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We present the results of Monte Carlo simulations on a system of hard 
ellipsoids of revolution with length-to-breadth ratios a/b = 3, 2.75, 2, 1.25 
and b/a = 3, 2'75, 2, 1.25. We identify four distinct phases, viz. isotropic 
fluid, nematic fluid, ordered solid and plastic solid. The coexistence points of 
all first order phase transitions are located by performing absolute free 
energy computations for all coexisting phases. We find nematic phases only 
for a/b >>- 2.75 and a/b <~ 1/2"75. A plastic solid is only observed for 1"25 ~> 
a/b >>- 0'8. It is found that the phase diagram is surprisingly symmetric under 
interchange of the major and minor axes of the ellipsoids. 

1. INTRODUCTION 

In  this  p a p e r  we p r e sen t  the  resul ts  of  a ser ies  of  M o n t e  Car lo  s imula t ions  on 

m o d e l  sys t ems  cons i s t ing  of  ha rd  e l l ipso ids  of  revo lu t ion .  H a r d  e l l ipso ids  of  rev-  

o lu t ion ,  hence fo r th  r e fe r red  to as H E R s ,  cons t i tu t e  a very  s imple  m o d e l  for 

n o n - s p h e r i c a l  molecu les .  T h e  surface  of  a H E R  is g iven by  the  fo l lowing  equa-  

t ion : 

Z2 (X 2 .~_ y2) 
a2 + b2 -- 1, (1.1) 

whe re  2a is the  l eng th  of  the  m o l e c u l e  a long its s y m m e t r y  axis and  2b is the  

length  of  any  axis p e r p e n d i c u l a r  to the  s y m m e t r y  axis. In  equa t ion  (1) mo lecu l e -  

f ixed coo rd ina t e s  have  been  used  for  conven ience .  T h e  shape  of  a H E R  is de t e r -  

m i n e d  b y  the axial ra t io  x -  (a/b). By va ry ing  x f rom 0 to oo the  shape  of  the  

H E R  goes f rom e x t r e m e l y  ob la te  ( ' p l a t e l e t s ' :  x---~ 0) t h r o u g h  spher ica l  ( ' h a r d  

s p h e r e s ' ;  x = 1) to e x t r e m e l y  p ro la t e  (' n e e d l e s ' ;  x--~ ~ ) .  A cons ide rab le  a m o u n t  

is k n o w n  abou t  the  p r o p e r t i e s  of  H E R ' s  in the  l imi t ing  cases x = 0, ~ and,  in 

pa r t i cu la r ,  x = 1. 

F o r  h a r d  spheres  (x = 1), a wea l th  of  n u m e r i c a l  da t a  is ava i lab le  on b o t h  

e q u i l i b r i u m  and  t r a n s p o r t  p rope r t i e s .  In  pa r t i cu la r ,  the  equa t ion  of  s tate of  bo th  

the  f luid and  the sol id  b r a n c h e s  are k n o w n  to a h igh  degree  of  accuracy .  T h e  
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location of the solid-fluid phase transition has been determined by Hoover and 

Ree [1]. The case x - -  ~ (' needles')  has been studied numerically in the semi- 

dilute (pa2b ~ 1)regime [2]. For the case pa2b = O(1), the equation of state of 

ellipsoidal needles follows directly from the solution of the Onsager model for 

long, thin spherocylinders [3] because the excluded volume of a pair of ellipsoidal 

needles is of the form VEXCL(0 ) ---- 4rca2b [ sin 0] where 0 is the angle between the 

two needles. This expression for the VEXCL(0 ) follows directly from the known 

expression for the pair excluded volume of infinitely thin platelets and the sym- 

metry relation between the excluded volume of particles with inverse length-to- 

breadth ratios given in [8]. The above expression for VEXCL(0 ) for needle-like 

ellipsoids should be compared with the result for sperocylinders of length L and 

diameter d, in the limit (L/d)--~ ~ ,  VEXCL(0 ) = L2d] sin 0]. In both systems all 

virial coefficients higher than the second are negligible. Hence by simply substi- 

tuting 4rca2b for L2d in the expression for VEXCL(0), all known results for the 

Onsager model can be directly applied to hard ellipsoids of revolution in the limit 

x---~ m. It follows that a fluid of hard ellipsoidal needles undergoes a phase tran- 

sition from the isotropic to the nematic phase at a reduced number  density 

piB2 = 3"30 (where B 2 is the second virial coefficient) while, at coexistence, 

PN B2 = 4"| 6 [4]. Note that in the limit x = oo this transition takes place at zero 

packing fraction (pjN(4rc/3)ab2---~O, as x--~ct~). No data are available on the 

properties of ellipsoidal needles at finite packing fractions. Hard platelets (x = 0) 

have been studied numerically at densities such that pb 3 = O(1) [5]. 

