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ABSTRACT: Building on the success of Quantum Monte Carlo
techniques such as diffusion Monte Carlo, alternative stochastic
approaches to solve electronic structure problems have emerged
over the past decade. The full configuration interaction quantum
Monte Carlo (FCIQMC) method allows one to systematically
approach the exact solution of such problems, for cases where
very high accuracy is desired. The introduction of FCIQMC has
subsequently led to the development of coupled cluster Monte
Carlo (CCMC) and density matrix quantum Monte Carlo
(DMQMC), allowing stochastic sampling of the coupled cluster
wave function and the exact thermal density matrix, respectively.
In this Article, we describe the HANDE-QMC code, an open-
source implementation of FCIQMC, CCMC and DMQMC, including initiator and semistochastic adaptations. We describe our
code and demonstrate its use on three example systems; a molecule (nitric oxide), a model solid (the uniform electron gas), and
a real solid (diamond). An illustrative tutorial is also included.

1. INTRODUCTION

Quantum Monte Carlo (QMC) methods, in their many forms,

are among the most reliable and accurate tools available for the

investigation of realistic quantum systems.1 QMC methods

have existed for decades, including notable approaches such as

variational Monte Carlo (VMC),2−6 diffusion Monte Carlo

(DMC),1,7−10 and auxiliary-field QMC (AFQMC);11 such

methods typically have low scaling with system size, efficient

large-scale parallelization, and systematic improvability, often
allowing benchmark-quality results in challenging systems.
A separate hierarchy exists in quantum chemistry, consisting

of methods such as coupled cluster (CC) theory,12 Møller−
Plesset perturbation theory (MPPT),13 and configuration
interaction (CI), with full CI (FCI)14 providing the exact
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benchmark within a given single-particle basis set. The scaling
with the number of basis functions can be steep for these
methods: from N4 for MP2 to exponential for FCI. Various
approaches to tackle the steep scaling wall have been proposed
in the literature: from adaptive selection algorithms15−20 and
many-body expansions for CI21 to the exploitation of the
locality of the one-electron basis set22 for MP2 and CC.23−25

Such approaches have been increasingly successful, now often
allowing chemical accuracy to be achieved for systems
consisting of thousands of basis functions.
In 2009, Booth, Thom, and Alavi introduced the full

configuration interaction quantum Monte Carlo (FCIQMC)
method.26 The FCIQMC method allows essentially exact FCI
results to be achieved for systems beyond the reach of
traditional, exact FCI approaches; in this respect, the method
occupies a similar space to the density matrix renormalization
group (DMRG) algorithm27−29 and selected CI ap-
proaches.15−20 Employing a sparse and stochastic sampling
of the FCI wave function greatly reduces the memory
requirements, compared to exact approaches. The introduction
of FCIQMC has led to the development of several other
related QMC methods, including coupled cluster Monte Carlo
(CCMC),30,31 density matrix quantum Monte Carlo
(DMQMC),32,33 model space quantum Monte Carlo
(MSQMC),34−36 clock quantum Monte Carlo,37 driven-
dissipative quantum Monte Carlo (DDQMC),38 and several
other variants, including multiple approaches for studying
excited-state properties.34,39−41

In this Article, we present HANDE-QMC (Highly Accurate
N-Determinant Quantum Monte Carlo), which is an open-
source quantum chemistry code that performs several of the
above quantum Monte Carlo methods. In particular, we have
developed a highly optimized and massively parallelized
package to perform state-of-the-art FCIQMC, CCMC, and
DMQMC simulations.
An overview of stochastic quantum chemistry methods in

HANDE-QMC is given in Section 2. Section 3 describes the
HANDE-QMC package, including implementation details, our
development experiences, and analysis tools. Applications of
FCIQMC, CCMC, and DMQMC methods are contained in
Section 4. We conclude with a discussion in Section 5 with
views on scientific software development and an outlook on
future work. A tutorial on running HANDE is provided in
Appendix A.

2. STOCHASTIC QUANTUM CHEMISTRY

2.1. Full Configuration Interaction Quantum Monte
Carlo. The FCI ansatz for the ground state wave function is
|ΨCI⟩ = ∑i ci |Di⟩, where {Di} is the set of Slater determinants.
Noting that (1 − δτĤ)N |Ψ0⟩ ∝ |ΨCI⟩ as N → ∞, where Ψ0 is
some arbitrary initial vector with ⟨Ψ0|ΨCI⟩ ≠ 0 and δτ is
sufficiently small,42 the coefficients {ci} can be found via an
iterative process derived from a first-order solution to the
imaginary-time Schrödinger equation:26

∑τ δτ τ δτ τ+ = − ⟨ | ̂ | ⟩c c D H D c( ) ( ) ( )i i

j

i j j

(1)

A key insight is that the action of the Hamiltonian can be
applied stochastically rather than deterministically: the wave
function is discretized by using a set of particles with weight
±1 to represent the coefficients, and is evolved in imaginary
time by stochastically creating new particles according to the

Hamiltonian matrix (section 2.4). By starting with just particles
on the Hartree−Fock determinant or a small number of
determinants, the sparsity of the FCI wave function emerges
naturally. Hence, the FCIQMC algorithm has substantially
reduced memory requirements26 and is naturally scalable,43 in
contrast to conventional Lanczos techniques. The sign
problem manifests itself in the competing in-phase and out-
of-phase combinations of particles with positive and negative
signs on the same determinant;42 this is alleviated by exactly
canceling particles of opposite sign on the same determinant,
in a process called “annihilation”. This results in the distinctive
population dynamics of an FCIQMC simulation, and a system-
specific critical population is required to obtain a statistical
representation of the correct FCI wave function.42 Once the
ground-state FCI wave function has been reached, the
population is controlled via a diagonal energy offset9,26 and
statistics can be accumulated for the energy estimator and, if
desired, other properties.
The stochastic efficiency of the algorithm (determined by

the size of statistical errors for a given computer time) can be
improved by several approaches: using real weights, rather than
integer weights, to represent particle amplitudes;44,45 a
semistochastic propagation, in which the action of the
Hamiltonian in a small subspace of determinants is applied
exactly;44,46 and more efficient sampling of the Hamiltonian by
incorporating information about the magnitude of the
Hamiltonian matrix elements into the selection probabil-
ities.47,48

The initiator approximation49 (often referred to as i-
FCIQMC) only permits new particles to be created on
previously unoccupied determinants if the spawning determi-
nant has a weight above a given thresholdthis introduces a
systematic error that is reduced with increasing particle
populations, but effectively reduces the severity of the sign
problem. This simple modification has proven remarkably
successful and permits FCI-quality calculations on Hilbert
spaces orders of magnitude beyond exact FCI.

