition of the effective triplet, in general not unique, is based on “sorted” {q1, q2, q3}
triplets as (see Paper I)6.

keff,l(k1, k2, k3) =
1

NB

∑
q1∈k1

∑
q2∈k2

∑
q3∈k3

δK(q123) max(q1, q2, q3) ,

6See also [66] and [23] for alternative proposals.
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keff,m(k1, k2, k3) =
1

NB

∑
q1∈k1

∑
q2∈k2

∑
q3∈k3

δK(q123)med(q1, q2, q3) ,

keff,s(k1, k2, k3) =
1

NB

∑
q1∈k1

∑
q2∈k2

∑
q3∈k3

δK(q123) min(q1, q2, q3) . (6.5)

For the choice of the bin size ∆k = kf adopted in our result, the difference between the two
approaches, estimated in terms of the posteriors on the bias and shot-noise parameters, is completely
negligible. For a larger size of the bin ∆k, useful to reduce the overall size of the data vector, however,
we can find some systematic effect on parameters determination. This is shown in fig. 10, where we
plot the 2D marginalised posteriors for different choices of the binning scheme and evaluations of the
theoretical prediction. In particular, there is a significant shift in the 1D marginalised posterior for f
(shown in orange in fig. 10) for the case ∆k = 3 kf when we compute the theoretical prediction at the
effective wavenumbers. We notice as well how the larger bin size leads to weaker constraints, even in
the exact binning case, due to the reduced shape-dependence of the bispectrum measurements.

7 Conclusions

This work presents a test of the tree-level prediction in Perturbation Theory for the halo bispectrum in
redshift space with particular attention to its anisotropic signal as described by higher-order multipoles
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such as the quadrupole and hexadecapole. It extends previous results in real space (Paper I and Paper
II), taking advantage of a very large set of 298 N-body simulations corresponding to a cumulative
volume of about 1,000h−3 Gpc3 and an even larger set of Pinocchio mocks. The latter provides a
robust estimate of the covariance properties for the full data vector given by the three bispectrum
multipoles. We explore different assumptions on the observables and related covariance models and
assess them in terms of constraints on bias parameters and the linear growth rate.

We summarise below our main findings.

• The Pinocchio mocks provide a very good description of the variance estimated from the
full numerical simulations with a residual scatter below the 10% level and no apparent shape-
dependence (Fig. 2), for all bispectrum multipoles, extending previous assessments in real-space
(Paper I, [68]).

• The comparison of the posterior distributions based on the monopole alone with the joint analy-
ses of B0 +B2 and B0 +B2 +B4 (Fig. 5), using the full covariance from the mocks, indicates that
the addition of the quadrupole alone greatly improves the determination of bias parameters and,
perhaps not surprisingly, allows to properly constrain the growth rate f ; the further addition of
the hexadecapole, instead, leads to no appreaciable improvement.

• For our full simulation volume, the tree-level model provides a good fit to the bispectrum
monopole up to kmax = 0.08hMpc−1, while the inclusion of the quadrupole and the hex-
adecapole reduce significantly this range to 0.06 and 0.045hMpc−1, respectively. Indeed,
an optimal configuration for the joint B0 + B2 analysis should assume distinct values for
kmax. We tested that better constraints on the model parameters are obtained assuming
kB0

max = 0.08hMpc−1 and kB2
max = 0.06hMpc−1 with respect to the case where a single, lower

value of kB0
max = kB2

max = 0.06hMpc−1 is adopted to keep within the model validity range (Fig. 8).

• In general our data, despite the large volume, cannot fully determine all shot-noise parameters
describing different departures from the Poisson expectation. It appears, however, that the
stochastic velocity contribution εηη to the halo density, that one can expect when selection
effects are present [69], is indeed disfavoured in our ideal set-up, at least at the large scales we
are exploring (Fig. 6).

• Both the fitting function for the quadratic local bias parameter b2(b1, bG2) of [63] as the relation
for the tidal bias parameter bG2(b1) proposed in [65, 66] (and their combination) appear to
significantly tighten the posteriors on b1 and f (Fig. 7); the first, however, appears to introduce
some bias in the determination of b1, although relevant only because of the large cumulative
volume of our simulations set.