From these simulations it is known that hard platelets undergo an isotropic- 

nematic transition at piB2 = 2-49 (pNB2 = 2"54). Hence we know that in the 

limits x---~ 0 and x ~  m there is a first order phase transition from the isotropic 

fluid phase to the nematic phase at a packing fraction r/l N = O(x) (O(1/x) for 

needles). The behaviour of ellipsoidal platelets and needles has, thus far not been 

studied at finite packing fraction. However, from the work of Hoover and Ree it 

is known that for x = 1 there is a first order phase transition from the (isotropic) 

fluid phase to the crystalline phase, at a packing fraction qF ~ 0"49. It seems 

likely, that freezing of the nematic phases of platelets and needles will take place 

at a finite packing fraction as well. Of course, the exact location of the melting 

point of HERs  will depend on molecular shape, but this variation is expected to 

be much less drastic than the change of the isotropic-nematic transition with 

molecular shape. Typically, the I - N  transition will take place at a number  density 

p, such that PINVExcL = O(1), while freezing takes place when pFVo ~-- O(1) (here 

V 0 stands for the molecular proper volume). Hence, as the molecules become 

more spherical PIN will approach Pv, and eventually the isotropic-nematic tran- 

sition will be preempted by the freezing transition. In other words, there should 

be a finite range of values of the length-to-breadth ratio x, around x = 1, where 

no stable nematic phase is possible. Although the crystal structures of HERs may 

be different from the structure of the hard-sphere solid, there is a simple relation 

at close packing. A uniform compression or expansion by a factor x, along any 

axis, transforms the close packed hard-sphere solid into a close packed solid of 

HERs with axial ratio x. This transformation does not change the packing frac- 

tion. Hence the density of closest packing of HERs is at least as high as the 

density of closest packing of hard spheres. In what follows we shall make the 

following assumptions: (1) that the density of closest packing of hard spheres is 

equal to the density of regular close packing (this assertion has not been proven 
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but is widely held to be true) and (2) that the density of closest packing of HERs 

is equal to the density of regular close packing of spheres. This second assump- 

tion is more drastic than the former, because it is conceivable that more closely 

packed H E R  structures exist which cannot be transformed to hard-sphere struc- 

tures at the same packing fraction. 

As the density of the H E R  solid is reduced from closest packing it is possible 

that orientational order is destroyed before translational order disappears. In 

other words, the solid may undergo an orientational order-disorder transition. 

Whether or not this will happen depends in a subtle way on the relative stability 

of solid and fluid phases, and little can be said a priori. Only in the case of hard 

spheres we know for certain that the solid phase must be orientationally disor- 

dered at all densities. 

The aim of the present paper is to provide numerical data on the phase 

diagram of HERs  for 1/3 ~< x ~ 3. Some of the results given in this paper have 

been reported in preliminary publications [6, 7]. The present paper contains a 

description of the numerical techniques, insofar as these are non-standard, a 

description of the method to compute the absolute free energy of both solid and 

nematic phases, and tables containing the equation-of-state data for all systems 

studied. In the following section we discuss the problem of free energy computa- 

tions of molecular solids and nematics and certain technical aspects of the Monte 

Carlo method used. In w we present the results of the simulations including 

tabular material. In a subsequent paper [8] a comparison is made between the 

simulation results and a number  of model predictions. 

2. COMPUTATIONAL TECHNIQUE 

2.1. Monte Carlo method 

Most simulations described in the present paper were performed using the 

constant-pressure Monte Carlo technique [9, 10]. In a number  of cases a constant 

volume method described in [5] was used. However, for the study of the solid 

phase the convential constant-P MC (and, afortiori the constant-V MC) cannot 

be used because the shape of the crystal unit cell changes with pressure. The 

logical solution is to use the Monte Carlo equivalent of the molecular dynamics 

method developed by Parrinello and Rahman [11]. This implies that, instead of 

performing Metropolis sampling on the volume of the system, as in the usual 

constant-P MC method, the elements of the symmetrized h-matrix are sampled; 

h is the matrix which relates the real coordinates t; to the scaled coordinates 

s i : r i  = h .  s i [12]. In our simulations the initial solid configuration had a 

rhombohedral  structure. It was obtained by distorting an f.c.c, hard sphere lattice 

along the ( l l l ) -axis  by an amount  a/b. The  periodic cell in the MC simulation 

was orthorhombic;  one edge was initially along the (111) axis of the hard-sphere 

solid. During the simulation we only sampled the diagonal elements of h (i.e. the 

periodic cell was kept orthorhombic). The  reason for this restricted sampling of 

box shapes was the following: because of the infinite degeneracy of close packed 

structures of HERs [13] one should expect large amplitude fluctuations of the 

unit cell shape which correspond to reorientations of the 'distort ion axis'.  By 

keeping h diagonal we suppress such fluctuations. However, we retain the possi- 

bility that the aspect ratio of the unit cell changes from the value at close packing. 