2.2. Coupled Cluster Monte Carlo. The coupled cluster
wave function ansatz is |ΨCC⟩ = NeT̂ |DHF⟩, where T̂ is the
cluster operator containing all excitations up to a given
truncation level, N is a normalization factor, and |DHF⟩ is the
Hartree−Fock determinant. For convenience, we rewrite the
wave function ansatz as |ΨCC⟩ = tHFe

T̂/tHF |DHF⟩, where tHF is a
weight on the Hartree−Fock determinant, and is defined as T̂
= ∑i′ tiaî, where the prime (′) restricts the sum to be up to the
truncation level, aî is an excitation operator (excitor) (such
that aî |DHF⟩ results in |Di⟩), and ti is the corresponding
amplitude. Using the same first-order Euler approach as in
FCIQMC gives a similar propagation equation:

∑τ δτ τ δτ τ+ = − ⟨ | ̂ | ⟩ ̃t t D H D t( ) ( ) ( )i i

j

i j j

(2)

The key difference between eqs 1 and 2 is tj̃ = ⟨Dj|ΨCC⟩
contains contributions from clusters of excitors,30 whereas the
FCI wave function is a simple linear combination. It is tricky to
evaluate this both eciently and exactly at each iteration.
Instead, tj̃ is sampled and individual contributions propagated
separately.30,50,51 Barring this complication, the coupled cluster
wave function can be stochastically evolved using the same
approach as used in FCIQMC.

2.3. Density Matrix Quantum Monte Carlo. FCIQMC
and CCMC are both ground-state, zero-temperature methods
(although excited-state variants of FCIQMC exist34,39−41).
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The exact thermodynamic properties of a quantum system in
thermal equilibrium can be determined from the (unnormal-
ized) N-particle density matrix, ρ̂(β) = e−βĤ, where β = 1/kBT.
A direct evaluation of ρ̂(β) requires knowledge of the full
eigenspectrum of Ĥ, which is a hopeless task for all but trivial
systems. To make progress, we note that the density matrix
obeys the (symmetrized) Bloch equation

ρ

β
ρ ρ

̂
= − [ ̂ ̂ + ̂ ̂ ]H H

d

d

1

2 (3)

Representing ρ̂ in the Slater determinant basis, ρij = ⟨Di|ρ̂|Dj⟩
and again using a first-order update scheme results in similar
update equations to FCIQMC and CCMC:

∑ρ β δβ ρ β
δβ

ρ β ρ β+ = − [⟨ | ̂ | ⟩ + ⟨ | ̂ | ⟩]D H D D H D( ) ( )
2

( ) ( )
ij ij

k

i k kj ik k j

(4)

It follows that elements of the density matrix can be updated
stochastically in a similar fashion to FCIQMC and CCMC.
ρ(β) is a single stochastic measure of the exact density matrix
at inverse temperature β. Therefore, unlike FCIQMC and
CCMC, multiple independent simulations must be performed
in order to gather statistics at each temperature. The simplest
starting point for a simulation is at β = 0, where ρ is the
identity matrix. Each simulation (termed “β-loop”) consists of
sampling the identity matrix and propagating to the desired
value of β. Averaging over multiple β-loops gives thermal
properties at all temperatures in the range [0, β].
While this scheme is exact (except for small and controllable

errors due to finite δβ), it suffers from the issue that important
states at low temperature may not be sampled in the initial
(β = 0) density matrix, where all configurations are equally
important.33 To overcome this, we write Ĥ = Ĥ0 + V̂ and

define the auxiliary density matrix f(̂τ) = e−(β−τ)Ĥ
0

ρ̂(τ) with the
following properties:

̂ = β− ̂
f (0) e H

0

(5)

β ρ β̂ = ̂f ( ) ( ) (6)

τ

̂
= ̂ ̂ − ̂ ̂f

H f f H
d

d

0

(7)

We see that, with this form of density matrix, we can begin the
simulation from a mean-field solution defined by Ĥ0, which
should (by construction) lead to a distribution containing the
desired important states (such as the Hartree−Fock density
matrix element) at low temperature. Furthermore, if Ĥ0 is a
good mean field Hamiltonian, then eβĤ0ρ̂ is a slowly varying
function of β, and is thus easier to sample. Comparing eqs 3
and 7, we see that f ̂ can be stochastically sampled in a similar
fashion to DMQMC, with minor modifications relative to
using the unsymmetrized Bloch equation:32

(i) the choice of Ĥ0 changes the probability of killing a
particle (Section 2.4);

(ii) the τ = 0 initial configuration must be sampled according
to Ĥ0 rather than the identity matrix; and

(iii) evolving to τ = β gives a sample of the density matrix at
inverse temperature (β only)-independent simulations
must be performed to accumulate results at different
temperatures.

We term this method interaction-picture DMQMC (IP-
DMQMC).

2.4. Commonality between FCIQMC, CCMC, and
DMQMC. FCIQMC, CCMC, and DMQMC have more
similarities than differences: the amplitudes within the wave
function or density matrix are represented stochastically by a
weight, or a particle.52 These stochastic amplitudes are
sampled to produce states, which make up the wave function
or density matrix. For FCIQMC (DMQMC), a state
corresponds to a determinant (outer product of two
determinants); for CCMC, this corresponds to a term sampled
from the cluster expansion corresponding to a single
determinant. The stochastic representation of the wave
function or density matrix is evolved by spawning, death, or
annihilation. Spawning involves sampling the action of the
Hamiltonian on each (occupied) state, which requires random
selection of a state connected to the original state. The process
of random selection (“excitation generation”) is system-
dependent, because it is dependent on the connectivity of
the Hamiltonian matrix; efficient sampling of the Hamiltonian
has a substantial impact on the stochastic efficiency of a
simulation.44,47,48 Death involves killing each particle with
probability proportional to its diagonal Hamiltonian matrix
element. Annihilation involves combining particles on the same
state and canceling out particles with the same absolute weight
but opposite sign.
Energy estimators can be straightforwardly accumulated

during the evolution process. A parallel implementation
distributes states over multiple processors, each of which
need only evolve its own set of states. The annihilation stage
then requires an efficient process for determining to which
processor a newly spawned particle should be sent.43 For
CCMC, an additional communication step is required to
ensure that the sampling of products of amplitudes is
unbiased.50

