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Abstract

The eikonal equation and variants of it are of signif-
icant interest for problems in computer vision and image
processing. It is the basis for continuous versions of math-
ematical morphology, stereo, shape-from-shading and for
recent dynamic theories of shape. Its numerical simulation
can be delicate, owing to the formation of singularities in
the evolving front, and is typically based on level set meth-
ods. However, there are more classical approaches rooted
in Hamiltonian physics, which have received little consid-
eration in computer vision. In this paper we first introduce
a new algorithm for simulating the eikonal equation, which
offers a number of computational and conceptual advan-
tages over the earlier methods when it comes to shock track-
ing. Next, we introduce a very efficient algorithm for shock
detection, where the key idea is to measure the net outward
flux of a vector field per unit volume, and to detect loca-
tions where a conservation of energy principle is violated.
We illustrate the approach with several numerical examples
including skeletons of complex 2D and 3D shapes.

1. Introduction

Variational principles emerged naturally from consider-
ations of energy minimization in mechanics [11]. We con-
sider these in the context of the eikonal equation, which
arises in geometrical optics and, recently, which has be-
come of great interest for problems in computer vision [4].
It is the basis for continuous versions of mathematical mor-
phology [3, 18, 25], as well as for Blum’s grassfire trans-
form [2] and new dynamic theories of shape representation
including [9, 23]. It has also been widely used for applica-
tions in image processing and analysis [19, 5], shape-from-
shading [10] and stereo [8].

The numerical simulation of this equation is non-trivial,
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McGill University, Montréal, PQ, Canada H3A 2A7�
Department of Electrical and Computer Engineering, University of

Minnesota, 200 Union Street S. E. Minneapolis, MN 55455�
Department of Computer Science & Department of Electrical Engi-

neering, Yale University, New Haven, CT 06520-8285

because it is a hyperbolic partial differential equation for
which a smooth initial front may develop singularities or
shocksas it propagates. At such points, classical concepts
such as the normal to a curve, and its curvature, are not
defined. Nevertheless, it is precisely these points that are
important for the above applications in computer vision
since, e.g., it is they which denote the skeleton (see Fig-
ure 3). To continue the evolution while preserving shocks,
the technology of level set methods introduced by Osher
and Sethian [15], has proved to be extremely powerful. The
approach relies on the notion of a weak solution, developed
in viscosity theory [6], and the introduction of an appro-
priate entropy condition to select it. The representation of
the evolving front as a level set of a hypersurface allows
topological changes to be handled in a natural way, and
robust, efficient implementations have recently been devel-
oped [20].

Level set methods are Eulerian in nature because com-
putations are restricted to grid points whose locations are
fixed. For such methods, the question of computing the lo-
cus of shocks for dynamically changing systems remains
of crucial importance, i.e., the methods are shockpreserv-
ing but do not explicitlydetectshocks. Shock detection
methods which rely on interpolation of the underlying hy-
persurface are computationally very expensive. Numerical
thresholds are introduced and high order accurate numerical
schemes must be used [14, 22].

On the other hand, there are more classical methods
rooted in Hamiltonian physics, which can also be used to
study shock theory. To the best of our knowledge, these
have not been considered in the computer vision literature.
The purpose of this paper is twofold. First, we introduce the
above methods and a straightforward algorithm for simulat-
ing the eikonal equation, which offers a number of compu-
tational and conceptual advantages when it comes to shock
tracking. The proposed algorithm is Lagrangian in nature,
i.e., the front is explicitly represented as a sequence of
marker particles. The motion of these particles is then gov-
erned by an underlying Hamiltonian system. Such systems
are of course fundamental in classical physics, and have a
natural physical interpretation based on elementary Hamil-
tonian and Lagrangian mechanics. Second, we introduce a
very efficient algorithm for shock detection based on the net
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Figure 1: A geometric view of a monotonically advancing
front (Eq. 1). � �� � � � is a graph of the ‘solution’ surface, the
level sets of which are the evolved curves.

outward flux per unit volume of the vector field underlying
the Hamiltonian system.

