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ABSTRACT

A classic method for computing the mass function of dark matter halos is provided by excursion set theory, where
density perturbations evolve stochastically with the smoothing scale, and the problem of computing the probability
of halo formation is mapped into the so-called first-passage time problem in the presence of a barrier. While the full
dynamical complexity of halo formation can only be revealed through N-body simulations, excursion set theory
provides a simple analytic framework for understanding various aspects of this complex process. In this series of
papers we propose improvements of both technical and conceptual aspects of excursion set theory, and we explore
up to which point the method can reproduce quantitatively the data from N-body simulations. In Paper I of the
series, we show how to derive excursion set theory from a path integral formulation. This allows us both to derive
rigorously the absorbing barrier boundary condition, that in the usual formulation is just postulated, and to deal
analytically with the non-Markovian nature of the random walk. Such a non-Markovian dynamics inevitably enters
when either the density is smoothed with filters such as the top-hat filter in coordinate space (which is the only
filter associated with a well-defined halo mass) or when one considers non-Gaussian fluctuations. In these cases,
beside “Markovian” terms, we find “memory” terms that reflect the non-Markovianity of the evolution with the
smoothing scale. We develop a general formalism for evaluating perturbatively these non-Markovian corrections,
and in this paper we perform explicitly the computation of the halo mass function for Gaussian fluctuations, to first
order in the non-Markovian corrections due to the use of a top-hat filter in coordinate space. In Paper II of this series
we propose to extend excursion set theory by treating the critical threshold for collapse as a stochastic variable,
which better captures some of the dynamical complexity of the halo formation phenomenon, while in Paper III we
use the formalism developed in this paper to compute the effect of non-Gaussianities on the halo mass function.
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1. INTRODUCTION

The computation of the mass function of dark matter halos is
a central problem in modern cosmology. In particular, the high-
mass tail of the distribution is a sensitive probe of primordial
non-Gaussianities (Matarrese et al. 1986, 2000; Moscardini et al.
1991; Koyama et al. 1999; Robinson & Baker 2000; Robinson
et al. 2000). Various planned large-scale galaxy surveys, both
ground-based (DES, PanSTARRS, and LSST) and on satellite
(EUCLID and ADEPT), can detect the effect of primordial
non-Gaussianities on the mass distribution of dark matter halos
(see, e.g., Dalal et al. 2008; Carbone et al. 2008). Of course,
this also requires reliable theoretical predictions for the mass
function, first of all when the primordial fluctuations are taken
to be Gaussian, and then including non-Gaussian corrections.
Furthermore, the halo mass function is both a sensitive probe
of cosmological parameters and a crucial ingredient when one
studies the dark matter distribution, as well as the formation,
evolution, and distribution of galaxies, so its accurate prediction
is obviously important.

The formation and evolution of dark matter halos is a highly
complex dynamical process, and a detailed understanding of it
can only come through large-scale N-body simulations. Some
analytical understanding is however also desirable, both for
obtaining a better physical intuition, and for the flexibility
under changes of models or parameters (such as cosmolog-
ical model, shape of the non-Gaussianities, etc.) that is the

advantage of analytical results over very time-consuming nu-
merical simulations.

Analytic techniques generally start by modeling the collapse
as spherical or ellipsoidal. However, N-body simulations show
that the actual process of halo formation is not ellipsoidal,
and in fact is not even a collapse, but rather a messy mixture
of violent encounters, smooth accretion, and fragmentation
(Springel et al. 2005). In spite of this, analytical techniques
based on Press–Schechter (PS) theory (Press & Schechter 1974)
and its extension known as excursion set theory (Peacock &
Heavens 1990; Bond et al. 1991) are able to reproduce, at least
qualitatively, several properties of dark matter halos such as their
conditional and unconditional mass function, halo accretion
histories, merger rates, and halo bias (see Zentner 2007 for a
recent review). However, at the quantitative level, for Gaussian
fluctuations the prediction of excursion set theory for the
mass function already deviates significantly from the results of
N-body simulations. The halo mass function dn/dM can be
written as (Jenkins et al. 2001)

dn(M)

dM
= f (σ )

ρ̄

M2

d ln σ−1(M)

d ln M
, (1)

where n(M) is the number density of dark matter halos of mass
M, σ 2 is the variance of the linear density field smoothed on
a scale R corresponding to a mass M, and ρ̄ is the average
density of the universe. In excursion set theory within a spherical
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Figure 1. Log–log plot of the function f (σ ). The (blue) solid curve is the
PS prediction fPS(σ ). The three almost indistinguishable dashed lines are the
Sheth–Tormen fit to the GIF simulation of Kauffmann et al. (1999), and the fit
to the N-body simulations of Pillepich et al. (2009) and Warren et al. (2006).
The fitting functions are summarized in Table 3 of Pillepich et al. (2009).

(A color version of this figure is available in the online journal.)

collapse model the function f (σ ) is predicted to be

fPS(σ ) =
(

2

π

)1/2
δc

σ
e−δ2

c /(2σ 2), (2)

where δc ≃ 1.686 is the critical value for collapse in the
spherical collapse model. This result can be extended to arbitrary
redshift z reabsorbing the evolution of the variance into δc, so
that δc in the above result is replaced by δc(z) = δc(0)/D(z),
where D(z) is the linear growth factor. This prediction can
be compared with the existing N-body simulations (see, e.g.,
Jenkins et al. 2001; Warren et al. 2006; Lukic et al. 2007;
Tinker et al. 2008; Pillepich et al. 2009; Robertson et al. 2009,
and references therein). The results of these simulations have
been represented by various fitting functions; see, e.g., Sheth &
Tormen (1999) and Sheth et al. (2001). In Figure 1 we compare
the function fPS(σ ) given in Equation (2), to various fits to
N-body simulations, plotting the result against σ−1. High masses
correspond to large smoothing radius R, i.e., low values of
σ and large σ−1, so mass increases from left to right on the
horizontal axis. One sees that the N-body simulations are quite
consistent among them, and that PS theory predicts too many
low-mass halos, roughly by a factor of 2, and too few high-
mass halos: at σ−1 = 3, PS theory is already off by a factor
O(10). The primordial non-Gaussianities can be constrained by
probing the statistics of rare events, such as the formation of the
most massive objects, so it is particularly important to model
accurately the high-mass part of the halo mass function, first
of all at the Gaussian level. It makes little sense to develop an
analytic theory of the non-Gaussianities, by perturbing over a
Gaussian theory that in the interesting mass range is already off
by an order of magnitude.

When searching for the origin of this failure of excursion set
theory, one can divide the possible concerns into two classes.

1. Even if one accepts as a physical model for halo formation
a spherical (or ellipsoidal) collapse model, there are formal
mathematical problems in the implementation of excursion
set theory that leads to Equation (2).

2. The physical model itself is inadequate, since a spherical
or even elliptical collapse model is an oversimplification of
the actual complex process of halo formation.

Concerning point (1), it is well known that the original
argument of Press and Schechter miscounts the number of
virialized objects because of the so-called “cloud-in-cloud”
problem. In the spherical collapse model one assumes that a
region of radius R, with a smoothed density contrast δ(R),
collapses and virializes once δ(R) exceeds a critical value
δc ≃ 1.686.4 Within PS theory, for Gaussian fluctuations the
distribution probability for the density contrast is

ΠPS(δ, S) =
1

√
2πS

e−δ2/(2S), (3)

where

S(R) ≡ σ 2(R) = 〈δ2(x,R)〉, (4)

and the fractional volume of space occupied by virialized objects
larger than R is identified with

FPS(R) =
∫ ∞

δc

dδ ΠPS(δ, S(R)) =
1

2
erfc

(
ν(R)
√

2

)
, (5)

where ν(R) = δc/σ (R). As remarked already by Press and
Schechter, this expression cannot however be fully correct. In
fact, in the hierarchical models that we are considering the
variance S(R) diverges as R → 0, so all the mass in the universe
must finally be contained in virialized objects. Thus, we should
have FPS(0) = 1, while Equation (5) gives FPS(0) = 1/2. Press
and Schechter corrected this simply adding by hand an overall
factor of 2.

The reason for this failure is that the above procedure misses
the cases in which, on a given smoothing scale R, δ(R) is below
the threshold, but still it happened to be above the threshold
at some scale R′ > R. Such a configuration corresponds to a
virialized object of mass M ′ > M . However, it is not counted
in FPS(R) since on the scale S it is below threshold. Thus,
Equation (5) cannot be fully correct.

In Bond et al. (1991), this problem was solved by mapping
the evolution of δ with the smoothing scale into a stochastic
problem. Using a sharp k-space filter, they were able to formulate
the problem in terms of a Langevin equation with a Dirac-
delta noise. In other words, the smoothed density perturbation
δ suffers a Markovian stochastic motion under the influence of
a Gaussian white noise, with the variance S = σ 2 playing the
role of a time variable. In this formulation, the halo is defined
to be formed when the smoothed density perturbation δ reaches
the critical value δc for the first time. The problem is therefore
reduced to a “first-passage problem,” which is a classical subject
in the theory of stochastic processes (Redner 2001). One may
write a Fokker–Planck (FP) equation describing the probability
Π(δ, S) that the density perturbation acquires a given value
δ at a given “time” S, supplemented by the absorbing barrier
boundary condition that the probability vanishes when δ = δc.
The solution reproduces Equation (2), including the factor of 2
that Press and Schechter were forced to introduce by hand.5

However, this procedure still raises some technical questions
that will be reviewed in more detail in Section 2. In short,

4 More precisely, δc has a slight dependence on the cosmological model, and
δc = 1.686 is the value for a ΩM = 1 cosmology (Lacey & Cole 1993). For a
model with ΩM + ΩΛ = 1, this dependence is computed in Eke et al. (1996).
For ΩM ≃ 0.3, δc is between 1.67 and 1.68; see their Figure 1. This difference
is however much smaller than other uncertainties in our computation.
5 The work of Epstein (1983) also solves the cloud-in-cloud problem and
recovers the correct factor of 2, though the process considered therein uses
Poisson seeds for structure formation.
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there are two issues that deserve a deeper scrutiny. First, the
“absorbing barrier” boundary condition Π(δc, S) = 0 is a natural
one, but still it is something that is imposed by hand, and in
this sense it is really an ansatz. In the literature for stochastic
processes it is well known that, in general, the probability does
not satisfy any simple boundary condition (van Kampen &
Oppenheim 1972; Knessl et al. 1986). This is due to the fact
that when one works with a discretized time step, a stochastic
trajectory can exit a given domain by jumping over the boundary
without hitting it, unlike a continuous diffusion process which
has to hit the boundary to exit the domain. Particular care must
therefore be devoted to the passage from the discrete to the
continuum. As we will see, the passage from a discrete to
a continuum formulation is indeed highly non-trivial when a
generic filter and/or non-Gaussian perturbations are used.

A second related concern is that the derivation of Bond et al.
only works for a sharp k-space filter. However, as we review in
Section 2, there is no unambiguous way of associating a mass to
a region of size R smoothed with a sharp k-space filter. The only
unambiguous way of associating a mass M with a smoothing
scale R is using a sharp filter in x space, proportional to θ (R−r),
in which case one has the obvious relation M = (4/3)πR3ρ.
This is also the relation used in numerical simulations. As
soon as one uses a different filter (such as the top hat in
real space), the Langevin equation with Gaussian Dirac-delta
noise, that describes a simple Markovian process, is replaced
by a very complicated non-Markovian dynamics dictated by
a colored noise. The system acquires memory properties and
the probability Π(δ, S) no longer satisfies a simple diffusion
equation such as the FP equation. The same is true if the density
perturbation is non-Gaussian. Furthermore, the correctness of
the “absorbing barrier” boundary condition is now far from
obvious. These difficulties are well known in the statistical
physics community, where progress in solving the first-passage
problem in the presence of a non-Markovian dynamics has been
very limited (Hänggi & Talkner 1981; Weiss et al. 1983; van
Kampen 1998). From these considerations one concludes that
the rather common procedure of taking the analytical results of
Bond et al. (1991), valid for a sharp filter in momentum space,
and applying them to generic filters is incorrect.6

These issues become even more important when one consid-
ers the evolution with smoothing scale of non-Gaussian fluctu-
ations, since non-Gaussianities induce again a non-Markovian
dynamics, and furthermore it is important to disentangle the
physically interesting non-Markovian contribution to the halo
mass function due to primordial non-Gaussianities, from the
non-Markovian contribution due to the filter function.

Concerning point (2) above, it is important to stress once
again that excursion set theory is just a simple mathematical
model for a complex dynamical process. Treating the collapse
as ellipsoidal rather than spherical gives a more realistic descrip-
tion (Sheth & Tormen 1999; Sheth et al. 2001). However, as we
already mentioned, dark matter halos grow through a mixture
of smooth accretion, violent encounters, and fragmentations,
and modeling halo collapse as spherical, or even ellipsoidal, is
certainly an oversimplification. In addition, the very definition
of what is a dark matter halo, both in N-body simulations and
observationally, is a difficult problem (for cluster observations,

6 Similarly, even if the mathematical problem of solving the FP equation with
a moving barrier is amenable to an elegant formulation (Zhang & Hui 2006),
its application to the halo mass function suffers from the problem that for a
general filter it is incorrect to assume that the probability Π(δ, S) evolves
according to the FP equation.

see Jeltema et al. 2005 and references therein), which we will
discuss in more detail in Maggiore & Riotto (2009a, Paper II).

In this series of papers, we examine systematically the above
issues. In this paper we start from excursion set theory in its
simpler physical implementation, i.e., coupled to a spherical
collapse model, and within this framework we put the formalism
on firmer mathematical grounds. We show how to formulate
the mathematical problem exactly in terms of a path integral
with boundaries and particular care will be devoted to the
passage from the discrete to the continuum. This formalism
allows us to obtain a number of results: first, when we restrict to
Gaussian fluctuations and sharp k-space filter, in the continuum
limit we recover the usual formulation of excursion set theory,
but in this case the absorbing barrier boundary condition
emerges automatically from the formalism, without the need of
imposing it by hand. For different filters the problem becomes
much more complicated, and we have to deal with a non-
Markovian dynamics. We will see that, for a generic filter,
the zeroth-order term in an expansion of the non-Markovian
contributions gives back Equation (2), where σ 2 is now the
variance computed with the generic filter. We then show how the
non-Markovian contributions can be computed perturbatively
using our path integral formulation, and we compute explicitly,
to first perturbative order, the halo mass function for a top-
hat filter in coordinate space. We find that the non-Markovian
contributions do not alleviate the discrepancy with N-body
simulations, rather, on the contrary, in the relevant mass range
the full halo mass function is everywhere slightly lower than
the one obtained from the Markovian contribution, so in the
large mass regime this correction goes in the wrong direction.
This result will not be a surprise to the expert reader. In their
classic paper, Bond et al. has already computed the result with
a top-hat filter in coordinate space using a Monte Carlo (MC)
realization of the trajectories obtained from a Langevin equation
with colored noise, and found indeed that one has fewer high-
mass objects. More recently, an MC simulation of this kind has
been done in Robertson et al. (2009), and our analytical result
to first order is in agreement with their findings.