Hence, FCIQMC, CCMC, and DMQMC share the majority
of the core algorithms in the HANDE-QMC implementations.
The primary difference is the representation of the wave
function or density matrix, and the action of the Hamiltonian
in the representation. These differences reside in the outermost
loop of the algorithm and, therefore, do not hinder the reuse of
components between the methods. This remains the case even
for linked coupled cluster Monte Carlo, which applies the
similarity-transformed Hamiltonian, e−T̂ĤeT̂, and the inter-
action picture formulation of DMQMC.
It is important to note that this core paradigm also covers

different approaches to propagation,34,44,49,53 the initiator
approximation,31,49,54 excitation generators,47,48 excited states
and properties,41,45,55 and can naturally be applied to different
wave function Ansa ̈tze,56 which can be added relatively
straightforwardly on top of a core implementation of
FCIQMC. Because of this, improvements in, for example,
excitation generators can be immediately used across all
methods in HANDE.

3. HANDE-QMC

3.1. Implementation. HANDE-QMC is implemented in
Fortran and takes advantage of the increased expressiveness
provided by the Fortran 2003 and 2008 standards.57

Parallelization over multiple processors is implemented using
OpenMP (CCMC-only for intranode shared memory
communication) and MPI. Parallelization and the reusability
of core procedures have been greatly aided by the use of pure
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procedures and minimal global state, especially for system and
calculation data.
We attempt to use best-in-class libraries where possible. This

allows for rapid development and a focus on the core QMC
algorithms. HANDE-QMC relies upon MurmurHash2 for
hashing operations,58 dSFMT for high-quality pseudorandom
number generation,59 numerical libraries (cephes,60 LAPACK,
ScaLAPACK, TRLan61,62) for special functions, matrix and
vector procedures and Lanczos diagonalization, and HDF5 for
file I/O.63 The input file to HANDE-QMC is a Lua script;64

Lua is a lightweight scripting language designed for embedding
in applications and can easily be used from Fortran codes via
the AOTUS library.65 Some of the advantages of using a
scripting language for the input file are detailed in section 5.
Calculation, system settings and other metadata are included

in the output in the JSON format,66 providing a good
compromise between human- and machine-readable output.
HANDE can be compiled either into a standalone binary or

into a library, allowing it to be used directly from existing
quantum chemistry packages. CMake67 is used for the build
system, which allows for autodetection of compilers, libraries,
and available settings in most cases. A legacy Makefile is also
included for compiling HANDE in more complex environ-
ments where direct and fine-grained control over settings is
useful.
Integrals for molecular and solid systems can be generated

by Hartree−Fock calculations using standard quantum
chemistry programs, such as Psi4,68 HORTON,69 PySCF,70

Q-Chem,71 and MOLPRO,72 in the plain-text FCIDUMP
format. HANDE can convert the FCIDUMP file to an HDF5
file, which gives a substantial space saving and can be read in
substantially more quickly. For example, an all-electron
FCIDUMP for coronene in a Dunning cc-pVDZ basis73 is
roughly 35 GB in size and takes 1840.88 s to read into
HANDE and initialize. When converted to HDF5 format, the
resulting file is 3.6 GB in size and initializing an identical
calculation takes only 60.83 s. This is useful in maximizing
resource utilization when performing large production-scale
calculations on HPC facilities. The memory demands of the
integrals are reduced by storing the two-electron integrals only
once on each node using either the MPI-3 shared memory
functionality or, for older MPI implementations, POSIX shared
memory.
In common with several Monte Carlo methods, data points

from consecutive iterations are not independent, as the
population at a given iteration is dependent on the population
at the previous iteration. This autocorrelation must be
removed in order to obtain accurate estimates of the standard
error arising from FCIQMC and CCMC simulations74 and is
most straightforwardly done via a reblocking analysis.75 This
can be performed as a post-processing step76 but is also
implemented as an on-the-fly algorithm,77 which enables
calculations to be terminated once a desired statistical error has
been reached.
It is often useful to continue an existing calculation; for

example, to accumulate more statistics to reduce the error bar,
to save equilibration time when investigating the effect of
calculation parameters or small geometry changes, or for
debugging when the bug is only evident deep into a
calculation. To aid these use cases, calculations can be stored
and resumed via the use of restart files. The state of the
pseudorandom number generator is included in the restart files
such that restarted calculations follow the same Markov chain

as if they had been run in a single calculation, assuming the
same calculation setup is used. We use the HDF5 format and
library for efficient I/O and compact file sizes. A key advantage
of this approach is that it abstracts the data layout into a
hierarchy (termed groups and datasets). This makes extending
the restart file format to include additional information while
maintaining backward compatibility with previous calculations
particularly straightforward. Each calculation is labeled with a
universally unique identifier (UUID),78 stored in the restart file
and included in the metadata of subsequent calculations. This
is critical for tracing the provenance of data generated over
multiple restarted calculations.
Extensive user-level documentation is included in the

HANDE-QMC package79 and details compilation, input
options, running HANDE, and calculation analysis. The
documentation also includes several tutorials on FCIQMC,
CCMC, and DMQMC, which guide new users through
generating the integrals (if required), running a QMC
calculation along with enabling options for improving
stochastic efficiency, and analyzing the calculations. The
HANDE source code is also heavily commented on and
contains extensive explanations on the theories and methods
implemented (especially for CCMC), and data structures.
Each procedure also begins with a comment block describing
its action, inputs, and outputs. We find this level of developer
documentation to be extremely important for onboarding new
developers and making HANDE accessible to modifications by
other researchers.

