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ABSTRACT

Context. The Hanle effect is used to determine weak turbulent magnetic fields in the solar atmosphere, usually assuming that the
angular distribution is isotropic, the magnetic field strength constant, and that micro-turbulence holds, i.e. that the magnetic field
correlation length is much less than a photon mean free path.
Aims. To examine the sensitivity of turbulent magnetic field measurements to these assumptions, we study the dependence of Hanle
effect on the magnetic field correlation length, its angular, and strength distributions.
Methods. We introduce a fairly general random magnetic field model characterized by a correlation length and a magnetic field vector
distribution. Micro-turbulence is recovered when the correlation length goes to zero and macro-turbulence when it goes to infinity.
Radiative transfer equations are established for the calculation of the mean Stokes parameters and they are solved numerically by a
polarized approximate lambda iteration method.
Results. We show that optically thin spectral lines and optically very thick ones are insensitive to the correlation length of the
magnetic field, while spectral lines with intermediate optical depths (around 10–100) show some sensitivity to this parameter. The
result is interpreted in terms of the mean number of scattering events needed to create the surface polarization. It is shown that the
single-scattering approximation holds good for thin and thick lines but may fail for lines with intermediate thickness. The dependence
of the polarization on the magnetic field vector probability density function (PDF) is examined in the micro-turbulent limit. A few
PDFs with different angular and strength distributions, but equal mean value of the magnetic field, are considered. It is found that the
polarization is in general quite sensitive to the shape of the magnetic field strength PDF and somewhat to the angular distribution.
Conclusions. The mean field derived from Hanle effect analysis of polarimetric data strongly depends on the choice of the field
strength distribution used in the analysis. It is shown that micro-turbulence is in general a safe approximation.
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1. Introduction

As pointed out by Stenflo (1982, see also, 1994, 2009), the
Hanle effect provides a powerful diagnostic for detecting the
presence of a weak turbulent magnetic field. The physical ori-
gin of this field and symmetry properties of the observed linear
polarization suggest that the field scale of variation is small com-
pared to the mean free path of photons and hence that “micro-
turbulence” could be assumed. This allows one to replace all the
physical parameters depending on the magnetic field by their
average over the magnetic field vector PDF (probability den-
sity function). All the determinations of solar turbulent mag-
netic fields have been carried out so far with this approximation
(Faurobert-Scholl 1993, 1996; Faurobert 2001; Trujillo Bueno
et al. 2004; Bommier et al. 2005; Faurobert et al. 2009). In addi-
tion, it is usually assumed that the magnetic field PDF is isotrop-
ically distributed and that its strength has a single value. The
Hanle problem reduces then to a resonance polarization problem
with a modified polarization parameter that is in general smaller
(Stenflo 1982, 1994).

In a preceding paper (Frisch 2006, henceforth referred to as
HF06), a model magnetic field has been introduced allowing
one to examine the possible effects of a finite magnetic field

correlation length (comparable to a typical photon mean free
path). Equations have been established for calculating the mean
Stokes parameters, but no numerical results were given. In the
present paper, the equations given in HF06 are rewritten in
a form easily amenable to a numerical solution. An iterative
method of solution of the ALI type (approximate lambda itera-
tion) is used to calculate the mean Stokes parameters. We exam-
ine their dependence on the correlation length of the magnetic
field and analyze the results in terms of the mean number of
scattering events contributing to the formation of the surface po-
larization. We also investigate the sensitivity of the mean Stokes
parameters to the shape of the magnetic field PDF, the objective
being to see whether the Hanle effect can provide some clue to
the behavior of this quantity.

In Sect. 2, we describe the magnetic field, the atomic and
atmospheric models (they are the same as in HF06). We estab-
lish the transfer equations for the calculation of the mean Stokes
parameters in Sect. 3. In Sect. 4 we describe an ALI type numer-
ical method of solution. In Sect. 5 we describe different types of
PDFs used in our investigation. The finite correlation effects are
presented in Sect. 6 and analyzed in Sect. 7. Finally, in Sect. 8,
we calculate the mean polarization for various types of magnetic
field strength PDFs, in the framework of micro-turbulence. Some
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technical details about transfer equations and calculations of the
mean Stokes parameters are presented in Appendices A and B.

2. Assumptions

We consider a two-level atom with unpolarized ground-level and
assume complete frequency redistribution. The 4 × 4 redistribu-
tion matrix takes the form

R(x, n, x′, n′; B) = ϕ(x)ϕ(x′)PP(n, n′; B), (1)

where x′ and x are the frequencies of incident and scattered
beams measured in Doppler width units from line center and n′,
n their directions. The function ϕ(x) is the line absorption profile
normalized to unity. The elements of the polarization matrix can
be written in the form

PP
i j(n, n′; B) =∑

KQ

T K
Q (i, n)

∑
Q′

NK
QQ′ (B)(−1)Q′T K

−Q′ ( j, n′), (2)

whereT K
Q (i, n) are the irreducible spherical tensors for polarime-

try introduced by Landi Degl’Innocenti (1984). The index K
takes the values K = 0, 1, 2. The index Q takes (2K + 1) inte-
ger values in the range −K ≤ Q ≤ +K. For the lower index, we
have followed the usual notation Q. There should be no con-
fusion with the Stokes Q parameter that never appears as an
index in this paper. The indices i, j refer to the Stokes param-
eters (i, j = 0, . . . , 3). The coefficients T K

Q (i, n) with i = 1, 2,
associated to linear polarization, also depend on a reference an-
gle, often denoted γ, needed to define the reference frame of
the electric field in a plane perpendicular to n (see Fig. 5.14 in
Landi Degl’Innocenti & Landolfi 2004). Hanle effect measure-
ments are usually performed close to the solar limb, with the
spectrograph slit parallel to the nearest limb. Stokes Q is nega-
tive along the slit (positive in the direction perpendicular to it)
for γ = 0. The elements NK

QQ′ of the magnetic kernel depend
on the magnetic field vector, on atomic parameters and collision
rates (for details see Appendix A).

In this paper we consider a one-dimensional medium (plane-
parallel atmosphere). The direction of the magnetic field and of
the radiation beams are reckoned in an atmospheric reference
frame with the z-axis along the outward normal to the medium.
The polar angles of the magnetic field direction are denoted by
θB and χB, and the polar angles of the directions n and n′ are
denoted by θ, χ and θ′, χ′ (see Fig. 1).

The random magnetic field B is modeled by a Kubo-
Anderson process (KAP). It is a Markov process, discontinu-
ous, stationary, and piecewise constant (Brissaud & Frisch 1971,
1974). By definition, a random function m(t) is a KAP, if the
jumping times ti are uniformly and independently distributed
in [−∞,+∞] according to a Poisson distribution. Furthermore,
m(t) = mi for ti ≤ t ≤ ti+1 where the mi are independent ran-
dom variables with the same probability density P(m). A KAP
is thus fully characterized by a probability density P(m) and a
correlation time tcor = 1/νt, with νt the density of jumping times
on the time axis (Papoulis 1965, p. 557). For a KAP, the covari-
ance 〈m(t)m(t′)〉 varies as e−νt|t−t′ |, this means that the spectrum
is algebraic.

For the Hanle effect, polarization is created by a scattering
process, which implies that the photons make a random walk in-
side the medium. If the magnetic field is a Markov process, say
along the normal to a plane-parallel atmosphere, the radiation
field at a point r, depends on magnetic field values below and

Fig. 1. Atmospheric reference frame with the definition of (θ, χ) and
(θB, χB), the polar angles of the outgoing ray direction n, and magnetic
field vector B. In the text we introduce the polar angles (θ′, χ′) of the
incoming ray direction n′.

above the point r. To take advantage of the Markov character of
the magnetic field, it is necessary to simplify a little and assume
that the magnetic field is a random process in time, defined by
a density νt and a probability density P(B). This approach was
first used for random velocities with a finite correlation length by
Frisch & Frisch (1976). Its shortcoming is that it ignores correla-
tions between photons that return to the same turbulent element
after having been scattered a number of times (Frisch & Frisch
1975). The Stokes vector I then has to be taken as time depen-
dent. Standard techniques of solutions for stochastic differential
equations with Markov coefficients become applicable (Brissaud
& Frisch 1974). They rely on the crucial remark that the joint
random process in time {B(t); I(t)} is also a Markov process. To
simplify the notation we have omitted other independent vari-
ables on which the radiation field depends. As shown in HF06,
the combination of the time-dependent transfer equation, with
the evolution equation for the probability density of the joint pro-
cess {B(t); I(t)}, provides a time-dependent transfer equation for
a conditional mean Stokes vector I(t, r, x, n|B). For this radiation
field, B plays the role of an additional independent variable with
values distributed according to the probability density P(B) (for
the definition of the conditional mean see HF06).