2. The Eikonal Equation

We begin by showing the connection between a mono-
tonically advancing front, and the well known eikonal equa-
tion. Consider the curve evolution equation

��
� � 	 
 � � (1)

where
�

is the vector of curve coordinates,� is the unit
inward normal, and
 	 
 
� � � � is the speed of the front at
each point in the plane, with
 � � (the case
 � � is also
allowed). Let� 
� � � � be a graph of the solution surface,
obtained by superimposing all the evolved curves in time
(see Figure 1). In other words,� 
� � � � is the time at which
the curve crosses a point
� � � � in the plane. Referring to
the figure, the speed of the front is given by
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Hence,� 
� � � � satisfies theeikonal equation
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 	 �� (2)

A number of algorithms have been recently developed to
solve a quadratic form of this equation, i.e.,

��� � 	 !" # .
These include Sethian’s fast marching method [20], which
relies on an interpretation of Huygens’s principle to effi-
ciently propagate the solution from the initial curve, and
Rouy and Tourin’s viscosity solutions approach [17]. How-
ever, neither of these methods address the issue of shock
detection explicitly, and more work has to be done to track
shocks.

A different approach, which is related to the solution sur-
face� 
� � � � viewed as a graph, has been proposed by Shah
et al [21, 23]. Here the key idea is to use an edge strength
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Figure 2: Direction of a ray $% and the direction of motion of
the wave front & . From [1].

functional' in place of the surface� 
� � � �, computed by
a linear diffusion equation. The equation can be efficiently
implemented, and the framework extends to greyscale im-
ages as well as curves with triple point junctions. It provides
an approximation to the reaction-diffusion space introduced
in [9], but does not extend to the extreme cases, i.e., mor-
phological erosion by a disc structuring element (reaction)
or motion by curvature (diffusion). Hence, points of max-
imum (local) curvature are interpreted as skeletal points.
This regularized skeleton is typically not connected, and its
relation to the classical skeleton, obtained from the eikonal
equation with
 	 �

, is as yet unclear.

In the next section, we shall consider an alternate frame-
work for solving the eikonal equation, which is based on the
canonical equations of Hamilton. The technique is widely
used in classical mechanics, and rests on the use of a Legen-
dre transformation (see [1] for the precise definition) which
takes a system of( second-order differential equations to
a (mathematically equivalent) system of)( first-order dif-
ferential equations. We believe that for a number of vision
problems involving shock tracking and skeletonization, this
represents a natural way of implementing the eikonal equa-
tion.

3. Hamilton’s Canonical Equations

Following Arnold [1, pp. 248–258], we shall use Huy-
gens’ principle to show the connection between the eikonal
equation and the Hamilton-Jacobi equation. For every point*+ , define the function,-. 
*� as the optical length of the
path from*+ to * (see Figure 2). The wave front at time�

is given by /* 0 ,-. 
*� 	 �1
. The vector2 	 343- is

called thevector of normal slowness of the front. By Huy-
gens’ principle the direction of the ray5* is conjugate to the
direction of motion of the front, i.e.,2 6 5* 	 �

. Note that
these directions do not coincide in an anisotropic medium.

Let us specialize to the case of a monotonically ad-
vancing front in an inhomogeneous but isotropic medium
(Eq. 1). Here the speed
 
� � � � depends only on position
(not on direction), and the directions of2 and 5* coincide.



