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Abstract

We deal, from a theoretical point of view, with the asymmetric Hamiltonian
p–median problem. This problem, which has many applications, can be viewed
as a mixed routing location problem. An ILP-formulation based on a new class
of inequalities (subtour number constraints) is presented. The associated Hamil-
tonian p–median polytope is examined, in particular its dimension and its affine
hull. We determine which of the defining inequalities induce facets.

1 Introduction

In the last decade, the class of so–called mixed routing location problems attracted a lot
of research interest. Many different problem variants have been developed. This is due
to its practical relevance in many real world situations and the breakthroughs in solving
the related problem, the traveling salesman problem (TSP). These new methods provided
the necessary framework for investigating more complicated combinatorial optimization
problems.

This paper deals with a special case of combined routing location problems, the
Hamiltonian p–median problem (HpMP). This problem has been introduced by Branco
and Coelho [2]. The investigation is motivated by a practical application, the so–called
laser multi–scanner problem (LMSP), see [6] and [12], which can be modelled as an
asymmetric Hamiltonian p–median problem with an additional class of side constraints.
The HpMP itself arises in its own or as an embedded problem in a wide range of practical
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applications like school location, depot location, multi-depot vehicle routing or industrial
process scheduling.

Up to know, for the HpMP as well as for the LMSP, no exact solution approaches
are known. Since one of the most promising approach for an exact solution of a hard
combinatorial optimization problem is the cutting plane method, (see [9] or [13] for
the symmetric TSP, [4] for the asymmetric TSP and [1] for the precedence–constrained
ATSP) we investigate an ILP–formulation of the HpMP and the associated Hamiltonian
p–median polytope. Even if it is not possible to solve the HpMP exactly, polyhedral
investigations can be used in a branch & cut–algorithm in order to produce good lower
bounds by using cutting planes.

We assume that the reader is familiar with the basic notion of graph theory and
combinatorial optimization.

Let D = (V,A) be a complete directed graph on N = |V | vertices and let

c : A 7→ R

be a cost function associated with the set of arcs A. We may assume that the graph
contains loops. Throughout this paper we denote the vertices by lower case letters i, j, . . .
and the arc from vertex i to vertex j by ij or (i, j). Loops are arcs of the type (i, i). In
the context of the Hamiltonian p–median problem, the set of vertices can be interpreted
as the locations of customers and of (putative) depots. The cost c(a) describes the
distribution costs if arc a is used in order to serve a customer. Each customer has to be
served by one and only one depot. Then the Hamiltonian p–median problem (HpMP)
consists of selecting p depots from V and assigning each customer to exactly one depot,
such that the total distribution costs are minimal. Note that each depot also coincides
with one customer since the vertices of the graph D denote customers and depots. It
is clear that each vertex of a subtour can be chosen as a depot. In order to minimize
the total distribution costs, we have to solve a TSP on the subgraphs induced by the
customers assigned to the same depot.

In graph–theoretic terms, the HpMP is equivalent to determining p pairwise disjoint
cycles (with respect to some objective function) covering the vertex set V . In this
context, let

Cp := {(C1, . . . , Cp)| Ci = (Vi, Ai) circuit inD, Vi ∩ Vj = ∅ for i 6= j,

p⋃
i=1

Vi = V }

denote the set of all Hamiltonian p–medians. As most interesting combinatorial opti-
mization problems, the HpMP has been proven to be NP-complete [3].

The paper is organized as follows: In Section 2, we provide a new ILP–formulation
for the HpMP, which uses less variables than those proposed in [2] and which induces
a polyhedral description of the problem. The formulation in [2] is not exactly an ILP–
formulation since it provides no explicit description of the associated polytope. In Section
3, we obtain several results about the associated HpM–polytope in the asymmetric as
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well as the symmetric case. A preview on a forthcoming paper and some conclusions are
contained in the last section of this paper.

2 A polyhedral ILP–formulation for the Hamilto-

nian p–median problem

In the literature, different formulations for the Hamiltonian p-median problem exist, two
of which are given in [2]. One formulation is based on a set partitioning approach, the
second one is based on a vehicle routing problem. Both formulations have in common
that their descriptions as integer optimization problems are not polyhedral ones: The set
of feasible solutions is not described as the set of integral points of some polytope. Let
us be more specific. We consider the proposed vehicle routing approach in [2]. We have
two classes of binary variables: The variable yki ∈ {0, 1} with {i, k} ∈ V × {1, . . . , p}
indicates whether node i belongs to the Hamiltonian circuit Ck or not. A second class
of variables xkij ∈ {0, 1} with {i, j, k} ∈ V × V × {1, . . . , p} is 1 if and only if node i
precedes node j in circuit Ck:

xkij =

{
1 : ij ∈ Ck

0 : ij 6∈ Ck.
(1)

Then the existence of more than p circuits is prevented by the constraints∑
i,j∈S

xkij ≤ |S| − 1

for all S ⊂ Rk := {i : yki = 1} with |S| ≥ 1 and k = 1, . . . , p. The number of inequalities
of this type depends on the variables yki . Therefore, in this version we do not have a
fixed list of linear inequalities that can be used to check whether a certain vector (y, x)
describes a Hamiltonian p-median.

In this paper, we will present a polyhedral representation of the Hamiltonian p-
median polytope by inequalities which avoid the variables yki .

For certain applications it is necessary to permit loops, i.e. circuits which consist of
only one point and whose arc set is {(i, i)}. Such a single depot supplies itself and no
other customers. But there are also examples where it makes no sense to permit single
loops. In such a case, each circuit must contain at least two different vertices. The costs
for loops can be viewed as the costs for distributing the goods (transporting the people)
within depot i. In this paper, we will discuss only the situation where loops are not
allowed. It is not difficult to transform our results into the more general case.

The problem of finding a general polyhedral ILP (integer linear programming) for-
mulation lies in the description of the partition of V into p disjoint subtours. Therefore,
we introduce the term of m–partitions Pm of V as the set of all partitions of V into m



the electronic journal of combinatorics 7 (2000), #R42 4

subsets which are pairwise disjoint and which form a cover of V , i.e.

Pm := {(S1, . . . , Sm) : Si ⊂ V , Si ∩ Sj = ∅ for i 6= j,
m⋃
i=1

Vi = V }. (2)

Moreover, for each element (S1, . . . , Sm) ∈ Pm let

A(S1, . . . , Sm) := {ij ∈ A : i ∈ Sk, j ∈ Sl, 1 ≤ k < l ≤ m} (3)

denote the directed m–cut associated with (S1, . . . , Sm). The existence of nonempty p+1–
cuts will guarantee the existence of at most p subtours. We propose an ILP–formulation
of the Hamiltonian p–median problem which is based on a separate characterization
of each circuit and uses N(N − 1)p variables. (If we allow loops we would need N2p
variables.) Our formulation can be applied for several objective functions where it is
necessary to know the circuits explicitly. It is possible to find a description of Hamil-
tonian p–medians which uses just N2 variables (indicating whether an arc is contained
in the Hamiltonian p–median or not). This reduced description will be described and
investigated in a forthcoming paper (see also [5]). But in that case, an objective function
where, for instance, the maximum of the cycle lengths has to be minimized, cannot be
analyzed.