In Paper II of this series, motivated by the physical limitations
of the spherical or ellipsoidal collapse model, we propose that
some of the physical complications of the realistic process of
halo formation and growth can be included in the excursion
set framework, at least at an effective level, by assuming that
the critical value for collapse is neither a fixed constant δc,
as in the spherical collapse model, nor a fixed function of the
variance σ 2, as in the ellipsoidal collapse model, but rather is
itself a stochastic variable, whose scattering reflects a number
of complicated aspects of the underlying dynamics.

Finally, in Maggiore & Riotto (2009b, Paper III of this
series) we apply the formalism developed in this paper, together
with the diffusing barrier model developed in Paper II, to the
computation of the halo mass function in the presence of non-
Gaussian fluctuations.

This paper is organized as follows. In Section 2, we review the
excursion set theory developed in Bond et al. (1991); in Section
3, we present the path integral approach to a stochastic problem
in the presence of a barrier. In Section 4 we specialize to the
cases of a sharp filter in momentum space, while in Section
5 we consider a generic filter. In particular, in Section 5 we
show how to deal with the non-Markovian corrections to the
halo mass function. Some technicalities regarding the delicate
passage from the discrete to the continuum are contained in
Appendices A and B.
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2. THE COMPUTATION OF THE HALO MASS FUNCTION
AS A STOCHASTIC PROBLEM

The computation of the halo mass function can be formulated
in terms of a stochastic process, as has been well known since the
classical work of Bond et al. (1991). Let us recall the procedure,
in order to set the notation and to highlight some delicate points,
in particular related to the choice of the filter function, that are
important in the following. The expert reader might wish to
move directly to Section 3.

Consider the density contrast δ(x) = [ρ(x) − ρ̄]/ρ̄, where ρ̄
is the mean mass density of the universe and x is the comoving
position, and smooth it on some scale R, defining

δ(x, R) =
∫

d3x ′ W (|x − x′|, R) δ(x′), (6)

with a filter function W (|x − x′|, R). We denote by W̃ (k, R) its
Fourier transform. A simple choice is a sharp filter in k space,

W̃sharp-k(k, kf ) = θ (kf − k), (7)

where kf = 1/R, k = |k|, and θ is the step function. Other

common choices are a sharp filter in x space, W̃sharp-x(r, R) =
[3/(4πR3)]θ (R − r), or a Gaussian filter, W̃gau(k, R) =
e−R2k2/2. Writing Equation (6) in terms of the Fourier trans-
form we have

δ(x, R) =
∫

d3k

(2π )3
δ̃(k)W̃ (k, R)e−ik·x, (8)

where k = |k|. We focus on the evolution of δ(x, R) with R at a
fixed value of x, that we can choose without loss of generality
as x = 0, and we write δ(x = 0, R) simply as δ(R). Taking the
derivative of Equation (8) with respect to R we get

∂δ(R)

∂R
= ζ (R), (9)

where

ζ (R) ≡
∫

d3k

(2π )3
δ̃(k)

∂W̃ (k, R)

∂R
. (10)

Since the modes δ̃(k) are stochastic variables, ζ (R) is a stochas-
tic variable too, and Equation (9) has the form of a Langevin
equation, with R playing the role of time and ζ (R) playing the
role of noise. When δ(R) is a Gaussian variable, only its two-
point connected correlator is non-vanishing. In this case, we
see from Equation (10) that also ζ is Gaussian. The two-point
function of δ defines the power spectrum P (k),

〈δ̃(k)δ̃(k′)〉 = (2π )3δD(k + k′)P (k). (11)

From this it follows that

〈ζ (R1)ζ (R2)〉 =
∫ ∞

−∞
d(ln k) ∆

2(k)
∂W̃ (k, R1)

∂R1

∂W̃ (k, R2)

∂R2

, (12)

where, as usual, ∆2(k) = k3P (k)/(2π2). For a generic filter
function the right-hand side is a function of R1 and R2, different
from a Dirac delta δD(R1 − R2). In the literature on stochastic
processes, this case is known as colored Gaussian noise.
Things simplify considerably for a sharp k-space filter. Using

kf = 1/R instead of R, and defining Q(kF ) = −(1/kF )ζ (kF ),
Equations (9) and (12) become

∂δ(kF )

∂ ln kF

= Q(kF ) (13)

and

〈Q(kF 1)Q(kF 2)〉 = ∆
2(kF 1)δD(ln kF 1 − ln kF 2). (14)

Therefore, we have a Dirac-delta noise. We can write these
equations in an even simpler form using as “pseudotime”
variable the variance S defined in Equation (4). Using
Equation (8),

S(R) =
∫ ∞

−∞
d(ln k) ∆

2(k)|W̃ (k, R)|2. (15)

For a sharp k-space filter, S becomes

S(kF ) =
∫ ln kF

−∞
d(ln k) ∆

2(k), (16)

so

∂S

∂ ln kf

= ∆
2(kf ). (17)

Thus, redefining finally η(kF ) = Q(kF )/∆2(kF ), we get

∂δ(S)

∂S
= η(S), (18)

with

〈η(S1)η(S2)〉 = δ(S1 − S2), (19)

which is the Langevin equation with Dirac-delta noise, with
S playing the role of time. In hierarchical power spectra, at
R = ∞ we have S = 0, and S increases monotonically as R
decreases. Therefore, we can start from R = ∞, corresponding
to “time” S = 0, where δ = 0, and follow the evolution of
δ(S) as we decrease R, i.e., as we increase S. The fact that this
evolution is governed by the Langevin equation means that δ(S)
performs a random walk, with respect to the “time” variable S.
Following Bond et al. (1991), we refer to the evolution of δ
as a function of S as a “trajectory.” In the spherical collapse
model, a virialized object forms as soon as the trajectory exceeds
the threshold δ = δc. In this language, the “cloud-in-cloud”
problem of PS theory is associated with trajectories that make
multiple crossings of the threshold, such as that shown in
Figure 2. If we compute the probability distribution at S = S2

as in PS theory, i.e., using Equation (5), this trajectory does not
contribute to FPS(R) since at this value of S it is below threshold.
However, it has already gone above threshold at an earlier time
S1, corresponding to a radius R1, so it gives a virialized object
of mass M(R1) > M(R2). This virialized object has been lost
in FPS(R2) evaluated through Equation (5), in spite of the fact
that this formula was supposed to count all objects with mass
greater than M(R2).

To cure the “cloud-in-cloud” problem, we must consider the
lowest value of S (or, equivalently, the highest value of R) for
which the trajectory pierces the threshold. Similar problems are
known in statistical physics as “first-passage time” problems.
After that, a virialized object forms and this trajectory should be
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Figure 2. Trajectory that performs multiple up-crossings of the threshold at
δ = δc .

excluded from further consideration. We therefore consider an
ensemble of trajectories, all starting from the initial value δ = 0
at initial “time” S = 0, and we compute the function Π(δ, S) that
gives the probability distribution of reaching a value δ at “time”
S. As is well known (see, e.g., Risken 1984), if a stochastic
process obeys the Langevin Equation (18) with a Dirac-delta
noise Equation (19), the corresponding distribution function is
a solution of the FP equation,

∂Π

∂S
=

1

2

∂2Π

∂δ2
. (20)

We denote by Π0(δ, S) the solution of this equation over the
whole real axis −∞ < δ < ∞, with the boundary condition
that it vanishes at δ = ±∞. One can check immediately that

Π
0(δ, S) =

1
√

2πS
e−δ2/(2S). (21)

This probability distribution would bring us back to PS theory,
and to its problems discussed in the Introduction. So, we need to
eliminate the trajectories once they have reached the threshold.
In Bond et al. (1991), this is implemented by imposing the
boundary condition

Π(δ, S)|δ=δc
= 0. (22)

This seems very natural, but we stress that this boundary
condition is still something that it is imposed by hand. The
solution of the FP equation with this boundary condition is
(Chandrasekhar 1943)

Π(δ, S) =
1

√
2πS

[
e−δ2/(2S) − e−(2δc−δ)2/(2S)

]
, (23)

and gives the distribution function of excursion set theory. When
studying halo merger trees, it is important to consider also the
distribution for trajectories that start from an arbitrary value
δ0 �= 0 (Bond et al. 1991; Lacey & Cole 1993). In this case,
Equation (23) is replaced by

Π(δ0; δ; S) =
1

√
2πS

[
e−(δ−δ0)2/(2S) − e−(2δc−δ0−δ)2/(2S)

]
.

(24)

This result is easily understood writing 2δc − δ0 − δ =
2(δc −δ0)− (δ−δ0), so Equation (24) is obtained from Equation
(23) performing the obvious replacement δ → δ − δ0, and also
δc → δc − δ0, which expresses the fact that, if we start from
δ0, the random walk must cover a distance δc − δ0 to reach the
threshold.

In the excursion set theory the distribution Π(δ, S) is defined
only for δ < δc, so the fraction F (S) of trajectories that have
crossed the threshold at “time” smaller than or equal to S cannot
be written, as in Equation (5), as an integral from δ = δc to
δ = +∞. Rather, we use the fact that the integral of Π(δ, S)
from δ = −∞ to δ = δc gives the fraction of trajectories that at
“time” S have never crossed the threshold, so

F (S) = 1 −
∫ δc

−∞
dδ Π(δ, S). (25)

Observing that Π(δ, S) = Π0(δ, S) − Π0(2δc − δ, S), we see
that

F (S) = 1 −
∫ δc

−∞
dδ Π

0(δ, S) +

∫ δc

−∞
dδ Π

0(2δc − δ, S).

(26)

Since Π0(δ, S) is normalized to one,

1 −
∫ δc

−∞
dδ Π

0(δ, S) =
∫ ∞

δc

dδ Π
0(δ, S). (27)

For the last term in Equation (26), we write δ′ = 2δc − δ, and

∫ δc

−∞
dδ Π

0(2δc − δ, S) =
∫ ∞

δc

dδ′
Π

0(δ′, S). (28)

Thus, one obtains

F (S) = 2

∫ ∞

δc

dδ Π
0(δ, S) = erfc

(
ν

√
2

)
, (29)

where ν = δc/σ (M), and one recovers the factor of 2 that Press
and Schechter were forced to introduce by hand. The probability
of first crossing the threshold between “time” S and S + dS is
given by F(S)dS, with

F(S) ≡
dF

dS
= −

∫ δc

−∞
dδ

∂Π

∂S
. (30)

This can be easily computed by making use of the fact that Π

by definition satisfies the FP Equation (20), so

F(S) = −
1

2

∂Π

∂δ

∣∣∣∣
δ=δc

=
δc√

2π S3/2
e−δ2

c /(2S). (31)

Observe that, in δ = δc, Π(δ, S) and all its derivatives of even
order with respect to δ vanish, while all its derivatives of odd
order with respect to δ are twice as large as the value for the
single Gaussian (Equation (21)). So, this first-crossing rate is
twice as large as that computed with a single Gaussian, which is
another way of understanding how one gets the factor of 2 that
the original form of PS theory misses.

The halo mass function follows if one has a relation M =
M(R) that gives the mass associated with the smoothing of
δ over a region of radius R. We discuss below the subtleties
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associated with this relation, and its dependence on the filter
function. Anyhow, once M(R) is given, we can consider F as
a function of M rather than of S(R). Then |dF/dM|dM is the
fraction of volume occupied by virialized objects with mass
between M and M + dM. Since each one occupies a volume
V = M/ρ̄, where ρ̄ is the average density of the universe, the
number of virialized object n(M) with mass between M and
M + dM is given by

dn

dM
dM =

ρ̄

M

∣∣∣∣
dF

dM

∣∣∣∣ dM, (32)

so

dn

dM
=

ρ̄

M

dF

dS

∣∣∣∣
dS

dM

∣∣∣∣ =
ρ̄

M2
F(S)2σ 2 d ln σ−1

d ln M
, (33)

where we used S = σ 2. Therefore, in terms of the first-
crossing rate F(S) = dF/dS, the function f (σ ) defined from
Equation (1) is given by

f (σ ) = 2σ 2
F(σ 2). (34)

Using Equation (31) we get the halo mass function in PS theory
(with the factor of 2 computed thanks to the excursion set
theory),

(
dn

dM

)

PS

=
(

2

π

)1/2
δc

σ
e−δ2

c /(2σ 2) ρ̄

M2

d ln σ−1

d ln M
. (35)

This is the result given in Equations (1) and (2).
The crucial point is how to associate a mass M with the filter

scale R. For the sharp filter in x space this is clear. The mass
associated with a spherical region of radius R and density ρ is
M = (4/3)πR3ρ. For the other filters there is no unambiguous
definition. A possibility often used is the following. One first
normalizes W so that its maximum value is one. Calling W ′ this
new dimensionless filter, one can define the volume V associated
with the filter as V =

∫
d3x W ′, and M = ρV . This procedure

seems reasonable, but still it is somewhat arbitrary, since one
might as well chose a different normalization for W ′. For a
Gaussian filter, this gives V = (2π )3/2R3. For a sharp k-space
filter, on top of this ambiguity, there is also the fact that such
a volume is not even well defined. In fact, the k-space filter in
coordinate space reads

Wsharp-k(r, R) =
1

2π2R3

sin u − u cos u

u3
, (36)

where u = r/R = kf r and r = |x − x′|, which gives

W ′ = 3
sin u − u cos u

u3
, (37)

and

V = 4π

∫ ∞

0

dr r2W ′ = 12πR3

∫ ∞

0

du
[ sin u

u
− cos u

]
.