3.2. Development Methodology. The HANDE-QMC
project is managed using the Git distributed version control
system.80 A public Git repository is hosted on GitHub81 and is
updated with new features, improvements, and bug fixes. We
also use a private Git repository for more experimental
development and research; this allows for new features to be
iterated upon (and potentially changed or even removed)
without introducing instability into the more widely available
code.82 We regularly update the public version, from which
official releases are made, with the changes made in the private
repository. The code contains a comprehensive test suite83 and
when new features are implemented they are benchmarked
against existing codes wherever possible. Further details of our
development practices such as our development philosophy
and the extensive continuous integration setup using
Buildbot84 are outlined in ref 85.

3.3. pyhande. Interpretation and analysis of calculation
output is a critical part of computational science. While we
wrote scripts for performing common analyses, such as
reblocking to remove the effect of autocorrelation from
estimates of the standard error, we found that users would
write ad-hoc, fragile scripts for extracting other useful data,
which were rarely shared and contained overlapping
functionality. This additional barrier also hindered curiousity-
driven exploration of results. To address this, the HANDE-
QMC package includes pyhande, which is a Python library
used for working with HANDE calculation outputs. pyhande
extracts metadata (including version, system, and calculation
parameters, calculation UUID) into a Python dictionary and
the QMC output into a Pandas86 DataFrame, which
provides a powerful abstraction for further analysis. pyhande
includes scripts and functions to automate common tasks,
including reblocking analysis, plateau and shoulder31 height
estimation, stochastic inefficiency estimation,87 and reweight-
ing to reduce the bias arising from population control.9,88 We
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have found that the development of pyhande has aided
reproducibility by providing a single, robust implementation
for output parsing and common analyses, and has made more
complex analyses more straightforward by providing rich
access to raw data in a programmable environment. Indeed,
many functions included in pyhande began as exploratory
analysis in a Python shell or a Jupyter notebook. The HANDE-
QMC documentation also details pyhande and the tutorials
include several examples of using pyhande for data analysis.
pyhande makes extensive use of the Python scientific stack
(NumPy,89 SciPy,90 Pandas,86 and Matplotlib91).
3.4. License. HANDE-QMC is licensed under the GNU

Lesser General Public License, version 2.1. The LGPLv2.1 is a
weak copyleft license,92,93 which allows the QMC implemen-
tations to be incorporated in both open- and closed-source
quantum chemistry codes while encouraging developments
and improvements to be contributed back or made available
under the same terms.94 pyhande is licensed under the 3-
Clause BSD License,95 in keeping with many scientific Python
packages.

4. EXAMPLE RESULTS

In this section, we present calculations to demonstrate the core
functionality included in HANDE-QMC: we consider a small
molecule (nitric oxide); the uniform electron gas in the zero-
temperature ground state and at finite temperatures; and a
periodic solid, diamond, with k-point sampling. Appendix A
includes a tutorial on running and analyzing FCIQMC on the
water molecule in cc-pVDZ basis, which is easily accessible by
deterministic methods and can be easily performed on any
relatively modern laptop.
4.1. Computational Details. All calculations in this

section were run with HANDE versions earlier than version
1.4. Integrals were generated using PySCF, Psi4, and Q-Chem.
Input, output, and analysis scripts are available under a
Creative Commons License at https://doi.org/10.17863/
CAM.31933 containing specifics on which version is used for
some calculations, and which SCF program is used. Orbital
visualizations were made with IboView.96

4.2. Molecules: Nitric Oxide. Nitric oxide is an important
molecule, perhaps most notably as a signaling molecule in
multiple physiological processes. Here, we consider NO in a
cc-pVDZ basis set,73 correlating all 15 electrons. The FCI
space size is ∼1012, and so is somewhat beyond the reach of
exact FCI approaches. We consider initiator FCIQMC, using a
walker population of 8 × 106, which is more than sufficient to
achieve an accuracy of ∼0.1 mEh. This is then compared to
CCMC results for the CCSD, CCSDT, and CCSDTQ
Ansaẗze. An unrestricted Hartree−Fock (UHF) molecular
orbital basis is used. The computational resources to perform
this study are modest compared to state-of-the-art FCIQMC
simulations, never using more than about 100 processing cores.
In Figure 1 and Table 1, results are presented for this system

at varying internuclear distances. Remarkably good agreement
between CCSDTQ-MC and the i-FCIQMC is achieved, with
CCSDT-MC also performing extremely well. Statistical errors
do not pose any issue in these results, as is typically the case for
FCIQMC and CCMC simulations; all such error bars are
naturally of the order of 0.1 mEh or less. For i-FCIQMC results
the semistochastic adaptation was used,44,46 choosing the
deterministic space by the approach of ref 46. Figure 2
demonstrates such simulations before and after enabling
semistochastic propagation, and the benefits are clear. Indeed,

i-FCIQMC results here have statistical errors of order ∼1 μEh

or smaller.
CCMC calculations were performed with real weights using

the even selection algorithm.51 For the largest calculations,
CCSDTQ-MC, heat bath excitation generators were used with
up to 4.5 × 106 occupied excitors, parallelizing over 96 cores.
For comparison, deterministic single reference CCSDTQ
calculations performed with the MRCC program package97

required storage of 2.1 × 107 amplitudes, but did not converge
beyond R = 1.7 Å.
Table 1 also shows the percentage of correlation energy

captured by the various levels of CC, compared to i-FCIQMC.
CCSD and CCSDT capture >92% and >98% of the correlation
energy, respectively, with CCSDTQ essentially exact, and the
percentage decreasing with increasing bond length as expected.
The CCMC approach is particularly appropriate for such high-
order CC calculations, where stochastic sampling naturally
takes advantage of the sparse nature of the CC amplitudes.

