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The increasing availability of maps of dense polymorphic markers makes use of haplotype data in family-based association
analyses an attractive alternative to single marker association tests. We describe a novel class of statistics designed to test for
an association between marker haplotypes and a qualitative trait using the parent-parent-affected-offspring trio design.
Our haplotype runs test (HRT) is based on consecutive allele-sharing between pairs of haplotypes. We assign weights
according to the relative frequencies of the alleles for which the two haplotypes match. Herein, we compare the HRT to the
maximum-identity-length-contrast (MILC) statistic, the single-locus transmission/disequilibrium test (TDT), and the
generalized test of transmission disequilibrium for haplotype data, as implemented in the software TRANSMIT, using both
simulated data and published haplotype data from the recessive disorder ataxia-telangiectasia. Our simulation results
suggest that the HRT outperforms the MILC and that the HRT provides comparable power to the TDT and TRANSMIT
when the number of distinct founder haplotypes with a disease susceptibility allele is small but substantially outperforms
the TDT and TRANSMIT when the number of distinct founder haplotypes with a disease susceptibility allele is even of
modest size. & 2004 Wiley-Liss, Inc.
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INTRODUCTION

Haplotype-based association analysis is a
powerful method for mapping disease suscept-
ibility genes through linkage disequilibrium (LD).
To avoid possible confounding due to population
stratification and to reduce unknown haplotype
phase, family-based methods are often employed.
Recent advances have allowed researchers to
saturate candidate chromosomal regions with
high densities of genetic markers. The abundance
of genetic information creates new analytical
challenges to maximize the impact of the available
information when conducting haplotype-based
association analyses.
Traditional family-based haplotype association

methods are likelihood-based and rigid by design.
Clayton [1999] introduced a generalized test of
transmission disequilibrium for haplotype data
for the family-based study design. His approach
uses the expectation-maximization (EM) algo-

rithm to derive estimates of, and facilitate
comparisons between, frequencies of transmitted
and non-transmitted haplotypes. Likelihood-
based haplotype association methods, such as
Clayton’s, can utilize only a limited number of
markers due to computational constraints and
non-robust haplotype frequency estimates due to
rare haplotypes. For Clayton’s approach, marker
sets used in analyses must be specified a priori by
the user. In practice, the optimal number of
markers to be used when analyzing haplotype
data is often unclear. Using large numbers of
markers can create sparse distributions of haplo-
types and unnecessarily increase the degrees of
freedom used to evaluate the statistical signifi-
cance of such tests. Further, recombination events,
mutations, and genotype errors can cause two
highly similar, although not identical, haplotypes
derived from a common ancestor to compete
against one another in the test statistic. These
problems can decrease the power to detect LD
when LD is present.
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Van der Meulen and te Meerman [1997a,b]
introduced an alternative haplotype-based test of
association using haplotype data for the parent-
parent-affected offspring trio design that is based
on the length of conserved allele sharing between
pairs of haplotypes. Their test involves choosing a
reference marker from an ordered marker map.
For a given pair of haplotypes, a score is assigned
equal to the number of consecutive identity-by-
state (IBS) allele matches spanning the reference
marker, where a match is defined as two
haplotypes sharing the same allele at a marker.
Their haplotype sharing statistic (HSS) is equal to
the standard deviation of the length of the shared
haplotype segments between all possible pairs of
parental haplotypes, regardless of the transmis-
sion status of the haplotypes. The foundation of
this approach is that the probability that two
gametes are identical by descent at a locus
increases as the number of markers surrounding
that locus with IBS alleles increases [Meuwissen
and Goodard, 2001; Nolte and te Meerman, 2002].
The major advantage of Meulen and te Meerman’s
approach over traditional haplotype methods is
that their method can use all available marker
data rather than being forced to select a small
subset of markers. Unlike traditional approaches,
two haplotypes that are highly concordant, but
not identical, provide evidence for association.
Bourgain et al. [2002] modified Clayton and

Jones’ [1999] haplotype IBS sharing statistic in the
context of the parent-parent-affected offspring
trio design. Similar to Clayton and Jones’ statistic,
their maximum identity length (MILC) statistic is
the total length of the contiguous region over
which all markers are IBS. As in the case of
Van der Meulen and te Meerman [1997a,b] and
Clayton and Jones [1999], the definition of
similarity is restricted to mandate inclusion of a
reference or ‘‘focal’’ marker in the shared region.
For the MILC approach, at each reference marker,
a sharing statistic is calculated as the mean shared
length from all pairings of non-transmitted hap-
lotypes subtracted from the mean shared length
from all pairings of transmitted haplotypes. The
MILC statistic is the maximum observed value of
these sharing statistics over the set of considered
reference markers. Similar to Lange and Boehnke
[1998], statistical significance is evaluated by a
permutation test where scores for transmitted and
non-transmitted haplotypes are randomly re-
assigned in each family trio.
In this report, we describe the haplotype runs

test (HRT), a new set of parent-parent-affected-

offspring trio non-parametric tests for association
based on runs of shared alleles. Similar to the HSS
and MILC, our tests evaluate shared consecutive
IBS allele matches between haplotypes spanning a
reference marker. We assign weights, based on
allele frequencies, to shared haplotype segments.
In contrast to the other proposed haplotype
sharing statistics, calculation of the HRT test
statistics only involves measures of sharing
between the transmitted haplotypes. We address
the issues of phase ambiguity and missing
genotype data and allow for the possibility of
genotype errors and marker allele mutations. We
evaluate the significance of the HRT statistics by
permuting transmitted haplotypes within family
trios. Unlike traditional haplotype approaches, the
HRT requires no allele or haplotype removal or
lumping due to small sample sizes, excess degrees
of freedom, or computational constraints.
We compare the power of our method to detect