The next step is to consider the stationary solution,
I(r, x, n|B), for t → ∞. It satisfies a transfer equation that has the
usual advection, scattering, and primary source terms, but also
contains an additional term describing the action of the magnetic
field. Somewhat similar equations (without the scattering term)
have been introduced for the Zeeman effect by Carroll & Staude
(2005). The mean Stokes parameters that one is looking for are
given by

〈I〉(r, x, n) =
∫

P(B)I(r, x, n|B) d3B. (3)

In the next section we construct the stationary transfer equation
for the conditional mean Stokes vector. We work with the ir-
reducible components of the Stokes vector because they satisfy
transfer equations that are simpler than the transfer equations for
the Stokes parameters themselves.
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3. The transfer problem

We now concentrate on the case of a one-dimensional slab. We
introduce the frequency averaged line optical depth τ defined by
dτ = −k(z)dz with z the coordinate along the vertical axis (see
Fig. 1) and k(z) the absorption coefficient per unit length. We
denote by T the total optical thickness of the slab with the sur-
face at τ = 0 towards the observer. We assume that the incident
radiation is zero on both sides of the slab.

For the deterministic Hanle effect with complete frequency
redistribution, each component S i(τ, n; B) of the emission term
in the transfer equation (sum of the scattering and primary source
terms) has an expansion of the form

S i(τ, n; B) =
∑
KQ

T K
Q (i, n)S K

Q(τ; B), i = 0, . . .3. (4)

Starting from this expression, one can show (Frisch 2007, hence-
forth HF07) that the Stokes parameters have a similar expansion
that can be written as

Ii(τ, x, n; B) =
∑
KQ

T K
Q (i, n)IK

Q(τ, x, μ; B), i = 0, . . .3, (5)

where μ = cos θ. Whereas the four Stokes parameters (three if
one considers only linear polarization) depend on the two po-
lar angles θ and χ defining n, the nine irreducible components
IK
Q (six only for linear polarization) are independent of the az-

imuthal angle χ. This decomposition also holds for the con-
ditional mean Stokes vector I(τ, x, n|B) and the corresponding
source vector S(τ, n|B). The components IK

Q and S K
Q can be re-

grouped into nine (or six) component vectors I (τ, x, μ|B) and
S(τ|B). We use calligraphic letters for the vectors I and S con-
structed with the KQ decomposition and refer to them for sim-
plicity as the “Stokes vector” and “source vector”. We now give
the transfer equation satisfied by I (τ, x, μ|B) in Sect. 3.1 and
construct an integral equation for S(τ|B) in Sect. 3.2. The sym-
bols used in this paper are consistent with those used in HF06
and HF07.

3.1. Transfer equation for the conditional mean Stokes
parameters

Proceeding as described in Sect. 2 (see also HF06), we find that
I (τ, x, μ|B) satisfies the transfer equation

μ
∂I (τ, x, μ|B)

∂τ
= ϕ(x)

[I (τ, x, μ|B) −S(τ|B)
]

−ν
∫
Π1(B, B′)I (τ, x, μ|B′) d3B′, (6)

where

S(τ|B) = G(τ) + N̂(B)J (τ|B), (7)

with

J (τ|B) =
∫ +∞

−∞

1
2

∫ +1

−1
ϕ(x)Ψ̂(μ)I (τ, x, μ|B) dμ dx. (8)

The operator νΠ1 describes the effects of the random magnetic
field. The factor ν is now the mean number of jumping points per
unit optical depth. It is related to the density of jumping times νt
by ν = νt/ck(z), with c the speed of light. For simplicity we
assume ν independent of τ, but a depth-dependent ν could be
handled (see e.g. Auvergne et al. 1973). Micro-turbulence cor-
responds to ν = ∞ and macro-turbulence to ν = 0. Macro and

micro-turbulence are also referred to as the optically thick and
optically thin limits. The operator Π1 is defined by

Π1 = −
[
δ(B − B′) − P(B′)

]
. (9)

The matrix N̂(B) describes the Hanle effect. Construction rules
for its elements NK

QQ′ (B) are given in Eq. (A.4). When the mag-

netic field is zero, N̂(B) reduces to a diagonal matrix with
elements depending only on the atomic model and collision
rates (see Appendix A). The matrix Ψ̂(μ) describes resonance
polarization. Its elements ΨKK′

Q are real quantities. They can
be found in LL04 (Appendix A20) or HF07 (see also Landi
Degl’Innocenti et al. 1990). The primary source term G(τ) is
not random.

Averaging Eq. (6) over P(B), we see that 〈I 〉(τ, x, μ) satisfies
the transfer equation

μ
∂〈I 〉(τ, x, μ)
∂τ

= ϕ(x)
[
〈I 〉(τ, x, μ) − 〈S〉(τ)

]
, (10)

where 〈I 〉 and 〈S〉 are averages over the magnetic field vector
PDF (see Eq. (3)). It is not possible to write an integral equation
for 〈S〉(τ) (except in the micro-turbulent limit). One must first
calculate S(τ|B) and then average it over P(B).

3.2. Integral equation for S(τ|B)

With the boundary condition that there is no incident radiation
on the outer surfaces of the slab, the formal solution of Eq. (6)
can be written as

I (τ, x, μ|B) =∫ T

τ

exp

[
−τ
′ − τ
μ

(ϕ−νΠ1)

]
ϕ(x)S(τ′| ·) dτ′

μ
; μ>0; (11)

I (τ, x, μ|B) =

−
∫ τ

0
exp

[
−τ
′ − τ
μ

(ϕ−νΠ1)

]
ϕ(x)S(τ′| ·) dτ′

μ
; μ<0. (12)

The operator Π1 acts on the variable denoted “·”. It is standard
notation for cases when the variable cannot be written explicitly.
The action of Π1 can be calculated by considering the Laplace
transform∫ ∞

0
e−pE
e
νΠ1 d
 = (pE − νΠ1)−1, (13)

where 
 = |τ′ − τ|/μ and E is the identity operator. To ensure
convergence,	(p) > 0. Solving for f (B) the equation

(pE − νΠ1) f (B) = g(B), (14)

where g(B) is known, one finds a simple expression that is easily
expressed in terms of elementary Laplace transforms (for details
see HF06; also Frisch & Frisch 1976). We thus obtain

I (τ, x, μ|B) =
∫ T

τ

ϕ(x) e−
τ′−τ
μ ϕ(x)

{
e−

τ′−τ
μ νS(τ′|B)

+[1 − e−
τ′−τ
μ ν]

∫
P(B′)S(τ′|B′) d3B′

}
dτ′

μ
; μ > 0; (15)

I (τ, x, μ|B) = −
∫ τ

0
ϕ(x) e−

τ′−τ
μ ϕ(x)

{
e−

τ′−τ
μ νS(τ′|B)

+[1 − e−
τ′−τ
μ ν]

∫
P(B′)S(τ′|B′) d3B′

}
dτ′

μ
; μ < 0. (16)
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The combination of Eqs. (15) and (16) with Eq. (7) yields the
integral equation

S(τ|B) = G(τ) + N̂(B)Λ[S], (17)

where

Λ[S] =
∫ T

0
dτ′

⎧⎪⎪⎨⎪⎪⎩L̂(τ − τ′; ν)S(τ′|B)

+
[
L̂(τ − τ′; 0) − L̂(τ − τ′; ν)

] ∫
P(B′)S(τ′|B′) d3B′

⎫⎪⎪⎬⎪⎪⎭, (18)

with

L̂(τ; ν) =
∫ +∞

−∞

∫ 1

0

1
2μ
Ψ̂(μ)e−

|τ|
μ (ϕ(x)+ν)ϕ2(x) dμ dx. (19)

For ν = 0, we recover the usual kernel matrix for resonance
scattering with complete frequency redistribution, denoted here
by K̂(τ) (see e.g. Landi Degl’Innocenti et al. 1990; Nagendra
et al. 1998), and for ν = ∞, we have L̂(τ; ν) = 0. Thus, in the
micro-turbulent limit, the averaging of Eq. (17) over P(B) yields
a standard integral equation

〈S〉(τ) = G(τ) + 〈N̂(B)〉
∫ T

0
K̂(τ − τ′)〈S〉(τ′) dτ′, (20)

where 〈N̂(B)〉 is the mean value of N̂(B), and K̂(τ) = L̂(τ; 0).