• For our ideal measurements in a simulation box with periodic boundary conditions, the Gaussian
model for the covariance of the bispectrum multipoles provides a very good approximation to the
numerical estimate. A small underestimate is noticeable (and expected [53, 54]) for the squeezed
configurations of the bispectrum monopole (Fig. 3). On the other hand a quite remarkable
agreement is obtained in the comparison with the cross-correlation coefficients (Fig. 4). In
terms of the posteriors of the bias parameters and f we find no noticeable difference between
the Gaussian theory variance and the numerical variance, while a very small difference is present
when compared to the full numerical covariance (Fig. 9).

• All our main results assume an exact binning of the theoretical prediction. When a single
evaluation on a triplet of effective wavenumbers is assumed we notice a negligible difference
only if the bin size is small, equal to the box fundamental frequency (Fig. 10). For a larger
bin size, in addition to somehow larger posteriors, this approximation can lead to much more
significant shifts in the posteriors, resulting in evident systematic differences particularly on the
growth rate f .

As mentioned in the introduction, not many works explored the modelling and the information
content of the anisotropic bispectrum, in particular in terms of constraints on bias parameters and
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the growth rate f using Bayesian analyses. Our results qualitatively confirm earlier Fisher-matrix
forecasts [15–17, 22, 47] in remarking the importance of going beyond the analysis of the bispectrum
monopole. The same can be said for [20] and [32], both based instead on a full likelihood analysis and
therefore closer, in principle, to our work. For these last two references, however, many differences
in methodology do not allow a rigorous, quantitative comparison with our results, in addition to
the fact, of course, that we do not include power spectrum measurements in our data-vector. We
will present a joint analysis of the Minerva-set power spectrum and bispectrum in redshift space
elsewhere [67]. For the time being we limit ourselves to observe that the inclusion of full anisotropic
bispectrum information will likely be an important step toward a complete exploitation of cosmological
information in spectroscopic galaxy surveys.
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A Analytical evaluation of the bispectrum multipoles

The orientation of the {k1,k2,k3} triangle w.r.t. the LOS in the model for the redshift-space bis-
pectrum Bs(k1,k2, n̂), eq. (2.6), is expressed entirely in terms of products of powers of the cosines

µi ≡ k̂i · n̂ that can be factorised in each contribution.
The integrals defining the bispectrum multipoles in eq. (2.25) are therefore limited to angle-

averages of such combinations, with the additional factors from the Legendre polynomials corre-
sponding to additional powers of µ1. We denote these integrals as

Iαβγ =
1

4π

∫ +1

−1

dµ1

∫ 2π

0

dξ µα1 µ
β
2 (µ1, ξ)µ

γ
3(µ1, ξ) , (A.1)

where

µ2(µ1, ξ) = µ1µ12 −
√

1− µ2
1

√
1− µ2

12 cos ξ (A.2)

and

µ3(µ1, ξ) = −k1µ1 + k2µ2(µ1, ξ)

k3
, (A.3)

having introduced µ12 ≡ k̂1 · k̂2. Since the angle integration of eq. (A.1) is to be intended as a generic
integration over all orientations, it is easy to see that it should satisfy the following property

Iα,β,γ(k1, k2, k3) = Iσ(α,β,γ)[σ(k1, k2, k3)] , (A.4)

where σ(...) represents a generic permutation applied, at the same time, to its indices and arguments7

We write, for illustration purposes the first few as

Iα00 =
1

1 + α
for α even (vanishing otherwise) , (A.5)

7Notice that in general is not true that Iα,β,γ(k1, k2, k3) = Iσ(α,β,γ)(k1, k2, k3), so if we write, e.g., I200 + I020 we
implicitly mean I200(k1, k2, k3) + I020(k1, k2, k3) corresponding to the sum of two different quantities.
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Iα01 = − k2
1 + k2

3 − k2
2

2(2 + α) k1 k3
for α odd (vanishing otherwise) , (A.6)

Iα11 =
(2 + α) k4

1 − α (k2
2 − k2

3)2 − 2 k2
1 (k2

2 + k2
3)

4(1 + α)(3 + α)k2
1 k2 k3

for α even (vanishing otherwise) , (A.7)

Iα02 =
4 k2

1 k
2
3 + α (k2

1 + k2
3 − k2

2)2

4(1 + α)(3 + α)k2
1 k

2
3

for α even (vanishing otherwise) . (A.8)

We can group all contributions to the bispectrum multipoles according to the source of quadratic
nonlinearity, that is

B`(k1, k2, k3) = B
(F2)
` +B

(b2)
` +B

(S2)
` +B

(G2)
` +B

(mixed)
` . (A.9)