an association to other parent-parent-affected
offspring trio association tests by computer
simulation. We show that, for the situations we
consider, our test frequently outperforms the
MILC statistic, the single-locus transmission dis-
equilibrium test (TDT) [Spielman et al., 1993], and
Clayton’s generalized transmission/disequili-
brium test for uncertain haplotype transmission
(as implemented in the computer software
TRANSMIT) over multiple loci. We present strong
evidence that suggests power for sharing statis-
tics, such as the HRT and MILC, can be improved
by focusing the calculation of the test statistics
solely on the scores from the pairings of trans-
mitted haplotypes as opposed to subtracting off
the scores from the pairings of nontransmitted
haplotypes. Finally, we illustrate the use of our
test on published haplotype data from the map-
ping study for the rare recessive disorder ataxia-
telangiectasia (A-T).

METHODS

THE CONSERVED HAPLOTYPE SHARING
STATISTIC

We assume our sample is made up of N
independent family trios, each consisting of two
parents who may or may not be affected and a
single affected offspring. Each family trio contains
four parental haplotypes of M ordered genetic
markers, providing a total of 4N parental haplo-
types in the overall sample. We pair up each
parental haplotype in the sample with each of the
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remaining haplotypes, resulting in ð4N2 Þ haplotype
pairs. We calculate a conserved haplotype sharing
statistic (CHSS) for each haplotype pair centered
about a chosen reference marker r, where
1rrrM. To calculate the CHSS for a pair of
haplotypes, let f̂fjðAÞ be the estimated population-
based allele frequency of allele A at marker j as
determined by the entire sample of transmitted
and nontransmitted alleles. Let Ak

j be the allele
present at marker j (1rjrM) on haplotype k
(k¼1,2) in the specified haplotype pair. For now,
assume for a particular haplotype pair that the
two haplotypes share an allele identical by state
(IBS) at the reference marker r, i.e. Ar

1¼ Ar
2. Define

markers a, b, x and y (1raoboroxoyrM) such
that b and a (x and y) are the first and second
markers to the left (right) of the reference marker
that fail to match alleles IBS between the two
haplotypes.
To allow for the possibility of marker allele error

or mutation, we introduce a penalty parameter, p,
and allow for up to one allele error or mutation on
each side of the reference marker. Allowing for up
to one break on either side of the reference marker
in the conserved marker-allele sequence creates
four possible values of CHSSr for a particular
haplotype pairing spanning the reference marker
r. These are:

CHSSr1 ¼
Yx�1

i¼bþ1

f̂fiðA1
i Þ

� ��1

(do not accept penalty at marker b or x)

CHSSr2 ¼
Yb�1

j¼aþ1

f̂fjðA1
j Þ

� ��1
�p � CHSSr1

(accept penalty at marker b, do not accept penalty
at marker x)

CHSSr3 ¼ CHSSr1 � p �
Yy�1

k¼xþ1

f̂fkðA1
kÞ

� ��1

(do not accept penalty at marker b, accept penalty
at marker x)

CHSSr4 ¼
Yb�1

j¼aþ1

f̂fjðA1
j Þ

� ��1
�p � CHSSr1

� p �
Yy�1

k¼xþ1

f̂fkðA1
kÞ

� ��1

(accept penalties at markers b and x). We define
CHSSr ¼ maxf1; CHSSri¼1;4g.

The four possible values of CHSSr are not
always valid or considered. For example, when
the two haplotypes in a pair are identical at every
marker, then only CHSSr1 is relevant. Also, if the
two haplotypes fail to match at the reference
marker r, we initially multiply each CHSSri by p,
thus allowing up to three mismatches in this case.
An example haplotype pair and the four

corresponding CHSSri values are presented in
Figure 1. In this example, marker r¼7 is the
reference marker. Note the two haplotypes share a
conserved haplotype segment spanning markers 6
through 10 and that the pair of haplotypes also
share alleles at markers 2, 3, 4, 12, and 14. In this
case, the maximum CHSS7i value depends on
the estimated allele frequencies and the penalty
value p.

PHASE AMBIGUITY AND MISSING DATA

Missing genotype data and ambiguous phase
information can cause difficulties when analyzing
haplotype data using allele sharing methods. To
maintain an unbiased test, it is critical that there
exists equal marker information on both the
transmitted and non-transmitted haploytpe
[Bourgain et al., 2002].
Bourgain et al.’s [2002] solution for addressing

phase ambiguity, when using the MILC, is to treat
markers with ambiguous phase as missing. We
propose an alternative approach that uses the
available marker data to either declare a mismatch
or to assign a down-weighted score reflecting a
contingency match at the marker. For a parent,
when phase is known, only one possible allele at
each marker is assigned to each parental haplo-
type. However, when phase is ambiguous at a
marker in a parent, either parental allele at that
marker must be considered as possible when
calculating the CHSS values using the haplotypes
from this parent. If neither possible allele matches
the allele for the other haplotype in the haplotype
pairing, then a mismatch is declared at the marker.
Otherwise, if either of the two possible parental
alleles for the haplotype with the phase ambiguity
matches the allele at the marker for the haplotype
with phase certainty, we then declare a match.
However, because both alleles were considered,
the match is down-weighted by a factor of 1