4.3. Model Solid: Uniform Electron Gas. HANDE also
has built-in capability to perform calculations of model systems
commonly used in condensed matter physics, specifically the
uniform electron gas (UEG),98−100 the Hubbard model,101−103

and the Heisenberg model.32,104 Such model systems have
formed the foundation of our understanding of simple solids
and strongly correlated materials, and are a useful testing
ground for new computational approaches. Studying the UEG,
for example, has provided insight into the accuracy of many-
body electronic structure methods and has been a critical
ingredient for the development of many of the exchange-
correlation kernels used in Kohn−Sham density functional
theory.105−107

The UEG has been used recently as a means to benchmark
and test performance of new methods, such as modifications to
diffusion Monte Carlo (DMC), as well as low orders of
coupled cluster theory31,108−115 and FCIQMC.116−121

A recent CCMC study118 employing coupled cluster levels
up to CCSDTQ5 used HANDE to compute the total energy of
the UEG at rs = [0.5,5]a0, the range relevant to electron
densities in real solids.100 The results suggest that CCSDTQ

Figure 1. Binding curve of NO in a cc-pVDZ basis set, correlating all
electrons. Stochastic error bars are not visible on this scale, but all are
smaller than 1 mEh. For better resolution in the differences between
methods, see Table 1.
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might be necessary at low densities beyond rs = 3a0
118 in order

to achieve chemical accuracy, while CCSDTQ5 was necessary
to reproduce FCIQMC to within error bars.116−119

HANDE was also used in the resolution of a discrepancy
between restricted path-integral Monte Carlo and config-
uration path-integral Monte Carlo data for the exchange-
correlation energy of the UEG necessary to parametrize DFT
functionals at finite temperature.54,122−130 The UEG at finite
temperatures is parametrized by the density and the
degeneracy temperature,

Θ =
T

TF

where TF is the Fermi temperature.131 When both rs ≈ 1 and
Θ ≈ 1, the system is said to be in the warm dense regime, a

state of matter that is to be found in planetary interiors132 and
can be created experimentally in inertial confinement fusion
experiments.133

Here, we show that the use of HANDE can facilitate
straightforward benchmarking of model systems at both zero
and finite temperature. In Figure 3, we compare DMQMC

data for the 14-electron, spin-unpolarized UEG at finite Θ to
zero temperature (Θ = 0) energies found using CCMC and
FCIQMC118 for rs = 1a0. We compute the exchange-
correlation internal energy as

Θ = Θ − ΘE E T( ) ( ) ( )XC QMC 0 (8)

where EQMC(Θ) is the QMC total energy of the UEG and T0 is
the ideal kinetic energy of the same UEG. Even at rs = 1a0,
coupled cluster requires contributions from triple excitations to
obtain FCI-quality energies; CCSD differs by ∼1 mHa.
DMQMC results approach the expected zero temperature
limit given by both FCI and CC. Ground-state values from
coupled cluster and FCIQMC are presented in Table 2, to

Table 1. CCMC and i-FCIQMC Results for the NO Molecule in a cc-pVDZ Basis Set, Correlating All Electrons, as Plotted in
Figure 1a

Total Energy + 129Eh [Eh] Correlation Energy Recovered [%]

R [Å] CCSD CCSDT CCSDTQ i-FCIQMC CCSD CCSDT CCSDTQ

0.9 −0.328507(1) −0.3346(1) −0.33523(4) −0.335225(2) 97.7330(6) 99.78(5) 100.00(1)

1.0 −0.5162(2) −0.52478(2) −0.525448(6) −0.525470(2) 97.06(8) 99.779(6) 99.993(2)

1.1 −0.582684(9) −0.59317(8) −0.59447(3) −0.594565(3) 96.435(3) 99.58(2) 99.973(9)

1.154 −0.5904(5) −0.6018(3) −0.6035(2) −0.603772(2) 96.1(2) 99.43(9) 99.92(5)

1.2 −0.58653(3) −0.6005(4) −0.6018(2) −0.602136(3) 95.541(8) 99.5(1) 99.89(7)

1.3 −0.5622(2) −0.5782(4) −0.5790(6) −0.580833(3) 94.67(5) 99.2(1) 99.5(2)

1.4 −0.5256(2) −0.5451(10) −0.5471(7) −0.548340(3) 93.34(7) 99.1(3) 99.6(2)

1.7 −0.43299(10) −0.4503(5) −0.4543(1) −0.455765(4) 92.13(3) 98.1(2) 99.48(4)

2.0 −0.39816(6) −0.40800(9) −0.41010(6) −0.411350(2) 94.45(2) 98.59(4) 99.47(2)

2.5 −0.39132(5) −0.39371(8) −0.39434(2) −0.3954786(4) 98.05(2) 99.17(4) 99.467(8)
aUHF orbitals were used. Numbers in parentheses show statistical error bars, not systematic initiator error, which is estimated to be ∼0.1mEh for i-
FCIQMC results. i-FCIQMC results used the semi-stochastic adaptation with a deterministic space of size 2 × 104. The results of such a semi-
stochastic approach are demonstrated in Figure 2. The final three columns show the percentage of correlation energy recovered by CCSD-MC,
CCSDT-MC, and CCSDTQ-MC, compared to i-FCIQMC. i-FCIQMC calculations were performed with 8 × 106 walkers, and CCMC calculations
used, at most, 7 × 106 excips.

Figure 2. Example simulations in HANDE-QMC using the
semistochastic FCIQMC approach of Umrigar and co-workers.44

Vertical dashed lines show the iteration where the semistochastic
adaptation is begun, and the resulting reduction in noise is clear
thereafter. (a) NO in a cc-pVDZ basis set, with all electrons
correlated, at an internuclear distance of 1.154 Å. The deterministic
space is of size 2 × 104. (b) A half-filled two-dimensional (2-D) 18-
site Hubbard model at U/t = 1.3, using a deterministic space of size
104.

Figure 3. Exchange-correlation energy (Exc) for the UEG at rs = 1a0,
as a function of temperature Θ, using DMQMC (see ref 54). The
horizontal lines represent basis set extrapolated CCSD, CCSDT, and
FCIQMC exchange-correlation energies energies (see ref 118). Error
bars on CCMC and FCIQMC results are too small to be seen on this
scale. CCSDT and FCIQMC values cannot be distinguished on this
scale. See Table 2 for numerical values for CCSD to CCSDTQ5 in
the ground state.
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make the small differences between high-accuracy methods
clearer.