These contributions can be expressed in terms of the Iαβγ

B
(F2)
0 = 2 b31 I000 F2(k1, k2; k3)PL(k1)PL(k2) + 2 perm.+

+ 2 b21 f (I200 + I020)F2(k1, k2; k3)PL(k1)PL(k2) + 2 perm.+

+ 2 b1 f
2 I220 F2(k1, k2; k3)PL(k1)PL(k2) + 2 perm. , (A.10)

B
(b2)
0 = b21 b2 I000 PL(k1)PL(k2) + 2 perm.+

+ b1 b2 f (I200 + I020)PL(k1)PL(k2) + 2 perm.+

+ b2 f
2 I220PL(k1)PL(k2) + 2 perm. , (A.11)

B
(S2)
0 = 2 b21 bG2 I000 S(k1, k2; k3)PL(k1)PL(k2) + 2 perm.+

+ 2 b1 bG2 f (I200 + I020)S(k1, k2; k3)PL(k1)PL(k2) + 2 perm.+

+ 2 bG2 f
2 I220 S(k1, k2; k3)PL(k1)PL(k2) + 2 perm. , (A.12)

B
(G2)
0 = 2 b21 f I002G2(k1, k2; k3)PL(k1)PL(k2) + 2 perm.+

+ 2 b1 f
2 (I202 + I022)G2(k1, k2; k3)PL(k1)PL(k2) + 2 perm.+

+ 2 f3 I222G2(k1, k2; k3)PL(k1)PL(k2) + 2 perm. , (A.13)

B
(mixed)
0 = −b31 f

(k3

k1
I101 +

k3

k2
I011

)
PL(k1)PL(k2) + 2 perm.−

− b21 f2
[k3

k1
(I301 + 2I121) +

k3

k2
(I031 + 2I211)

]
PL(k1)PL(k2) + 2 perm.−

− b1 f3
[k3

k1
(I141 + 2I321) +

k3

k2
(I411 + 2I231)

]
PL(k1)PL(k2) + 2 perm.−

− f4
(k3

k1
I341 +

k3

k2
I431

)
PL(k1)PL(k2) + 2 perm. . (A.14)

Here the permutations are intended to apply as well on the Iαβγ integrals. The shot-noise contribution
to the monopole is given by

B
(shot-noise)
0 =

1

ñ

{
b21 I000

[
PL(k1) + PL(k2) + PL(k3)

]
+

+ b1f
[
I200 P (k1) + I020 P (k2) + I002 P (k3)

]
+

+ f2
[
I400P (k1) + I040P (k2)P + I004P (k3)

]}
+
I000

n̄2
(A.15)

Then the quadrupole and hexadecapole, defined as

B2(k1, k2, k3) =

∫ +1

−1

dµ1

∫ 2π

0

dξB(k1, k2, k2, µ1, ξ)
[1

4

√
5

π
(3µ2

1 − 1)
]

(A.16)

B4(k1, k2, k3) =

∫ +1

−1

dµ1

∫ 2π

0

dξB(k1, k2, k2, µ1, ξ)
[ 3

16

√
1

π
(35µ4

1 − 30µ2
1 + 3)

]
(A.17)
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can be readily written starting from eq.s (A.10)-(A.14), replacing the Iαβγ integrals with the quantities

J (2)
αβγ ≡

1

4

√
5

π
(3 Iα+2 β γ − Iαβ γ) , (A.18)

in the quadrupole case and with

J (4)
αβγ ≡

3

16
√
π

(35 Iα+4 β γ − 30Iα+2 β γ + 3Iαβ γ) , (A.19)

for the hexadecapole.
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Rodŕıguez-Torres, and M. D. Olmstead, The clustering of galaxies in the SDSS-III Baryon Oscillation
Spectroscopic Survey: RSD measurement from the power spectrum and bispectrum of the DR12 BOSS
galaxies, Mon. Not. R. Astron. Soc. 465 (Feb., 2017) 1757–1788, [arXiv:1606.0043].

[7] D. W. Pearson and L. Samushia, A Detection of the Baryon Acoustic Oscillation features in the SDSS
BOSS DR12 Galaxy Bispectrum, Mon. Not. R. Astron. Soc. 478 (Aug., 2018) 4500–4512,
[arXiv:1712.0497].

[8] G. d’Amico, J. Gleyzes, N. Kokron, K. Markovic, L. Senatore, P. Zhang, F. Beutler, and H. Gil-Maŕın,
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