2. If the
allele for which the haplotypes match has an
estimated frequency greater than 0.5, then, when
taking into account the down-weighting factor,
including the match would actually penalize the
proposed match. To avoid this penalty, if the
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estimated allele frequency of the matching allele is
40.5, we let CHSS values remain unchanged (in
essence the marker is skipped). If phase is
ambiguous at a marker in both haplotypes of a
pairing, then all four possible allele pairings are
considered and the sum of the inverse allele
frequencies for the allele pairings that match are
down-weighted by a factor of 1

4. If the resulting
value is o1, the marker is skipped when
calculating the CHSS.
We address the issue of missing marker data

using an algorithm very similar to the algorithm
of Bourgain et al. [2002]. If marker genotypes are
missing on both parents in a trio, we skip the
marker when calculating the CHSS scores for all
pairings of parental haplotypes that involve any of
the four haplotypes from the trio in question.
Marker genotypes are kept, when available, in
each parent regardless of missing genotypes in the
other parent or the offspring. When marker data
are missing on one parent, marker phase in the
other parent is determined by the marker geno-
type in the offspring if possible. To maintain an
unbiased test, where the amount of marker
information for both the transmitted and the
non-transmitted haplotype in the parent is equal,
the genotype for the parent with missing marker
data remains coded missing even in the event that
the allele for the transmitted haplotype from this

parent can be determined unambiguously from
the offspring. If the marker genotype in the
offspring cannot unambiguously determine mar-
ker phase in the parent with marker data, phase is
considered ambiguous and analyses are con-
ducted as described in the preceding paragraph.
One could in principle probabilistically infer the
missing marker data, but this would increase
computational complexity and only negligibly
impact the results unless the proportion of
missing data is large. In Figure 2, we provide the
different CHSS values for an example haplotype
pairing that includes both phase ambiguity and
missing marker data. Similar to the previous
example, the maximum CHSSi

5 value depends on
the estimated allele frequencies and the penalty
value p.

THE HAPLOTYPE RUNS TEST (HRT)
STATISTICS

We consider two different HRT statistics formed
using the CHSSr values:

HRTr
ln ¼

X
1�i�j�4N

IiIj lnðCHSSrijÞ

HRTr
T¼t ¼

X
1�i�j�4N

IiIjIfCHSSrij�tg

Fig. 1. Calculation of CHSSri values for an example haplotype pair. Haplotypes A and B share alleles (in bold) at markers 2, 3, 4, 6, 7, 8, 9,
10, 12, and 14. Marker r¼7 is the reference marker in the calculation of CHSSri values. Penalties are considered in CHSS7i calculations for
mismatches at markers 5 and 11.
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Here CHSSrij is the value of CHSSr for haplotypes i
and j at reference marker r, Ii(j) is one if haplotype
i(j) is transmitted to the affected offspring and
zero otherwise, t is a threshold specified by the
user as the minimum criterion for a pair of
haplotypes to be considered likely to be identical
by descent (IBD), and IfCHSSrij�tg is one if CHSSrij � t
and zero otherwise. Herein, we set t¼100 or
10,000.
HRTr

ln is the natural logarithm of the inverse of
the estimated match probabilities over shared
regions assuming linkage equilibrium (LE) be-
tween adjacent markers. HRTr

T¼t is a threshold
statistic that is designed to focus on haplotype
pairs that are plausibly considered to be IBD. All
pairings of haplotypes determined to meet the
threshold of likely being IBD are given the same

weight, while all pairings of haplotypes failing to
meet this criterion are given no weight. In this
manner, we make a clear distinction between the
haplotypes that fail to match or match for only a
few common alleles and the haplotypes that
match over an extended set of markers. Impor-
tantly, HRTr

T¼t avoids having the score(s) from a
single or small number of haplotype pairs
dominate the test statistic. Choosing a modest
threshold value (e.g., t¼100) results in a test that
focuses on excess sharing of short or common
haplotypes whereas choosing a high threshold
(e.g., t¼10,000) results in a test that focuses on
excess sharing of rare or extended haplotypes. It
should be noted that calculation of both
HRTr

ln andHRTr
T¼t only involves CHSSr scores

from pairs of transmitted haplotypes. This

Fig. 2. Calculation of CHSSri values for an example haplotype pair with phase ambiguity and missing marker data. Marker r¼5 is the

reference marker. Haplotypes A and B have unambiguous phase and share alleles (in bold) at markers 1, 5, 6, and 9. Data are missing on
haplotype A at marker 7 and hence we skip this marker in calculation of CHSS5i values. Haplotype A has phase ambiguity at marker 4,

with one of the two possible alleles (allele ‘‘2’’) identical to the allele at marker 4 on haplotype B. Marker phase is ambiguous at markers

8 and 11 in both haplotypes, with one and two possible allele matches, respectively, between the two haplotypes at the two markers.

Haplotype B has phase ambiguity at marker 10 with no possible allele matches with haplotype A. Penalties are considered in CHSS5i
calculations for mismatches at markers 3 and 10.
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framework is different from the framework of the
MILC, which contrasts the degree of haplotype
sharing between transmitted and non-transmitted
haplotypes.