The action function minimized,, 
* � ��, is defined as

,-. ��. 
* � �� 	
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along the extremal curve� connecting the points
*+ � �+ �
and 
* � ��. Here the Lagrangian�
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is a conformal (infinitesimal) length element, and we
have assumed that the extremals emanating from the point

*+ � �+ � do not intersect elsewhere, i.e., they form acen-
tral field of extremals. Note that for an isotropic medium
the extremals are straight lines, and that for the special case
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, the action function becomes Euclidean length.
It can be shown that the vector of normal slowness,

2 	 343- , is not arbitrary but satisfies the Hamilton-Jacobi
equation � ,� � 	 �� 	� ,� * � *
 � (3)

where the Hamiltonian function� 
2 � *� is the Legendre
transformation with respect to5* of the Lagrangian function�


* � 5* �. Rather than solve the nonlinear Hamilton-Jacobi
equation for the action function, (which will give the so-
lution surface� 
� � � � to Eq. 2), it is much more convenient
to look at the evolution of the phase space
2 � *� under the
equivalent Hamiltonian system

52 	 � ��� * � 5* 	
���2 �

This offers a number of advantages, the most significant
being that the equations become linear, and hence trivial to
simulate numerically. In the following we shall derive this
system of equations for the special case of a front advancing
with speed
 
� � � � = 1.

4. The Hamilton-Jacobi Skeleton Flow

For the case of a front moving with constant speed, re-
call that the action function being minimized is Euclidean
length, and hence, can be viewed as a Euclidean distance
function from the initial curve

�+ . Furthermore, the magni-
tude of its gradient,

��, �
, is identical to 1 in its smooth

regime, which is precisely where the assumption of a cen-
tral field of extremals is valid.

With * 	 
� � � �, 2 	 
,� � ,� �, associate to the evolving
plane curve

� 
 �  
the surface�� 
 ��

given by�� 0	 /
� � � � ,� � ,� � 0 
� � � � � � � ,  ��,  � 	 �� 2 6 5* 	 �1�
The Hamiltonian function obtained by applying a Legendre
transformation to the Lagrangian

�
	 � 5*�

is given by� 	 2 6 5* � � 	 � � 
,  � � ,  � � �# �

The associated Hamiltonian system is:

52 	 � ��� * 	 
� � �� � 5* 	
���2 	 � 
,� � ,� � � (4)�� can be evolved under this system of equations, with�� 
�� 
 ��

denoting the resulting (contact) surface. The
projection of �� 
�� onto

�  
will then give the parallel evo-

lution of
�

at time
�
,
� 
��.

We shall now make use of the fact that all Hamiltonian
systems are conservative [16, p. 172]. In particular:

Theorem 1 The total energy� 
2 � *� of the Hamiltonian
system (4) remains constant along trajectories of (4).

Proof. The total derivative of� 
2 � *� along a trajectory
2 
��, * 
�� of (4) is given by

���� 	
���2 � 52 � ��� * � 5* 	

���2 �
���* � ���2 �

��� * 	 � �

Thus� 
2 � *� is constant along any trajectory of (4).

5. Flux and Divergence

The analysis carried out thus far applies under the as-
sumption of a central field of extremals, see Section 3, such
that trajectories of the Hamiltonian system do not intersect.
Conversely, when shocks form due to the intersection of tra-
jectories, the conservation of energy principle will be vio-
lated (energy will be absorbed). As we shall now show, this
loss of energy can be used to formulate a robust and very
efficient algorithm for shock detection, based on an appli-
cation of the divergence theorem.

The key is to measure the flux of the vector field5* , which
is analogous to the flow of an incompressible fluid such as
water. Note that for a volume with an enclosed surface, an
excess of outward or inward flow through the surface indi-
cates the presence of asource, or asink, respectively, in the
volume. The latter case is the one we are interested in, and
we shall use the divergence of the vector field to provide a
measure proportional to the net outward flux. More specif-
ically, in physics the divergence of a vector field at a point,��� 
 5* �, is defined as the net outward flux per unit volume,
as the volume about the point shrinks to zero:��� 
 5* � � ������ + ��  5* �� ! �"#� (5)

Here
#' is the volume,, is its surface and� is the out-

ward normal at each point on its surface. This definition can
be shown to be equivalent to the more common definition of
the divergence as the sum of the partial derivatives with re-
spect to each of the vector field’s component directions:��� 
 5* � 	