4. A PALI type numerical method of solution

Several numerical methods of solution have been developed to
solve integral equations arising in the study of the Hanle ef-
fect with a deterministic or micro-turbulent magnetic field. In
Landi Degl’Innocenti et al. (1990), the system of linear integral
equations for the components SK

Q(τ) is transformed into a sys-
tem of linear equations for the SK

Q(τi) with τi the optical depth
grid points. In this reference, the unknown functions are actually
the density matrix elements ρK

Q(τ), but for a two-level atom with
complete frequency redistribution, ρK

Q(τ) and SK
Q(τ) are propor-

tional (see e.g. Landi Degl’Innocenti & Bommier 1994).
Iterative methods of the ALI type have been developed

for the Hanle effect with complete frequency redistribution
(Nagendra et al. 1998; Manso Sainz & Trujillo Bueno 1999,
2003) and partial frequency redistribution (Nagendra et al. 1999;
Fluri et al. 2003; Sampoorna et al. 2008a). For partial frequency
redistribution, the unknown functions depend on two indepen-
dent variables: optical depth and frequency. Here we have a sim-
ilar problem, the independent variables being now the optical
depth and the magnetic field vector. We have developed a PALI
method (P for polarized) described below to solve the integral
Eq. (17) for S(τ|B). The results are presented in Sect. 6.

We followed a standard approach by which one introduces
an approximate Λ operator denoted by Λ∗, choosing for Λ∗ the
diagonal of Λ with respect to optical depth. This is the so-called
Jacobi scheme (Stoer & Bulirsch 1983). It is the only one that
has been used for partial frequency redistribution (see e.g. the
review by Nagendra & Sampoorna 2009, and references therein)
and seemed to be an appropriate choice for exploratory work
with random magnetic fields. More efficient iteration methods
based on the Gauss-Seidel scheme have been developed for com-
plete frequency redistribution (see e.g. Trujillo Bueno & Fabiani
Bendicho 1995; Léger et al. 2007).

The Jacobi iteration scheme is[
Ê − N̂(B)Λ∗

]
δS(n)(τ|B) =

G(τ) + N̂(B)J (n)(τ|B) − S(n)(τ|B), (21)

with

δS(n)(τ|B) = S(n+1)(τ|B) −S(n)(τ|B), (22)

and

J (n)(τ|B) = Λ
[
S(n)

]
. (23)

The superscript (n) refers to the iteration step, and Ê is the iden-
tity matrix.

The righthand side in Eq. (21) is easy to calculate. Knowing
S(n)(τ|B), one can calculate its mean value 〈S〉(n)(τ) by aver-
aging over P(B). Equations (15) and (16) are then used to cal-
culate I (τ, x, μ|B). A short characteristic method (Kunasz &
Auer 1988; Auer & Paletou 1994) is used for this step. Finally
J (n)(τ|B) is deduced from Eq. (8).

Equation (18) shows that we only need the diagonal operator
corresponding to L(τ; ν), henceforth denoted L∗(τ; ν), to con-
struct the operatorΛ∗. As Eq. (19) shows, it can be calculated by
a standard method introduced in Auer & Paletou (1994). At each
grid point in space, we solve a transfer equation, like Eq. (10),
where ϕ(x) is replaced by ϕ(x) + ν and the source term replaced
by a point source at the grid point under consideration. A short
characteristic method is also used for this step. Finally, the ele-
ments of L̂∗ are obtained by performing the integration over x
and μ (see Eq. (19)).

The corrections δS(n)(τ|B) are solutions of Eq. (21). Since
the operator Λ∗ is diagonal in space, there is no coupling be-
tween the different depth points. At each depth point τq, we have
a system of linear equations for δS(n)(τq|B). The dimension of
this system is NB × NC , with NC the number of irreducible com-
ponents (6 for linear polarization) and NB the number of grid
points needed to describe the magnetic field PDF. Since the mag-
netic field is defined by its strength B, inclination θB, and az-
imuth χB (see Fig. 1), NB = NB × NθB × NχB , with NB, NθB , and
NχB the number of grid points corresponding to the respective
variables.

At each depth point τq, the linear system of equations for the
δS(n)

j can be written as
∑

j

Âi j(τq)δS(n)
j (τq) = r(n)

i (τq), (24)

where i and j are indices for the magnetic field vector grid points
(i, j = 1, . . . ,NB). The vectors δS(n)

j and r(n)
i have the dimen-

sion NC . We use the notation δS(n)
j (τq) = δS(n)(τq|B j). Similarly,

r(n)
i (τq) = r(n)(τq|Bi). Each element Âi j is a NC × NC block given

by

Âi j(τq) = δi jÊ

− δi jN̂iL̂∗(τq; ν) − N̂i[L̂∗(τq; 0) − L̂∗(τq; ν)]
 j. (25)

The 
 j are weights for the integration over the magnetic field
PDF. The matrices Ê, N̂i = N̂(Bi), and L̂∗(τq; ν) corresponding
to the operatorL∗, have the dimension NC ×NC . Explicit expres-
sions for the elements of N̂ and L̂ are given in Appendix A. The
elements Ai j have to be computed only once since they do not
change during the iteration cycle.
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Table 1. A list of different PDFs used in this paper.

PS(B) PA(θB)

(i) PD(B) = δ(B − B0) Piso(θB) = sin θB

(ii) PM(B) = 32
π2 B0

(B/B0)
2 exp

[
− 4
π

(B/B0)
2
]

Ppl−c(θB) = (p + 1)| cos θB|p sin θB

(iii) PG(B) = 2
πB0

exp
[
− 1
π

(B/B0)
2
]

Ppl−s(θB) = (sin θB)p sin θB/Cp

(iv) PE(B) = 1
B0

exp(−B/B0)

The convergence properties of this iteration method are sim-
ilar to those of other PALI methods used for polarized prob-
lems (Nagendra et al. 1998, 1999). The new feature here is the
discretization of the magnetic field vector. Typically we have
been using NB = 40. For an isotropic angular distribution,
NθB = 5−7 points in the interval [0, π], the integration over θB be-
ing performed with a Gauss-Legendre quadrature. Significantly
higher values of NθB are needed for angular distributions that are
peaked along some direction (see Sect. 5). All the magnetic field
PDFs chosen here have a cylindrical symmetry about the normal
to the atmosphere, so no integration over χB is needed. For the
integration over τ, we use 5 to 7 points per decade.

In this work, we consider self-emitting slabs. The primary
source is G(τ) = εBν0/(1 + ε) with ε the rate of destruction by
inelastic collisions (see Appendix A) and Bν0 the Planck function
at line center. The line absorption profile ϕ(x) is a Voigt function
with damping parameter a. The atomic and atmospheric models
are thus defined by a set of parameters (T, a, ε′, Bν0) where a,
ε′ = ε/(1 + ε) and Bν0 are assumed to be constant with τ. The
solution of the transfer equation is then symmetrical with respect
to T/2.

The magnetic kernel elements NK
QQ′ (B) are defined in

Appendix A. In all the calculations we assume a normal Zeeman
triplet, an electric-dipole transition and no depolarizing colli-
sions. For the magnetic field, the parameters are the magnetic
field strength B, the polar angles θB and χB, the density ν of
jumping points and the PDF P(B). For the Hanle effect, it is
convenient to use the Hanle efficiency factor ΓB, instead of the
magnetic field strength itself. The definition of ΓB is recalled in
Appendix A.

5. A choice of magnetic field vector PDFs

For the quiet Sun, a few PDFs have been proposed in the liter-
ature for field strength B and for inclination θB of the magnetic
field with respect to the vertical direction. They are based on the
analysis of magneto-convection simulations, inversion of Stokes
parameters, and heuristic considerations (see e.g. Trujillo Bueno
et al. 2004; Dominguez Cerdeǹa et al. 2006; Sánchez Almeida
2007; Sampoorna et al. 2008b). Almost nothing is known about
the azimuthal distribution. For our investigation we have chosen
PDFs that are cylindrically symmetrical and have the form

P(B)d3B = f (B)g(θB)B2 sin θB dB dθB
dχB

4π
, (26)

0 ≤ B < +∞, θB ∈ [0, π], χB ∈ [0, 2π].