SIGNIFICANCE ESTIMATION OF THE HRT
STATISTICS

Linkage disequilibrium (LD) between closely
linked markers and the lack of robust haplotype
frequency estimates for even a modest number of
loci make evaluation of statistical significance of
the HRT statistics difficult using conventional
statistical procedures. We surmount this problem
by the use of a permutation test. By design, equal
amounts of marker information are available for
both haplotypes from each parental transmitted/
non-transmitted haplotype pair. Specifically, for a
given parent, if phase is ambiguous for the
transmitted haplotype, then phase is also ambig-
uous for the non-transmitted haplotype and vice
versa. The haplotype scores from parental trans-
mitted/non-transmitted pairs are thus ‘‘exchange-
able’’ [Good, 1994]. For each parent, we randomly
choose, with equal probability, which one of the
two parental haplotypes is transmitted to the
affected offspring. Under the null hypothesis of
no association, this approach results in permuta-
tions of the data that are equally likely. We
evaluate the P values of the observed HRT test
statistics as the proportion of permutations for
which the permuted-haplotype test statistics are
greater than the observed test statistics.

SIMULATION DESIGN

To verify that the permutation framework
results in the correct nominal significance level
and to compare statistical power and accuracy of
gene localization for the HRT, the single-locus
TDT, and haplotype-based generalized transmis-
sion/disequilibrium test proposed by Clayton
[1999], we conducted computer simulations. For
each simulation condition we generated R¼1,000
replicate samples of N¼250 parent-parent-af-
fected-offspring trios. For each replicate sample,
we then constructed 500 randomly permuted data
sets to assess significance for that replicate
sample.
We generated genotype data for five multi-

allelic markers spaced 1 cM apart and 16 biallelic
markers spaced evenly between the five multi-
allelic markers; we placed a disease locus directly
on top of the middle multi-allelic marker. The
multi-allelic markers had six codominant alleles.

Consistent with a complex genetic disorder, we set
the disease prevalence to 8% and the sib-recur-
rence-risk ratio [Risch, 1987] ls to 2.0. We
simulated trios under three models: no disease
predisposing variant, a dominant (fD¼0.05,
Pen(DD)¼Pen(Dd)¼0.4264, Pen(dd)¼0.0426) pre-
disposing variant, and a recessive (fD¼0.20,
Pen(DD)¼0.7588, Pen(Dd)¼Pen(dd)¼0.0517) pre-
disposing variant.
We constructed a population of disease-asso-

ciated and non-disease-associated haplotypes
using an evolutionary, stochastic algorithm
similar to the ones presented by Devlin and Risch
[1995] and Calafell et al. [1998]. We assumed a
founder population of F¼100, 500, or 1,000
individuals. Each founder was assigned alleles to
each of the 21 markers and the disease locus. To
assess the impact of LD on the relative power of
the different methods, we modeled two distinct
types of founder populations. We generated
samples with founder marker data randomly
under conditions of either LE or strong LD.
Models with founder LE were simulated from a
single population using equal allele frequencies of
0.50 (heterozygosity H¼0.50) for the di-allelic
markers and 0.20, 0.20, 0.15, 0.15, 0.15, 0.15
(H¼0.83) for the multi-allelic markers. We ran-
domly assigned founder alleles for each marker,
based on these allele frequencies, independent of
other marker data. We simulated examples with
founder LD by combining two equal-sized sub-
populations with very different allele frequencies
to create a single founder population with marker-
marker LD. We simulated the first founder
subpopulation using (ordered) allele frequencies
of 0.80, 0.20 for the biallelic markers and 0.35, 0.25,
0.25, 0.05, 0.05, 0.05 for the multi-allelic markers
and the second founder subpopulation with
(ordered) allele frequencies of 0.20, 0.80 for the
biallelic markers and 0.05, 0.05, 0.05, 0.25, 0.25,
0.35 for the multi-allelic markers. We simulated
the allele at the disease susceptibility gene in the
founder population independently of the marker
alleles. When combining two founder subpopula-
tions to create marker-marker LD, we assumed the
frequency of the disease predisposing allele to be
either equal in the two subpopulations or twice as
frequent in the first subpopulation as in the
second subpopulation. The latter choice increased
LD between the disease locus and the individual
marker loci. After construction of the founder
population, we grew the population exponentially
over 50 generations to reach a final population of
250,000 individuals.
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To accomplish this desired population
growth, we chose a pair of ‘‘parental’’ haplotypes
with replacement at random using a uniform
random number generator. From this pair of
haplotypes, we formed a single new haplotype,
allowing for recombination, mutation at
the disease locus and at each biallelic marker
(with probability 10�5), and mutation at each of
the five multi-allelic markers (with probability
10�4). We constructed trios randomly from the
final generation of haplotypes using the proposed
genetic models. Finally, with probability equal to
0.01, we introduced marker allele misspecification
error for each allele at each marker in each
individual. Genotypes that were subsequently
inconsistent with Mendelian inheritance were
removed.
For each simulated data set, we performed

the HRT, MILC, TDT, and TRANSMIT to
test the a priori hypothesis of no association
at the center multi-allelic marker. For the HRT
and MILC, this center multi-allelic marker
was set as the reference marker. The HRT, MILC,
and TRANSMIT used marker data from the
available multi-allelic and biallelic markers in
addition to data provided by the reference
marker. When analyzing data using the MILC,
we reclassified markers with ambiguous
phase as ‘‘missing’’ and used ‘‘score option 2’’ as
described in Bourgain et al. [2002] to calculate the
sharing statistic. We calculated the single-locus
TDT at the center multi-allelic marker and
evaluated statistical significance using a permuta-
tion procedure [Lazzeroni and Lange, 1998].
To maintain expected counts of at least 5 observa-
tions per haplotype among the transmitted
haplotypes, we restricted analyses using
TRANSMIT to haplotypes with estimated
frequencies of at least 0.01. We based statistical
significance estimates from TRANSMIT on
asymptotic distribution theory.
Finally, to assess the impact of evaluating

sharing only between transmitted haplotypes as
opposed to contrasting the sharing between
transmitted and non-transmitted haplotypes, we
constructed the HRT statistics using the frame-
work design of the MILC. We also constructed a
new statistic, HRTMILC, which was calculated in
the identical fashion as the MILC statistic except
that this new statistic is calculated only from the
transmitted haplotypes. That is,