(38)

The integral of sin u/u gives π/2, but the limit for Λ → ∞
of the integral of cos u from u = 0 to u = Λ does not exist.
If one just sets it to zero, without much justification, one finds
the result V = 6π2R3 which is sometimes quoted (Lacey &
Cole 1993). In any case, it is clear that it is difficult to give

unambiguous numerical predictions for the halo mass function
with a filter different from the sharp x-space filter.

The standard practice in the literature is to use the PS mass
function, which can be derived from excursion set theory but
only if one works with a sharp k-space filter, and at the same
time to use M = (4/3)πR3ρ, which is only valid for a sharp
x-space filter. Of course, this is not consistent and cannot be a
good starting point for the inclusion of the non-Gaussianities,
since one would attribute to primordial non-Gaussianities fea-
tures in the mass function which are due, more trivially, to the
filter function.

In principle, one can determine the halo mass function with
a top-hat filter in coordinate space by performing an MC
realization of the trajectories obtained from a Langevin equation
with colored noise (Bond et al. 1991; Robertson et al. 2009).
However, our final aim is to get some analytic understanding of
the effect of non-Gaussianities on the halo mass function, and
for this purpose we need a good analytic control of the effect of
the filter, first of all in the Gaussian case.

3. PATH INTEGRAL APPROACH TO STOCHASTIC
PROBLEMS

3.1. General Formalism

We have seen that the computation of the halo mass function
can be reformulated in terms of a stochastic process. We now
show how to compute the probability distribution of a variable
evolving stochastically, in terms of its correlators. In this paper
we limit ourselves to Gaussian variables, while in Paper III
of this series we perform the generalization to arbitrary non-
Gaussian theories.

Let us consider a variable δ(S) that evolves stochastically with
“time” S, with zero mean 〈δ(S)〉 = 0. For a Gaussian theory,
the only non-vanishing connected correlator is then the two-
point correlator 〈δ(S1)δ(S2)〉c, where the subscript c stands for
connected.

We consider an ensemble of trajectories all starting at S0 = 0
from an initial position δ(0) = δ0, and we follow them for a
time S. We discretize the interval [0, S] in steps ∆S = ǫ, so
Sk = kǫ with k = 1, . . . , n, and Sn ≡ S. A trajectory is defined
by the collection of values {δ1, . . . , δn}, such that δ(Sk) = δk .
There is no absorbing barrier, i.e., δ(S) is allowed to range
freely from −∞ to +∞. The probability density in the space of
trajectories is

W (δ0; δ1, . . . , δn; Sn) ≡ 〈δD(δ(S1) − δ1) . . . δD(δ(Sn) − δn)〉,
(39)

where, to avoid confusion with the density contrast δ, we denote
the Dirac delta by δD . In terms of W we define

Πǫ(δ0; δn; Sn) ≡
∫ δc

−∞
dδ1 . . .

∫ δc

−∞
dδn−1

× W (δ0; δ1, . . . , δn−1, δn; Sn), (40)

where Sn = nǫ. So, Πǫ(δ0; δ; S) is the probability density of
arriving at the “position” δ in a “time” S, starting from δ0 at time
S0 = 0, through trajectories that never exceeded δc. Observe
that the final point δ ranges over −∞ < δ < ∞. For later use,
we find useful to write explicitly that Π depends also on the
temporal discretization step ǫ. We are finally interested in its
continuum limit, Πǫ=0, and we will see in due course that taking
the limit ǫ → 0 of Πǫ is non-trivial.
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The usefulness of Πǫ is that it allows us to compute the
first-crossing rate from first principles, without the need of
postulating the existence of an absorbing barrier. Simply, the
quantity

∫ δc

−∞
dδ Πǫ(δ0; δ; S) (41)

gives the probability that at time S a trajectory always stayed
in the region δ < δc, for all times smaller than S. The rate
of change of this quantity is therefore equal to minus the rate
at which trajectories cross for the first time the barrier, so the
first-crossing rate is

F(S) = −
∫ δc

−∞
dδ ∂SΠǫ(δ0; δ; S) (42)

(where ∂S = ∂/∂S), just as in Equation (30). The halo
mass function is then obtained from this first-crossing rate
using Equations (1) and (34). Observe that no reference to a
hypothetical “absorbing barrier” is made in this formalism. We
will discuss below how, and under what conditions, an effective
absorbing barrier emerges from this microscopic approach.

To express Πǫ(δ0; δ; S), in terms of the two-point correlator
of the theory, we use the integral representation of the Dirac
delta

δD(x) =
∫ ∞

−∞

dλ

2π
e−iλx, (43)

and write Equation (39) as

W (δ0; δ1, . . . , δn; Sn) =
∫ ∞

−∞

dλ1

2π
· · ·

dλn

2π
ei
∑n

i=1 λiδi

× 〈e−i
∑n

i=1 λiδ(Si )〉. (44)

Observe that the dependence on δ0 here is hidden in the
correlators of δ, e.g., 〈δ2(S = 0)〉 = δ2

0 . It is convenient to
set, for simplicity, δ0 = 0 in the intermediate computations, and
it will be easy to restore it in the final results. For Gaussian
fluctuations,

〈e−i
∑n

i=1 λiδ(Si )〉 = e− 1
2

∑n
i,j=1 λiλj 〈δ(Si )δ(Sj )〉c , (45)

as can be checked immediately by performing the Taylor
expansion of the exponential on the left-hand side, and using
the fact that, for Gaussian fluctuations, the generic correlator
factorizes into the sum of products of two-point correlators.
This gives

W (δ0; δ1, . . . , δn; Sn)

=
∫

Dλ ei
∑n

i=1 λiδi− 1
2

∑n
i,j=1 λiλj 〈δiδj 〉c , (46)

where
∫

Dλ ≡
∫ ∞

−∞

dλ1

2π
· · ·

dλn

2π
(47)

and δi ≡ δ(Si). Then

Πǫ(δ0; δn; Sn) =
∫ δc

−∞
dδ1 · · · dδn−1

∫
Dλ

× exp

⎧
⎨
⎩i

n∑

i=1

λiδi −
1

2

n∑

i,j=1

λiλj 〈δiδj 〉c

⎫
⎬
⎭ .

(48)

3.2. Gaussian Fluctuations with Sharp k-space Filter

As we have seen in Section 2, the computation of the halo
mass function in the excursion set formalism with sharp k-space
filter can be reduced to a Langevin equation with a Dirac-
delta noise. Therefore, we now study the case in which δ has
Gaussian statistics (so only the two-point connected function
is non-vanishing) and obeys the Langevin Equation (18) with
a noise η(S) whose correlator is a Dirac delta (Equation (19)).
Using as initial condition δ0 = 0, Equation (18) integrates to

δ(S) =
∫ S

0

dS ′ η(S ′), (49)

so the two-point correlator is given by

〈δ(Si)δ(Sj )〉c =
∫ Si

0

dS

∫ Sj

0

dS ′〈η(S)η(S ′)〉 (50)

= min(Si, Sj ) = ǫ min(i, j ) ≡ ǫAij .

Denoting by Wgm the value of W when δ is a Gaussian variable
and performs a Markovian random walk with respect to the
smoothing scale, i.e., satisfies Equations (18) and (19), we get

W gm(δ0; δ1, . . . , δn; Sn)

=
∫ ∞

−∞

dλ1

2π
· · ·

dλn

2π
exp

{
i

n∑

i=1

λiδi −
ǫ

2

n∑

i,j=1

Aijλiλj

}

=
1

(2πǫ)n/2

1

(det A)1/2
exp

⎧
⎨
⎩−

1

2ǫ

n∑

i,j=1

δi(A
−1)ijδj

⎫
⎬
⎭ . (51)

Given that Aij = min(i, j ), we can verify that A−1 is as

follows: (A−1)ii = 2 for i = 1, . . . , n − 1, (A−1)nn = 1, and
(A−1)i,i+1 = (A−1)i+1,i = −1, for i = 1, . . . , n − 1, while all
other matrix elements are zero. Furthermore, det A = 1. As a
result, we get

W gm(δ0 = 0; δ1, . . . , δn; Sn)

=
1

(2πǫ)n/2
exp

{
−

1

2ǫ

[
δ2
n + 2

n−1∑

i=1

δi(δi − δi+1)

]}
. (52)

This expression takes a more familiar form using the identity
2δi(δi − δi+1) = (δi+1 − δi)

2 − (δ2
i+1 − δ2

i ), together with∑n−1
i=1 (δ2

i+1 − δ2
i ) = δ2

n − δ2
1 . Recall also that Equation (51)

assumed as initial condition δ0 = 0. The result for δ0 generic is
simply obtained by replacing δi → δi − δ0 for all i > 0. Then,
for i > 0 the terms (δi+1 − δi)

2 are unaffected, while in the last
term of the sum δ2

1 → δ2
1 − δ2

0 . Thus, for δ0 arbitrary, we get

W gm(δ0; δ1, . . . , δn; Sn)

=
1

(2πǫ)n/2
exp

{
−

1

2ǫ

n−1∑

i=0

(δi+1 − δi)
2

}
. (53)

Observe that W gm(δ0; δ1, . . . , δn; Sn)dδ1 . . . dδn−1 is just the
Wiener measure (see, e.g., chapter 1 of Chaichian & Demichev
2001). From Equation (53) we see that

W gm(δ0; δ1, . . . , δn; Sn) = Ψǫ(δn − δn−1)

× W gm(δ0; δ1, . . . , δn−1; Sn−1), (54)
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where

Ψǫ(∆δ) =
1

(2πǫ)1/2
exp

{
−

(∆δ)2

2ǫ

}
. (55)

Equation (54) expresses the fact that the evolution determined
by Equations (18) and (19) is a Markovian process, i.e., the
probability of jumping from the position δn−1 at time Sn−1

to the position δn at time Sn depends only on the values of
δn−δn−1 ≡ ∆δ and on Sn−Sn−1 ≡ ǫ, and not on the past history
of the trajectory. Integrating Equation (54) over δ1, . . . , δn−1

from −∞ to δc we get the important relation

Π
gm
ǫ (δ0; δn; Sn) =

∫ δc

−∞
dδn−1Ψǫ(δn − δn−1)

× Π
gm
ǫ (δ0; δn−1; Sn−1), (56)

which generalizes the well-known Chapman–Kolmogorov
equation to the case of finite δc.

4. DERIVATION OF EXCURSION SET FORMALISM FOR
GAUSSIAN FLUCTUATIONS AND SHARP

K-SPACE FILTER

We now want to derive, from our “microscopic” approach,
the excursion set formalism of Bond et al. (1991). As we have
seen in Section 2, the result of Bond et al. holds for Gaussian
fluctuations and sharp k-space filter, working directly in the
continuum limit, and reads

Π
gm

ǫ=0(δ0; δ; S) =
1

√
2πS

[
e−(δ−δ0)2/(2S) − e−(2δc−δ0−δ)2/(2S)

]
.

(57)

We want to prove Equation (57) using our definition of Πǫ as
a path integral over all trajectories that never exceed δc. Beside
being a starting point for the generalization to arbitrary filter
functions and to non-Gaussian theories, the derivation of the
excursion set theory from first principles has an intrinsic interest.
In fact, in Bond et al. (1991) this result is obtained by postulating
that the distribution function obeys an FP equation with an
“absorbing barrier” boundary condition Π(δ0; δ; S)|δ=δc

= 0.
While the fact that Πǫ=0 obeys an FP equation follows from
Equation (18), the absorbing barrier boundary condition is rather
imposed by hand. As we already mentioned, in the literature on
stochastic processes it is known that, in the general case, the
distribution function Πǫ(δ0; δ; S) does not satisfy any simple
boundary condition (van Kampen & Oppenheim 1972; Knessl
et al. 1986). It is therefore interesting to see how, in the Gaussian
case with sharp k filter, an absorbing barrier boundary condition
effectively emerges from our microscopic approach.

We first show that in the continuum limit we recover
Equation (57). Then, we examine the finite-ǫ corrections. As
it turns out, these corrections have a non-trivial structure which
is quite interesting in itself. Our main reason for discussing them
in detail, however, is that they play a crucial role in the extension
of our formalism to a generic filter function and to non-Gaussian
fluctuations.

4.1. The Continuum Limit

To compute Π
gm
ǫ by performing directly the integrals over

δ1, . . . , δn−1 in Equation (40), and then taking the limit ǫ → 0
is very difficult, since the integrals in Equation (40) run only

up to δc, and already the inner integral gives an error function
whose argument involves the next integration variable.

A better strategy is to make use of Equation (56). This relation
expresses the fact that, for Gaussian fluctuations and sharp
k-space filter, the underlying stochastic process is Markovian.
We change notation, denoting δn = δ, δn − δn−1 = ∆δ, and
Sn−1 = S, so Sn = S + ǫ. For fixed δ, we have dδn−1 = −d(∆δ),
and Equation (56) becomes7

Π
gm
ǫ (δ0; δ; S + ǫ) =

∫ ∞

δ−δc

d(∆δ) Ψǫ(∆δ)Πgm
ǫ (δ0; δ − ∆δ; S).

(58)

In the limit ǫ → 0 we have Ψǫ(∆δ) → δD(∆δ), so to zeroth
order in ǫ Equation (58) gives

Π
gm

ǫ=0(δ0; δ; S) =
∫ ∞

δ−δc

d(∆δ) δD(∆δ)Π
gm

ǫ=0(δ0; δ − ∆δ; S).