4.4. Solids: Diamond. Finally, we apply HANDE-QMC to
a real periodic solid, diamond, employing k point sampling.
CCMC has been applied to 1 × 1 × 1 (up to CCSDTQ), 2 ×

1 × 1 (up to CCSDT), 2 × 2 × 1 and 2 × 2 × 2 (up to CCSD)
k point meshes and non initiator FCIQMC to a 1 × 1 × 1 k

point mesh in a GTH-DZVP134 basis [as used in PySCF,70 and
CP2K,135 https://www.cp2k.org/], and a GTH-pade pseudo-
potential.136,137 There were 2 atoms, 8 electrons in 52
spinorbitals per k point. Integral files have been generated
with PySCF,70 using Gaussian density fitting.138 Orbitals were
obtained from density functional theory using the LDA Slater−
Vosko−Vilk−Nusair (SVWN5) exchange-correlation func-
tional139 to write out complex valued integrals at different k
points, and HANDE’s read-in functionalities were adapted
accordingly. Details of this will be the subject of a future
publication on solid-state calculations. The heat bath uniform
singles47,48 or the heat bath Power−Pitzer reference excitation
generator48 and even selection51 or multispawn50 sampling
were used.
Deterministic coupled cluster has been applied to diamond

previously. Booth et al.140 investigated diamond with CCSD,
CCSD(T),141 and FCIQMC in a basis of plane waves with the
projector augmented wave method;142 McClain et al.143

studied diamond with CCSD using GTH pseudopotentials in
DZV, DZVP, TZVP basis sets134,136,137†; Gruber et al.144 used
CCSD with (T) corrections in an MP2 natural orbital basis.145

The lattice constant was fixed to 3.567 Å, as in the study by
McClain et al.143 Figure 4 shows the correlation energy as a
function of number of k points comparing the CCMC and
FCIQMC results to the CCSD results obtained using PySCF
and the CCSD results of McClain et al.143 The correlation
energy given here is calculated with respect to the HF energy,
as the correlation energy from using DFT orbitals, added to
the difference of energy of reference determinant consisting of
DFT orbitals and HF SCF energy. Differences in convergences
are due to the use of differently optimized orbitals, and a
different treatment of the exchange integral (which will feature
in a future publication). In the case of CCMC, FCIQMC, and
CCSD-PySCF the k point mesh has been shifted to contain the
Γ-point, while McClain et al.143 used Γ-point-centered (not
shifted) meshes, which explains the larger difference between
CCSD-McClain et al. and the rest of the data. An accuracy of
(0.01−0.1) eV/unit ((0.00037−0.0037) Eh/unit) might be
required to accurately predict, for example, crystal struc-
tures,146 so these limited k-point mesh results suggest that at
least the CCSDT level is required for reasonable accuracy,
possibly CCSDTQ. Nonetheless, we have not considered

larger basis sets, additional k points, and other important
aspects required for an exhaustive study.

5. DISCUSSION

This article has presented the key functionality included in
HANDE-QMC: efficient, extensible implementations of the
full configuration interaction quantum Monte Carlo, coupled
cluster Monte Carlo, and density matrix quantum Monte Carlo
methods. Advances such as semistochastic propagation in
FCIQMC44,46 and efficient excitation generators47,48 are also
implemented. HANDE-QMC can be applied to model
systemsthe Hubbard, Heisenberg, and uniform electron
gas modelsas well as molecules and solids.
We have found using a scripting language (Lua) in the input

file147 to be extremely beneficialfor example, in running
multistage calculations, enabling semistochastic propagation
after the most important states have emerged, irregular output
of restart files, or for enabling additional output for debugging
at a specific point in the calculation. As with, for example, Psi4,
PySCF, and HORTON, we find this approach far more flexible
and powerful than a custom declarative input format used in
many other scientific codes.
We are strong supporters of open-source software in

scientific research and are glad that the HANDE-QMC
package has been used in the research of others in ways we
did not envisage, including in the development of Adaptive
Sampling Configuration Interaction (ASCI),53 understanding
the inexact power iteration method,148 and in selecting the P
subspace in the CC(P;Q) method.149 We believe one reason
for this is that the extensive user- and developer-level
documentation makes learning and developing HANDE-
QMC rather approachable. Indeed, many of the authors of
this paper made their first contributions to HANDE-QMC as
undergraduates with little prior experience in software
development or computational science. In turn, HANDE-
QMC has greatly benefited from existing quantum chemistry
software, in particular, integral generation from Hartree−Fock
calculations in Psi4,68 Q-Chem,71 and PySCF.70 We hope in
the future to couple HANDE-QMC to such codes to make

Table 2. Ground-State Exchange-Correlation Energies (Exc)
for the UEG at rs = 1a0, Comparing Various Levels of
Coupled Cluster Theory with FCIQMCa

method Exc/Eh

CCSD-MC −0.551128(6)

CCSDT-MC −0.55228(1)

CCSDTQ-MC −0.55231(1)

CCSDTQ5-MC −0.55232(1)

FCIQMC −0.55233(1)
aExchange-correlation energies were calculated using data from ref
118.

Figure 4. Difference between the total and Hartree−Fock energy per
k point for diamond using CCMC (CCSD to CCSDTQ) and
(noninitiator) FCIQMC based on DFT orbitals. The CCSDTQ and
the FCIQMC data point overlap to a large extent. The CCSD-PySCF
data were run with Hartree−Fock orbitals. In the case of CCMC,
FCIQMC, and CCSD-PySCF, the mesh has been shifted to contain
the Γ-point. CCSD-McClain et al. is data from Figure 1 in McClain et
al.143 using PySCF; we show only their data up to 12 k-points for
comparison. Both studies used the DZVP basis set and GTH
pseudopotentials.
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running stochastic quantum chemistry calculations simpler and
more convenient. To this end, some degree in standardization
of data formats to make it simple to pass data (e.g., wave
functions amplitudes) between codes would be extremely
helpful in connecting libraries, developing new methods,149

and reproducibility.
We close by echoing the views of the Psi4 developers:68 “the

future of quantum chemistry software lies in a more modular
approach in which small, independent teams develop reusable
software components that can be incorporated directly into
multiple quantum chemistry packages” and hope that this leads
to an increased vibrancy in method development.

■ APPENDIX A. AN INTRODUCTORY TUTORIAL TO
HANDE-QMC

In the following, we present an introductory tutorial,
demonstrating how to perform basic FCIQMC and i-
FCIQMC simulations with the HANDE-QMC code. A Docker
image, handeqmc/hande ubuntu18.04:latest is
available to try this out on. Further instructions on its use, and
more extensive tutorials, including for CCMC and DMQMC,
exist in the HANDE-QMC documentation. Here, we take the
water molecule at its equilibrium geometry, in a cc-pVDZ basis
set73 and correlating all electrons. This is a simple example, but
has a Hilbert space dimension of ∼5 × 108, making an exact
FCI calculation nontrivial to perform.