HRTr
MILC ¼

X
1�i�j�4N

IiIj length
r
ij;

where lengthrij is the distance [Clayton and Jones,
1999; Bourgain et al., 2000] spanned by consecu-
tive IBS matches for haplotypes i and j at reference
marker r and Ii(j) is one if haplotype i(j) is
transmitted to the affected offspring and zero
otherwise. Thus, both the HRT and MILC statistics
were evaluated by using our approach of only
considering transmitted haplotypes and by
Bourgain et al.’s [2000] approach of contrasting
the difference in sharing between transmitted and
non-transmitted haplotypes.
We analyzed two different sets of markers

using TRANSMIT. The first set consisted
of the middle multi-allelic marker (directly on
top of the disease locus) along with the two
nearest multi-allelic markers. Due to computa-
tional complexity and sparse haplotype counts, it
was not feasible to include the remaining two
multi-allelic markers. The second set consisted of
the center multi-allelic marker along with the two
nearest biallelic markers on each side of the
middle multi-allelic marker. We carried out
analysis with the HRT and the MILC first for the
five multi-allelic markers and then for all 21
simulated markers. We assigned a value of 0.05
(see Discussion for the impact of this choice) to the
mismatch penalty parameter, p, for the HRT
analyses.

APPLICATION TO ATAXIA-TELANGIECTASIA

Ataxia-telangiectasia (A-T) is a rare autosomal
recessive disorder characterized by progressive
cerebellar ataxia, oculocutaneous telangiectasia,
radiosensitivity, cellular and humoral immunode-
ficiency, and predisposition to malignancies [Gatti
et al., 1991]. Twenty-seven A-T families from
Costa Rica were collected and used for haplotype
analysis to fine map the A-T locus [Uhrhammer
et al., 1995] on chromosome 11q. Nineteen of the
27 families consisted of two parents and an
affected offspring. We performed HRT, MILC,
TDT, and TRANSMIT analyses on these 19 parent-
parent-offspring trios using nine markers span-
ning an approximate 6-cM interval. Due to the
small number of families, we conducted the TDT
tests using Fisher’s exact test and restricted
TRANSMIT analyses to three marker haplotypes
expected to occur a minimum of five times in the
offspring. TRANSMIT was performed for all
possible consecutive sets of three adjacent mar-
kers. Contrary to the approach of Bourgain et al.
[2000], which calculates a ‘‘global’’ P value over a
predefined set of reference markers, we calculated
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statistical significance estimates for the MILC
independently at each reference marker for
comparison to the other tests.

RESULTS

SIMULATIONS

To assess type I error rates, we tested the HRT,
MILC, TDT, and TRANSMIT statistics under the
null hypothesis of no association using 1,000
randomly generated data sets from founder
populations of size 100, 500, and 1,000. Results
for the HRT, MILC, and the TDT obtained using
the permutation tests were consistent with the
nominal type I error rate at the a¼0.05 level. The
results using TRANSMIT, where statistical sig-
nificance estimates were calculated based on
asymptotic theory results, were also consistent
with the nominal type I error rate (data not
shown). Results from the power analyses suggest
the HRT, MILC, TDT, and TRANSMIT all have
good power when the population of disease-
associated haplotypes is derived from a small
number of founders (F¼100) (Tables I and II). For
the models we considered, the results demon-
strate that among the methods, TRANSMIT is
most powerful given 100 founders while the HRT

is most powerful given a larger number (F¼500 or
1,000) of founders. Power decreased precipitously
for the MILC, TDT, and TRANSMITas the number
of disease founder haplotypes increased. Power
decreased at a much slower rate for the HRT. For
some HRT statistics, power actually increased
when going from 100 to 500 founders (see
Discussion). The HRT, MILC, and TRANSMIT
all demonstrated significantly improved power
when data were available on the biallelic
markers.
Significant advantages were gained using

HRTT¼t, even when not including the 16 biallelic
markers for the larger founder populations
(F¼500, 1,000). HRTT¼100 outperformed the MILC,
TDT, and TRANSMIT for founder population
sizes of F¼500 and 1,000 individuals under both
the recessive and dominant models when analyses
were restricted to the five multi-allelic markers. In
the simulations with all 21 markers, HRTT¼10,000

clearly outperformed all other statistics for the
larger founder populations regardless of disease
model or presence versus absence of marker-
marker LD. Results using HRTln were mixed, but
for the cases considered, HRTln generally did not
perform as well as HRTT¼t. The HRTln out-
performed the MILC test in every simulation.
Marker-marker LD in the founder population had

TABLE I. Estimated power for ks¼2.0, significance level a¼0.05, and founder population markers in linkage equilibrium