(59)

If δ−δc < 0, the integral includes the support of the Dirac delta,
and we just get the trivial identity that Π

gm

ǫ=0(δ0; δ; S) is equal to
itself. However, if δ − δc > 0, the right-hand side vanishes and
we get Π

gm

ǫ=0(δ0; δ; S) = 0. The same holds if δ = δc. In this
case only one half of the support of Ψǫ is inside the integration
region, so we get Π

gm

ǫ=0(δ0; δ; S) = (1/2)Π
gm

ǫ=0(δ0; δ; S), which

again implies Π
gm

ǫ=0(δ0; δ; S) = 0. Therefore, we find that

Π
gm

ǫ=0(δ0; δ; S) = 0 if δ � δc. (60)

This is not in contrast with the fact that Π
gm
ǫ (δ0; δ; S) is the

integral of the positive definite quantity Wgm. For finite ǫ,
Π

gm
ǫ (δ0; δ; S) is indeed strictly positive but, when δ � δc, it

vanishes in the limit ǫ → 0+.
Consider now Equation (58) when δ < δc. In this case, the

zeroth-order term gives a trivial identity. Pursuing the expansion
to higher orders in ǫ, we have to take into account that in
Π

gm
ǫ (δ0; δ; S + ǫ) there is both an explicit dependence on ǫ

through the argument S + ǫ, and a dependence implicit in the
subscript ǫ. We begin by expanding the left-hand side as

Π
gm
ǫ (δ0; δ; S + ǫ) = Π

gm
ǫ (δ0; δ; S) + ǫ

∂Π
gm
ǫ (δ0; δ; S)

∂S

+
ǫ2

2

∂2Π
gm
ǫ (δ0; δ; S)

∂S2
+ · · · , (61)

without expanding for the moment the dependence on the
index ǫ. On the right-hand side of Equation (58), we expand
Π

gm
ǫ (δ0; δ − ∆δ; S) in powers of ∆δ,

∫ ∞

δ−δc

d(∆δ) Ψǫ(∆δ)Πgm
ǫ (δ0; δ − ∆δ; t)

=
∞∑

n=0

(−1)n

n!

∂nΠ
gm
ǫ (δ0; δ; S)

∂δn

∫ ∞

δ−δc

d(∆δ) (∆δ)nΨǫ(∆δ). (62)

Using Equation (55) we see that
∫ ∞

δ−δc

d(∆δ) (∆δ)nΨǫ(∆δ) =
(2ǫ)n/2

√
π

∫ ∞

−(δc−δ)/
√

2ǫ

dy yne−y2

.

(63)

7 In this section, we always assume that δ0 is strictly smaller than δc . The
case δ0 = δc is important when we study the non-Markovian corrections, and
will be examined in due course.
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If δ is strictly smaller than δc and δc −δ is finite (more precisely,
if it does not scale with

√
ǫ), the lower limit in the integration

goes to −∞ as ǫ → 0+, and
∫ ∞

−(δc−δ)/
√

2ǫ

dy yne−y2 =
∫ ∞

−∞
dy yne−y2

+ O(e−(δc−δ)2/(2ǫ))

=
1 + (−1)n

2

√
π

2n/2
(n − 1)!! + O(e−(δc−δ)2/(2ǫ)). (64)

The residue, being exponentially small in ǫ, is beyond any order
in the expansion in powers of ǫ, and we can neglect it, so

∫ ∞

δ−δc

d(∆δ) (∆δ)nΨǫ(∆δ) → ǫn/2 (n − 1)!!, (65)

if n is even, and vanishes if n is odd. Thus, Equation (58) gives

Π
gm
ǫ (δ0; δ; S) + ǫ

∂Π
gm
ǫ (δ0; δ; S)

∂S
+

ǫ2

2

∂2Π
gm
ǫ (δ0; δ; S)

∂S2
+ · · ·

= Π
gm
ǫ (δ0; δ; S) +

ǫ

2

∂2Π
gm
ǫ (δ0; δ; S)

∂δ2

+
ǫ2

8

∂4Π
gm
ǫ (δ0; δ; S)

∂δ4
+ · · · . (66)

From this structure it is clear that, when δc − δ is finite, the
dependence on the index ǫ in Π

gm
ǫ can be expanded in integer

powers of ǫ,

Π
gm
ǫ (δ0; δ; S) = Π

gm

ǫ=0(δ0; δ; S) + ǫΠ
gm

(1) (δ0; δ; S)

+ ǫ2
Π

gm

(2) (δ0; δ; S) + · · · , (67)

where Π
gm

(1) , Π
gm

(2) , etc., are functions independent of ǫ. We can
now collect the terms with the same power of ǫ in the expansion
of Equation (66). To order ǫ we find

∂Π
gm

ǫ=0(δ0; δ; S)

∂S
−

1

2

∂2Π
gm

ǫ=0(δ0; δ; S)

∂δ2
= 0. (68)

Putting together this result with Equation (60), we therefore
end up with an FP equation with the boundary condition
Π

gm

ǫ=0(δ0; δ = δc; S) = 0, and therefore recover Equation (57).
We have therefore succeeded in deriving the excursion set
formalism from our microscopic approach. Observe that the
boundary condition Π

gm

ǫ=0(δ0; δ = δc; S) = 0 emerges only
when we take the continuum limit, and does not hold for
finite ǫ.

4.2. Finite-ǫ Corrections

In Section 5.3 we will find that the halo mass function gets
contributions, that we will call “non-Markovian,” that depend on
how Π

gm
ǫ (δ0; δc; S) approaches zero when ǫ → 0. It is therefore

of great importance for us to understand the finite-ǫ corrections
to the result obtained in the continuum limit. The issue is quite
technical and we summarize here the main results. Details are
given in Appendix A.

As long as δc − δ is finite and strictly positive, we have seen
that the expansion (Equation (67)) applies, so the first correction
to the continuum result is O(ǫ) and is given by ǫΠ

gm

(1) . Collecting

the next-to-leading terms in Equation (66), we find that Π
gm

(1)

satisfies an FP equation with the second time derivative of Π
gm

ǫ=0

as a source term,

∂Π
gm

(1) (δ0; δ; S)

∂S
−

1

2

∂2Π
gm

(1) (δ0; δ; S)

∂δ2
=

1

4

∂2Π
gm

ǫ=0(δ0; δ; S)

∂S2
.

(69)

In the above derivation, a crucial point was that we could extend
to −∞ the lower integration limit in Equation (63). This is
correct if we take the limit ǫ → 0+ with δc − δ fixed and
positive. The situation changes at δ = δc, since in this case the
lower limit of the integral is zero, rather than −∞. In this case

∫ ∞

0

d(∆δ) (∆δ)Ψǫ(∆δ) =
( ǫ

2π

)1/2

(70)

(while the same integral computed from −∞ to +∞ obviously
vanished), so we now have a term O

√
ǫ on the right-hand side

of Equation (62). Furthermore,

∫ ∞

0

d(∆δ) Ψǫ(∆δ) =
1

2
, (71)

so the expansion of Equation (58) now gives

Π
gm
ǫ (δ0; δc; S) =

1

2
Π

gm
ǫ (δ0; δc; S) (72)

−
( ǫ

2π

)1/2 ∂Π
gm
ǫ (δ0; δ; S)

∂δ

∣∣∣∣
x=δc

+ · · · .

This indicates that Π
gm
ǫ (δ0; δc; S) is O(ǫ1/2), rather than O(ǫ).

However, Equation (72) is not a good starting point for a
quantitative evaluation of Π

gm
ǫ (δ0; δc; S) since, as we show in

Appendix A, the expansion in derivatives becomes singular in
δ = δc, and all terms denoted by the dots in Equation (72) finally
give contributions of the same order in ǫ. A better procedure is
the following. First, observe that the correction is determined

by the lower limit of the integral, (δc − δ)/
√

2ǫ. The transition
from the behavior O(ǫ) valid for δc − δ fixed and positive, to
the behavior O(ǫ1/2) valid at δ = δc takes place in a “boundary
layer,” consisting of the region where δc − δ is positive and
O(ǫ1/2), and the lower limit of the integral is O(1). This is
a situation that often appears in stochastic processes near a
boundary, or in fluid dynamics, and can be treated by a standard
technique (see, e.g., Knessl et al. 1986, where a very similar
situation is discussed in terms of the means first-passage time,
rather than in terms of the distribution function Π

gm
ǫ ). Namely,

we introduce a “stretched variable” η (not to be confused, of
course, with the noise η(t) of Equation (18))

η =
δc − δ
√

2ǫ
, (73)

which even as ǫ → 0+ is at most of order one inside the boundary
layer, and we write Π

gm
ǫ (δ0; δ; S) in the form

Π
gm
ǫ (δ0; δ; S) = Cǫ(δ0; δ; S) u(η), (74)

where Cǫ(δ0; δ; S) is a smooth function, while the fast variation
inside the boundary layer is contained in u(η). By definition,
we choose u(η) such that limη→∞ u(η) = 1, so Cǫ is just the

solution for Π
gm
ǫ valid when δc − δ is finite and positive, i.e., Cǫ

is given by Equation (67). Writing δ = δc − η
√

2ǫ (and setting
for notational simplicity δ0 = 0) we have

Cǫ(δ0 = 0; δ; S) =
1

√
2πS

(75)

×
[

exp
{
−

1

2S
(δc − η

√
2ǫ)2

}
− exp

{
−

1

2S
(δc + η

√
2ǫ)2

}]
,
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plus corrections O(ǫ). Since Cǫ by definition is smooth every-
where, we can use Equation (75) also inside the boundary layer.
In this case η is at most O(1), and we can expand the expo-
nentials in Equation (75) in powers of

√
ǫ. In the limit ǫ → 0,

Cǫ(δ0 = 0; δ; S) =
√

ǫ
2 η
√

π

δc

S3/2
e−δ2

c /(2S) + O(ǫ). (76)

Plugging this result in Equation (74) and sending δ → δ−
c we

find

Π
gm
ǫ (δ0; δc; S) =

√
ǫ γ

δc

S3/2
e−δ2

c /(2S) + O(ǫ), (77)

where

γ =
2

√
π

lim
η→0

η u(η). (78)

In Appendix A we show that γ = 1/
√

π , so

Π
gm
ǫ (δ0; δc; S) =

√
ǫ

1
√

π

δc − δ0

S3/2
e−(δc−δ0)2/(2S) + O(ǫ). (79)

Similarly, for δn < δc,

Π
gm
ǫ (δc; δn; S) =

√
ǫ

1
√

π

δc − δn

S3/2
e−(δc−δn)2/(2S) + O(ǫ). (80)

Observe that at the numerator of Equations (79) and (80) always
enters the absolute value of the difference of the first two
arguments of Π

gm
ǫ , i.e., δc − δ0 in Equation (79) and δc − δn

in Equation (80), as it is also obvious from the fact that Π
gm
ǫ is

definite positive. Equations (79) and (80) will be important when
we compute the non-Markovian corrections, in Section 5.3. To
conclude this section, it is interesting to discuss the behavior
of Π

gm
ǫ (δ0; δ; S) for δ larger than δc, with δ − δc finite (and, as

always in this section, δ0 < δc). In this case the lower integration
limit in Equation (63) goes to +∞ as ǫ → 0+ and

Π
gm
ǫ (δ0; δ; S) ∼

1
√

2πǫ
exp{−(δc − δ)2/(2ǫ)}. (81)

This function is zero to all orders in a Taylor expansion around
ǫ = 0+.

5. EXTENSION OF EXCURSION SET THEORY TO
GENERIC FILTER

We next consider the computation of the distribution function
Πǫ , still restricting for the moment to Gaussian fluctuations,
but using a generic filter function. In this case the natural
time variable is the variance S computed with the chosen
filter function, so in the following S denotes the variance
computed with the filter function that one is considering.
Again we discretize it in equally spaced steps, Sk = kǫ, with
Sn = nǫ ≡ S, and a trajectory is defined by the collection of
values {δ1, . . . , δn}, such that δ(Sk) = δk .

The distribution function for Gaussian fluctuations and arbi-
trary filter function is given by Equation (48). As we saw in
the previous section, in the Markovian case Πǫ satisfies a local
differential equation, namely the FP equation. It is instructive
to understand that, for a generic filter, it is no longer possible
to write a local diffusion equation for Πǫ(δ0; δn; Sn). This will
immediately make it clear that the problem is now significantly

more complex. Indeed, by taking the derivative with respect to
Sn of both sides of Equation (48), we get

∂

∂Sn

Πǫ(δ0; δn; Sn) =
1

2

n∑

k,l=1

∂〈δkδl〉c
∂Sn

×
∫ δc

−∞
dδ1 . . . dδn−1 ∂k∂lW (δ0; δ1, . . . , δn; Sn), (82)

where ∂k ≡ ∂/∂δk , and we used the fact that, acting on
exp{i

∑n
i=1 λiδi}, ∂k gives iλk . Therefore, separating the term

with k = l = n from the rest, and observing that 〈δ(Sk)δ(Sl)〉c
depends on Sn only if at least one of the two indices k or l is
equal to n, we get

∂

∂Sn

Πǫ(δ0; δn; Sn) =
1

2

∂2

∂δ2
n

Πǫ(δ0; δn; Sn) (83)

+

n−1∑

k=1

∂〈δkδn〉c
∂Sn

∂n

∫ δc

−∞
dδ1 · · · dδn−1 ∂kW (δ0; δ1, . . . , δn; Sn).

If the upper limit of the integrals were +∞, rather than δc, the
term proportional to ∂kW with k < n would give zero, since it is
a total derivative with respect to one of the integration variables
dδ1, . . . , dδn−1, and W vanishes exponentially when any of its
arguments δk goes to ±∞. Thus, one would remain with the FP
equation. However, when the upper limit δc is finite, the terms
proportional to ∂kW with k < n give in general non-vanishing
boundary term. Actually, for a sharp k-space filter, we found
that 〈δkδn〉c = min(Sk, Sn) = Sk , which is independent of Sn

for k < n. Therefore, ∂〈δkδn〉c/∂Sn = 0, and the term in the
second line of Equation (83) vanishes. This is another way of
showing that, in the continuum limit, for sharp k-space filter the
probability distribution satisfies an FP equation, as we already
found in Section 4.1.8

For a generic form of the two-point correlator, the term in the
second line of Equation (83) is non-vanishing, and in general it is
very complicated. Furthermore, in the continuum limit the sum
over k in Equation (83) becomes an integral over an intermediate
time variable Sk, so this term is non-local with respect to “time”
S. Thus, we can no longer determine Πǫ(δ0; δn; Sn) by solving
a local differential equation, as we did in the Markovian case.
Once again, this shows that the common procedure of using
the distribution function computed with the k-space filter, and
substituting in it the relation between mass and smoothing radius
of the top-hat filter in coordinate space, is not justified. What we
need is to formulate the problem in such a way that it becomes
possible to treat the non-Markovian terms as perturbations,
which is not at all evident from Equation (83).

In this section, we develop such a perturbative scheme. We
illustrate the computation of Πǫ(δ0; δn; Sn) using a top-hat
filter in coordinate space, which is finally the most interesting
case since we can associate to it a well-defined mass, but the
technique that we develop can be used more generally.