Let Ck be a set of arcs in the graph D, where k = 1, . . . , p. We define the associated
incidence vector x(C1,...,Cp) ∈ {0, 1}N(N−1)p as in (1). The incidence vector x(C1,...,Cp) has
length N(N−1)p since we only want to consider the case where loops are not allowed. A
vector x(C1,...,Cp) describes a Hamiltonian p-median if and only if the following equations
are satisfied:

p∑
k=1

N∑
i=1

xkij = 1 (j = 1, . . . , N) (4)

p∑
k=1

N∑
j=1

xkij = 1 (i = 1, . . . , N) (5)

N∑
i=1

xkij −
N∑
l=1

xkjl = 0 (j = 1, . . . , N ; k = 1, . . . , p) (6)

p∑
k=1

∑
ij∈A(S1,...,Sp+1)

xkij ≥ 1 ((S1, . . . , Sp+1) ∈ Pp+1) (7)

∑
i,j∈V

xkij ≥ 2 (k = 1, . . . , p) (8)

xkij ∈ {0, 1} (k = 1, . . . , p; ij ∈ A). (9)

The equations (4) and (5) ensure that each vertex has exactly one successor and

one predecessor in
p⋃

k=1

Ck, i.e. the Ck’s are unions of circuits. Equation (6) guarantees
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that each vertex is assigned to exactly one of the sets Ck. Together with (4) and (5)
the last condition also implies that any two subtours are vertex disjoint. The so–called
subtour number constraints (SNC) (7) exclude the existence of more than p different
circuits. Finally, the inequalities (8) ensure that each circuit consists of at least two
arcs. Additionally, (8) in connection with (7) ensure that each feasible solution consists
of exactly p circuits or subtours.

We note that the SNC have an equivalent formulation

p∑
k=1

p+1∑
i=1

xk(A(Si)) ≤
p+1∑
i=1

(|Si|)− 2 = N − 2 (10)

where xk(A(Si)) :=
∑

v,w∈Si x
k
vw denotes the number of arcs which are contained in the

complete subgraph D|Si := (Si, A|(Si × Si)). This is just a reformulation of (7) where
the intersection size of

⋃p
k=1C

k with the arc set

{ij ∈ A : i, j ∈ Sk for some k ∈ {1, . . . , p+ 1}}

is considered. Some minor modifications are needed if loops are allowed. In this case,
the incidence vector x(C1,...,Cp) has length N2p. Moreover, the right-hand-side of (8) has
to be changed to 1.

3 The HpM–polytope

We define the Hamiltonian p–median polytope PN,p (HpM-polytope) as the convex hull
of the incidence vectors of all Hamiltonian p-medians:

PN,p := conv{x(C1,...,Cp)| (C1, . . . , Cp) ∈ Cp, |Ck| ≥ 2, k = 1, . . . , p}.

In the case p = 1, the HpM–polytope coincides with the asymmetric travelling salesman
polytope, which has been intensively studied, see [7] and [11], for instance. One can
comprehend the complexity of the HpM-polytope by enumerating the number of its
vertices:

Lemma 1 The HpM–polytope P consists of

N !
∑

(n1,...,np)∈KN,p

1
p∏

k=1

nk

vertices, where

KN,p := {(n1, . . . , np) :

p∑
k=1

nk = N, nk ≥ 2}

denotes the number of p–compositions of N with each component being at least 2.
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Proof. Let nk := |Ck| denote the number of arcs of the k-th circuit for k = 1, . . . , p.
It is well known that the number of different possibilities to assign nk vertices to circuit
Ck for k = 1, . . . , p is the multinomial coefficient(

N

n1, . . . , np

)
=

N !
p∏

k=1

(nk!)

. (11)

We receive an overall number of

N !
p∏
k=1

(nk − 1)!

p∏
k=1

(nk!)

=
N !
p∏

k=1

nk

(12)

feasible solutions per given p–composition(n1, . . . , np) and the proof is complete. �

We obtain another formula for the number of feasible solutions: We define

KN,p(π) := {(n1, . . . , np) ∈ KN,p,

p∏
k=1

nk = π}

as the set of all p–compositions of N with constant product value π. Then we can express
the number in (12) by

N !
∑
π

|KN,p(π)|
π

In this section, our main goal is to determine the dimension of PN,p. We write

P(N,p) := {x ∈ {0, 1}(N(N−1)p : D1x = 1 (13)

D2x = 1 (14)

D3x = 0 (15)

Ax ≤ b }. (16)

Here D1 corresponds to the equality constraints (4), D2 to (5) and D3 corresponds to
the equality constraints (6). Finally, A corresponds to the inequality constraints (7) and
(8). By 1m, resp. 0m we denote the all-one-vector, resp. the all-zero-vector of dimension
m. Usually, the subscript will be omitted.

The vector x has length N(N − 1)p and its coordinates (hence the columns of
D1, D2, D3 and A) are indexed by the arcs ij of the graph D = (V,A) and the cir-
cuits Ck, k = 1, . . . , p:

x = (xkij)ij∈A, k∈{1,...,p}.

Throughout this paper, we use the following notation and terminology: Let Ik denote
the index set corresponding to Ck, i.e. Ik := {(i, j, k) : ij ∈ A}. The columns indexed
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by Ik are sometimes called the ”k–th column complex”. If A is a matrix whose columns
are indexed by arcs and circuits, we denote the k-th column complex of A by Ak: These
are the columns of A indexed by elements from Ik.

Note that D′ :=
(
D1

D2

)
is just a p-fold copy of a 2N×N(N−1)-matrix T corresponding

to the first column complex. It is well known from the ATSP (see [7]) and also easy to
see that the rank of this matrix is 2N − 1 if N ≥ 3 and 2 in case N = 2: If N ≥ 3, the
column space generated by T is just the set of vectors (y1, . . . y2N ) satisfying

N∑
i=1

yi −
2N∑

i=N+1

yi = 0

where the first N coordinates correspond to the rows of D1 and the remaining rows to
D2.

Now we consider the third class of equation constraints D3 corresponding to (6). We
define D :=

(
D′

D3

)
. We obtain the following lemma (as mentioned above, (i) is folklore):

Lemma 2 Let N ≥ 3 and p ≤ bN/2c. Then

(i) rank(D′) = 2N − 1.

(ii) rank(D3) = p(N − 1).

(iii) rank(D) = p(N − 1) +N .

Proof. (ii) Due to our partition of the columns into column complexes, the matrix D3

is block diagonal and consists of p identical diagonal blocks D1
3, . . . , D

p
3, each of which is

an element from {−1, 0, 1}N×N(N−1). All these matrices have the same rank. It follows
directly that

rank(D3) = p · rank(D1
3).