For convenience, we rewrite them as

P(B)d3B =
1
2

PS(B)PA(θB) dB dθB. (27)

Our choices for the strength and angular distributions are pre-
sented in Table 1.

Fig. 2. Probability density functions P(B/B0) as a function of (B/B0).
Solid line: PD(B/B0); dotted line: PE(B/B0); dashed line: PG(B/B0);
dot-dashed line: PM(B/B0).

For PS(B), we have chosen a delta function, PD(B), an expo-
nential distribution, PE(B), a Gaussian distribution, PG(B), and
a Maxwell Distribution, PM(B). They are plotted in Fig. 2 as
a function of B/B0. These functions are normalized to unity.
They have the same mean value, 〈B〉 = B0, but the variance
σ = [〈B2〉 − 〈B〉2]1/2 changes : for the exponential distribution,
σ = B0, for the Gaussian distribution, σ =

√
π/2B0, and for the

Maxwell distribution, σ = [(3π/8) − 1]1/2B0.
For the angular distribution (see Table 1, second column),

we have retained the isotropic distribution Piso, frequently used
in the analysis of the Hanle effect. It was introduced by Stenflo
(1982) to model weak magnetic fields that are passively tangled
by the turbulent motions (see also Stenflo 2009).

Recent Hinode observations suggest a predominantly hori-
zontal magnetic flux in the quiet Sun (Lites et al. 2008). This
finding is supported by some numerical simulations (Schüssler
& Vögler 2008). This type of distribution can be modeled with
the sine power law Ppl−s, where p (p ≥ 0) is an index that can
be chosen arbitrarily, and Cp a normalization constant. When p
goes to zero, one recovers the isotropic distribution, and when p
goes to infinity, a purely horizontal random field, considered in
Stenflo (1982). When p is an integer, the normalization constant
Cp can be calculated explicitly. For even values of p,

Cp =
p × (p − 2) × · · · × 2

(p + 1) × (p − 1) × · · · × 3
, (28)

and for odd values of p,

Cp =
p × (p − 2) × · · · × 1

(p + 1) × (p − 1) × · · · × 2
π

2
· (29)

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911696&pdf_id=2
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Fig. 3. Effect of the cosine power-law index p on 〈Q〉/〈I〉 at τ = 0,
μ = 0.05, for the model parameters (T, a, ε′, Bν0 ) = (104, 10−3, 10−4, 1),
and in the micro-turbulent limit. Solid line: p = 0; dotted line: p = 0.1;
dashed line: p = 5; dot-dashed line: p = 50, and dash-triple-dotted line:
p = 1000.

When p = 0, we have Cp = 1. When p goes to infinity, Cp goes
to zero. Setting p = 2m for even values of p, and p = 2m − 1 for
odd values (m ≥ 1), one can establish that Cp →

√
π/m/2 when

m→ ∞.
The cosine power law Ppl−c was introduced in Stenflo

(1987) to investigate the Zeeman effect with random magnetic
fields that may become predominantly vertical. It was used in
Sampoorna et al. (2008b) to construct a composite PDF that
mimics a distribution becoming more and more vertical as the
field strength increases. When p = 0, the distribution is isotropic.
When p increases the field becomes more and more vertical. In
the limit p → ∞, the Hanle effect disappears because the scat-
tering atoms are illuminated by an unpolarized field, cylindri-
cally symmetrical about the magnetic field direction. This ef-
fect is illustrated in Fig. 3. We see that the ratio 〈Q〉/〈I〉 in-
creases with p. It reaches the Rayleigh limit when p = 1000.
The mean Stokes parameters, 〈Q〉 and 〈I〉, have been calculated
in the micro-turbulent limit, for a magnetic field with constant
strength, corresponding to a Hanle factor ΓB0 = 1.

6. Dependence of the polarization
on the correlation length

To examine the dependence of the polarization on the correlation
length 1/ν (in Doppler width units), we examined the surface
value of the ratio 〈Q〉/〈I〉 at the limb (μ = 0.05), 〈Q〉 and 〈I〉
being the mean values of Stokes Q and I, for several values of ν
and T .

We first chose the simplest PDF, namely an isotropic angular
distribution with a Dirac distribution δ(B − B0). The parameter
ΓB0 was set to unity. We found that the dependence of 〈Q〉/〈I〉 on
the value of ν is quite weak for optically thin (T � 1) lines, and
also optically thick (T ≥ 103) ones. For lines with a moderate
optical depth (T = 10), some dependence could be observed, the
maximum variation of the ratio 〈Q〉/〈I〉 being about 0.1%.

Keeping the assumption of a single value field strength, we
calculated the ratio 〈Q〉/〈I〉 for the sine and cosine power law
distributions (see Table 1). For the sine power law, we chose
p = 50. For this value of p, the distribution is strongly peaked in

Fig. 4. Dependence of 〈Q〉/〈I〉 on the correlation length 1/ν. Sine power
law angular distribution with single value field strength (ΓB0 = 1). Slab
with an optical thickness T = 10. Solid line: ν = 0; dotted line: ν = 0.1;
dashed line: ν = 1; dot-dashed: ν = 10, and triple-dot dashed: micro.

the horizontal direction. For the cosine power law, we retained
p = 5. The distribution is also strongly peaked, but in the vertical
direction (see Fig. 11 in Sampoorna et al. 2008b) and the diminu-
tion of the Hanle effect is significant (see Fig. 3). For these two
distributions, the dependence on the correlation length is also
negligible for optically thin and optically thick lines. Some de-
pendence appears for lines with an intermediate optical depth.
Figure 4, corresponding to the sine power law and T = 10,
shows that the difference (〈Q〉/〈I〉)macro − (〈Q〉/〈I〉)micro � 0.3%
all along the polarization profile. The variation in 〈Q〉/〈I〉 is
coming almost exclusively from the variation in 〈Q〉, since the
dependence of Stokes I on the magnetic field is very small for
the Hanle effect. This figure also shows that the micro-turbulent
limit is reached for ν � 10. The reason is that ν only enters in ex-
ponential terms, as can be seen in Eq. (19). For the cosine power
law and T = 10, we found a very similar behavior to that shown
in Fig. 4, but the polarization is somewhat stronger because of
the reduction of the Hanle effect.

To understand the dependence on the correlation length, we
examined the dependence on ν and θB of the conditional source
function component S 2

0(τ = 0|B, θB). This function depends
strongly on ν and θB, with the micro and macro-turbulent limits
showing quite different variation with θB. The averaging over θB
eliminates most of the variation with ν. Some of it may remain,
however, in particular when the angular distribution is peaked in
the horizontal or vertical direction.

A very low sensitivity to the value of the correlation length is
a strong indication that the polarization is created locally. For a
line with a very small optical thickness, T � 1, photons will suf-
fer about one scattering and the polarization is well represented
by the so-called single scattering approximation. For very thick
lines, although photons suffer a very large number of scattering
events, the polarization is created near the surface by a few of
them. In these two limits, the polarization thus cannot feel the
correlation length of the magnetic field. For T = 10, we have an
intermediate situation with a clear sensitivity to the correlation
length.

For the Hanle effect, the polarization can be evaluated by a
perturbation method leading to a series expansion in terms of a
mean number of scattering events (see HF06). In the next section

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911696&pdf_id=3
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we show how to construct this expansion. We use it to examine
how many terms are needed to reproduce the exact solution and
thus give a somewhat quantitative content to the above remarks.

7. A series expansion for the calculation
of the polarization

The construction of a series expansion for the calculation of the
polarization is possible for the following three reasons: (i) the
Hanle polarization is weak; (ii) it is controlled by the anisotropy
of the radiation field; (iii) at each scattering a significant amount
of polarization is being lost. This last point will be clarified be-
low.

Here, for simplicity we present the perturbation method and
discuss its convergence properties for the simple case of a deter-
ministic (or micro-turbulent) magnetic field. We then show how
to carry it out for magnetic fields with a finite correlation length
and propose a perturbation expansion that is an improved version
of the method presented in HF06.

7.1. Construction of the expansion

We start from the standard integral equation for the Hanle effect
with a deterministic magnetic field, namely

S(τ; B) = G(τ) + N̂(B)
∫ T

0
K̂(τ − τ′)S(τ′; B) dτ′. (30)

In the micro-turbulent limit, N̂(B) should be replaced by its
mean value over the magnetic field PDF and S will depend only
on τ. With B = 0, this equation describes the Rayleigh scatter-
ing.