In Section 5.1, we study the two-point correlator with a top-
hat filter in coordinate space and we show that it can be split
into two parts, which we call Markovian and non-Markovian,
respectively. In Section 5.2 we compute the contribution of the
Markovian term to the halo mass function, while in Section
5.3 we develop the formalism for computing perturbatively the
contribution of the non-Markovian term.

8 Note however that this only holds in the continuum limit, as is implicit in
the fact that we are taking the derivative with respect to Sn, which means that
we are considering Sn has a continuous variable.
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Figure 3. Functions S(R) computed for a top-hat filter in coordinate space (blue
solid curve) and S(R) computed for sharp k-space filter (violet, dashed), against
R, on a log–log scale.

(A color version of this figure is available in the online journal.)

5.1. The Two-point Correlator with Top-hat Filter in
Coordinate Space

We first study the correlator 〈δ(R1)δ(R2)〉 with a top-hat filter
in coordinate space. We use Equation (8) with x = 0. The two-
point correlator of the non-smoothed density contrast is given in
Equation (11). We write the power spectrum after recombination
as P (k)T 2(k), where P (k) is the primordial power spectrum and
T (k) is the transfer function, so for the smoothed density contrast
we get

〈δ(R1)δ(R2)〉 =
1

2π2

∫ ∞

0

dk k2P (k)T 2(k)W̃ (k, R1)W̃ ∗(k, R2).

(84)

When R1 = R2 = R, this reduces to S(R). We consider a
primordial spectrum P (k) = Akns , processed into the post-
recombination spectrum by the transfer function T (k) as in
Sugiyama (1995), in a concordance ΛCDM model with a power
spectrum normalization σ8 = 0.8 and h = 0.7, ΩM = 1−ΩΛ =
0.28, ΩB = 0.046, and ns = 0.96, consistent with the WMAP 5
years data release.

We first study S(R). We compute the integral in
Equation (15) numerically, for different values of R, both with
the sharp k-space filter (Equation (7)) with kf = 1/R, and with
the top-hat filter in coordinate x space, whose Fourier transform
is

W̃sharp-x(k, R) = 3
sin(kR) − kR cos(kR)

(kR)3
. (85)

For both filters, the constant A in P (k) is fixed so that S = σ8

when R = (8/h) Mpc. The result is shown in Figure 3.
We consider next the correlator (Equation (84)) with the

top-hat filter in coordinate space. We compute the integral in
Equation (84) numerically, holding R2 fixed and varying R1. The
result is shown in Figure 4. The solid line is the function S(R1),
already shown in Figure 3. The dashed line is 〈δ(R1)δ(R2)〉 with
R2 = 1 Mpc h−1, as a function of R1, while the dotted line is
〈δ(R1)δ(R2)〉 with R2 = 5 Mpc h−1, again as a function of R1.
We see that, as long as R1 < R2, the two-point correlator is
approximately constant and equal to S(R2), while for R1 > R2

the correlator is approximately equal to S(R1). In other words,

〈δ(R1)δ(R2)〉 ≃ min(S(R1), S(R2)). (86)

1.00.5 2.00.2 5.00.1 10.0
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Figure 4. Quantity S(R1) for a top-hat filter in coordinate space (blue solid
curve), the correlator 〈δ(R1)δ(R2)〉 with R2 = 1 Mpc h−1 (violet dashed line)
and 〈δ(R1)δ(R2)〉 with R2 = 5 Mpc h−1 (brown dotted line), as functions
of R1.

(A color version of this figure is available in the online journal.)
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Figure 5. Correlator 〈δ(R1)δ(R2)〉 (blue solid line), compared to
min(S(R1), S(R2)) (violet, dashed). In both cases R2 = 1 Mpc h−1, and we
plot the functions against R1, measured in Mpc h−1.

(A color version of this figure is available in the online journal.)

In Figure 5 we compare 〈δ(R1)δ(R2)〉 (blue solid line) and
min(S(R1), S(R2)) (violet dashed line). This result suggests that
a function C(R1, R2) be defined from

〈δ(R1)δ(R2)〉 = min(S(R1), S(R2)) + C(R1, R2). (87)

As we see from Figure 3, the function S(R) can be inverted to
give R = R(S), so R1 = R(S1) and R2 = R(S2). We define

∆(S1, S2) = C(R(S1), R(S2)), (88)

and we can write

〈δiδj 〉 = min(Si, Sj ) + ∆(Si, Sj ). (89)

If one simply neglects ∆(Si, Sj ), i.e., one makes the approxi-
mation (86), the problems become formally identical to the one
that we have solved in Section 4. Therefore, we end up with the
standard excursion set theory result given in Equation (23), and
therefore with the PS mass function, in which S is simply the
variance computed with the filter of our choice, in this case the
top-hat filter in coordinate space. The corrections to this result
are due to ∆(Si, Sj ), so it is useful first of all to better understand
the form of this function.

By definition ∆(Si, Sj ) is symmetric, ∆(Si, Sj ) = ∆(Sj , Si),
so it is sufficient to study it for Si � Sj . We also use the

notation ∆ij = ∆(Si, Sj ). Since, by definition, 〈δ2
i 〉 = Si , we
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Figure 6. Function ∆(Si , Sj ) for the top-hat filter in coordinate space (solid

line), with Sj ≃ 1.42 (corresponding to R(Sj ) = 5 Mpc h−1), plotted against
Si, in the range 0 � Si � Sj , and the function κSi (Sj − Si )/Sj with κ ≃ 0.45
(dashed line).

(A color version of this figure is available in the online journal.)

see from Equation (89) that ∆(Si, Sj ) vanishes when Si = Sj .
Furthermore, at Si = 0, δi = δ0 is the same constant for all
trajectories, so 〈δiδj 〉c = δ0〈δj 〉c = 0, and therefore ∆(Si, Sj )
vanishes when Si = 0.

In Figure 6 we plot ∆(Si, Sj ) for Sj fixed, as a function of Si,
with 0 � Si � Sj , for our reference ΛCDM model (solid line).
The dashed line in Figure 6 is the approximation

∆(Si, Sj ) ≃ κ
Si(Sj − Si)

Sj

, (90)

with κ ≃ 0.45 (a more accurate value will be given below).
We see that Equation (90) provides an excellent analytical
approximation to ∆(Si, Sj ).9

For Sj fixed and Si → 0, the correction ∆(Si, Sj ) is linear
in Si, so more generally we can define κ(Sj ) from κ(Sj ) =
limSi→0 ∆(Si, Sj )/Si , or equivalently,

κ(R) = lim
R′→∞

〈δ(R′)δ(R)〉
〈δ2(R′)〉

− 1. (91)

In the ΛCDM model that we are using, our numerical results
display a very weak linear dependence of κ on R. Taking for
instance the data in the range R ∈ [1, 60] Mpc h−1, the result of
the numerical evaluation of Equation (91) is very well fitted by

κ(R) ≃ 0.4592 − 0.0031 R, (92)

where R is measured in Mpc h−1.10

9 Varying Sj we find that Equation (90) becomes exact (within our numerical
accuracy) for small Sj, while for large Sj the function Si (Sj − Si )/Sj must be
replaced by a less symmetric function, whose maximum is at a value of Si

slightly larger than Sj /2. The qualitative shape of the function remains
however the same. For completeness, we have also considered a Gaussian
filter. In this case we find that, in a first approximation, the function ∆ij is still
given by Equation (90) (although the actual form of ∆ij is slightly more
skewed compared to an inverse parabola), with a value of κ ≃ 0.35.
10 The value of κ depends in principle on the cosmological model used, but
this dependence is quite weak. For comparison, using a ΛCDM cosmological

model with h = 0.7, ΩM = 1 − ΩΛ = 0.3, σ8 = 0.93, ΩBh2 = 0.022, and
ns = 1, consistent with the WMAP first year data release, gives
κ(R) ≃ 0.4562 − 0.0040 R.

5.2. Markovian Term

Inserting Equation (89) into Equation (48) we get

Πǫ(δ0; δn; Sn) =
∫ δc

−∞
dδ1 · · · dδn−1

∫
Dλ

× exp

⎧
⎨
⎩i

n∑

i=1

λiδi −
1

2

n∑

i,j=1

[min(Si, Sj ) + ∆(Si, Sj )]λiλj

⎫
⎬
⎭ .

(93)

As we see from Figure 5, Equation (86) gives a reasonable
approximation to the exact correlator. This suggests that ∆ij be
treated as a perturbation, so we now expand in ∆ij . The zeroth-

order term is simply Π
gm
ǫ (δ0; δn; Sn), whose continuum limit is

given in Equation (57). The corresponding first-crossing rate is

F
gm = −

∫ δc

−∞
dδ

∂Π
gm

ǫ=0

∂S

=
1

√
2π

δc

S3/2
e−δ2

c /(2S), (94)

so the Markovian term can be obtained by taking the excursion
set result (Equation (57)), which was computed with the sharp
k-space filter, and replacing the variance computed with the
sharp k-space filter with the variance computed with the filter
of interest. This is the procedure that is normally used in
the literature. From our vantage point, we now see that the
corrections to this procedure are given by the non-Markovian
contributions, to which we now turn.

5.3. Non-Markovian Corrections

We now discuss the non-Markovian corrections, to first or-
der, using the analytical approximation (90) for ∆ij . From
Equation (93), expanding to first order in ∆ij and using

λie
i
∑

k λkδk = −i∂ie
i
∑

k λkδk , where ∂i = ∂/∂δi , the first-order
correction to Πǫ is

Π
∆1
ǫ (δ0; δn; Sn) ≡

∫ δc

−∞
dδ1 · · · dδn−1

1

2

n∑

i,j=1

∆ij∂i∂j

×
∫

Dλ exp

{
i

n∑

i=1

λiδi −
1

2

n∑

i,j=1

min(Si, Sj )λiλj

}
(95)

=
1

2

n∑

i,j=1

∆ij

∫ δc

−∞
dδ1 · · · dδn−1 ∂i∂jW

gm(δ0; δ1, . . . , δn; Sn).

We rewrite the term ∆ij∂i∂j separating explicitly the derivative
∂n ≡ ∂/∂δn from the derivatives ∂i with i < n, so (using
∆ij = ∆ji)

1

2

n∑

i,j=1

∆ij∂i∂j =
1

2
∆nn∂

2
n +

n−1∑

i=1

∆in∂i∂n +
1

2

n−1∑

i,j=1

∆ij∂i∂j .

(96)

Since ∆ij = 0 when i = j , the above equation simplifies to

1

2

n∑

i,j=1

∆ij∂i∂j =
n−1∑

i=1

∆in∂i∂n +
∑

i<j

∆ij∂i∂j , (97)
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where

∑

i<j

≡
n−2∑

i=1

n−1∑

j=i+1

. (98)

When inserted into Equation (95) the term
∑n−1

i=1 ∆in∂i∂n brings
a factor

∑
i that, in the continuum limit, produces an integral

over an intermediate time Si. Because of this dependence on the
past history, we call this the “memory term.” Similarly, the term∑

i<j ∆ij∂i∂j gives, in the continuum limit, a double integral
over intermediate times Si and Sj, and we call it the “memory-
of-memory” term. Thus,

Π
∆1
ǫ = Π

mem
ǫ + Π

mem-mem
ǫ , (99)

where

Π
mem
ǫ (δ0; δn; Sn)

=
n−1∑

i=1

∆in∂n

∫ δc

−∞
dδ1 · · · dδn−1 ∂iW

gm(δ0; δ1, . . . , δn; Sn),

(100)

and

Π
mem-mem
ǫ (δ0; δn; Sn)

=
∑

i<j

∆ij

∫ δc

−∞
dδ1 · · · dδn−1∂i∂j W gm(δ0; δ1, . . . , δn; Sn).

(101)

If we expand to quadratic and higher orders in ∆ij , we get
terms with a higher and higher number of summations (or,
in the continuum limit, of integrations) over intermediate time
variables.

To compute the memory term we integrate ∂i by parts,

∫ δc

−∞
dδ1 · · · dδn−1 ∂iW

gm(δ0; δ1, . . . , δn; Sn)

=
∫ δc

−∞
dδ1 · · · d̂δi · · · dδn−1

× W (δ0; δ1, . . . , δi = δc, . . . , δn−1, δn; Sn), (102)

where the notation d̂δi means that we must omit dδi from the
list of integration variables. We next observe that, because of
the property (54), Wgm satisfies

W gm(δ0; δ1, . . . , δi−1, δc, δi+1, . . . , δn; Sn)

= W gm(δ0; δ1, . . . , δi−1, δc; Si)W
gm(δc; δi+1, . . . , δn; Sn − Si),

(103)

so
∫ δc

−∞
dδ1 · · · dδi−1

∫ δc

−∞
dδi+1 · · · dδn−1

× W gm(δ0; δ1, . . . , δi−1, δc; Si)W
gm(δc; δi+1, . . . , δn; Sn − Si)

= Π
gm
ǫ (δ0; δc; Si)Π

gm
ǫ (δc; δn; Sn − Si), (104)

and we get

Π
mem
ǫ (δ0; δn; Sn) =

n−1∑

i=1

∆in∂n[Πgm
ǫ (δ0; δc; Si)

× Π
gm
ǫ (δc; δn; Sn − Si)]. (105)

In the continuum limit we write

n−1∑

i=1

→
1

ǫ

∫ Sn

0

dSi, (106)

and, using Equations (79) and (80), we find

Π
mem
ǫ=0 (δ0 = 0; δn; Sn) =

1

π
∂n

∫ Sn

0

dSi ∆(Si, Sn)
δc(δc − δn)

S
3/2

i (Sn − Si)3/2

× exp

{
−

δ2
c

2Si

−
(δc − δn)2

2(Sn − Si)

}
. (107)

We now insert the form (Equation (90)) for ∆ij . The integral can
be computed exactly using the identities

∫ Sn

0

dSi

Si

S
3/2

i (Sn − Si)3/2
exp

{
−

a2

2Si

−
b2

2(Sn − Si)

}

=
√

2π
1

b

1

S
1/2
n

exp

{
−

(a + b)2

2Sn

}
(108)

and

∫ Sn

0

dSi

S2
i

S
3/2

i (Sn − Si)3/2
exp

{
−

a2

2Si

−
b2

2(Sn − Si)

}

=
√

2π
S

1/2
n

b
exp

{
−

(a + b)2

2Sn

}
− π Erfc

(
a + b
√

2Sn

)
, (109)

where Erfc is the complementary error function.11 This gives

Π
mem
ǫ=0 (δ0 = 0; δn; Sn) = κ∂n

[
δc(δc − δn)

Sn

Erfc

(
2δc − δn√

2Sn

)]
.