Number of
founders Disease model

Number of markers
useda HRTln HRTT¼100 HRTT¼10,000 HRTMILC MILC TDTb TRANSMITc

100 Dom 5 0.94 0.87 0.12 0.92 0.79 0.93 0.99
100 Dom 21 0.98 0.98 0.97 0.97 0.86 0.93 0.99

500 Dom 5 0.81 0.92 0.18 0.87 0.71 0.59 0.83
500 Dom 21 0.96 0.97 0.99 0.96 0.86 0.59 0.94

1,000 Dom 5 0.69 0.83 0.25 0.77 0.62 0.38 0.66
1,000 Dom 21 0.90 0.93 0.99 0.92 0.79 0.38 0.80

100 Rec 5 0.85 0.81 0.14 0.85 0.78 0.84 0.93
100 Rec 21 0.92 0.94 0.92 0.91 0.78 0.84 0.99

500 Rec 5 0.59 0.71 0.17 0.65 0.46 0.37 0.52
500 Rec 21 0.82 0.84 0.96 0.82 0.66 0.37 0.81

1,000 Rec 5 0.42 0.56 0.16 0.50 0.36 0.23 0.34
1,000 Rec 21 0.66 0.71 0.95 0.69 0.51 0.23 0.62

aDisease locus placed directly on top of center multi-allelic marker. The center multi-allelic marker is the one and only reference marker.
Marker maps consist of (1) 5 multi-allelic markers with 6 alleles and (2) the same 5 multi-allelic markers and an additional 16 biallelic
markers evenly spaced between the 5 multi-allelic markers.
bTDT using only middle multi-allelic marker for models including both 5 and 21 markers.
cTRANSMITusing middle 3 multi-allelic markers for model with 5 multi-allelic markers and middle multi-allelic marker plus the 4 closest
biallelic markers for model with 21 markers.
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no influence on which statistic had maximal
power (compare Tables I and II). Power was
greater for models with founder LD and the
disease-predisposing allele twice as frequent in
the first founder sub-population as in the second
founder sub-population, but the orders of the
statistics, in terms of power, were identical to the
orders for the models that incorporated founder
LD and equal founder disease susceptibility allele
frequencies (data not shown). Specifically, for the
recessive model with F¼1,000 and using 21
markers, the estimated powers to detect signifi-
cant deviations from the null hypothesis were
0.44, 0.25, 0.85, 0.49, 0.41, 0.35, and 0.58 for HRTln,
HRTT¼100, HRTT¼10,000, HRTMILC, MILC, TDT, and
TRANSMIT, respectively.
Our modified MILC statistic, HRTMILC, which

only considered scores from the transmitted
haplotype pairs, clearly outperformed the MILC
statistic under all simulation models we consid-
ered (Tables I and II). Consistent with this result,
all HRT statistics calculated from just the trans-
mitted haplotypes pairs uniformly outperformed
the corresponding HRT statistics calculated by
subtracting off the scores of the non-transmitted
pairs from the scores of the transmitted pairs (data
not shown).

ATAXIA-TELANGIECTASIA

Results from the A-T example are illustrated in
Figure 3. Due to computational constraints, P
values for HRT and MILC are based on 106

permutations of the data. The single-locus TDT
achieved very strong significance estimates
(Po1.0� 10�6) at markers D11S1817, D11S1343,
and D11S927. None of the permuted statistics
were as large as the observed statistics for the 106

random permutations of the data. Interestingly,
results were less significant at biallelic marker
D11S384 (P¼3.6� 10�4) and multi-allelic marker
D11S1294 (P¼3.1�10�5), which immediately
flank the A-T locus. Results from TRANSMIT
based on the three adjacent marker haplotypes
were generally not as significant as those for the
single-locus TDT and were again less significant
for the markers immediately flanking the A-T
locus. Significance estimates for TRANSMIT are
plotted in Figure 3 at the center marker for each
three-marker haplotype. The most significant
result (P¼4.6� 10�6) was obtained using the
proximal haplotype D11S1817-D11S1343-
D11S1819. HRTln, HRTT¼100, HRTMILC, and MILC
gave the most significant findings across the
region with an estimated Po1.0� 10�6 at all

TABLE II. Estimated power for ks¼2.0, significance level a¼0.05, and founder population markers in linkage
disequilibrium (frequency of disease susceptibility allele equal in the two founder subpopulations)

Number of
founders Disease model

Number of markers
useda HRTln HRTT¼100 HRTT¼10,000 HRTMILC MILC TDTb TRANSMITc

100 Dom 5 0.92 0.85 0.13 0.89 0.74 0.93 0.98
100 Dom 21 0.93 0.92 0.94 0.92 0.80 0.93 0.99

500 Dom 5 0.77 0.84 0.19 0.82 0.63 0.58 0.81
500 Dom 21 0.77 0.67 0.98 0.83 0.67 0.58 0.92

1,000 Dom 5 0.61 0.71 0.23 0.66 0.48 0.39 0.63
1,000 Dom 21 0.58 0.41 0.97 0.66 0.48 0.39 0.75

100 Rec 5 0.83 0.78 0.15 0.82 0.66 0.85 0.94
100 Rec 21 0.86 0.81 0.91 0.85 0.69 0.85 0.98

500 Rec 5 0.54 0.59 0.19 0.55 0.39 0.39 0.52
500 Rec 21 0.53 0.39 0.89 0.57 0.40 0.39 0.74

1,000 Rec 5 0.35 0.41 0.17 0.38 0.27 0.23 0.32
1,000 Rec 21 0.33 0.24 0.82 0.40 0.28 0.23 0.50

aDisease locus placed directly on top of center multi-allelic marker. The center multi-allelic marker is the one and only reference marker. The
Marker maps consist of (1) 5 multi-allelic markers with 6 alleles and (2) the same 5 multi-allelic markers and an additional 16 biallelic
markers evenly spaced between the 5 multi-allelic markers.
bTDT using only middle multi-allelic marker for models including both 5 and 21 markers.
cTRANSMITusing middle 3 multi-allelic markers for model with 5 multi-allelic markers and middle multi-allelic marker plus the 4 closest
biallelic markers for model with 21 markers.
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marker locations. HRTT¼10,000 gave estimated P
values of approximately 3.5� 10�3 at all marker
locations.