A.1. A Basic i-FCIQMC Simulation

The input file for HANDE-QMC is a Lua script. The basic
structure of such an input file is shown in Figure A1.

Here, the system is entirely determined by the integral file,
“INTDUMP”, which stores all of the necessary 1- and 2-body
molecular integrals. For this tutorial, the integral file was
generated through the Psi4 code.68 Both the “INTDUMP” file,
and the Psi4 script used to generate it, are available in
additional material. As discussed in the main text, the integral
file may be generated by multiple other quantum chemistry
packages.69−72

Generally, the system may be defined by specifying
additional parameters, including the number of electrons, the
spin quantum number (Ms), the point group symmetry label,
and a CAS subspace, for example:

The input file then calls the fciqmc{···} function, which
performs an FCIQMC simulation with the provided system
and parameters. There are several options here; most are self-
evident and are described in detail in the HANDE-QMC
documentation. tau specifies the time step size, and
tau_search = true updates this time step to an optimal
value during the simulation. init_pop specifies the initial
particle population, and target_population is the value
at which this population will attempt to stabilize. excit_-
gen specifies the excitation generator to be used. This option
is not required, although the heat-bath algorithm of Umrigar
and co-workers47 that we have adapted for HANDE-QMC, as
explained in ref 48, as used here, is a sensible choice in small
systems. initiator = true ensures that the initiator
adaptation, i-FCIQMC, is used. real_amplitudes =
true ensures that non-integer particle weights are used. This
leads to improved stochastic efficiency, and therefore is always
recommended. Lastly, state_size and spawned_sta-
te_size specify the memory allocated to the particle and
spawned particle arrays, respectively: a negative sign is used to
specify these values in megabytes (thus, 1 GB and 100 MB,
here).
The input file is run with

with the MPI command varying between implementations in
the usual way. The results of the input file in Figure A1 are
presented in Figure A2.
Because of the correlated nature of the QMC data, care must

be taken when estimating error bars; a large number of
iterations must typically be performed, allowing data to
become sufficiently uncorrelated. This task can be error-
prone for new users (and old ones) . HANDE-QMC includes a
Python script, reblock_hande.py, which performs a
rigorous blocking analysis of the simulation data, automatically
detecting if sufficient iterations have been performed and, if so,
choosing the optimal block length to provide final estimates.
This final energy estimate can be obtained by

The usual estimator for the correlation energy (Ecorr) is the
Hartree−Fock projected estimator:

Figure A1. An example input file for an i-FCIQMC simulation on a
molecular system. The results of such a simulation are presented in
Figure A2.
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where |D0⟩ is the Hartree−Fock determinant and EHF is the
Hartree−Fock energy. Ci are the particle amplitudes, with C0

being the Hartree−Fock amplitude. Because both the
numerator and denominator are random variables, they should
be averaged separately, before performing division. Therefore, it
is important that data be averaged from the point where both
the numerator and denominator have converged individually;
in some cases, the energy itself may appear converged while
the numerator and denominator are still converging. This does
not occur in the current water molecule case, as can be seen in
Figure A2, where the numerator and denominator are plotted
in Figures A2b and A2c, respectively. Here, all relevant
estimates appear converged by iteration at ∼1000.
The reblock_hande.py script will automatically

detect when the required quantities have converged, in order
to choose the iteration from which to start averaging data.
However, a starting iteration may be manually provided using
--start. Generally, it is good practice to manually plot
simulation data, as in Figure A2, to check that behavior is
sensible. In this case, the reblock_hande.py script
automatically begins averaging from iteration number 1463,
which is appropriate.

A.2. Converging Initiator Error

After running the reblock_hande.py script, the
correlation energy estimate can be read off simply as Ecorr =
−0.2166(2)Eh. This compares well to the exact FCI energy of
EFCI = −0.217925Eh, in error by ∼1.3 mEh, despite using only
∼104 particles to sample a space of dimension ∼5 × 108.
Nonetheless, an important feature of i-FCIQMC is the

ability to converge to the exact result by varying only one

parameter: the particle population. This is possible by running
multiple i-FCIQMC simulation independently. However, one
can make use of the Lua input file with HANDE-QMC to
perform an arbitrary number of simulations with a single input
file, as shown by example in Figure A3. Here, targets is a

table containing particle populations from 2 × 103, and
doubling until 1.28 × 105. We loop over all target populations
and perform an FCIQMC simulation for each.
Running the reblock_hande.py script on the

subsequent output file gives the results in Table A1. The
final column gives the projected energy estimate of the
correlation energy and is plotted in Figure A4, with
comparison to the FCI energy. Accuracy within 1mEh is
reached with Nw = 2 × 104, and an accuracy of 0.1mEh by Nw =
2 × 105.
It is simple to perform a semi-stochastic i-FCIQMC

simulation. To do this, as well as passing sys and qmc
parameters to the fciqmc function, one should also pass a
semi_stoch table. The simplest form for this table, which is
almost always appropriate, is the following:
The “high” option generates a deterministic space by

choosing the most highly-weighted determinants in the

Figure A2. Results of running the input file in Figure A1. Panel (a)
shows the particle population, stabilizing slightly above the targeted
value of 104. Panel (b) shows the numerator of the energy estimator,
∑i≠0 Ci ⟨D0|Ĥ |Di⟩, as discussed in the main text. Panel (c) shows the
energy denominator, which is the number of particles on the
Hartree−Fock determinant. Panel (d) shows the correlation energy
estimates themselves.

Figure A3. An example input file showing how to use Lua features to
perform multiple simulations in a single input file, with particle
populations from 2000 to 128 000.
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FCIQMC wave function at the given iteration (which generally
should be an iteration where the wave function is largely
converged), 2 × 103 in this case. The total size of the
deterministic space is given by the size parameter, 104 in this
case.