(110)

For the memory-of-memory term, proceeding as for the memory
term, we get

Π
mem-mem
ǫ (δ0; δn; Sn) =

∑

i<j

∆ij Π
gm
ǫ (δ0; δc; Si)

× Π
gm
ǫ (δc; δc; Sj − Si)Π

gm
ǫ (δc; δn; Sn − Sj ). (111)

To compute this quantity we also need Π
gm
ǫ (δc; δc; S), with both

the first and the second arguments equal to δc. As we discuss in
Appendix A, the result is

Π
gm
ǫ (δc; δc; S) =

ǫ
√

2π S3/2
. (112)

Actually, Equation (112) is exact, and not just valid to O(ǫ).
Using Equations (79) and (112) we get

Π
mem-mem
ǫ=0 (δ0 = 0; δn; Sn) =

κ

π
√

2π
δc(δc − δn)

×
∫ Sn

0

dSi

1

S
1/2

i

e−δ2
c /(2Si ) (113)

×
∫ Sn

Si

dSj

1

Sj (Sj − Si)1/2(Sn − Sj )3/2
exp

{
−

(δc − δn)2

2(Sn − Sj )

}
.

11 To derive these results we take one derivative of the left-hand side of
Equation (107) with respect to a2. The resulting integral can be performed
using Equation (A5), and we then integrate back with respect to a2. Similarly,
Equation (108) is obtained taking twice the derivative with respect to a2.
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Figure 7. Functions Πmem
ǫ=0 (δ0 = 0; δ; S = 1) (blue dotted line), Πmem-mem

ǫ=0 (δ0 =
0; δ; S = 1) (violet, dashed), and their sum (brown solid line), as functions
of δ.

(A color version of this figure is available in the online journal.)

It is convenient to use the identity

(δc − δn)

(Sn − Sj )
exp

{
−

(δc − δn)2

2(Sn − Sj )

}
= ∂n exp

{
−

(δc − δn)2

2(Sn − Sj )

}

(114)

to write Πmem-mem
ǫ=0 as a total derivative with respect to δn. The

inner integral can now be computed rewriting it in terms of the
variable z = (δc − δn)2/[2(Sn − Sj )], and gives

Π
mem-mem
ǫ=0 (δ0 = 0; δn; Sn) =

κδc√
2πSn

∂n

[
e−(δc−δn)2/(2Sn)

×
∫ Sn

0

dSi

Si

e−δ2
c /(2Si ) Erfc

(
(δc − δn)

√
Si

2(Sn − Si)Sn

)]
.(115)

We have not been able to compute analytically this last integral,
but the fact that Πmem-mem

ǫ=0 is a total derivative with respect to
δn will allow us to compute analytically the first-crossing rate;
see below. First, it is interesting to plot the functions Πmem

ǫ=0 and
Πmem-mem

ǫ=0 . We show them in Figure 7, setting for definiteness
Sn = 1. Observe that these two functions are separately non-
zero in δ = δc. However,

Π
mem
ǫ=0 (δ0 = 0; δc, Sn) = −

κδc

Sn

Erfc

(
δc√
2Sn

)
, (116)

and Πmem-mem
ǫ=0 (δ0 = 0; δc, Sn) = −Πmem

ǫ=0 (δ0 = 0; δc, Sn), so we
find that the total distribution function Πǫ=0(δ0; S; Sn) still satis-
fies the absorbing barrier boundary condition Πǫ=0(δ0; δc; Sn) =
0, even when we include the Markovian corrections to first order.
In Figure 8, we compare Πmem

ǫ=0 + Πmem-mem
ǫ=0 to the zeroth-order

term (57).

5.4. The Halo Mass Function

We can now compute the first-crossing rate using
Equation (30). Since both Πmem

ǫ=0 and Πmem-mem
ǫ=0 have been ex-

pressed as a derivative with respect to δn in Equations (110) and
(115), the integral over dδn is performed trivially, and we get

F
mem(S) = −

∂

∂S

∫ δc

−∞
dδn Π

mem
ǫ=0 (δ0 = 0; δn; S) = 0, (117)
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Figure 8. Functions Πmem
ǫ=0 (δ0 = 0; δ; S = 1) + Πmem-mem

ǫ=0 (δ0 = 0; δ; S = 1)

(dashed), compared to Π
gm

ǫ=0(δ0 = 0; δ; S = 1) (solid line), as functions of δ.

(A color version of this figure is available in the online journal.)

F
mem-mem(S) = −

∂

∂S

∫ δc

−∞
dδn Π

mem-mem
ǫ=0 (δ0 = 0; δn; S)

= −
∂

∂S

[
κδc√
2πS

∫ S

0

dSi

1

Si

e−δ2
c /(2Si )

]

= −
κδc√

2π

∂

∂S

[
1

S1/2
Γ

(
0,

δ2
c

2S

)]
(118)

= −
κδc√

2π

[
1

S3/2
e−δ2

c /(2S) −
1

2S3/2
Γ

(
0,

δ2
c

2S

)]
,

where Γ(0, z) is the incomplete Gamma function. Putting
together Equations (94), (117), and (118) we find the first-
crossing rate to first order in the non-Markovian corrections,

F(S) =
1 − κ
√

2π

δc

S3/2
e−δ2

c /(2S) +
κ

2
√

2π

δc

S3/2
Γ

(
0,

δ2
c

2S

)
. (119)

The halo mass function in this approximation is therefore

f (σ ) = (1 − κ)

(
2

π

)1/2
δc

σ
e−δ2

c /(2σ 2) +
κ

√
2π

δc

σ
Γ

(
0,

δ2
c

2σ 2

)
,

(120)

where, in the relevant range of values of R, κ is given by
Equations (91) and (92), and is a slowly decreasing function
of R. For instance, at R = 5 Mpc, κ ≃ 0.45, at R = 10 Mpc,
κ ≃ 0.43, and at R = 20 Mpc, κ ≃ 0.40. For large values of
δ2
c/2σ 2,

Γ

(
0,

δ2
c

2σ 2

)
≃

2σ 2

δ2
c

e−δ2
c /(2σ 2). (121)

Thus, the incomplete Gamma function gives the same exponen-
tial factor as PS theory but with a smaller prefactor, so for large
halo masses it is subleading, and Equation (120) approaches
(1 − κ) times the PS prediction.

In Figure 9 we plot the function f (ν), where ν = δc/σ ,
comparing the prediction of PS theory given in Equation (2),
the fit to the N-body simulation of Warren et al. (2006), and our
result (Equation (120)). This figure can be compared to Figure 4
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Figure 9. Function f (ν) against ν. The gray dotted line is the value in PS theory.
The blue solid line is the fit to the numerical N-body simulation of Warren et al.
(2006). The thick black dashed line is our result (Equation (120)).

(A color version of this figure is available in the online journal.)

of Robertson et al. (2009); see in particular their bottom left
panel, where the authors show the prediction of PS theory, the
result of their N-body simulation, and the computation of f (ν)
with the top-hat filter in coordinate space, performed with an
MC realization of the trajectories obtained from a Langevin
equation with colored noise. We have used the same scale and
color code as their Figure 4, to make the comparison easier. One
sees that our analytical result for f (ν) agrees very well with their
MC result (the function that we call f (ν) is denoted as νf (ν) in
Robertson et al. 2009). From Equation (120), we see that in the
end our expansion parameter is just κ , so evaluating the non-
Markovian corrections to second order we will get corrections
of order κ2. For κ given by Equation (92) these are expected
to be of order 20%, which is the level of agreement between
our analytical result and the MC computation. This provides a
non-trivial check of the correctness of our formalism.

A second consistency check is obtained by recalling that the
fraction of volume occupied by virialized objects is given by
Equation (25). In hierarchical power spectra, all the mass of the
universe must finally end up in virialized objects, so we must
have F (S) = 1 when δc/σ → 0. Formally, the limit δc/σ → 0
can be obtained sending δc → 0 for fixed σ , so we require that

lim
δc→0

∫ δc

−∞
dδ Π(δ, S) = 0. (122)

As we recalled below Equation (5), the original PS theory fails
this test, giving that only one half of the total mass of the
universe collapses. In our case Π = Πgm + Πmem + Πmem-mem.
Since Πgm is the same as in the standard excursion set result,
it already satisfies Equation (122), so we must find that, in the
limit δc → 0, the integral of Πmem + Πmem-mem from −∞ to δc

vanishes. Using Equation (107) we see that

∫ δc

−∞
dδ Π

mem
ǫ=0 (δ, S) = κ

[
δc(δc − δ)

S
Erfc

(
2δc − δ
√

2S

)]

δ=δc

= 0,

(123)

for all values of δc. For the memory-of-memory term we find

∫ δc

−∞
dδ Π

mem-mem
ǫ=0 (δ, S) =

κ
√

2π

δc

S1/2
Γ

(
0,

δ2
c

2S

)
. (124)

Since, for z → 0, Γ(0, z) → − ln z, we have

lim
δc→0

δc Γ

(
0,

δ2
c

2S

)
= 0, (125)

so Equation (122) is indeed satisfied. An equivalent derivation
starts from the observation that, in terms of the function f (σ ),
the normalization condition reads

∫ ∞

0

dσ

σ
f (σ ) = 1. (126)

Substituting f (σ ) from Equation (120) into Equation (126) and
using

∫ ∞

0

dσ

(
2

π

)1/2
δc

σ 2
e−δ2

c /(2σ 2) = 1 (127)

and

∫ ∞

0

dσ
δc

σ 2
√

2π
Γ

(
0,

δ2
c

2σ 2

)
= 1, (128)

we see that the dependence on κ cancels and Equation (126)
is satisfied. The term proportional to the incomplete Gamma
function therefore ensure that the mass function is properly
normalized, when the amplitude of the term proportional to
exp{−δ2

c/(2σ 2)} is reduced by a factor 1 − κ .
A number of comments are now in order. First, our findings

confirms the known result (Bond et al. 1991; Robertson et al.
2009) that the corrections obtained by taking properly into
account the top-hat filter in coordinate space do not alleviate
the discrepancy of PS theory with the N-body simulations. We
see in fact from Figure 9 that the effect of the non-Markovian
corrections is to give a halo mass function that, in the relevant
mass range, is everywhere smaller than the PS mass function,
which results in an improvement in the low-mass range but
in a worse agreement in the high-mass range. This indicates
that some crucial physical ingredient is still missing in the
model. This is not surprising at all since, as we already stated,
the formation of dark matter halos is a complex phenomenon.
Incorporating some of the complexities within the excursion set
theory will be the subject of Paper II.

On the positive side, we conclude that we have developed a
powerful analytical formalism that allows us to compute consis-
tently the halo mass function when non-Markovian effects are
present. In this paper, we have applied it to the corrections gener-
ated by the top-hat filter function in coordinate space. However,
the same formalism allows us to compute perturbatively the ef-
fect of the non-Gaussianities on the halo mass function. This
direction will be developed in Paper III.

Before leaving this topic, we observe that, in the perturbative
computation performed in this section, all terms turned out to
be finite in the continuum limit. The fact that the total result
is finite is obvious for physical reasons. However, the fact
that all the terms that enters in the computation are separately
finite happens to be a happy accident, related to the form
(Equation (90)) of ∆(Si, Sj ), and in particular to the property
∆(Si, Si) = 0. However, not all perturbations that we will
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consider share this property, in particular when we consider the
non-Gaussianities. Furthermore, even with the above form of
∆(Si, Sj ), if we work to second order in perturbation theory
we find that divergences appear. It is therefore important
to understand in some detail how in the general case these
divergences cancel among different terms, giving a finite result.
This issue is quite technical, and is discussed in detail in
Appendix B.

We thank Sabino Matarrese for useful discussions and the
anonymous referees of the first two papers of this series for
providing extremely useful comments. The work of M.M. is
supported by the Fond National Suisse. The work of A.R. is
supported by the European Community’s Research Training
Networks under contract MRTN-CT-2006-035505.

APPENDIX A

FINITE-ǫ CORRECTIONS

In this Appendix, we derive the results for Πǫ(δ0; δc; S)
and Πǫ(δc; δc; S) mentioned in Section 4.2. These results are
needed in Section 5.3, when we compute perturbatively the non-
Markovian corrections. We will also show that, for ∂δΠ

gm
ǫ (δ0 =

0; δ; S), the limit ǫ → 0+ does not commute with the limit δ →
δ−
c . This result will be important in Appendix B, when we study

the cancellation of divergences that can appear in intermediate
steps of the computation. In Equations (77) and (78) we

found that Π
gm
ǫ (δ0; δc; S) =

√
ǫ γ (δc/S

3/2)e−δ2
c /(2S) + O(ǫ),

where γ = (2/
√

π ) limη→0 η u(η). One possible route to the
evaluation of γ could be to plug Equation (74) into Equation (58)
and evaluate both sides at δ = δc. To lowest order in ǫ one
can replace S + ǫ on the left-hand side simply by S, and one
obtains an integral equation for the unknown function u(η). This
integral equation has the form of a Wiener–Hopf equation, for
which various techniques have been developed (Noble 1958).
However, we have found a simpler way to directly get γ , as
follows. We consider the derivative of Π

gm
ǫ with respect to δc

(which, when we use the notation Π
gm
ǫ (δ0; δ; S), does not appear

explicitly in the list of variable on which Π
gm
ǫ depends, but of

course enters as upper integration limit in Equation (40)). This
gives

∂

∂δc

Πǫ(δ0; δn; Sn) =
n−1∑

i=1

∫ δc

−∞
dδ1 · · · d̂δi · · · dδn−1

× W (δ0; δ1, . . . , δi = δc, . . . , δn; Sn),

(A1)

where the notation d̂δi means that we must omit dδi from the
list of integration variables. We next use Equations (103) and
(104) and, in the continuum limit, we obtain the identity

∂

∂δc

Πǫ=0(δ0; δn; Sn)

=
∫ Sn

0

dSi lim
ǫ→0

1

ǫ
Π

gm
ǫ (δ0; δc; Si)Π

gm
ǫ (δc; δn; Sn − Si).