In the deterministic case, if the magnetic field is a constant,
the dependence on the azimuthal angle χB can be factored out as
shown in Appendix A. Henceforth we work with the components
S K

Q = ei QχBSK
Q and to simplify the notation, the dependence on

B is omitted. These new components satisfy the set of equations

S K
Q(τ) = δK0δQ0 G(τ)

+
∑
K′Q′

NK
QQ′ (B)

∫ T

0
KKK′

Q′ (τ − τ′)S K′
Q′ (τ

′) dτ′, (31)

with KKK′
Q′ (τ) the components of the matrix K̂(τ). The notation B

now stands for (B, θB). The components IK
Q of the radiation field

satisfy the transfer equation

μ
∂IK

Q (τ, x, μ)

∂τ
= ϕ(x)

[
IK
Q(τ, x, μ) − S K

Q(τ)
]
. (32)

We first consider the equation for S 0
0. Only S 2

0 appears in the
righthand side since K = 0 implies Q = Q′ = 0. For the Hanle
effect, the polarization is always weak and its effect on Stokes
I may be neglected, at least in a first approximation. Neglecting
the contribution from S 2

0, we obtain

S̃ 0
0(τ) = G(τ) + N0

00

∫ T

0
K00

0 (τ − τ′)S̃ 0
0(τ′) dτ′. (33)

The notation S̃ K
Q is used to denote approximate values.

Equation (33) is the usual unpolarized integral equation for the
source function where N0

00 = 1/(1 + ε).

We now replace S 0
0 by S̃ 0

0 in the equation for S 2
Q and obtain

S̃ 2
Q(τ) = N2

Q0(B)C2
0(τ)

+
∑
Q′

N2
QQ′ (B)

∫ T

0
K22

Q′ (τ − τ′)S̃ 2
Q′ (τ

′) dτ′, (34)

where

C2
0(τ) =

∫ T

0
K20

0 (τ − τ′)S̃ 0
0(τ′) dτ′. (35)

The kernel K20
0 (τ) is sometimes denoted K12(τ) (e.g. Landi

Degl’Innocenti et al. 1990; Nagendra et al. 1998). Its integral
over τ in the interval [0,+∞] is zero. The function C2

0(τ), can
also be written as

C2
0(τ) =

∫ +∞

−∞

1
2

∫ +1

−1
Ψ20

0 (μ)ϕ(x)Ĩ0
0(τ, x, μ) dμ dx, (36)

with Ψ20
0 (μ) = 3

2
√

2
(3μ2 − 1). In this form we recognize the dom-

inant term in the radiation spherical tensor J̄2
0(τ). This function,

which is zero for an isotropic radiation field, serves to measure
the anisotropy of the field (see e.g. Trujillo Bueno 2001, LL04).

Equation (34) shows that N2
Q0(B)C2

0(τ) is the driving term
for the polarization. This suggests solving this equation by the
standard method of successive iterations for Fredholm integral
equations of the second type (Iyanaga & Kawada 1970). For ra-
diative transfer problems, this method is usually referred to as
Λ-iteration. The zeroth-order solution in this iteration scheme is
given by N2

Q0(B)C2
0(τ). The recurrence scheme may be written

as

[S̃ 2
Q](k) = N2

Q0(B)C2
0(τ)

+
∑
Q′

N2
QQ′ (B)

∫ T

0
K22

Q′ (τ − τ′)[S̃ 2
Q′(τ

′)](k−1) dτ′, (37)

with [S̃ 2
Q](0) = N2

Q0(B)C2
0(τ).

It is well known that the Λ-iteration applied to Eq. (33) has
a very poor convergence rate when T is large and ε very small,
because the kernel K00

0 is normalized to unity and the coeffi-
cient N0

00 almost equal to unity. In Eq. (34) the situation is rad-
ically different because the kernels K22

Q (τ) have integrals over
[−∞,+∞] which are less than unity, actually they are all equal
to 7/10 (see e.g. HF06), and the coefficients N2

Q0(B) are also sig-
nificantly smaller than unity when B is not zero. For Rayleigh
scattering, the only non-zero coefficient is N2

00, which is close to
the depolarization parameter WK(Jl, Ju) (see Appendix A).

To examine the convergence properties of this iteration
scheme, we can consider a simplified version of Eq. (34). The
righthand side of this equation contains a driving term, a trans-
port term corresponding to Q′ = Q, and terms coupling S̃ 2

Q with
the S̃ 2

Q′ , Q′ � Q. Neglecting these last terms, we see that the
solution at step (k) can be written as a series expansion of the
form

[S̃ 2
Q](k) = N2

Q0(B)C2
0(τ) +

m=k∑
m=1

[
7

10
N2

QQ

]m

×
∫ T

0
K̄22

Q (τ − τ1)dτ1

∫ T

0
K̄22

Q (τ1 − τ2)dτ2 . . .

×
∫ T

0
K̄22

Q (τk−1 − τk)N2
Q0(B)C2

0(τk) dτk. (38)
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Here the kernels K̄22
Q , defined by K̄22

Q = 10
7 K22

Q , are normal-
ized to unity. The term of order m contains the contribution of
all the photons that have been scattered (m + 1) times, the first
scattering corresponding to the creation of the primary source
N2

Q0(B)C2
0(τ). Since the kernels K̄22

Q are positive and normalized
to unity, the ratio of the term of order (m+1) over the term of or-
der m scales as 0.7N2

QQ(B). Since the N2
QQ(B) are less than unity,

one can expect that a few terms in the series will suffice to pro-
vide a good approximation to the exact solution. Somewhat more
accurate predictions can be made for optically thin and optically
thick lines.

For optically thin lines (T � 1), one can approximate
[S̃ 2

Q](k)(τ) by

[S̃ 2
Q](k)(τ) � N2

Q0(B)C2
0(τ)

⎡⎢⎢⎢⎢⎢⎢⎣1 +
k∑

m=1

[
7
10

N2
QQ(B)

]m

T m

⎤⎥⎥⎥⎥⎥⎥⎦ . (39)

The driving term is dominant and suffices to correctly evaluate
the polarization. This is the so-called single scattering approxi-
mation.

To examine the case of optically thick lines, we can let T →
∞. If we approximate K̄22

Q (τ) by a delta function, we obtain

[S̃ 2
Q](k)(τ) � N2

Q0(B)C2
0(τ)

⎡⎢⎢⎢⎢⎢⎢⎣1 +
k∑

m=1

[
7
10

N2
QQ(B)

]m
⎤⎥⎥⎥⎥⎥⎥⎦ . (40)

This expression shows that a single scattering can also provide a
reasonable approximation for optically thick lines. We also see
that the smaller N2

QQ(B), the better the single scattering approx-
imation and the faster the speed of convergence of the series
expansion. We also note that the N2

QQ(B) are positive, hence the
sum inside the square brackets increases with the value of k.

For lines with very large optical thicknesses, the value of
Stokes Q at the surface can be easily related to S 2

0(τ). For these
lines, Q is controlled by the component I2

0 . Using T 2
0 (1, n) =

−3(1−μ2)/(2
√

2) for γ = 0, and the Eddington-Barbier relation,
we obtain

Q(0, x, μ) � − 3

2
√

2
(1 − μ2)S̃ 2

0

(
μ

ϕ(x)

)
· (41)

We have performed a few numerical experiments described be-
low to give a quantitative proof to these predictions.

7.2. Numerical results

The computation of the polarization by the series expansion
method involves the following steps:

(i) solution of Eq. (33) for S̃ 0
0 by an ALI method and calculation

of the corresponding scalar radiation field Ĩ0
0 ;

(ii) computation of C2
0(τ) with Eq. (36);

(iii) calculation of the source terms [S̃ 2
Q](k), with the iterative

scheme in Eq. (37), starting from N2
Q0(B)C2

0(τ);
(iv) at each step (k), solution of Eq. (32) by a short characteristic

method, calculation of the Stokes parameters with Eq. (5),
and of the ratio

r(k) = [|p(k) − p(k−1)|]/p(k), (42)

at τ = 0, x = 0, μ = 0.05. Here p = {[Q/I]2 + [U/I]2}1/2.
The iterations are stopped when r(k) < 10−3.

Table 2. Number of iterations needed to reproduce the exact solution
with a relative error about 10−3 at line center, with the parameters of the
magnetic field in Cols. 2 and 3 the same as in Figs. 6 and 7.