We determine the rank of D1
3 by determining the dimension of the nullspace (kernel) of

the linear mapping
M : RN 7→ RN(N−1), x 7→ xD1

3.

As each column of D1
3 has exactly one entry equal to 1, one entry equal to −1 and N −2

entries equal to 0, we have 1 ∈ nullspace(M). Obviously, the rank of D1
3 is at least

N − 1, hence rank(D1
3) = N − 1 and (ii) holds.

(iii) To prove the second statement, it is sufficient to show that the dimension of the
intersection of the rowspaces of D′ and D3 equals N − 1. Similar to (ii), we can restrict
ourselves to a column complex D′r of size 2N ×N(N −1) and a block diagonal complex
Dr

3 of size N ×N(N − 1). (It is sufficient to show rowspace(Dr
3) ⊂ rowspace(D′r) since

the matrices D′1, . . . , D′p are all equal.) This can be seen as follows: The row of Dr
3 cor-

responding to node i is the difference of the rows of D′r corresponding to the equalities∑
k

∑
j

xkij = 1 and
∑
k

∑
j

xkji = 1 restricted to the r-th column complex. �
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For further polyhedral investigations it would be desirable to find an irredundant

representation of Dx =

(
12N

0Np

)
where all equations are linearly independent. The

following lemma characterizes such an irredundant representation:

Lemma 3 An irredundant representation of Dx =

(
12N

0Np

)
is given by the N+p(N−1)

linearly independent equations

p∑
k=1

N∑
i=1

xkij = 1 (j = 1, . . . , N) (17)

N∑
i=1

xkij −
N∑
l=1

xkjl = 0 (j = 1, . . . , N − 1; k = 1, . . . , p). (18)

Proof. We have to show that the N outdegree constraints (5) and the p disjoint–cycle
or flow conservation constraints

N∑
i=1

xkiN −
N∑
l=1

xkNl = 0 k = 1, . . . , p

are implied by (4) and (18) which also proves the linear independence of the above
equations. Given node j ∈ 1, . . . , N − 1}, we add the disjoint–cycle constraints for
k = 1, . . . , p and get

p∑
k=1

(
N∑
i=1

xkij −
N∑
l=1

xkjl) = 0.

This shows that the outdegree constraints (5) hold for j = 1, . . . , N − 1. If one finally
adds for each k = 1, . . . , p the N − 1 different disjoint–cycle constraints one obtains

0 =
N−1∑
j=1

(
N∑
i=1

xkij −
N∑
l=1

xkjl) =
N∑
i=1

xkiN −
N∑
l=1

xkNl

which also implies
p∑
k=1

N∑
j=1

xkNj = 1

and we are done. �

Since

PN,p ⊆
{
x ∈ RN(N−1)p|

(
D′

D3

)
x =

(
1
0

)}
it follows that

dim(PN,p) ≤ N(N − 1)p− (N − 1)p−N = pN(N − 2)−N + p = p(N − 1)2 −N.
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As usual, the dimension of PN,p, denoted by dim(PN,p), is the affine dimension, which
equals the affine rank of P minus one. Since in our case the vector 0 is not contained in
the affine hull of PN,p, the affine dimension of PN,p is the dimension of the linear span
of PN,p minus one.

The next theorem shows that, unless N = 2p, this upper bound is tight. In order
to prove this main theorem we will state several technical lemmata which together yield
the main theorem: For this reason, we introduce the following notation: FN,p denotes
the matrix whose rows are the incidence vectors of all possible Hamiltonian p-medians
(where each circuit has length at least 2 since loops are not allowed). Moreover, we
divide FN,p = (F 1, . . . , F p) into p different column complexes F 1, . . . , F p each of column
size N(N − 1) corresponding to the p circuits C1, . . . , Cp.

The first lemma provides the dimension of a single column complex:

Lemma 4 For k = 1, . . . , p we have

rank(F k) =

{
N(N−1)

2
if N = 2p,N ≥ 4

(N − 1)2 otherwise.

Proof. First we consider the case N = 2p. Consequently, |Ck| = 2 holds for all
k = 1, . . . , p. There are exactly

(
N
2

)
different circuits of length two. Since all these

different circuits are pairwise arc–disjoint the associated incidence vectors are linearly
independent. But the incidence vectors of these tours are the rows of F k, and the
statement is proven.
Now let N > 2p. It suffices to consider F 1. Let Z1 ⊂ (0, 1)N(N−1) denote the set of
all incidence vectors of the Hamiltonian p–median restricted to the first circuit. Since
every circuit and consequently the associated incidence vectors fulfill the so–called flow–
conservation constraint ∑

i

xij =
∑
k

xjk

for all nodes j = 1, . . . , N , we have

〈Z1〉 ⊂ {x ∈ RN(N−1) :
∑
i

xij =
∑
k

xjk, j = 1, . . . , N}.

But the latter vector space is identical to the vector space of the incidence vectors of all
feasible circulations whose dimension is |A|−|V |+z where z is the number of connectivity
components of the underlying digraph (see [10]). In our case, z = 1. Thus we obtain

dim(cs(F 1)) ≤ N(N − 1)−N + 1 = (N − 1)2

where cs denotes the columnspace of a matrix. If we can construct (N − 1)2 linearly
independent columns, we are done. For this reason, we consider the (N − 1)2 columns
of F 1 indexed by the arc set

I := {ij ∈ A : 1 ≤ i ≤ N − 1, j 6= i} = A \ δ+({N}).
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Note that δ+({i}), resp. δ−({i}) denotes all arcs having tail i (resp. head N). Moreover,
we consider the (N − 1)2 rows of F1 which are associated with the N − 1 circuits
Ck := {(1, k, 1) : k = 2, . . . , N} of cardinality 2 and the (N − 1)(N − 2) circuits Cjk :=
{(1, j, k, 1) : j, k ∈ V \ {1}, j 6= k}. To prove the linear independence of the columns
indexed by I, we look at the system of linear equations∑

ij∈I
λijf

1
ij = 0

where f 1
ij denotes the column of F 1 corresponding to arc ij. More generally, f lij denotes

the respective column in F l. The nonexistence of a nontrivial solution is verified by
considering the (N − 1)2 rows corresponding to the circuits Ck and Cjk:

λ1j + λj1 = 0 (j = 2, . . . , N − 1) (19)

λ1N = 0 (20)

λ1j + λjN = 0 (j = 2, . . . , N − 1) (21)

λ1N + λj1 = 0 (j = 2, . . . , N − 1) (22)

λ1j + λjk + λk1 = 0 j, k ∈ V \ {1, N} (23)

This shows λij = 0 for all arcs ij ∈ I, hence the columns are linearly independent. �

We can also conclude from Lemma 4 that a basis of each column space is given by
the columns corresponding to the arc set A \ δ+({v}) as well as A \ δ−({v}) for each
node v ∈ V . Let

(F 1|F 2| . . . |F k) =: F k

denote the matrix formed by the first k column complexes of FN,p. In order to determine
the rank of F k we recursively calculate the dimension of the intersection of cs(F k−1)
and cs(F k). We will see that the dimensions of these intersections are always equal for
2 ≤ k ≤ p− 1.