■ APPENDIX B. PARALLELIZATION

In this appendix, we describe two techniques that can optimize
the FCIQMC parallelization: load balancing and nonblocking
communication. Parallelization of CCMC has been explained in
ref 50 but does not yet make use of nonblocking communication.
By and large, HANDE’s FCIQMC implementation follows

the standard parallel implementation of the FCIQMC
algorithm, a more complete description of which can be
found in ref 43. In short, each processor stores a sorted main
list of instantaneously occupied determinants containing the
determinant’s bit string representation and the walker’s weight,
as well as any simulation-dependent flags. For each iteration,
every walker is given the chance to spawn to another
connected determinant, with newly spawned walkers being
added to a second spawned walker array. After evolution, a
collective MPI_AlltoAllv is set up to communicate the
spawned walker array to the appropriate processors. The
annihilation step is then performed by merging the
subsequently sorted spawned walker array with the main list.
During the simulation, every walker needs to know which

processor a connected determinant resides on but naturally
cannot store this mapping. In order to achieve a relatively

uniform distribution of determinants at a low computational
cost, each walker is assigned to a processor p, as

| ⟩ = | ⟩p D D N( ) hash( )modi i p (B-1)

where Np is the number of processors and hash is a hash
function.58

B.1. Load Balancing

The workload of the algorithm is primarily determined by the
number of walkers on a given processor, but the above hashing
procedure distributes work to processors on a determinant
basis. For the hashing procedure to be effective, we require that
the average population for a random set of determinants to be
roughly uniform. Generally, hashing succeeds in this regard
and one finds a fairly even distribution of both walkers and
determinants. When scaling a problem of a fixed size to more
processors, i.e., strong scaling, one observes that the
distribution loses some of its uniformity with certain
processors becoming significantly underpopulated and over-
populated, which negatively affects the parallelism.43 This is to
be expected as in the limit Np → NDets there would be quite a
pronounced load imbalance unless each determinant’s
coefficient was of a similar magnitude (which can often be
the case for strongly correlated systems). Naturally, this limit is
never reached, but the observed imbalance is largely a
consequence of this increased refinement.
In HANDE, we optionally use dynamic load balancing to

achieve better parallel performance. In practice, we define an
array pmap as

=p i i N( ) mod
map p (B-2)

so that its entries cyclically contain the processor IDs, 0, ..., Np

− 1. Determinants are then initially mapped to processors as

| ⟩ = | ⟩ ×p D p D N M( ) (hash( )mod )i imap p (B-3)

where M is the bin size. Equation B-3 reduces to eq B-1 when
M = 1.
The walker population in each of these M bins on each

processor can be determined and communicated to all other
processors. In this way, every processor knows the total
distribution of walkers across all processors. In redistributing
the Np × M bins, we adopt a simple heuristic approach by only
selecting bins belonging to processors whose populations are
either above or below a certain user defined threshold. By
redistributing bins in order of increasing population, we can, in
principle, isolate highly populated determinants while also
allowing for a finer distribution.
This procedure translates to a simple modification of pmap so

that its entries now contain the processor IDs, which give the
determined optimal distribution of bins.

Table A1. Output of the HANDE-QMC Reblocking Script, On the Simulation with the Input File of Figure A3a

block from # H psips ∑H0jNj N0 shift proj. energy

hande.out 0 1.83000000e+03 2292(4) −36.77(8) 172.6(5) −0.210(3) −0.2131(3)

1 1.81800000e+03 4602(5) −56.4(1) 262.5(6) −0.213(2) −0.2148(2)

2 1.47300000e+03 9108(7) −88.29(9) 408.2(5) −0.213(1) −0.2163(2)

3 1.78100000e+03 19050(10) −151.5(1) 697.0(6) −0.217(1) −0.2173(2)

4 1.97200000e+03 38150(10) −276.7(1) 1270.0(6) −0.2188(5) −0.21784(6)

5 2.06500000e+03 74310(30) −528.3(2) 2428(1) −0.2193(6) −0.21761(8)

6 1.82500000e+03 152900(30) −1081.4(4) 4964(2) −0.2186(4) −0.21787(5)
aThe final column gives the estimates of the correlation energy, as determined from the projected energy estimator.

Figure A4. Initiator convergence for the water molecule in a cc-pVDZ
basis set, with all electrons correlated. Results were obtained by
running the input file of Figure A3.
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Finally, the walkers that reside in the chosen bins must be
moved to their new processor, which can simply be achieved
using a communication procedure similar to that used for the
annihilation stage. Some care needs to be taken that all
determinants are on their correct processors at a given iteration
so that annihilation occurs correctly.
Once the population of walkers has stabilized, the

distribution across processors should be roughly constant,
although small fluctuations will persist. With this in mind,
redistribution should only occur after this stabilization has
occurred and also should not need to occur too frequently.
This ensures that the computational cost associated with
performing load balancing is fairly minor in a large calculation.
In addition, as M is increased, the optimal distribution of
walkers should be approached, although with an increase in
computational effort.

B.2. Nonblocking Communication
HANDE also makes use of nonblocking asynchronous
communication to alleviate latency issues when scaling to
large processor counts.150 Using asynchronous communica-
tions is nontrivial in HANDE, because of the annihilation stage
of FCIQMC-like algorithms. We use the following algorithm:
Consider the evolution of walkers from τ to τ + Δτ, then for
each processor, the following steps are performed:

(1) Initialize the nonblocking receive of walkers spawned
onto the current processor from time τ.

(2) Evolve the main list to time τ + Δτ.
(3) Complete the receive of walkers.
(4) Evolve the received walkers to τ + Δτ.
(5) Annihilate walkers spawned from the evolution of the

two lists as well as the evolved received list with the
main list on this processor.

(6) Send remaining spawned walkers to their new
processors.

While this requires more work per iteration, it should result
in improved efficiency if the time take to complete this work is
less than the latency time. This also ensures that faster
processors can continue doing work, i.e., evolving the main list,
while waiting for other processors to finish evolving their main
lists. For communications to be truly overlapping, the slowest
processor would need to complete the steps above before the
fastest processor reaches step (3); otherwise, there will be
latency as the received list cannot be evolved before all walkers
spawned onto a given processor are received.
Note that walkers spawned onto a processor at time τ are

only annihilated with the main list after evolution to τ + Δτ,
which differs from the normal algorithm. While annihilation is
vital to attaining converged results,26,42 the times at which it
occurs is somewhat arbitrary, once walkers are annihilated at
the same point in simulation time. Communication between
processors is also required when collecting statistics; however,
the usual collectives required for this can simply be replaced by
the corresponding nonblocking procedures. This does require
that information is printed out in a staggered fashion, but this
is of minor concern.
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