� $% ��&
!
� ��� � � $%'

�&( (6)



However, Eq. 6 cannot be used at points where the vector
field is singular, and hence is not differentiable. These are
precisely the points we are interested in, and Eq. 5 offers
significant advantages for shock detection. In particular,the
numerator, which represents the net outward flux of the vec-
tor field through the surface which bounds the volume, is
an index computation on the vector field. As we shall see,
this is numerically much more stable than the estimation of
derivatives in the vicinity of singularities. Further, viathe
divergence theorem,�� ��� 
 5* ��� � ��  5* �� ! �" � (7)

Hence, the net outward flux through the surface which
bounds a finite volume is just the volume integral of the di-
vergence of the vector field within that volume. Locations
where the flux is negative, and hence energy is lost, corre-
spond to sink points or shocks.

6. Numerical Simulations

We now apply the above theory to formulate an efficient
algorithm for simulating the eikonal equation, while track-
ing the shocks which form. We shall later discretize the flux
computation of Eq. 7 to formulate a very efficient algorithm
for shock detection. This can be used to provide an explicit
stopping condition for the eikonal evolution.

Recall that since the approach is a Lagrangian one,
marker particles will have to first be placed along the initial
curve, which in our simulations is assumed to be a sim-
ple closed curve in the plane.1 The evolution of marker
particles is then governed by Eq. 4. With* 	 
� � � �,
2 	 
,� � ,� � 	 �, , the system of equations/ 5,� 	
� � 5,� 	 � � 5� 	 �,� � 5� 	 �,� 1 gives a gradient dynami-
cal system. The second equation indicates that the trajectory
of the marker particles will be governed by the vector field
obtained from the gradient of the Euclidean distance func-
tion , , and the first indicates that this vector field does not
change with time, and can be computed once at the begin-
ning of the simulation. Projecting this 4D system onto the

� � � � plane for each instance of time

�
will give the evolved

curve
� 
��.

In order to obtain accurate results, three numerical issues
need to be addressed. First, in order to obtain a dense se-
quence of marker particles, a continuous representation of
the initial shape’s boundary (� 
� � � � 	 �, see Figure 1) is
needed. Second, it is possible for marker particles to drift
apart in rarefaction regions, i.e., concave portions of the
curve may fan out. Hence, new marker particles must be
interpolated when necessary. Third, whereas finite central
differences are adequate for estimating the gradient of the

1The method would also extend naturally to open curves, wherean
outward distance function would have to be defined.

Figure 3: The evolution of marker particles under the Hamil-
tonian system. The initial particles are placed on the bound-
ary, and iterations of the process are superimposed. These
correspond to level sets of the solution surface � �� � � � in
Figure 1. Individual marker particles are more clearly visible
in the zoom-in on the fingers of the hand (top right).



Euclidean distance function in its smooth regime, such es-
timates will lead to errors near singularities, where, is not
differentiable. Hence, we use ENO interpolants for estimat-
ing derivatives [14]; the key idea is to obtain information
from the “smooth” side, in the vicinity of a singularity. The
algorithm may now be stated as follows:

1. Take as the initial curve� 
� 
�� � � 
��� 	 �, the given
boundary of an object, assumed to be a simple closed
curve in the plane.
2. Create an ordered sequence of marker particles at po-
sitions

#
� apart along the boundary.

3. Compute a Euclidean distance transform, where each
grid point in the interior of the boundary is assigned its
Euclidean distance to the closest marker particle.
4. For each grid point in the interior of the boundary com-
pute and store the components of the vector field

�, , us-
ing ENO interpolants.