Before we state this constant dimension lemma we state another lemma which we will
need for the case N > 2p. But first, let us introduce another bit of notation. With ev-
ery Hamiltonian p–median (C1, . . . , Cp), we associate its characteristics (|C1|, . . . , |Cp|).
Then we can divide the rows of FN,p into

(
N−p−1
p−1

)
different row complexes according to

their characteristics. Similarly, we speak about partial characteristics and partial row
complexes if the lengths of only some circuits are fixed.

Lemma 5 Let N > 2p. If

dim(cs(F k) ∩ cs(F l)) 6= 0

for some 1 ≤ k < l ≤ p− 1, then 1 ∈ F k.
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Proof. We can assume that p ≥ 3 holds, otherwise nothing has to be shown. If the
intersection of the column spaces of F k and F l is nontrivial, then the system of equations

k∑
h=1

∑
ij∈A

fhijλ
h
ij =

∑
ij∈A

f lijµij (24)

has a nontrivial solution. As usual, we select some appropriate equations: Let (C1, . . . ,
Ck, C l) denote a Hamiltonian (k + 1)–median which can be extended to a Hamiltonian
p–median. This simply means that the (k+1)–median contains at most N−2p+2(k+1)
nodes. The rows of the system (24) can be labelled by these (k + 1)–medians. The
important observation is that the left-hand side of (24) depends only on the circuits
in the first k column complexes, whereas the right-hand side depends only on column
complex l. We denote the right-hand side of (24) corresponding to circuit C l by w(C l).

Now it suffices to show that, in case of a nontrivial intersection of cs(F k) and cs(F l),
any two different circuits C l and C ′l have the same value w(C l) = w(C ′l). This argument
shows F k∩F l = 〈1〉 if the intersection is nontrivial. However, this stronger statement is
uninteresting since we are going to show that the intersection is actually trivial! In order
to prove w(C l) = w(C ′l) for any circuits C l and C ′l, we need another bit of notation:
For a fixed circuit C l, l > k, let

R(C l) := {(C1, . . . , Ck) : (C1, . . . , Ck, . . . , C l, . . . , Cp) ∈ Cp}

denote the set of all Hamiltonian k-medians which can be extended, together with the
circuit C l, to a Hamiltonian p–median . Now we distinguish two cases concerning the
node sets of C l and C ′l. In the first case, let |C l|+ |C ′l| ≤ N −2k (by abuse of notation,
in this context the set C l is just the vertex set of the circuit C l). It is easy to see that,
in this case, R(C l) ∩R(C ′l) 6= ∅. But this immediately implies w(C l) = w(C ′l).

The second case |C ′l| + |C l| > N − 2k is more involved. In this situation, |R(C l) ∩
R(C ′l)| ≥ 1 does not hold any more. Thus we have to apply more sophisticated argu-
ments. We introduce the so–called (undirected) compatibility–graph GC := (VC , AC) on∑N−2(p−1)

k=2

(
N
k

)
vertices where each element in VC corresponds to a circuit. Two vertices

(circuits) C l, C ′l ∈ VC are joined by an edge if and only if

|R(C l) ∩R(C ′l)| ≥ 1.

We will show that this graph is connected (actually, the diameter of GC is three, i.e. any
two vertices can be joined by a path of length at most three). The connectivity imme-
diately shows (as above) w(C l) = w(C ′l) for all circuits C l and C ′l.

In order to show connectivity we must distinguish two cases (note that the case
C l ⊆ C ′l is trivial):

(A) |C l \ C ′l| ≥ 2 or |C ′l \ C l| ≥ 2.
Let C l and C ′l be two circuits with (w.l.o.g.) |C l\C ′l| ≥ 2. Let U l be a circuit in C l \C ′l
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with a length of at most N − 2k − |C ′l| (best choice is |U l| = 2). We obtain a path of
length two by the following two edges:

R(C ′l) ∩R(U l) 6= ∅ =⇒ w(C ′l) = w(U l)

R(U l) ∩R(C l) 6= ∅ =⇒ w(U l) = w(C l).

(B) |C l \ C ′l| = 1 and |C ′l \ C l| = 1.
In this case, there exist v, w ∈ V such that v, w 6∈ C l ∪C ′l (note that |C l ∪C ′l| ≤ N − 2
since there is at least one column complex whose index is not in {1, 2, . . . , k, l}. Similar
to (A) we conclude:

R(C l) ∩R(C ′l \C l ∪ {v}) 6= ∅ =⇒ w(C l) = w(C ′l \ C l ∪ {v})
R(C ′l \ C l ∪ {v}) ∩R(C l \ C ′l ∪ {w}) 6= ∅ =⇒ w(C l \ C ′l ∪ {v}) = w(C ′l \ C l ∪ {w})

R(C l \ C ′l ∪ {w}) ∩R(C ′l) 6= ∅ =⇒ w(C l \ C ′l ∪ {w}) = w(C ′l).

�
Now we can prove the “constant dimension lemma”:

Lemma 6 (constant dimension lemma) Let p ≥ 3 and 1 ≤ k ≤ p − 2, k < l ≤ p.
Then

(i) dim(cs(F k) ∩ cs(F l)) = 1 for N = 2p.

(ii) dim(cs(F k) ∩ cs(F l)) = 0 for N > 2p.

Proof. First, we consider case (i): Adding all the columns of one column complex yields
the vector 2 ·1. The reason is simply that each row of a column complex consists of two
entries equal to one and all other entries are zeros (since N = 2p). Hence we obtain

1 ∈ cs(F k) ∩ cs(F l).

We are now going to show that the all-one-vector 1 and its multiples are the only vectors
in the intersection cs(F k) ∩ cs(F l) with l > k. In order to do this, we use a little trick
that will be used several times in the remainder of this paper.