(A2)

The left-hand side of this identity can be evaluated explicitly
using Equation (57) and, setting for simplicity δ0 = 0, is

∂

∂δc

Πǫ=0(δ0 = 0; δn; Sn) =
(

2

π

)1/2
2δc − δn

S
3/2
n

e−(2δc−δn)2/(2Sn).

(A3)

The right-hand side of Equation (A2) can be evaluated using
Equation (77) together with

Πǫ(δc; δn; S) = Πǫ(δn; δc; S)

=
√

ǫ γ
δc − δn

S3/2
e−(δc−δn)2/(2S) + O(ǫ), (A4)

which can be checked from Equations (40) and (53) by per-
forming a reshuffling of the dummy integration variables. We
see that the limit ǫ → 0 in Equation (A2) is finite thanks to the
factors

√
ǫ in Π

gm
ǫ (δ0; δc; Si) and in Π

gm
ǫ (δc; δn; Sn − Si). The

integral over Si can be performed using the identity

∫ Sn

0

dSi

1

S
3/2

i (Sn − Si)3/2
exp

{
−

a2

2Si

−
b2

2(Sn − Si)

}

=
√

2π
a + b

ab

1

S
3/2
n

exp

{
−

(a + b)2

2Sn

}
, (A5)

where a > 0, b > 0.12 In this way we find that the dependence
on δc and S on the two sides of Equation (A2) is the same, as it
should, and we fix γ = 1/

√
π .

In Appendix B, when we study the cancellation of diver-
gences, we will also need ∂δΠ

gm
ǫ , evaluated in δ = δc. Of course,

if we first take the limit ǫ → 0+, and then we take δ → δ−
c , we

simply get the derivative of the function Πǫ=0(δ0; δ, S) given in
Equation (57), evaluated in δc,

lim
δ→δ−

c

lim
ǫ→0+

∂δΠ
gm
ǫ (δ0 = 0; δ, S) = ∂δΠ

gm

ǫ=0(δ0; δ, S)
∣∣
δ=δc

= −
(

2

π

)1/2
δc

S3/2
e−δ2

c /(2S). (A6)

However, we will actually need the result when the limits are
evaluated in the opposite order, i.e., limǫ→0+ limδ→δ−

c
∂δΠ

gm
ǫ

(δ0; δ, S). We will now show that these two limits do not
commute. From Equation (78), for small η, u(η) is proportional
to γ

√
π/(2η) = 1/(2η). More generally, for small η, we write

u(η) =
1

2η
+ u0 + u1η + O(η2). (A7)

Plugging this expansion, together with the expansion in powers
of η of Equation (75), into Equation (74) we find that, for η → 0
(i.e., for δ → δ−

c at fixed ǫ), retaining only the terms up toO(
√

ǫ)

Π
gm
ǫ (δ0 = 0; δ, S) = Π

gm
ǫ (δ0 = 0; δc, S)

+
√

ǫ
2

√
π

(u0η + u1η
2 + · · ·)

δc

S3/2
e−δ2

c /(2S). (A8)

Using ∂δ = (dη/dδ)∂/∂η and dη/dδ = −1/
√

2ǫ, this gives

lim
ǫ→0+

lim
δ→δ−

c

∂δΠ
gm
ǫ (δ0 = 0; δ, S) = −u0

(
2

π

)1/2
δc

S3/2
e−δ2

c /(2S),

(A9)

12 We have not been able to find this identity in standard tables of integrals,
but we have verified it numerically, with very high accuracy, in a wide range of
values of a and b. We can also turn the argument around and say that, since we

know that Π
gm
ǫ (δ0; δc; S) has the functional form (Equation (77)) and we know

that the identity (A2) holds, it follows that the integral on the left-hand side of
Equation (A5) must be given by the expression on the right-hand side, times an
unknown numerical constant. The latter can be computed evaluating the term
∼ 1/a of the integral in the limit a → 0+. This is easily done analytically, since
in this case the factors (Sn − Si ) inside the integrand can be simply replaced by

Sn, and fixes the factor
√

2π on the right-hand side of Equation (A5).
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which differs by a factor u0 from Equation (A6). It is also
interesting to observe, from Equation (A8), that ∂2Π

gm
ǫ /∂η2,

evaluated in η = 0, is also proportional to
√

ǫ. Since

∂2Π
gm
ǫ

∂δ2
=

1

2ǫ

∂2Π
gm
ǫ

∂η2
, (A10)

overall, ∂2Π
gm
ǫ /∂δ2, evaluated in δ = δc at finite ǫ, is propor-

tional to 1/
√

ǫ. Therefore, in Equation (72) the first correction
included in the dots, which is proportional to ǫ(∂2Π

gm
ǫ /∂δ2)δ=δc

,

is of the same order as the term
√

ǫ(∂Π
gm
ǫ /∂δ)δ=δc

, and similarly
for the higher order terms. This is the reason why we could not
use Equation (72) to fix the value of the coefficient γ .

Finally, in the perturbative computation we also need
Π

gm
ǫ (δc; δc; S), with both arguments equal to δc. The result is

given in Equation (112). To derive it, we first observe from
Equation (79) that, when δ0 = δc, the term O(

√
ǫ) vanishes,

so the first non-vanishing term will be O(ǫ). Invariance under
space translations requires that Π

gm
ǫ (δ0; δc; S) can depend on δ0

and δc only through the combination δc − δ0, so when δ0 = δc

it becomes a function of S only. We can perform dimensional
analysis assigning to δ some (unspecified) dimension ℓ and to
S dimensions ℓ2. In this case, from Equation (19) we see that η
has dimensions 1/ℓ, and ξ̇ ∼ ℓ/ℓ2 = 1/ℓ, so Equation (18) is
dimensionally correct. In these units λ ∼ 1/ℓ, since λδ is dimen-
sionless, and we see from Equation (48) that Πǫ has dimensions
1/ℓ. Using dimensional analysis in this form we conclude that
the term O(ǫ) in Π

gm
ǫ (δc; δc; S) is necessarily proportional to

ǫ/S3/2. Since this fixes completely the dependence on S, writ-
ing S = ǫn we have also fixed completely the dependence on n,
i.e., to O(ǫ) we must have

Π
gm
ǫ (δc; δc; S) = c

ǫ

S3/2
=

c
√

ǫ n3/2
, (A11)

with c independent of n. The coefficient c can then be fixed
computing explicitly the integral in Equation (40) when n = 2,
i.e., when there is just one integration variable. This can be

done analytically and shows that c = 1/
√

2π . The computation
for n = 2 actually shows that Equation (A11) is exact, i.e., it
receives no correction of higher order in ǫ. Even for n = 3 the
integral in Equation (A11) can be performed analytically when
δ0 = δc, and again we find that Equation (A11) is exact. We
have checked this result numerically for n up to 7 and we find
that the numerical result agrees with Equation (A11) within the
10 digit precision of the numerical integration, so it is clear that
Equation (A11) is actually exact, and not just the result at O(ǫ).
(In any case, to perform our perturbative computation, we only
need Π

gm
ǫ (δc; δc; S) to O(ǫ).)

APPENDIX B

DIVERGENCES AND THE FINITE PART PRESCRIPTION

In this Appendix, we first of all reconsider the perturbative
computation of Section 5.3 for a generic function ∆ij (still
symmetric in (i, j )). This will reveal some complexities that
were not apparent in the computation of Section 5.3, and that
will be very important when computing the non-Gaussianities.
If ∆ij does not vanish when i = j , we rewrite Equation (93) as

Πǫ(δ0; δn; Sn) =
∫ δc

−∞
dδ1 · · · dδn−1

×
∫

Dλ exp

{
1

2

n∑

i,j=1

∆ij∂i∂j

}

× exp

{
i

n∑

i=1

λiδi −
1

2

n∑

i,j=1

[min(Si, Sj )]λiλj

}
,

(B1)

where, as usual, we used the fact that, acting on exp{iλiδi}, ∂i

gives iλi . Since ∆nn is now in general non-vanishing, in the sum
(96) the term ∆nn∂

2
n contributes. Furthermore, now

1

2

n−1∑

i,j=1

∆ij∂i∂j =
∑

i<j

∆ij∂i∂j +
1

2

n−1∑

i

∆ii∂
2
i . (B2)

The operator exp{(1/2)∆nn∂
2
n} can be carried out of the integral

over dδ1, . . . , dδn−1, while the other terms ∆ij will be expanded
perturbatively. Thus, Equations (99)–(101) are replaced by

Π
∆1
ǫ = e(1/2)∆nn∂

2
n

[
Π

mem
ǫ + Π

mem-mem
ǫ

]
, (B3)

where

Π
mem
ǫ (δ0; δn; Sn) =

n−1∑

i=1

∆in∂n

∫ δc

−∞
dδ1 · · · dδn−1 ∂i

× W gm(δ0; δ1, . . . , δn; Sn), (B4)

and

Π
mem-mem
ǫ (δ0; δn; Sn) =

∫ δc

−∞
dδ1 · · · dδn−1

×
[∑

i<j

∆ij∂i∂j +
1

2

n−1∑

i

∆ii∂
2
i

]
W gm(δ0; δ1, . . . , δn; Sn).

(B5)

The memory term is the same as in Section 5.3, so it is still
finite. The memory-of-memory term, however, presents a new
difficulty. Using Equation (103) we get

Π
mem-mem
ǫ (δ0; δn; Sn) =

∑

i<j

∆ij Π
gm
ǫ (δ0; δc; Si)

× Π
gm
ǫ (δc; δc; Sj − Si)Π

gm
ǫ (δc; δn; Sn − Sj )

+

n−1∑

i=1

∆ii

2
∂i

[
Π

gm
ǫ (δ0; δi; Si)Π

gm
ǫ (δi; δn; Sn − Si)

]
δi=δc

(B6)

=
∑

i<j

∆ij Π
gm
ǫ (δ0; δc; Si)Π

gm
ǫ (δc; δc; Sj − Si)

× Π
gm
ǫ (δc; δn; Sn − Sj ) +

n−1∑

i=1

∆ii

[
∂iΠ

gm
ǫ (δ0; δi; Si)

]
δi=δc

× Π
gm
ǫ (δc; δn; Sn − Si).

We now discover that the continuum limit of the memory-
of-memory term is non-trivial, since it is made of two terms
that are separately divergent. Consider first the second term in
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Equation (B6), which is the one coming from ∆ii∂
2
i . We have

found in Section 4.2 that Π
gau
ǫ (δ0; δc; Si) is proportional to

√
ǫ

while [∂δΠ
gm
ǫ (δc; S; S)]δ=δc

has a finite limit for ǫ → 0, see
Equation (A9). Therefore, using Equation (106), we find that
the last term in Equation (B6) diverges as 1/

√
ǫ. A similar

problem appears in the term coming from ∂i∂j with i �= j .
Using Equations (79) and (112), we find that the first term in
Equation (B6) is proportional to

ǫ

n−2∑

i=1

1

S
3/2

i

exp

{
−

δ2
c

2Si

}
ǫ

n−1∑

j=i+1

∆ij

(Sj − Si)3/2(Sn − Sj )3/2

× exp

{
−

(δc − δn)2

2(Sn − Sj )

}
, (B7)

where Si = iǫ, Sj = jǫ. In the continuum limit, unless ∆ij

vanishes for i = j , this quantity diverges as 1/
√

ǫ, because of
the behavior (Sj − Si)

−3/2 when Sj → S+
i . In Section 4.2 these

problems did not show up because ∆ii = 0, so the divergence
coming from ∆ii∂

2
i disappears. Furthermore, when Si → Sj ,

∆ij vanished as Sj − Si , thereby ensuring the convergence of
the sum (or, in the continuum limit, of the integral over Sj) in
Equation (B7).

In order to understand how the cancellation mechanism works
when ∆ij does not vanish for Si = Sj , we examine the memory-
of-memory term when ∆(Si, Sj ) is a constant, that we set equal
to unity. The reason is that, in this case, we can compute it in an
alternative way, which shows that the result is finite. The trick is
to compute the second derivative of Π

gm
ǫ with respect to δc. The

first derivative was computed in Equation (A1), and the result
can be rewritten as

∂

∂δc

Π
gm
ǫ (δ0; δn; Sn) =

n−1∑

i=1

∫ δc

−∞
dδ1 · · · dδn−1 ∂iW. (B8)

When we take one more derivative of Equation (A1) with
respect to δc, we find two kinds of terms. First, there are
the terms where we take one more derivative with respect to
the upper limit of the integration with respect to a variable
dδj with j �= i. Furthermore, we must take the derivative
of W (δ0; δ1, . . . , δi = δc, . . . , δn−1, δn; Sn) with respect to δc.
Therefore,

∂2

∂δ2
c

Π
gm
ǫ (δ0; δn; Sn) = 2

∑

i<j

∫ δc

−∞
dδ1 · · · d̂δi · · · d̂δj · · · dδn−1

× W (δ0; δ1, . . . , δi = δc, . . . , δj = δc, . . . , δn; Sn)

+

n−1∑

i=1

∫ δc

−∞
dδ1 · · · d̂δi · · · dδn−1

×
∂

∂δc

W (δ0; δ1, . . . , δi = δc, . . . , δn; Sn)

= 2
∑

i<j

∫ δc

−∞
dδ1 · · · dδn−1∂i∂jW +

n−1∑

i=1

∫ δc

−∞
dδ1 · · · dδn−1∂

2
i W,

(B9)

that is,

∂2

∂δ2
c

Π
gm
ǫ (δ0; δn; Sn) =

n−1∑

i,j=1

∫ δc

−∞
dδ1 · · · dδn−1∂i∂jW.

(B10)

Thus, when ∆ij = 1,

Π
mem-mem
ǫ (δ0; δn; Sn) =

1

2

∂2

∂δ2
c

Π
gm
ǫ (δ0; δn; Sn). (B11)

In particular, in the continuum limit,

Π
mem-mem
ǫ=0 (δ0 = 0; δn; Sn) =

1

2

∂2

∂δ2
c

Π
gm

ǫ=0(δ0 = 0; δn; Sn)

=
(

2

π

)1/2 [
1 −

(2δc − δn)2

Sn

]
1

S
3/2
n

e−(2δc−δn)2/(2Sn). (B12)

First of all this result shows that, when ∆ij = 1, Πmem-mem
ǫ stays

indeed finite in the continuum limit. Second, it gives its explicit
expression, which can then be compared with a computation
based on Equation (B6). To perform the comparison, we first
compute the second term in Equation (B6), when ∆ij = 1, i.e.,

I1 ≡
n−1∑

i=1

[
∂iΠ

gm
ǫ (δ0 = 0; δi; Si)

]
δi=δc

Π
gm
ǫ (δc; δn; Sn − Si).