5. Do for step from 0 to TOTALSTEPS /
Do for particle from 0 to NPARTICLES /

� Update the particle’s position based on�, at the closest grid point:
� 
���� � �� 	 � 
���� � � # � � ,� �
� 
���� � �� 	 � 
���� � � # � � ,�

� if (Distance(particle,nextparticle)! �
#
�)/

interpolate a new particle in between.1
1

1

In our experiments, we have used a piecewise circular
arc representation of the boundary, obtained using the con-
tour tracer developed in [22], on the signed distance trans-
form of the original binary shape. The distance transform is
blurred very slightly to combat discretization. The birth of
new marker particles (step 5) is also based on circular arc
interpolation. Figure 3 depicts the evolution of marker par-
ticles, with speed
 	 �

, for several different shapes. For
all simulations, the spacing

#
� of initial marker particles

is 0.25 pixels, the spacing criterion for interpolating a new
particle in the course of the evolution is�

#
� = 0.75 pixels,

and the resolution of the Euclidean distance transform, is
the same as that of the original binary image. The timestep# �

is 0.5 pixels, and results for every second iteration are
saved. The superposition of all the level curves gives the
solution surface� 
� � � � in Figure 1. It is important to note
that in principle higher order interpolants can be used for
the placement of marker particles, and the resolution of the
exact distance transform is not limited by that of the original
(binary) shape.

The results are comparable to those obtained using
higher order ENO implementations, although the algorithm
is computationally more efficient (linear in the number of
marker particles). Informal timing experiments indicate

Figure 4: A divergence-based skeleton, superimposed in
white on the original binary shapes (shown in grey). Com-
paring with the Hamiltonian system based flows in Figure 3,
these maps can be used to formulate an explicit stopping
condition for the individual marker particles.

that the efficiency of the algorithm exceeds that of level set
methods, except under the “fast marching” implementation,
with which it compares favorably. However, when shock
detection is included, the Hamiltonian approach has impor-
tant conceptual and computational advantages. In particu-
lar, in contrast with level set approaches, topological splits
are not explicitly handled, but shocks (collisions of marker
particles) are. In effect, the marker particles are jittered
back and forth along the crest lines of the distance function
, , leading to the thick traces in Figure 3.

We now turn to the implementation of the flux compu-
tation (Eq. 7) detailed in Section 5. This turns out to be
extremely straightforward and efficient to implement, be-
cause the computations are local and hence parallelizable.
For each grid point consider a small disc in 2D (or a sphere
in 3D) centered at the point, such that it passes through its
nearest neighboring grid points, i.e., its radius is equal to
the grid point spacing

#�
. Now, over all neighboring grid

points, compute the sum of the inner products of the out-
ward normals to the disc and the vector field
�,� � �,� �
(in 2D), or the sphere and the vector field
�,� � �,� � �, � �
(in 3D). Finally, mark those points where the net outward
flux (the volume integral of the divergence) is negative, as
sink points or shocks.

Figure 4 illustrates this computation in 2D, using a 3x3
neighborhood, for the same shapes as before. Note that
these computations use the same signed distance function



Figure 5: FIRST ROW: Two views of a 3D box. SECONDROW:
The corresponding divergence-based 3D skeletons.

as the earlier marker particle evolutions, but are otherwise
entirely independent. Hence, they can be used to provide an
explicit stopping condition for the marker particles, should
this be desired. Figures 5, 6 and 7 illustrate the divergence-
based computation in 3D, using a 3x3x3 neighborhood, on
volumetric data of increasing complexity. The box data is
synthetic; the brain ventricles and the outer surface of the
brain were obtained using surface evolution based segmen-
tation techniques on volumetric MR data. Whereas alternate
approaches based on Voronoi techniques provide a topolog-
ically organized set of skeletal branches or faces [13, 12],
their complexity increases with the number of points on
the bounding curve or surface. More significantly, heuris-
tic measures of significance are used for pruning, in order
to obtain reasonable results. In contrast, the notion of di-
vergence provides a very natural measure of significance.
Furthermore, since the computation is purely local, the 2D
or 3D implementations are linear in the number of pixels
or voxels in the array; the 3D version takes less than 20
seconds on a 400 MHz Pentium. Whereas naive threshold-
ing can, in principle, yield skeletons which are disconnected
or have holes, it is straightforward to extend the method to
yield skeletons which are homotopic with the original ob-
ject. The basic idea is to use the divergence to guide a 2D
or 3D thinning process. This extension will be described in
future work.