In each column complex F h, we choose an N(N − 1)/2–dimensional basis B(F h) :=
{bh1 , . . . , bhN(N−1)

2

}, which is formed by the columns corresponding to the arc set Ai<j :=

{ij ∈ A : 1 ≤ i < j ≤ N}. We can also think of Ai<j as the set of undirected arcs. We
will use the set of unordered pairs {i, j} as index set for the basis B(Fh). Let x be an
arbitrary vector in cs(F k) ∩ cs(F l). Then there exist

(λ1
1, . . . , λ

1
(N−1)N

2

, λ2
1, . . . , λ

k
(N−1)N

2

) ∈ R
kN(N−1)

2 and (µl1, . . . , µ
l
(N−1)N

2

) ∈ R
N(N−1)

2

such that
k∑
h=1

N(N−1)/2∑
i=1

λhi b
h
i = x =

N(N−1)/2∑
j=1

µjb
l
j (25)
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holds. Given x, the µj ’s are unique, but not the λi’s. Now we consider the Hamiltonian
p–medians (C1, . . . , Cp) where Ch consists of the node pairs {2h−1, 2h} for h = 1, . . . , k.
The circuit C l is defined by the node pair {v, w}, w > v > 2k. Then (25) yields the
following linear equations:

λ1
12 + λ2

34 + . . .+ λk2k−1,2k = µlvw for all (v, w) with 2k < v < w ≤ N. (26)

We see that the right-hand-side of (26) is independent from the left-hand-side. Therefore,
removing the special role of the nodes 1, . . . k, we obtain the following: For each subset
T ⊂ V with |T | = 2k we have µlvw = µlv′w′ for all v, w, v′, w′ ∈ V \ T , v < w and v′ < w′.
In other words: If k < p−1, the coefficients of the basis representation of x with respect
to the basis B(F l) are pairwise equal. This argument shows that µlvw = µlv′w′ for all
v, w, v′, w′ with v < w and v′ < w′. (Note that this reasoning fails for k = p− 1.) But
this is equivalent to x ∈ 〈1〉 and the statement is proven.

Now we consider the more complicated case N > 2p. Due to Lemma 5 it suffices to
show that 1 is not contained in cs(F k). In order to show this, we label the columns of
F k by i = 1, . . . , N(N − 1)k such that the first N(N − 1) rows are the rows of the first
column complex. We put

N(N−1)k∑
i=1

fiλi = 1. (27)

where fi denotes the i-th column of F k. We will obtain a contradiction by looking at
those rows which have the “partial characteristics” (n1, . . . , nk) with

∑k
i=1 ni = 2k and∑k

i=1 ni = 2k + 1. In the first case, ni = 2 for i = 1, . . . , k; the latter case describes all
rows where exactly one of the first k circuits has a cardinality of three and the other
consist of two nodes.

We are now going to sum all the entries of the vectors on the left-hand side of (27)
corresponding to certain “partial” characteristics as well as the corresponding entries on
the right-hand side. This will yield a contradiction: The number of rows with a partial
characteristics of all two’s (i.e.

∑k
i=1 ni = 2k) is

k−1∏
h=0

(
N − 2h

2

)
=

N !

(N − 2k)!2k
. (28)

The sum of these yield

N(N−1)k∑
i=1

(N − 2)!

2k−1(N − 2k)!
λi =

N !

(N − 2k)!2k
. (29)

We put

λ =

N(N−1)k∑
i=1

λi,
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therefore we can write (29)

λ · (N − 2)!

2k−1(N − 2k)!
=

N !

(N − 2k)!2k
. (30)

Now let (3, 2, 2, . . . , 2) denote the partial characteristics of a row complex with precisely
one entry 3 and all the other entries 2. There are

2

(
N

3

) k−2∏
h=0

(
N − 3− 2h

2

)
=

N !

3 · 2k−1(N − 2k − 1)!
(31)

different rows of F k with characteristics (3, 2, . . . , 2). Summation yields

N(N−1)∑
i=1

(N − 2)!

2k−1(N − 2k − 1)!
λi +

N(N−1)k∑
i=N(N−1)+1

(N − 2)!

3 · 2k−2(N − 2k − 1)!
λi =

=
N !

3 · 2k−1(N − 2k − 1)!
. (32)

Iterating this argument for all possible choices of the “exceptional” circuit with 3 nodes
and adding the respective k equalities (32), we obtain

N(N−1)k∑
i=1

(
(N − 2)!

2k−1(N − 2k − 1)!
+

(k − 1)(N − 2)!

3 · 2k−2(N − 2k − 1)!

)
λi =

N !k

3 · 2k−1(N − 2k − 1)!

or

λ · (N − 2)!(2k + 1)

3 · 2k−1(N − 2k − 1)!
=

N !k

3 · 2k−1(N − 2k − 1)!
. (33)

It is easy to see that the two equations (30) and (33) cannot be solved simultaneously.
This proves (ii). �

Finally, we consider the intersection of cs(F p−1) and F p:

Lemma 7 (i) dim(cs(F p−1) ∩ cs(F p)) = N for N = 2p.

(ii) dim(cs(F p−1) ∩ cs(F p)) = N − 1 for N > 2p.

Proof. In both cases we will prove the assertion by explicitly constructing a basis of
the intersection

cs(F p−1) ∩ cs(F p). (34)

(i) As in the proof of Lemma 6, let B(F k) denote the basis of the column space of F k,
k = 1, . . . , p, induced by the arc set Ai<j. We will prove that, for i = 1, . . . , N , the sum
of all columns of F p indexed by the arc set A(δ+({i}) := {ij : j = 1, . . . , N, j 6= i} is
in the intersection of the two vector spaces in (34). We call this sum sc(i). Note that



the electronic journal of combinatorics 7 (2000), #R42 15

the components of sc(i) are 1 if i ∈ Cp and 0 otherwise. In order to represent sc(i) as a
linear combination of the basis of F 1, . . . , F p−1, the following linear system of equations
has to be satisfied (here v1, . . . v2p−2 is a set of v2p−2 distinct vertices):

λ1
{v1v2} + λ2

{v3v4} + . . .+ λp−1
{v2p−3v2p−2} = ε. (35)

Here ε = 0 if i ∈ {v1, . . . , v2p−2} and 1 otherwise. As mentioned in Lemma 6, we can
think of the arcs vivj with vj > vi as edges {vi, vj} of the underlying undirected graph.
It is not difficult to see that (35) is satisfied by

λk{ij} = −p− 2

p− 1
, j = 1, . . . , N ; j 6= i; k = 1, . . . , p− 1

λk{jh} =
1

p− 1
, j, h = 1, . . . , N ; j, h 6= i; j 6= i; k = 1, . . . , p− 1.

Thus, the column sum vectors sc(i) are contained in the columnspace of F p−1.

Additionally, we have to show that

(a) the N column sum vectors sc(i), i = 1, . . . , N are linearly independent,

(b) the vectors sc(i) generate the intersection (34).

To prove (a), we look at the matrix whose columns are sc(1), . . . , sc(N). The submatrix
of it consisting of the rows indexed by the circuits (1, N, 1), (2, N, 2), . . . , (N−1, N,N−1)
and (N − 2, N − 1, N − 2) is 

1 0 · · · · · · 0 1

0 1 0 · · · ... 1
... 0

. . .
. . .

...
...

...
...

. . .
. . .

...
...

0 · · · · · · 0 1 1
0 · · · · · · 1 1 0


This matrix obviously has full rank, which proves the linear independence of the sc(i).

In order to prove part (b), we complete sc(1), . . . , sc(N) to a basis of F p by adding
N(N − 3)/2 columns of F p. We can construct such a basis complement by adding the
columns indexed by the arc set

I := {1j : 3 ≤ j ≤ N − 1} ∪ {ij : 2 ≤ i < j ≤ N − 1}.