Rayleigh Deterministic Micro-turbulent
T Nk Nk Nk

10−2 3 3 3
10−1 4 4 4

1 7 7 5
10 16 16 9
102 12 11 4
103 7 6 5
104 7 7 5
106 8 7 5
108 8 7 5

The polarization has been calculated by this expansion method
for several values of the slab optical thickness T varying between
10−2 and 108. For each value of T , we considered the Rayleigh
scattering, a deterministic magnetic field, and a micro-turbulent
magnetic field. For the deterministic case, we chose ΓB = 1,
θB = 30◦, and χB = 45◦. For the micro-turbulent case, the mag-
netic field has an isotropic angular distribution and takes a single
value B0, with ΓB0 = 1. The coefficients N2

QQ′ are replaced by
their mean values over the isotropic distribution. In each case,
the exact solution is calculated with a PALI method applied to
Eq. (31). For Rayleigh scattering and the micro-turbulent mag-
netic field, Stokes U is zero and Stokes Q depends only on the
inclination angle θ of the line of sight (see Fig. 1). For a de-
terministic magnetic field, the Stokes parameters Q and U also
depend on the azimuthal angle χ. In the calculations presented
here χ = 0.

We show in Table 2 the number Nk of iterations defined by
the criterion r(k) < 10−3. We stress that the value of Nk has noth-
ing to do with the number of iterations of the PALI method,
the latter being controlled by the choice of the approximate Λ∗-
operator. In Figs. 5 to 7 we show the results of our calculations
for T = 10 and T = 104, Fig. 5 being devoted to the Rayleigh
scattering, Fig. 6 to the deterministic Hanle effect, and Fig. 7 to
the micro-turbulent case. In each panel we plotted the exact val-
ues of Q/I and a few iteration steps. In the micro-turbulent case,
we plotted 〈Q〉/〈I〉.

We observe that the series expansion properly converges to
the exact solution, that single scattering provides an approxima-
tion that is much better for T = 104 than for T = 10, and that the
accuracy of this approximation improves from Rayleigh scatter-
ing to a deterministic and micro-turbulent Hanle effect. These
last two points are illustrated in Fig. 8 where we show the differ-
ence

ess = (Qexact − Qss)/I, (43)

calculated at τ = 0, x = 0, μ = 0.05, as a function of the slab
optical thickness T . Here, Qexact is the solution of Eq. (30), Qss
is given by the single scattering approximation, and I is the exact
value of Stokes I. We see that for T small, ess increases with T
in agreement with Eq. (39). For large T , it becomes essentially
independent of T as predicted by Eq. (40). It goes through a
maximum around T = 10.

The decrease in ess from Rayleigh scattering to micro-
turbulent Hanle effect, is directly related to the value of the ele-
ments N2

QQ. For Rayleigh scattering, the index Q takes only the
value Q = 0 and N2

00 = 1/(1 + ε) (assuming WK = 1). For
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Fig. 5. Rayleigh scattering. Convergence history of the expansion method for the calculation of Q/I shown for τ = 0 and μ = 0.05. Panels a)
and b) correspond to T = 10 and T = 104 respectively. Different line types are: thick solid: exact; dotted: single scattering; dashed, dot-dashed,
triple-dot dashed and long dashed: 2nd, 3rd, 4th, 5th and 6th iterations respectively. All the following iterations are plotted with thin solid lines.

Fig. 6. Same as Fig. 5 but for a deterministic magnetic field with ΓB = 1, θB = 30◦, χB = 45◦.

Fig. 7. Same as Figs. 5 and 6 but for a micro-turbulent magnetic with an isotropic angular distribution and single value field strength defined by
ΓB0 = 1.
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Fig. 8. Difference between single scattering (ss) and exact (ex) solution
as a function of the optical thickness T for τ = 0, x = 0, and μ =
0.05. Rayleigh scattering (solid line), deterministic Hanle (dotted line),
micro-turbulent Hanle (dashed line). Magnetic field parameters are the
same as in Figs. 6 and 7.

the Hanle effect, the N2
QQ and 〈N2

QQ〉 are significantly less than
unity. Experiments with different angular distributions clearly
show that a decrease in 〈N2

00〉 induces a decrease in ess.
Table 2 also shows clearly that the single scattering approx-

imation is better for optically thin and optically thick lines than
for lines with intermediate optical thicknesses. It also shows that
this approximation is better for a micro-turbulent magnetic field
than for a deterministic one or Rayleigh scattering. We examined
the values of Nk at different frequency points along the line pro-
file and found that in the wings they are in general a bit higher
than at line center.

Our last comment concerned the fact that the exact value of
Stokes Q is reached from below in the case of thin to moderately
thick slabs and from above in the case of thick slabs (see Figs. 5
to 8). The transition occurs around T = 102 as shown in Fig. 8.
This change of behavior is directly related to the sign of C2

0(τ),
determined by a competition between a limb-darkened outgoing
radiation and a limb-brightened incoming one (see e.g. Trujillo
Bueno 2001). For T = 104, C2

0(τ) is positive as long as τ is less
than unity and then becomes negative (τ is assumed to be in the
range 0 < τ < T/2). Since the sum inside the square bracket in
Eq. (40) increases with k, the value of [S̃ 2

0](k) near the surface
will also increase with the value of k. We can then deduce from
Eq. (41) that Q is negative and decreases (increases in absolute
value) when k increases.

For T < 1, C2
0(τ) is negative, so we have the opposite be-

havior. Apparently this behavior holds until T becomes around
102 (see Figs. 5 to 8) but we have no simple approximation for
Stokes Q or for [S̃ 2

0](k)(τ), in this intermediate range of optical
thicknesses.

What should be remembered is that the single scattering ap-
proximation can lead to very large errors for Rayleigh scattering,
but may be sufficient for the micro-turbulent Hanle effect, espe-
cially when the line optical thickness is small or large enough.

7.3. Magnetic field with a finite correlation length

Assuming, as above, that S 0
0 is independent of the polarization

and given by the solution of Eq. (33), the equation for S̃2
Q(τ|B)

can be written as (see Eq. (A.1))

S̃2
Q(τ|B) = N2

Q0(B)C2
0(τ)

+
∑
Q′

N2
QQ′ (B)

⎧⎪⎪⎨⎪⎪⎩
∫ T

0
L22

Q′ (τ − τ′; ν)S̃2
Q′ (τ

′|B) dτ′

+

∫ T

0

[
K22

Q′ (τ − τ′) − L22
Q′ (τ − τ′; ν)

]

×
∫

P(B′)S̃2
Q′ (τ

′|B′) d3B′ dτ′
⎫⎪⎪⎬⎪⎪⎭. (44)

The iteration scheme defined in Eq. (37) can be carried out on
this equation. If, at step (k − 1), one knows [S̃2

Q′ (τ
′|B)](k−1), one

also knows its average over the magnetic field PDF, which ap-
pears in the righthand side of Eq. (44). The iteration scheme for
a finite value of ν will have the same convergence properties as
the simpler case of Eq. (37).

8. Dependence of the polarization on the magnetic
field vector PDF

This study is carried out for the micro-turbulent limit, because
one can expect, from our previous results, that the dependence
of the polarization on the shape of the magnetic field PDF will
be essentially independent of the value of the correlation length.

In the micro-turbulent limit, the mean source vector satis-
fies Eq. (20). Here we are dealing with magnetic field distri-
butions that are cylindrically symmetric about the vertical axis
and a primary source term that is unpolarized. Hence, the ma-
trix N̂(B) is diagonal and the only source vector components
that are not zero are 〈S 0

0〉 and 〈S 2
0〉. For their calculation, car-

ried out here with a standard PALI method, we only need N0
00

and 〈N2
00〉. The solution of Eq. (10), with 〈S 2

0〉(τ) as source
term, yields 〈I2

0〉. The mean value of Stokes Q is then given by

〈Q〉 = −3(1 − μ2)/(2
√

2)〈I2
0〉.

The element 〈N2
00〉 can be calculated explicitly for all the an-

gular distributions given in Table 1, when they are associated to
the delta and Gaussian strength distributions. The expressions
are given in Appendix B. In the other cases, 〈N2

00〉 is calculated
by numerical averaging with Gauss-Legendre quadratures. We
have also considered a log-normal distribution, but it yields es-
sentially the same results as the Gaussian distribution.