7. Conclusions

This paper makes two main contributions. First, a new
algorithm for simulating the eikonal equation has been in-
troduced. The method is rooted in Hamiltonian physics
and offers a number of computational advantages when it
comes to shock tracking. Second, based on the violation
of a conservation of energy principle at singular points of
the Hamiltonian system, we have introduced a very efficient

and robust algorithm for shock detection. Here the key idea
is to measure the net outward flux of a vector field per unit
volume, and to detect locations where energy is lost.

In future work we plan to further develop the eikonal
equation simulation in 3D, as well as the divergence im-
plementation. The current implementation of divergence is
purely local, and involves fixed size discs, which suffices
to demonstrate a proof of concept. In closing, we note that
in related recent work, a wave propagation framework on
a discrete grid has been proposed for curve evolution and
mathematical morphology [24], and that vector fields rooted
in magneto-statics have also been used for extracting sym-
metry and edge lines in greyscale images [7].

Figure 6: FIRST ROW: Two views of the ventricles of a brain,
obtained using surface evolution based segmentation tech-
niques on volumetric MR data. SECOND ROW: The corre-
sponding divergence-based 3D skeletons.



Figure 7: FIRST ROW: Two views of the outer surface of a
brain, obtained using surface evolution based segmentation
techniques on volumetric MR data. SECOND ROW: The cor-
responding divergence-based 3D skeletons.
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[13] R. L. Ogniewicz and O. Kübler. Hierarchic voronoi skele-
tons.Pattern Recognition, 28:343–359, 1995.

[14] S. Osher and C.-W. Shu. High-order essentially non-
oscillatory schemes for Hamilton-Jacobi equations.SIAM
Journal of Numerical Analysis, 28:907–922, 1991.

[15] S. J. Osher and J. A. Sethian. Fronts propagating with curva-
ture dependent speed: Algorithms based on hamilton-jacobi
formulations.Journal of Computational Physics, 79:12–49,
1988.

[16] L. Perko. Differential Equations and Dynamical Systems.
Springer-Verlag, 1986.

[17] E. Rouy and A. Tourin. A viscosity solutions approach to
shape-from-shading.SIAM. J. Numer. Analy., 29(3):867–
884, June 1992.

[18] G. Sapiro, B. B. Kimia, R. Kimmel, D. Shaked, and
A. Bruckstein. Implementing continuous-scale morphology.
Pattern Recognition, 26(9), 1992.

[19] J. Sethian.Level Set Methods: evolving interfaces in geome-
try, fluid mechanics, computer vision, and materials science.
Cambridge University Press, Cambridge, 1996.

[20] J. A. Sethian. A fast marching level set method for mono-
tonically advancing fronts. Proc. Natl. Acad. Sci. USA,
93:1591–1595, February 1996.

[21] J. Shah. A common framework for curve evolution, segmen-
tation and anisotropic diffusion. InConference on Computer
Vision and Pattern Recognition, pages 136–142, June 1996.

[22] K. Siddiqi, B. B. Kimia, and C. Shu. Geometric shock-
capturing eno schemes for subpixel interpolation, compu-
tation and curve evolution.Graphical Models and Image
Processing, 59(5):278–301, September 1997.

[23] Z. S. G. Tari, J. Shah, and H. Pien. Extraction of shape
skeletons from grayscale images.Computer Vision and Im-
age Understanding, 66:133–146, May 1997.

[24] H. Tek and B. B. Kimia. Curve evolution, wave propaga-
tion and mathematical morphology. InFourth International
Symposium on Mathematical Morphology, June 1998.

[25] R. van den Boomgaard and A. Smeulders. The morpholog-
ical structure of images: The differential equations of mor-
phological scale-space.IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 16(11):1101–1113, Novem-
ber 1994.