We have to check that the columns fpij of F p indexed by the arcs in I together with
sc(1), . . . , sc(N) form a basis of the column space generated by F p. Moreover, we have
to check

cs(F p−1) ∩ cs(F p) = 〈sc(1), . . . , sc(N)〉.
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Both assertions follow from

cs(F p−1) ∩ 〈fpij〉ij∈I = {0} (36)

which we are now going to prove. But first we note that (36) really implies that the
columns of F p indexed by I form a basis complement of sc(1), . . . , sc(N): We know
already that 〈sc(1), . . . , sc(N)〉 ⊆ cs(F p), therefore (36) implies

〈fpij〉ij∈I ∩ 〈sc(1), . . . , sc(N)〉 = {0}.

In order to prove (36), we check that the system of linear equations

p−1∑
h=1

∑
1≤i<j≤N

µhijf
h
ij =

∑
ij∈I

λijf
p
ij

has only the trivial solution: We will show that each of the variables λij must be zero.
We check this for the variable λ3,4, the other cases are similar or easier. We consider
those rows of the system of linear equations where the circuits in the column complexes
F 3, . . . , F p−1 are fixed. Then we still have six different nodes for the remaining three
column complexes F1, F2 and Fp. Without loss of generality, we can assume that the
node set V6 = {1, 2, 3, 4, 5, N} still has to be assigned. Since the circuits in the column
complexes {3, . . . , p− 1} are fixed in those rows we are interested in, the entries of the
vector

p−1∑
h=3

∑
1≤i<j≤N

µhijf
h
ij

corresponding to these rows must have some constant value c. We obtain the following
six equations that have to be satisfied simultaneously:

µ1
34 + µ2

5N + c = 0 (C1 = (3, 4, 3), C2 = (5, N, 5), Cp = (1, 2, 1))

µ1
12 + µ2

5N + c = λ34 (C1 = (1, 2, 1), C2 = (5, N, 5), Cp = (3, 4, 3))

µ1
12 + µ2

45 + c = 0 (C1 = (1, 2, 1), C2 = (4, 5, 4), Cp = (3, N, 3))

µ1
13 + µ2

45 + c = 0 (C1 = (1, 3, 1), C2 = (4, 5, 4), Cp = (2, N, 2))

µ1
13 + µ2

25 + c = 0 (C1 = (1, 3, 1), C2 = (2, 5, 2), Cp = (4, N, 4))

µ1
34 + µ2

25 + c = 0 (C1 = (3, 4, 3), C2 = (2, 5, 2), Cp = (1, N, 1))

These six equations imply µ12 = µ13 and µ13 = µ34, hence µ12 = µ34 and λ34 = 0.

(ii) The proof resembles the proof of (i). We will also explicitly construct a basis of
the intersection of the two vector spaces. For this reason, we look at the N − 1 column
sum difference vectors sc(i)−sc(i+1), i = 1, . . . , N−1 of the p-th column complex. For
the definition of the vectors sc(i), see the remarks following (34). Each of these vectors
is formed by a linear combination of 2(N − 1) columns of Fp. First of all we show that
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the vectors sc(i)− sc(i+ 1), i = 1, . . . , N − 1 are linearly independent. We arrange the
N − 1 vectors in a matrix which has the following (N − 1)× (N − 1) submatrix:

0 1 0 · · · · · · 0

1 −1 1 0 · · · ...
1 0 −1 1 0 · · ·
...

... 0
. . . . . . 0

1 0 · · · · · · −1 1
1 0 · · · · · · 0 −1


.

The rows correspond to the N − 1 circuits Cp = (1, k, 1) of length 2 (k = 2, . . . , N).
Since this matrix has full rank, the vectors sc(i)− sc(i+ 1) are linearly independent.

We will now show that the vectors sc(i)− sc(i+ 1) are contained in cs(F p−1). Note
that sc(i)− sc(i+ 1) has just three different entries −1, 1 and 0. An entry 1 means that
i is contained in Cp, but the node i + 1 is not. If the entry is −1 then there exists an
arc (i+ 1, j) with j 6= i in Cp but no arc incident with i. An entry 0 means that i and
i + 1 are either both contained in Cp or none of it. By using this “decoding” you can
easily check that the following allocation of scalars to the basis vectors of the first p− 1
column complexes yields a representation of sc(i)− sc(i+ 1):

λkij = −1 j 6= i; k = 1, . . . , p− 1

λk(i+1)j = 1 j 6= i+ 1; k = 1, . . . , p− 1

λkhj = 0 h 6= i, i+ 1; j 6= h; k = 1, . . . , p− 1.

Now we choose the (N − 1)(N − 2) columns of F p indexed by the arc set I := {ij :
1 ≤ i, j ≤ N − 1, j 6= i}. We will show that

p−1∑
h=1

∑
1≤i≤N−1

j 6=i

µhijf
h
ij = x =

∑
ij∈I

λijf
p
ij (37)

is solvable only if x = 0. (Note that the (N − 1)2 columns indexed by the arcs {ij :
1 ≤ i ≤ N − 1, j 6= i} in some column complex form a basis of the column space of this
complex). This will show that the (N − 1)(N − 2) column vectors corresponding to the
arcs I form a basis complement of the vectors sc(i) − sc(i + 1) in F p. Moreover, the
argument implies

〈sc(i)− sc(i+ 1)〉i=1,...,N−1 = cs(F p−1) ∩ cs(F p).

For the remainder of the proof we will assume that p ≥ 3 holds, the case 2 is easier.
For this purpose, we will successively fix p − 2 of the first p − 1 circuits. We start by
fixing circuits C2, . . . , Cp−1. Again, by abuse of notation, we denote the node set of
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Ci also by Ci. Let u, v, w, z,N denote 5 distinct elements /∈
⋃p−1
i=2 C

i. We denote the
expression

p−1∑
h=2

∑
1≤i≤N−1

j 6=i

µhijf
h
ij

of the corresponding partial row complex (C2, . . . , Cp−1) by c. First we will consider
only those rows where the circuits C1 and Cp fulfill

(|C1| = 2, |Cp| = 3 or |C1| = 3, |Cp| = 2) and N ∈ Cp

Since all arcs (i, N) and (N, i) are excluded from I, this restriction will shorten the right-
hand sides of our equations in (37). We obtain the following system of linear equations
for our special allocations of C1 and Cp:

µ1
uv + µ1

vu + c = λwz (38)

µ1
uv + µ1

vu + c = λzw (39)

µ1
uv + µ1

vw + µ1
wu + c = 0 (40)

µ1
uw + µ1

wv + µ1
vu + c = 0. (41)

The equations (38) and (39) together imply that

λwz = λzw (42)

holds for all w, x ∈ V \ {N}. Adding (40) and (41) yields

µ1
uv + µ1

vw + µ1
wu + µ1

uw + µ1
wv + µ1

vu + 2c = 0 = λwz + λuz + λvz − c.