The calculations were performed for slabs with different op-
tical thickness T and we found that the main conclusions are
essentially independent of the value of T . The results shown in
this section correspond to a slab with parameters (T, a, ε′, Bν0) =
(104, 10−3, 10−4, 1).

Figure 9 is devoted to the isotropic distribution. Panel (a)
shows that 〈Q〉/〈I〉 increases (in absolute value) as we go from
a Dirac distribution (single field strength value), to a Maxwell
distribution, then a Gaussian distribution, and finally an expo-
nential distribution, i.e. from case (i) to case (iv) (see Table 1).
All these curves lie well above the Rayleigh scattering limit in
which Q/I(τ = 0, x = 0, μ = 0.05) = −0.07. The variation of
〈Q〉/〈I〉 is due to the fact that the value of 〈N2

00〉 increases as we
go from case (i) to case (iv), because the probability of having
weak magnetic fields increases. The maximum value of 〈N2

00〉 is
reached for Rayleigh scattering.

In Fig. 9b we show the center-to-limb variation of
(〈Q〉/〈I〉)/(1−μ2). A striking feature is that the variation with μ is
almost insensitive to the field strength distribution. We have even
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H. Frisch et al.: The Hanle effect in a random magnetic field 345

Fig. 9. Panel a): profile of 〈Q〉/〈I〉, for τ = 0 and μ = 0.05, calculated with the isotropic distribution combined with different PS(B). Panel b):
variation with μ, for τ = 0, x = 0, and the same PDFs. Solid line: PD(B/B0); dot-dashed line: PM(B/B0); dashed line: PG(B/B0); dotted line:
PE(B/B0). Model parameters of the slab (T, a, ε′, Bν0) = (104, 10−3, 10−4, 1).

Fig. 10. Panel a): variation of the ratio (〈Q〉/〈I〉)/(1 − μ2) with respect to μ, at τ = 0, x = 0, for the cosine angular power law, with p = 5.
Panel b): same results but for the sine power law with p = 50. Each of the angular distributions is combined with different strength distributions.
Solid line: PD(B/B0); dot-dashed line: PM(B/B0); dashed line: PG(B/B0); dotted line: PE(B/B0). Model parameters of the slab (T, a, ε′, Bν0 ) =
(104, 10−3, 10−4, 1).

found that the full line curve, corresponding to a Dirac PDF with
B = B0, coincides exactly with the center-to-limb variation given
by an exponential distribution with a mean value 〈B〉 = 2B0. This
result fully agrees with the calculations of Trujillo Bueno et al.
(2004), showing that observed center-to-limb variations can be
fitted by an isotropic field with a strength of 60 G, or by an ex-
ponential distribution with a mean value of 130 G.

Somewhat more insight into the behavior of 〈Q〉 can be ob-
tained by considering 〈S 2

0〉(τ). The dependence on optical depth
is controlled by the propagation kernel K22

0 (τ) (see Sect. 7). As a
result, changing the shape of PS(B) will have a very small effect
on the μ-dependence of 〈Q〉 (see Eq. (41)). In contrast, a change
in the shape of PS(B) will modify the value of 〈N2

00〉, hence the
degree of polarization.

In Fig. 10, devoted to the cosine and sine angular power laws,
we see that the ratio (〈Q〉/〈I〉)/(1 − μ2) also increases from case
(i) to case (iv). The dependence on the shape of PS(B) is quite

strong for the sine power law with p = 50 (even a bit more
than with the isotropic distribution), but very small for the co-
sine power law with p = 5. This stems from the reduction of
the Hanle effect when the field becomes strongly peaked in the
vertical direction.

In Fig. 11, we show the ratio (〈Q〉/〈I〉)/(1−μ2) for magnetic
fields with different angular distributions, the field strength be-
ing kept equal to a single value B0. In Fig. 11a, we see that the
choice of the angular distribution has a strong effect on the am-
plitude of this ratio, but not on its center-to-limb variation, for
the reason given above. Figure 11b shows the variation in this
ratio with the Hanle efficiency parameter ΓB0 for τ = 0, x = 0,
and μ = 0.05. We observe the standard Hanle saturation for
large field strengths. An isotropic distribution, and a sine power
law with a fairly horizontally peaked distribution, yield simi-
lar polarizations, as already been pointed out in Stenflo (1982).
There are, however, observable differences around ΓB0 = 1. The
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Fig. 11. Panel a): variation of the ratio (〈Q〉/〈I〉)/(1 − μ2) with respect to μ, at τ = 0, x = 0, for the isotropic distribution, cosine power law with
p = 5, and sine power law with p = 50; the magnetic field strength has a single value corresponding to ΓB0 = 1. Panel b): dependence on ΓB0 for
τ = 0, x = 0, μ = 0.05. Model parameters of the slab (T, a, ε′, Bν0) = (104, 10−3, 10−4, 1).

polarization is higher for the cosine power law because the dis-
tribution is strongly peaked in the vertical direction.

These numerical experiments with different magnetic field
PDFs indicate a clear sensitivity of the polarization to the mag-
netic field strength and angular distributions. Hence, any in-
formation on mean magnetic field strengths, extracted from
Hanle depolarization measurements, may depend critically on
the choice of the magnetic field PDF that has been made a priori
for the analysis of the observations.

9. Concluding remarks

In this paper, we have studied the Hanle effect due to a random
magnetic field with a finite correlation length, in order to as-
sess limitations to the usual micro-turbulent approximation. The
modeling of the magnetic field by a Markovian random pro-
cess, piecewise constant, characterized by a correlation length
and a magnetic field vector probability density function (PDF),
enabled us to construct a radiative transfer equation for a mean
radiation field, which still depends on the random values of the
magnetic field (Sect. 3). A simple averaging of the solution of
this equation over the PDF yields the mean Stokes parameters.
The transfer equation is solved numerically by a PALI method,
generalized to the problem at hand (Sect. 4).

We find that optically thin lines (lines with optical thick-
ness T � 1), and very optically thick ones (T � 100) can be
treated with the micro-turbulent approximation. For these lines,
the polarization is created locally by a small number of scattering
events. For optically thick lines they are located near the surface.
To evaluate this number of events, the polarization has been cal-
culated by a method of successive iterations leading to a series
expansion in the mean number of scattering events (Sect. 7). For
optically thin and thick lines, this number is around 5; for lines
with intermediate optical thicknesses (T � 10–100), it is signifi-
cantly more (10–15) and these lines show some sensitivity to the
magnetic field correlation length (see Fig. 4).

We also find that for a random magnetic field, the single scat-
tering approximation can be safely used to evaluate the Hanle de-
polarization. For a deterministic magnetic field, it may also pro-
vide a reasonable approximation. In contrast, for the Rayleigh

scattering, it may lead to large errors, except for optically thin
lines (see Fig. 8).

Numerical experiments carried out in the micro-turbulent
limit, with different types of magnetic field PDF, indicate that the
polarization is quite sensitive to the shape of the PDF (Sect. 8).
However, our results suggest that it may not be easy to retrieve a
quiet Sun magnetic field PDF from the Hanle effect depolariza-
tion measurements, since the same degree of linear polarization
can be created by PDFs that have rather different shapes. The
center-to-limb variation of the linear polarization also depends
very little on the PDF shape. Several laws for the solar mag-
netic field PDF have been proposed in recent years. They have
been deduced from Zeeman effect measurements and may con-
tain some uncertainty in the weak field domain involved in the
Hanle effect. Numerical simulations such as those carried out in
Schüssler & Vögler (2008) may clarify the situation.