The rhombohedral  starting structure was chosen because of its high symmetry.  It 
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seems l ikely  tha t  th is  s t ruc tu re  is the  e q u i l i b r i u m  s t ruc tu re  of  a lmos t  c l o se -pa c ke d  

H E R s  or,  if it  is not ,  i ts  free ene rgy  is p r o b a b l y  ve ry  close to the  free ene rgy  of  

the  t rue  e q u i l i b r i u m  s t ruc ture .  

D u r i n g  our  s imula t ions  we a lways  f o u n d  tha t  the  sol id  r e t a ined  its r h o m b o -  

hedra l  s y m m e t r y  ( this  was not  i m p o s e d ,  as all th ree  d iagona l  e l emen t s  of  h cou ld  

be  va r i ed  i n d e p e n d e n t l y ) ,  even t h o u g h  the  edge  l eng th  and  r h o m b o h e d r a l  angle  

changed  wi th  p ressure .  W e  also o b s e r v e d  tha t  if  we fixed the  shape  of  the  pe r iod ic  

box,  we o b t a i n e d  a lmos t  ident ica l  c o m p r e s s i b i l i t y  da ta  for  the  sol id  b u t  in tha t  

case the  free ene rgy  of  the  sol id  close to me l t i ng  was a p p r e c i a b l y  h ighe r  than  the 

free ene rgy  of  the  re laxed  solid.  T h i s  suggests  tha t  if the  un i t - ce l l  shape  is kep t  

f ixed the  p re s su re  t ensor  has a large t raceless  s y m m e t r i c  pa r t  in a d d i t i o n  to the  

h y d r o s t a t i c  con t r i bu t i on .  

T h e  M C  s imula t ions  cons i s t ed  of  a success ion  of  t r ial  moves  in which  we 

a t t e m p t e d  to change  the  coo rd ina t e s  of  the  i nd iv idua l  e l l ipsoids .  Af te r  every  

sweep,  i.e. af ter  a t t e m p t i n g  to move  every  pa r t i c l e  once,  a box  shape  change  was 

a t t e m p t e d .  A par t i c le  move  cons i s ted  of  a c o m b i n e d  t r ans la t ion  and  reor i en ta t ion .  

T h e  t r ans la t iona l  d i s p l a c e m e n t s  were  gene ra t ed  b y  a d d i n g  r a n d o m  n u m b e r s  in 

the  in te rva l  { - -A ,  A} to the  x, y and z coo rd ina t e s  of  the  cen t re  of  mass  of  a g iven 

par t ic le .  T h e  o r i en ta t iona l  d i sp l acemen t s  were  gene ra t ed  b y  add ing  a vec to r  of  

f ixed l eng th  r b u t  wi th  an o r i en ta t ion  chosen  at r a n d o m  f rom an i so t rop ic  dis-  

t r i b u t i o n  to the  un i t  vec to r  spec i fy ing  the  o r i en ta t ion  of  a g iven par t ic le ,  i. T h e  

resu l t ing  vec to r  u i + r was t h e r e u p o n  n o r m a l i z e d  to y ie ld  the  new un i t  vec to r  u'i. 

T h e  m a g n i t u d e s  of  A and  r were  chosen  such  tha t  the  average  accep tance  of a 

c o m b i n e d  t r a n s l a t i o n - r e o r i e n t a t i o n  move  was ~ 2 0 - 3 0  pe r  cent.  T h e  ra t io  of  A 

and  r was f ixed b y  the  r e q u i r e m e n t  tha t  t r ans l a t ion  and r eo r i en t a t i on  c o n t r i b u t e d  

abou t  equa l ly  to the  p r o b a b i l i t y  tha t  a m o v e  w o u l d  be re jec ted .  T h e  c r i t e r ion  to 

dec ide  w h e t h e r  or  no t  a g iven move  gene ra t ed  an accep tab le  conf igura t ion ,  i.e. 

one free of  h a r d - c o r e  over lap ,  was taken  d i r ec t ly  f rom the  work  of  V i e i l l a r d -  