Consequently,
λwz + λuz + λvz = c (43)

holds for all feasible allocations of (u, v, w, z). We obtain the following four equations

λwz + λuz + λvz = c (44)

λuw + λvw + λzw = c (45)

λuv + λwv + λzv = c (46)

λzu + λwu + λvu = c. (47)

In view of (42), we have actually just six different variables. It is not difficult to see that
these four equations imply

λij + λjk + λki = c

for all circuits (i, j, k, i) of length 3 with i, j, k ∈ {u, v, w, z} and consequently

λuv = λwz

λuw = λvz

λvw = λuz
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holds. However, we can repeat this argument with the four nodes {u, v, w, y} instead of
{u, v, w, z}. We obtain

λwz = λuv = λwy,

therefore λij = λkl for any four not necessarily different nodes i, j, k, l 6= N . This shows
λij = c/3 for any i, j 6= N .

Now we consider the five fixed nodes u, v, w, z,N and the circuits C1 and Cp with

(|C1| = 2, |Cp| = 3 or |C1| = 3, |Cp| = 2) and N ∈ C1

again. We obtain the following equations by considering the circuits C1 = (u,N, u) and
C ′1 = (u,N, v, u):

µ1
uN + c = λvw + λwz + λzv = c

µ1
uN + µ1

vu + c = λwz + λzw.

Hence we can conclude that µ1
uN = 0 for all u ∈ V \ {N} and µ1

vu = −c/3 holds for all
u, v ∈ V \ {N}.

If we successively fix (C1, C3, . . . , Cp−1), . . . , (C1, . . . , Cp−2) and only permute the
five nodes on the two circuits Ck and Cp for k = 2, . . . , p − 1 we obtain µhuN = 0 and
µhuv = −c/3 for all u, v ∈ V \ {N} and h = 1, . . . , p − 1. But then an Hamiltonian
p–median with Cp = (u,N, u) and the corresponding equation

−(N − 2)c/3 = 0

shows that c/3 = λuv = 0 holds for all uv ∈ I and the proof is complete. �

Using the previous four lemmata we can easily prove the following dimension theorem:

Theorem 1 Let PN,p denote the Hamiltonian p–median polytope, and let N ≥ 3, N ≥
2p. Then we obtain the following dimension formula:

dim(PN,p) =


5 if N = 4, p = 2

pN(N−1)
2

−N − p+ 1 if N = 2p,N ≥ 6

p(N − 1)2 −N otherwise.

(48)

Proof. In case (N, p) = (4, 2) the result is trivial since all six possible feasible solutions
are arc–disjoint, therefore the corresponding incidence vectors are linearly independent.
In the second case, there exist exactly N !

2p
feasible solutions, as (n1, . . . , np) = (2, . . . , 2)

is the only possible p–composition of 2p (each circuit has length 2). We will show that

the rank of F 2p,p is pN(N−1)
2

−N − p+ 2 which proves the assertion.
Applying Lemma 4 and iterating Lemma 6 for k = 1, . . . , p− 1, we obtain by means

of the dimension formula for vector spaces

dim(cs(F p−1)) = (p− 1)dim(cs(F 1))− (p− 2) = (p− 1)N(N − 1)/2− p+ 2.
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We obtain the stated dimension for N = 2p by applying Lemma 7 and the dimension
formula for the intersection of vector spaces, which says:

dim(PN,p) = dim(cs(F p))− 1 =

= dim(cs(F p−1)) + dim(cs(F p))− dim(cs(F p−1) ∩ cs(F p))− 1 =

= (p− 1)N(N − 1)/2− p + 2 + N(N − 1)/2−N − 1 =

=
pN(N − 1)

2
−N − p+ 1.

Similarly, we obtain the dimension of the general case N > 2p by analogously apply-
ing the above lemmata and the dimension formula for the intersection of vector spaces:

dim(PN,p) = dim(cs(F p))− 1 =

= dim(cs(F p−1)) + dim(cs(F p))− dim(cs(F p−1) ∩ cs(F p))− 1 =

= (p− 1)(N − 1)2 + (N − 1)2 − (N − 1)− 1 =

= p(N − 1)2 −N.

�

We make some remarks concerning this theorem and its rather long proof.

(i) In case N = 2p, we have an overall number of pN(N − 3)/2 + 2p − 1 implicit
equations. It turns out that a minimal system of equations for PN,p is given by
the linearly independent equations

p∑
k=1

N∑
i=1,i6=j

xkij = 1 (j = 1, . . . , N)

xkij − xkji = 0 (1 ≤ i < j ≤ N ; 1 ≤ k ≤ p)

xk(A) = 2 (k = 1, . . . , p−1).

(ii) The general case (N 6= 2p) is easier: We can determine (by selecting p(N −1) +N
linearly independent rows from D, see Lemma 3) a minimal system of equations
satisfied by PN,p. Using Lemma 3 we have

AH(PN,p) = {x ∈ RN(N−1)p| x satisfies (4) and (18)}.

(iii) In the general case, the dimension formula can be written in the form

dim(PN,p) = p|A| − (p+ 1)|V |+ p.

This shows that for p = 1 the formula yields the dimension of the asymmetric
travelling salesman polytope (as expected).
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(iv) Of course, the results of this section can also be transferred to the symmetrical
version of the Hamiltonian p-median. We will not consider this case in detail but
summarize the analogous results in the following theorem:

Theorem 2 Let G = (V,E) denote a complete graph on N = |V | vertices. Let

Csp := {(C1, . . . , Cp)| Ci = (Vi, Ei) circuit inG, Vi ∩ Vj = ∅ for i 6= j,

p⋃
i=1

Vi = V }

denote the set of all feasible symmetrical Hamiltonian p–medians. The symmetrical
Hamiltonian p–median polytope SN,p is the convex hull of the incidence vectors of all
feasible symmetrical Hamiltonian p-medians. Then the following holds for SN,p:

(i) The symmetrical Hamiltonian p–median polytope consists of

N !

2p

∑
(n1,...,np)∈KN,p

3

1
p∏
i=1

ni

vertices, where

KN,p
3 := {(n1, . . . , np)|

p∑
k=1

= N, nk ≥ 3, k = 1, . . . , p}.

(ii) The affine hull AH(SN,p) is contained in

{x ∈ RN(N−1)p/2|
p∑

k+1

N∑
i=1
i6=j

xkij = 2 for all j = 1, . . . , N}.

Moreover, these equations are linearly independent.

(iii)

dim(SN,p) =


14 if N = 6, p = 2

p·N(N−1)
2

−N − p+ 1 if N = 3p,N ≥ 9

pN(N−1)
2

−N otherwise.