In this paper, we have complete frequency redistribution at
each scattering. This assumption is certainly not valid to analyze
the Hanle depolarization of strong resonance lines showing sig-
nificant partial redistribution effects. An example is the Ba ii D2
line considered in Faurobert et al. (2009) to evaluate the turbu-
lent magnetic field in the low chromosphere. However, our con-
clusions concerning the applicability of the micro-turbulent ap-
proximation remain most probably valid, since the polarization
is still created in a small region close to the surface. The transfer
equations given here and their method of solution can be easily
generalized to handle partial frequency redistribution and to ver-
ify this prediction, but this generalization will be accompanied
by a significant increase in computing time.
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Appendix A: Integral equations
for the components of the source vector

In Eqs. (17) to (19) of the text, we give the integral equation for
the source vector S(τ|B). The corresponding system of integral
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equations for its KQ components SK
Q(τ|B) may be written as

SK
Q(τ|B) = GK

Q(τ)

+
∑
K′Q′

NK
QQ′ (B)

∫ T

0

⎧⎪⎪⎨⎪⎪⎩LKK′
Q′ (τ − τ′; ν)SK′

Q′ (τ
′|B)

+
[
LKK′

Q′ (τ − τ′; 0) − LKK′
Q′ (τ − τ′; ν)

]

×
∫

P(B′)SK′
Q′ (τ

′|B′) d3B′
⎫⎪⎪⎬⎪⎪⎭ dτ′, (A.1)

with

LKK′
Q′ (τ; ν) =

∫ +∞

−∞

∫ 1

0

1
2μ
ΨKK′

Q′ (μ)e−
|τ|
μ (ϕ(x)+ν)ϕ2(x) dμ dx. (A.2)

The ΨKK′
Q′ (μ) are real, even functions of μ and satisfy ΨKK′

Q′ (μ) =

ΨKK′
−Q′ (μ) (LL04, Appendix A20). For a non polarized primary

source term,

GK
Q(τ) = δK0δQ0 G(τ), (A.3)

with G(τ) proportional to the Planck function. For a two-level
atom with unpolarized ground level, the elements NK

QQ′ (B) of

the matrix N̂(B) can be written as

NK
QQ′ (B, θB, χB) = ei (Q′−Q)χB MK

QQ′ (B, θB), (A.4)

with

MK
QQ′ (B, θB) =

∑
Q′′

dK
QQ′′ (θB)dK

Q′′Q′ (−θB)XKQ′′ (B). (A.5)

We recall that dK
QQ′′ (θB) are the reduced rotation matrices, with

θB and χB the polar angles (inclination and azimuth) of the
magnetic field direction in an atmospheric reference frame with
the z-axis along the normal to the surface (see Fig. 1 in the
text). Explicit expressions for XKQ′′ (B) can be found in LL04
(Chaps. 5, 10, 14; see also HF07). They can be written as

XKQ′′ (B) =
WK(Jl, Ju)

1 + ε + δ(K)
u

[
1

1 + Q′′Γ′B

]
· (A.6)

Here Γ′B = ΓB/(1+ε+δ
(K)
u ) with ε = Cu,l/Au,l and δ(K)

u = D(K)/Au,l
(Bommier 1997; LL04 p. 520 and 532). We recall that Cu,l
and Au,l are the inelastic collisional and radiative de-excitation
rates. The parameter D(K), with D(0) = 0, is the effective num-
ber of depolarizing collisions, for the statistical tensor of rank
K, taking place during the lifetime of the excited level. The
magnetic field strength B enters through the efficiency factor
ΓB = 2πνLgu/Au,l = (e0/2mc)(gu/Au,l)B where νL is the Larmor
frequency, e0 and m the charge and mass of the electron, c
the speed of light and gu the Landé factor of the upper level.
Finally, WK(Jl, Ju) are atomic depolarization parameters that can
be found in LL04 (Table 10.1, p. 515). For a normal Zeeman
triplet (Jl = 0, Ju = 1), WK = 1 for all values of K. Explicit ex-
pressions of the NK

QQ′ can be found in HF07 (see also Faurobert-
Scholl 1991; Nagendra et al. 1998).

Equation (A.4) shows that the χB dependence of the SK
Q ap-

pears as a phase factor. This suggests introducing a new function
S K

Q(τ|B, θB) defined by the relation

SK
Q(τ|B, θB, χB) = e−i QχB S K

Q(τ|B, θB). (A.7)

The integral equation for this new function is

S K
Q(τ|B, θB) = δK0δQ0 G(τ)

+
∑
K′Q′

MK
QQ′ (B, θB)

∫ T

0

⎧⎪⎪⎨⎪⎪⎩LKK′
Q′ (τ − τ′; ν)S K′

Q′ (τ
′|B, θB)

+
[
LKK′

Q′ (τ − τ′; 0) − LKK′
Q′ (τ − τ′; ν)

]

×
∮

e−i Q′(χ′B−χB)P(B′, θ′B, χ
′
B)S K′

Q′ (τ
′|B′, θ′B)

× B′2 sin θ′B dθ′B dB′
dχ′B
4π

⎫⎪⎪⎬⎪⎪⎭ dτ′. (A.8)

This equation becomes simpler if the magnetic field PDF is
cylindrically symmetrical with respect to the z-axis, i.e. of the
form

P(B)d3B = h(B, θB)B2 sin θB dθB dB
dχB

4π
· (A.9)

We can integrate over χ′B the last term in Eq. (A.8). It will be
zero, unless Q′ = 0. Equation (A.8) reduces thus to

S K
Q(τ|B, θB) = δK0δQ0 G(τ)

+
∑
K′Q′

MK
QQ′ (B, θB)

∫ T

0

{
LKK′

Q′ (τ − τ′; ν)S K′
Q′ (τ

′|B, θB)

+ δQ′0

[[
LKK′

Q′ (τ − τ′; 0) − LKK′
Q′ (τ − τ′; ν)

]

×
∫

B′

1
2

∫ π

0
h(B′, θ′B)S K′

Q′ (τ
′|B′, θ′B)

× B′2 sin θ′B dθ′B dB′
]}

dτ′. (A.10)

We note here that the term involving the mean value of S K′
Q′ is

zero when Q′ � 0.
Once the S K

Q(τ|B, θB) have been calculated, they have to be
multiplied by e−i QχB (see Eq. (A.7)) and then averaged over the
magnetic field PDF. Since P(B) has been assumed to have a
cylindrical symmetry, the averaging process will give zero, ex-
cept for the components with Q = 0, so the mean source vector
〈S〉(τ) and mean Stokes vector 〈I〉(τ, x, μ) only have two non-
zero components corresponding to K = 0, 2 and Q = 0. The
magnetic field PDF does not break the cylindrically symmetry
of the atmosphere. We stress that there is no way to avoid the
calculations of the S K

Q(τ|B, θB) components with Q � 0. The rea-
son is that the integral equation for the conditional mean source
vector holds for both the micro and macro-turbulent limits.

Appendix B: Exact expressions of the mean
coefficient

〈
N2

00

〉

The coefficient N2
00 is defined in the Appendix A. Exact expres-

sions for the mean values 〈N2
00〉 can obtained with the PDFs

given in Table 1, when the magnetic field strength has a Dirac
or Gaussian distribution. Because of the cylindrical symmetry
of the PDFs, 〈N2

00〉 = 〈M
2
00〉. The expressions given below corre-

spond to WK = 1 and δ(K)
u = 0.

When the field strength has a Dirac distribution, the coeffi-
cents 〈N2

00〉 have the form

〈
N2

00

〉
D
=

1
1 + ε

⎡⎢⎢⎢⎢⎣1 −C1

⎛⎜⎜⎜⎜⎝ Γ
′2
B

1 + Γ′2B

⎞⎟⎟⎟⎟⎠ −C2

⎛⎜⎜⎜⎜⎝ 4Γ′2B
1 + 4Γ′2B

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ · (B.1)
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Table B.1. Coefficients C1 and C2 for the calculation of
〈
N2

00

〉
.

Isotropic Cosine power law Sine power law

C1
2
5

6(p+1)
(p+3)(p+5)

3(p+2)
(p+3)(p+5)

C2
2
5

6
(p+3)(p+5)

3(p+2)(p+4)
4(p+3)(p+5)

The coefficients C1 and C2 only depend on the angular distribu-
tion. The coefficient Γ′B is defined in Appendix A. The index B
stands for B0.

When the field strength has a Gaussian distribution,

〈
N2

00

〉
G
=

1
1 + ε

[1 − C1K1 − C2K2] . (B.2)

The coefficients Km , m = 1, 2, may be written as

Km = 1 −
[ √
π

mγσ
exp

(
1

(mγσ)2

)
erfc

(
1

mγσ

)]
, (B.3)

with

γσ =
√
π Γ′B. (B.4)

One can check that the coefficients K1 and K2 go to zero when
the magnetic field goes to zero.

We give in Table B.1 the coefficients C1 and C2 for the
isotropic, cosine, and sine power laws defined in Table 1, Col. 2,
of the text. Some of these results can be found in Stenflo (1982,
1994, Eq. (10.54)).

For p = 0, C1 and C2 go to 2/5 and we recover the isotropic
angular distribution. For the cosine power law, when p goes to
infinity, C1 and C2 go to zero and we recover the Rayleigh scat-
tering. For the sine power law, when p goes to infinity, C1 goes
to zero and C2 to 0.75.
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