DISCUSSION

Herein we introduce a novel class of statistics,
the haplotype runs test (HRT), to test for an
association between marker haplotype data and a
qualitative trait of interest. Our test is based on
consecutive allele matches between pairs of
haplotypes, with weights assigned according to
the frequencies of alleles for which the two
haplotypes match. Our results demonstrate the
utility of this approach and suggest that the HRT
will be of particular value when the disease at-risk

haplotypes are not derived from a very small
number of founder individuals. In particular, for
the models we considered, our threshold statistic
HRTT¼t greatly outperformed the MILC, the
single-locus TDT and the multilocus transmis-
sion/disequilibrium test implemented in TRANS-
MIT when a founder population size of 500 or
1000 individuals was considered. These results are
of particular interest because common complex
traits are unlikely to be the consequence of a single
or small number of common founder mutations/
variants.
The HRTT¼t statistics were particularly power-

ful when all available data were analyzed. Two
unrelated haplotypes may be IBS for a few
consecutive markers by chance alone, but with
additional marker information only truly IBD

Fig. 3. Association results for the ataxia-telangiectasia (A-T) example. The A-T gene (ATM) was localized between biallelic marker

D11S384 and multi-allelic marker D11S1294. Due to computational constraints, a significance ceiling was imposed such that –log10(P
value) r6.0. Statistical significance estimates for TRANSMIT are plotted at the center marker in each haplotype. Results for each test

are connected by a line to aid visualization of results and the lines are not intended to be used to infer statistical significance at markers

not analyzed.
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chromosome segments are likely to hold up to this
strict criterion of a match. Herein, we chose to
consider a modest (t¼100) and a stringent
(t¼10,000) threshold value and we demonstrated
clear differences in power between the two
choices depending on the available marker data.
For smaller marker sets including just five multi-
allelic markers, HRTT¼100 on average outper-
formed HRTT¼10,000. Reducing the threshold
value, t, to 10 resulted in dramatic loss of power
(data not shown). These results suggest that the
optimal choice of the threshold value t will
depend on the number and density of markers
in addition to marker heterozygosity and popula-
tion history. A real strength of the HRT is its ability
to put to use many tightly-linked markers, thus
allowing consideration of a high threshold value.
The utility of the larger threshold value, t, clearly
depends on the availability of large, dense sets of
markers. The feasibility of a large value of t for a
particular reference marker can be partially
evaluated by looking at the total distribution of
CHSS values between all pairings of haplotypes,
blind to transmission status. If the total number of
haplotype pairs that have a CHSS value that
exceeds the threshold value is small, the choice of
the threshold value is likely too large to ensure
acceptable power. Our other HRT statistic, HRTln,
generally did not perform as well as HRTT¼t in
our simulations. Under our simulation conditions,
both HRTln and HRTT¼t clearly outperformed the
MILC statistic regardless of the number of
founders or the chosen disease model. An area
of future research is to explore additional haplo-
type sharing statistics and to try to design an
algorithm that tailors the choice of the sharing
statistic to be optimal for a given data set.
In addition to the threshold parameter t, the

investigator also must specify a mismatch penalty
p. In the analyses described, we chose p¼0.05.
When simulating error-free data, negligible differ-
ences were observed between the results using
p¼0.05 or p¼0.00 (data not shown). Doubling the
penalty parameter to p¼0.10 in our simulation
models resulted in a slight decrease in power.
Based on these results, the choice of p¼0.05
appears reasonable. It is also possible to assign
different mismatch penalties to different markers.
For example, one might assign greater values of p
to microsatellite markers than to SNPs due to their
greater mutability. In practice, the mismatch
penalty p will only become relevant if the number
of markers analyzed is sufficiently large to allow
the imposed penalty to be overcome. If the

number of markers is small or a mismatch occurs
near the end of an ordered map of markers, then
CHSS will likely take the value CHSS1.
For the models we simulated, the HRT had

slightly less power than TRANSMIT when the
founder sample size was small (100 individuals)
and actually resulted in lower power in some
cases as compared to the results when applying
HRT to a founder sample size of 500 individuals.
An explanation of this small deficit in power for
the HRTwhen using a very small founder sample
size centers about the allele frequency estimates
we used in calculation of the HRT statistics. For
the HRT, we use estimated allele frequencies
calculated from both the transmitted and non-
transmitted alleles in our sample. Under the
alternative hypothesis, this approach has the
potential to make the test overly conservative
due to the likely overestimation of the frequencies
of the alleles that appear on the disease-associated
haplotypes. This problem of overestimating allele
frequencies is greatest when there is a small
number of disease-associated founder haplotypes.
To alleviate this problem when dealing with a
small founder population, we could increase the
density of markers, reduce the threshold value, or
estimate allele frequencies from an outside well-
matched sample to better estimate the allele
frequencies in the general population. The latter
approach would retain the correct nominal sig-
nificance level and could increase the power of the
test, particularly if one suspects a single common
founder haplotype to dominate among the dis-
ease-associated haplotypes. In practice, however,
this is not a concern as this scenario is unlikely for
complex diseases. In place of weighting our
statistics by estimated allele frequencies, we also
considered using conditional marker-allele fre-
quencies, conditioning on the allele at the adjacent
marker nearest the reference marker, to account
partially for any marker-marker LD. We found
that using estimated conditional marker-allele
frequencies from the analyzed collected parent-
parent-offspring sample also made the test un-
necessarily conservative.
One major difference between the HRT and