(49)

Proof. The proofs are similar to the asymmetric case and therefore omitted. �

The next goal is to find classes of facet–defining–inequalities for PN,p. In [11] it
was shown that the nonnegativity constraints xij ≥ 0 define facets of the asymmetric
traveling salesman polytope, provided that the number N of nodes is at least 5. The
corresponding inequalities are also facet-defining for the Hamiltonian p–median polytope
PN,p as the next theorem shows:
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Theorem 3 Let p ≥ 1, N ≥ 4 and (N, p) 6= (4, 1). Then xkij ≥ 0 define facets of PN,p
for all ij ∈ A and k = 1, . . . , p. Moreover, the number of vertices which are contained
in one of these facets

PN,p ∩ {x ∈ RN(N−1)p|xkij = 0} (50)

is

(N − 2)!
∑

(n1,...,np)∈KN,p
2

N(N − 1)− nk
p∏
i=1

ni

,

where

KN,p
2 := {(n1, . . . , np)|

p∑
k=1

= N, nk ≥ 2, k = 1, . . . , p}.

Proof. We will prove the facet–property of the nonnegativity constraints by the direct
method, i.e. we will show that there are dim(PN,p) affinely independent incidence vectors
of Hamiltonian p–medians which satisfy xpN−1,N = 0 (we may assume (i, j) = (N −1, N)
and k = p without loss of generality). Let T be a matrix whose rows are indexed
by the Hamiltonian p–medians. We delete the rows corresponding to p–medians with
xpN−1,N = 0 and call this map π. We have to check

dim(rs(π(FN,p))) = dim(rs(FN,p))− 1,

where rs denotes the rowspace of a matrix. We consider, as in the proof of Theorem 1,
the trivial case (N, p) = (4, 2) separately: In this situation, the six possible Hamiltonian
p-medians are already linearly and consequently affinely independent: There are five
affinely independent p–medians satisfying x2

3,4 = 0.
In the general case, we note that

dim(rs(π(F k))) = dim(rs(F k)) for k = 1, . . . , p− 1

(which is rather obvious) and

dim(rs(π(F p))) = dim(rs(F p))− 1.

To understand the latter equation we will only consider the more difficult case N > 2p.
We have to show that the removal of all rows which contain the arc (N − 1, N) in the
p-th circuit reduces the dimension of the row space rs(F p) by one. From the proof
of Theorem 1 we know that for some fixed node, say node 1, the incidence vectors
of all circuits Ck := {(1, k, 1) : k = 2, . . . , N} having cardinality 2 and all circuits
Cjk := {(1, j, k, 1) : j, k ∈ V \ {1}, j 6= k} of cardinality 3 form a basis B of the row
space of F p. The only basis vector in B not contained in rs(π(F p)) is the row indexed
by the circuit CN−1,N . Therefore, the dimension loss of one is obvious.

We can now repeat the proof of Theorem 1 basically verbatim for the column spaces
cs(π(F k)) and cs(π(F k)) in order to check the dimensions of the intersections

cs(π(F k)) ∩ cs(π(F k)).
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It turns out that

dim(cs(π(F k−1)) ∩ cs(π(F k))) = dim(cs(F k−1) ∩ cs(F k)) for k = 2, . . . , p.

This proves that (50) define facets.
To prove the second statement we subtract from the number of all Hamiltonian

p–medians (see Lemma 1) the number of those Hamiltonian p–medians where the arc ij
is contained in the k-th circuit. This number is given by (see the proof of Lemma 1)

(N − 2)!
∑

(n1,...,np)∈KN,p
2

1
p∏
i=1
i6=k

ni

which yields the desired result. �

As for the asymmetric traveling salesman problem one can check that the trivial
inequalities xkij ≤ 1 are not facet-defining because they are implied by the successor
and nonnegativity constraints. From Theorem 1 it is clear that the cycle existence
constraints (8) cannot be facet–defining since a restriction of a column complex F k to
the rows corresponding to circuits of length 2 only yields a column rank of N(N − 1)/2
instead of (N − 1)2. This dimension is too small in order to find pN(N − 2) − N + p
linearly independent Hamiltonian p-medians since the dimensions of the other column
complexes F i (i 6= k) are at most (N − 1)2.

It is possible to show that the subtour number constraints (7) (which are of interest
only if N ≥ 2p + 2) are not facet–defining for N = 2p + 2. Numerical data indicates
that they are also not facet–defining for N > 2p+ 2.

4 Conclusions

In this paper we presented a new ILP–formulation for the asymmetric Hamiltonian p–
median problem and investigated the basic properties of the associated Hamiltonian
p–median polytope. In order to solve “real-world” problems related to the Hamiltonian
p-median problem (see [6], for instance), it is necessary to know a lot more about the
corresponding polytope than just the dimension. In particular, it is necessary to know
facets of the polytope. But of course, to determine facets, i.e. faces of codimension
1, it is necessary to know the dimension of the polytope. Therefore, one can say that
this paper (which is, in our opinion, already long enough) is only a first step towards a
deeper understanding of the Hamiltonian p-median polytope.

More classes of valid inequalities are investigated in [5]. Parts of these results will be
published in a forthcoming paper. In particular, one can show that the linear ordering
constraints

N∑
i=2

i−1∑
j=1

xkij ≥ 1
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are facet defining.
In the case p = 1 the asymmetric Hamiltonian p–median problem is equivalent to the

asymmetric TSP. It is not clear whether there are relations between the Hamiltonian
p–median and the ATSP for p ≥ 2. Further investigations in [5] indicate that for
p ≥ 2 there is a closer relationship between the Hamiltonian p–median polytope and the
length–restricted circuit polytope which can be derived from PN,p by a projection from
RN(N−1)p into RN(N−1) whose kernel consists of p− 1 column complexes.

Moreover, it is not clear whether the asymmetric Hamiltonian p–median can be
efficiently transformed into the asymmetric m-TSP by introducing one artificial depot
node {0}, see [14]. We think that this is possible only in a more complicated graph–
theoretic model based on the line digraph L of DN+1 := (V ∪{0}, A∪{(0, v), (v, 0) : v ∈
V }). The line digraph L has (N + 1)N nodes and N2(N + 1) arcs: Each arc of DN+1

corresponds to a node of L and two nodes l1 and l2 are connected by an arc (l1, l2) if the
head of the arc corresponding to l1 is the tail of the arc associated to l2. If we define the
cost function c′ on the arc set A(L) of L by

c′(l1, l2) =



c(l1)+c(l2)
2

if l1, l2 ∈ A(L)

c(l1)
2

if l1 ∈ A(L), l2 ∈ δ−({0})
c(l2)

2
if l2 ∈ A(L), l1 ∈ δ+({0})

cvw if l1 = (v, 0), l2 = (0, w),

then each Hamiltonian p–median corresponds to a solution of on asymmetric p–TSP on
L with fixed depot node {0} and with the same costs. The drawback of this formulation
is that we obtain N2(N + 1) = O(N3) variables and cannot operate on a complete
digraph anymore since each node of L is only head and tail of exactly N arcs. To use
known polyhedral results on the ATSP–polytope we would also have to transform this
m–TSP to the standard ATSP, or try to make use of the few polyhedral results on the
similarly defined m–cost TSP, see [8].
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