(B13)

Observe that in this expression we must first compute the
derivative in δi = δc (since this came from the integration by
parts of ∂2

i ) and only after we take the limit ǫ → 0+. The result
is therefore given by Equation (A9). By also using Equations
(A4) and (79), we get

I1 = −
1

√
ǫ

u0

√
2

π
δc(δc − δn)

× ǫ

n−1∑

i=1

1

S
3/2

i (Sn − Si)3/2
exp

{
−

δ2
c

2Si

−
(δc − δn)2

2(Sn − Si)

}
.

(B14)

Because of the exponential factor, the argument of the sum goes
to zero very fast as Si → 0+ and as Si → S−

n , and therefore we
can use Equation (106), so

I1 = −
1

√
ǫ

u0

√
2

π
δc(δc − δn)

×
∫ Sn

0

dSi

1

S
3/2

i (Sn − Si)3/2
exp

{
−

δ2
c

2Si

−
(δc − δn)2

2(Sn − Si)

}
.

(B15)

The integral can be performed using Equation (A5), and we get

I1 = −
1

√
ǫ

2u0√
π

(2δc − δn)
1

S
3/2
n

e−(2δc−δn)2/(2Sn). (B16)

Therefore, I1 diverges as 1/
√

ǫ. It is important to observe that
there is no finite part in I1. In the continuum limit the corrections
to Equations (79), (A9), and (106) are all O(ǫ) compared to the
leading terms that we used, so they produce terms that are overall
O(

√
ǫ) in Equation (B16), and therefore vanish in the continuum

limit.
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We next consider the other term in Equation (B6), i.e.,

I2 ≡
n−2∑

i=1

Π
gm
ǫ (δ0 = 0; δc; Si)

×
n−1∑

j=i+1

Π
gm
ǫ (δc; δc; Sj − Si)Π

gm
ǫ (δc; δn; Sn − Sj )

=
1

π
√

2π
δc(δc − δn) ǫ

n−2∑

i=1

1

S
3/2

i

e−δ2
c /(2Si )ǫ

×
n−1∑

j=i+1

1

(Sj − Si)3/2(Sn − Sj )3/2
exp

{
−

(δc − δn)2

2(Sn − Sj )

}
.

(B17)

Now the passage from the sums to integrals is more delicate.
One might be tempted to write

ǫ

n−1∑

j=i+1

?=
∫ Sn

Si

dSj . (B18)

However, Equation (B18) is only correct when the sum and the
integral are finite for ǫ → 0. Here, this is not the case, since

∫ Sn

Si

dSj

1

(Sj − Si)3/2(Sn − Sj )3/2
exp

{
−

(δc − δn)2

2(Sn − Sj )

}

(B19)

diverges at the lower integration limit Sj = Si , and indeed our
aim is to extract this divergent term, plus the finite terms. A
better guess would be that, since the sum starts from j = i + 1,
the corresponding integral should start from Sj = Si + ǫ, so

I3 ≡ ǫ

n−1∑

j=i+1

1

(Sj − Si)3/2(Sn − Sj )3/2
exp

{
−

(δc − δn)2

2(Sn − Sj )

}

?=
∫ Sn

Si+ǫ

dSj

1

(Sj − Si)3/2(Sn − Sj )3/2
exp

{
−

(δc − δn)2

2(Sn − Sj )

}
.

(B20)

Still, this cannot be completely correct. To realize this, observe
that, since the integral is dominated by Sj = Si + ǫ, the divergent
part can be extracted replacing Sj = Si everywhere except in

the factor (Sj − Si)
−3/2, and so, if we used this prescription, we

would conclude that

I3
?=

1

(Sn − Si)3/2
exp

{
−

(δc − δn)2

2(Sn − Si)

}

×
∫

Si+ǫ

dSj

1

(Sj − Si)3/2
+ finite parts

=
2

√
ǫ

1

(Sn − Si)3/2
exp

{
−

(δc − δn)2

2(Sn − Si)

}
+ finite parts.

(B21)

However, if the prescription (Equation (B20)) were correct in
general, we should get the same result if we separate the term

j = i + 1 from the sum, and we let the remaining integral start
from Sj = Si + 2ǫ, so we should get the same result if we write

I3
?=

1
√

ǫ

1

(Sn − Si)3/2
exp

{
−

(δc − δn)2

2(Sn − Si)

}

+

∫ Sn

Si+2ǫ

dSj

1

(Sj − Si)3/2(Sn − Sj )3/2
exp

{
−

(δc − δn)2

2(Sn − Sj )

}

=
1 +

√
2

√
ǫ

1

(Sn − Si)3/2
exp

{
−

(δc − δn)2

2(Sn − Si)

}
+ finite parts.

(B22)

We see that the two procedures agree on the fact that the
singularity is proportional to 1/

√
ǫ, but give different values

for the coefficient, so Equation (B20) cannot be correct in
general. Observe also that the finite parts are not affected by
this ambiguity, which amounts to a rescaling of ǫ.

Since, of course, the strength of the singularity is in principle
fixed (although difficult to compute analytically) as long as we
write I3 as a sum, we can always choose a value α such that, as
far as the 1/

√
ǫ singularity and the finite terms are concerned,

we have the equality

ǫ

n−1∑

j=i+1

1

(Sj − Si)3/2(Sn − Sj )3/2
exp

{
−

(δc − δn)2

2(Sn − Sj )

}

=
∫ Sn

Si+αǫ

dSj

1

(Sj − Si)3/2(Sn − Sj )3/2

× exp

{
−

(δc − δn)2

2(Sn − Sj )

}
, (B23)

and the two expressions only differ by terms that vanish as
ǫ → 0. In fact, α can be fixed requiring that the coefficient of
1/

√
ǫ is the same on the two sides of Equation (B23), and it

does not affect the terms O(ǫ0) since it is just a rescaling of ǫ.
Actually, in our problem, an even better way to pass from the
sum to the integral is to write

ǫ

n−1∑

j=i+1

1

(Sj − Si)3/2(Sn − Sj )3/2
exp

{
−

(δc − δn)2

2(Sn − Sj )

}

=
∫ Sn

Si

dSj

1

(Sj − Si)3/2(Sn − Sj )3/2

× exp

{
−

αǫ

2(Sj − Si)
−

(δc − δn)2

2(Sn − Sj )

}
. (B24)

In other words, rather than setting the integrand to zero for
Sj < Si + αǫ, we cut it off exponentially using the factor

exp{−αǫ/(Sj − Si)}. Again this produces a 1/
√

αǫ singularity,
as we will check in a moment, and α can be chosen so that this
singularity has the same strength as that on the left-hand side
of Equation (B24). However, since α is just a rescaling of ǫ, α
does not affect the finite part.

The advantage of using Equation (B24) is that the inte-
gral can now be performed analytically using Equation (A5),
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so we get

I3 = ǫ

n−1∑

j=i+1

1

(Sj − Si)3/2(Sn − Sj )3/2
exp

{
−

(δc − δn)2

2(Sn − Sj )

}

=
√

2π

(
1

√
αǫ

+
1

δc − δn

)
1

(Sn − Si)3/2

× exp

{
−

(δc − δn +
√

αǫ)2

2(Sn − Si)

}
. (B25)

We have also checked this result numerically. The sum on the
left-hand side can be computed very easily numerically, say for
n up to 104, and we find that the right-hand side reproduces
it perfectly, for all values of δn, Si, and Sn, if we choose
α ≃ 0.92. Expanding the dependence on αǫ in the exponential
and omitting the terms that vanish in the limit ǫ → 0, we find

I3 =
√

2π

[
1

√
αǫ

+

(
1 −

(δc − δn)2

Sn − Si

)
1

δc − δn

]
1

(Sn − Si)3/2

× exp

{
−

(δc − δn)2

2(Sn − Si)

}
, (B26)

which explicitly displays the 1/
√

ǫ singularity and the finite,
α-independent, part.

To compute I2 we must still plug this expression into
Equation (B17) and carry out the sum over i. The latter sum
presents no difficulty since its argument converges well both at
Si = 0 and at Si = Sn, so we can just replace the sum by an
integral using Equation (106). It is actually convenient to leave
I3 in the form given in Equation (B25), so the integral over Si

can again be performed using Equation (A5), and we finally get

I2 =
(

2

π

)1/2
1

S
3/2
n

e−(2δc−δn)2/(2Sn)

×
[

2δc − δn√
αǫ

+

(
1 −

(2δc − δn)2

Sn

)]
. (B27)

Putting together this result and Equation (B16), we finally find

Π
mem-mem
ǫ=0 (δ0; δn; Sn) =

1
√

ǫ

(
1

√
α

− u0

√
2

)

× (2δc − δn)
1

S
3/2
n

e−(2δc−δn)2/(2Sn)

+

(
2

π

)1/2[
1 −

(2δc − δn)2

Sn

]
1

S
3/2
n

e−(2δc−δn)2/(2Sn).

(B28)

However, in this case we already know the exact result for
Πmem-mem

ǫ=0 , which is given by Equation (B12). Comparing these
two results we learn the following. First, we know from Equation
(B12) that the result is finite and there is no 1/

√
ǫ term. In

the computation leading to Equation (B28) we rather find two
separately divergent contribution, so they must cancel. This is
fully consistent with Equation (B28), since these divergent terms
have exactly the same dependence on ǫ, δc, δn, and Sn. We also
see that, in this second way of performing the computation, the
cancellation depends on the numerical values of quantities, such
as u0, that are determined by the solution in the boundary layer,
and which therefore are difficult to compute, as well as on the

constant α that we determined numerically. The finite part is
instead completely fixed, and is affected neither by the solution
in the boundary layer, nor by the constant α, and correctly
reproduces Equation (B12).

From this explicit example we can now extract a general rule
of computation. Whenever ∆(Si, Sj ) is a regular function, such
as that given in Equation (90), the memory-of-memory term
and analogous quantities which are finite when ∆(Si, Sj ) = 1,
will still be finite. The explicit computation with the formalism
developed in Section 5.3 can generate terms that are separately
divergent when ǫ → 0+. However, since the total result is
finite, these divergences must cancel among them. When we
find integrals that diverge in the limit in which two integration
variables become equal (such as the limit Sj → Si above)
we can just regularize them as in Equation (B24). We call this
technique “the α-regularization.” We then discard the divergence
and we extract the finite part, which is independent of α. We will
indicate by the symbol FP this procedure of taking the finite
part. In this notation, the result of the above computations can
be summarized by

FP

n−1∑

i=1

∫ δc

−∞
dδ1 · · · dδn−1∂

2
i W = 0, (B29)

FP

n−2∑

i=1

n−1∑

j=i+1

∫ δc

−∞
dδ1 · · · dδn−1∂i∂jW

=
(

2

π

)1/2[
1 −

(2δc − δn)2

Sn

]
1

S
3/2
n

e−(2δc−δn)2/(2Sn).

(B30)

As an application of the above formalism, we have studied what
happens choosing a different expansion point when computing
the halo mass function with a top-hat filter in coordinate
space. Observe in fact that, since ∆(Si, Sj ) is symmetric under
exchange of Si with Sj, Equation (90), which is valid for Si � Sj ,
can be rewritten more generally as

∆(Si, Sj ) ≃ κ

[
min(Si, Sj ) −

[min(Si, Sj )]2

max(Si, Sj )

]
. (B31)

Thus, the two-point correlator can be written as

〈δiδj 〉 = (1 + κ)min(Si, Sj ) + ∆̃(Si, Sj ), (B32)

where, for Si � Sj , ∆̃(Si, Sj ) = −κS2
i /Sj . We can therefore use

(1 + κ)min(Si, Sj ) as the unperturbed two-point function, and

treat ∆̃ij as the perturbation. The zeroth-order term can again
be computed exactly, since it just amounts to a rescaling of
S, S → (1 + κ)S. At first sight this seems to give a modified
exponential in the distribution function, since factors such as
exp{−δ2

c/(2S)} in Equation (57) become exp{−δ2
c/[2(1 + κ)S]}.

However, now ∆̃nn = −κSn is non-zero, and we should not

forget the factor exp{(1/2)∆̃nn∂
2
n} in Equation (B3). The effect

of this term can be computed exactly using the identity

exp

{
1

2
(b − a)∂2

x

}
1

√
a

e−x2/(2a) =
1

√
b

e−x2/(2b), (B33)

which is valid for a > 0 and b > 0. To prove it, we write
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exp

{
1

2
(b − a)∂2

x

}
1

√
a

e−x2/(2a)

= exp

{
1

2
(b − a)∂2

x

}∫ ∞

−∞

dλ

2π
eiλx−(1/2)aλ2

=
∫ ∞

−∞

dλ

2π

∞∑

n=0

1

n!

(
b − a

2

)n

∂2n
x eiλx−(1/2)aλ2

=
∫ ∞

−∞

dλ

2π

∞∑

n=0

1

n!

(
b − a

2

)n

(iλ)2neiλx−(1/2)aλ2

=
∫ ∞

−∞

dλ

2π
e−(1/2)(b−a)λ2

eiλx−(1/2)a2λ2

=
∫ ∞

−∞

dλ

2π
eiλx−(1/2)bλ2 =

1
√

b
e−x2/(2b). (B34)

(Observe that for b < 0 the final integral over dλ does not
converge, so this identity only holds if b > 0.) In this way, we

find that the action of exp{(1/2)∆̃nn∂
2
n} on exp{−δ2

c/[2(1+κ)S]}
gives back the “unperturbed” exponential factor exp{−δ2

c/(2S)},
so the zeroth-order term of this expansion is finally the same
as Equation (57). The computation of the non-Markovian
corrections requires the finite part prescription, since now

∆̃(Si, Sj ) does not vanish for Si = Sj . The integrals over dSi

and dSj are more difficult to compute, but for δ2
c/(2S) ≫ 1 their

exponential dependence is easily computed and, after taking

into account again the operator exp{(1/2)∆̃nn∂
2
n} in Equation

(B3), we find that the exponential dependence of the corrections
is the same that we obtained in Equation (119).
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