MILC statistics is that the HRT statistic only
considers sharing scores for pairs of transmitted
haplotypes while the MILC statistic subtracts off
the sharing scores for pairs of non-transmitted
haplotypes. Under all simulation conditions, we
calculated both the HRT and MILC statistics using
both mechanisms of scoring. Both the HRT and
MILC statistics were consistently more powerful
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when calculated only using the scores from pairs
of transmitted haplotypes. We believe there are
two possible explanations for the profound
differences in power observed between the two
approaches. If there is minimal haplotype sharing
between the non-transmitted haplotypes, then the
two test statistics, corresponding to the two
different approaches, will be very similar in
magnitude. However, the variance for the ap-
proach using both transmitted and non-trans-
mitted haplotype sharing would be considerably
larger than the variance for the approach using
just the transmitted haplotypes. On the other
hand, if there is considerable sharing in both the
transmitted and non-transmitted haplotype pair-
ings, then under the alternative hypothesis, there
will be heterogeneity of the haplotype frequencies
with respect to the transmitted and non-trans-
mitted haplotypes. Considering the differences in
the amount of sharing between the two groups
actually diminishes the impact of the heterogene-
ity. While not a rigorous proof, the intuition of this
argument can be illustrated by a simple example.
Consider a sample of five parent-parent affected
trios where there are ten ‘‘A’’ transmitted haplo-
types and ten ‘‘B’’ non-transmitted haplotypes.
Using a threshold statistic such that A paired with
A gives a score of 1, B with B gives a score of 1,
and A with B gives a score of 0, then the HRT
statistic is equal to ð102 Þ¼45 when only considering
the transmitted haplotypes and ð102 Þ2ð102 Þ¼0 when
subtracting off the non-transmitted haplotype
scores from the transmitted scores. The first
approach would clearly result in a significant
finding while the latter approach clearly would
not. Thus, by taking the difference between the
scores from the transmitted haplotype pairings
and the non-transmitted haplotype pairings, we
have removed the impact of having sets of
different transmitted and non-transmitted haplo-
types.
The simulations we presented herein focused on

a single a priori chosen reference marker. In
practice, it is unlikely that application of the
HRTwould be performed using a single reference
marker, but would instead be performed repeat-
edly using closing linked reference markers.
Inherent to this application is the potential bias
caused by uncorrected multiple testing. The HRT
statistics and corresponding significance estimates
between neighboring markers are likely to be
highly correlated and consequently a Bonferroni
correction would be overly conservative. The level
of dependence between results at adjacent mar-

kers depends on a number of factors not easily
measured, including the distance between the
markers, the age of the population, allele frequen-
cies, and the degree of LD between the markers.
To test the overall significance of the HRT over a
set of reference markers, one can apply the
randomization procedure described for the MILC
[Bourgain et al., 2000] or adapt the randomization
approach described by Lazzeroni and Lange
[1998]. The approach of Bourgain et al. [2000]
takes the maximum value of the test statistics over
all reference markers as the final test statistic. A
randomization procedure is performed and a P
value is calculated as the probability of observing
a maximum sharing statistic over all reference
markers that is at least as large as the observed
final test statistic. The approach of Lazzeroni and
Lange [1998] is to calculate the P value at each
marker and use the smallest P value as the final
test statistic. A randomization procedure can then
be performed to determine the overall probability
of observing a P value as small or smaller than the
observed minimum P value. Assessing the relative
merit of the different approaches for addressing
multiple testing is beyond the scope of this report,
but clearly is an important consideration for
future research.
As we demonstrated in the simulations, the

HRT can be particularly useful given a dense
extended set of markers. The development and
availability of dense sets of single nucleotide
polymorphisms (SNPs) will make this an increas-
ingly attractive feature of our method. We foresee
the HRT being particularly useful when a
specific region of interest has been identified,
usually through linkage analysis, and a follow-up
analysis of the region is conducted by saturating
the region with additional markers. As with any
other method designed to fine-map genes
through LD, choice of the population being
studied for the trait of interest is still likely
crucial to success.
In addition to the observed increase in power

for these simulations, the HRT has several proper-
ties that make it a highly flexible, useful approach.
Unlike TRANSMIT, the HRT requires no allele or
haplotype removal or lumping due to small
sample size, excess degrees of freedom, or
computational constraints. No restrictions, com-
putational or otherwise, are made on the number
of markers that can be considered. In theory, the
more markers included in the analyses, the more
power there will be to detect an association when
present. Finally, because the HRT computes
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a score for each haplotype pairing, it is trivial to
identify likely related haplotypes from a sample of
family trios. This option readily allows the user to
delimit the location of a putative disease suscept-
ibility locus by identifying key individual haplo-
types, thus allowing quick identification of breaks
in common founder haplotypes.
Software for the HRT is available and can be

requested by e-mail: elange@wfubmc.edu.
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