Baron  [13] .  P e r r a m  et al., [14]  have  r ecen t ly  d e v e l o p e d  an a l t e rna t ive  c r i t e r ion  

which ,  acco rd ing  to these  au thor s  is m o r e  sa t i s fac tory  but ,  as the  la t ter  pape r s  

on ly  a p p e a r e d  af ter  we ca r r i ed  ou t  our  s imu la t ions  we have  been  unab le  to 

c o m p a r e  the  two m e t h o d s .  T h e  b o x - s h a p e  c h a n g i n g  m o v e s  were  ca r r i ed  ou t  b y  

r a n d o m l y  se lec t ing  one of  the  th ree  d iagona l  e l emen t s  of  h and  c h a n g i n g  it b y  a 

fac tor  exp (gx) whe re  x is a r a n d o m  n u m b e r  be tw e e n  - 1 / 2  and  1/2 and g was 

chosen  such  tha t  the  overal l  accep tance  o f  such  vo lume  c h a n g i n g  moves  was 

~ 2 0 - 3 0  pe r  cent .  W h e n  s imu la t i ng  the f luid phase  all d iagona l  e l emen t s  of  h 

were  scaled b y  the  same fac tor ;  th is  c o r r e s p o n d s  to the  usual  cons t an t  p r e s su re  

M C  p r o c e d u r e  [10].  

2.2. Free energy computation 

In  o r d e r  to locate the  first  o r d e r  phase  t r ans i t i ons  be tw e e n  sol id  and  f luid 

phases  and  be tween  i so t rop ic  and  n e m a t i c  f luids one  needs  to know the  abso lu te  

free ene rgy  of  the  coex is t ing  phases .  F o r  the  i so t rop ic  phase  c o m p u t i n g  the free 

ene rgy  poses  no pa r t i cu l a r  p r o b l e m s .  T h e  excess free ene rgy  of  the  i so t rop ic  fluid,  

i.e. the  d i f ference  be tween  the free ene rgy  of  an i so t rop ic  f luid of  H E R s  at dens i ty  

p and  tha t  of  an ideal  gas (of l inear  molecu les )  at the  same dens i ty ,  is g iven b y  

FEx(P ) = IP(P(p ') -- PID.~As(p'))/p '2 dp', (2.1) 
3o 
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where P(p)  is the pressure of the system of HERs at density p and PID.GAs(P)  = 

p k T  is the ideal gas pressure at this density. P(p')  is obtained in the course of the 

Monte Carlo simulation. It should be noted that the integral on the right-hand 

side of equation (2.1) is well-behaved at low densities because the integrand is of 

the form (B 2 + B a p + . . . )  where B n is the nth virial coefficient of the HERs.  We 

computed B 2 analytically and B 3 numerically [8]. The  integration in equation 

(2.1) was performed by first fitting P(p')  to a 'generalized y-expansion '  form [15] 

P(p')  = (6/n) , (2.2) 

with y = t / / ( 1 -  t/) and r /=  (4n/3)ab2p ' is the packing fraction. Barboy and 

Gelbart observed that for a number  of hard-core fluids an N- te rm y-expansion 

tends to reproduce the true equation of state better than the corresponding 

N- te rm virial series. We found that for HERs with 1/3 ~< x ~ 3, we could always 

reproduce the Monte Carlo equation of state over the entire isotropic range with 

at most six terms in the series of equation 2.2. Moreover, the coefficients C1, C 2 

and C3 are known because Ca = B1 ( =  1), C 2 = B 2 - 1 and C3 = B3 -- 2Bz + 1. 

The absolute free energy of nematic phases cannot be determined in the above 

fashion because a nematic phase cannot be expanded to a dilute gas without 

crossing a first-order phase transition. However, in a sufficiently strong external 

field this first-order transition can be suppressed. We make use of this fact to 

devise a reversible path from the ideal gas phase to the dense nematic fluid phase. 

We consider a hamiltonian 
N 

H ( 2 ) = H  0 + 2 ~  sin 20i ,  (2.3) 
i = 1  

where H 0 is the hamiltonian of the H E R  system without external field, 2 the 

strength of the external field and 0 i the angle of the axis of the i-th molecule with 

the direction of the field. We denote the critical field strength beyond which the 

first order isotropic-nematic transition disappears by 2r We now construct the 

following path from the ideal gas to nematic phase. First switch on the field at 

p = 0 to a value 2 M > 2c; AF(0-* )-M; 0), the resulting increase in the free energy 

of the ideal gas can be computed analytically. Next we compress the H E R  system 

while keeping the external field constant to a density PN, at which the system with 

no external field applied is well inside the nematic phase. The  excess free energy 

of the H E R  fluid increases during this compression by an amount  

f0 ~ 
AFaE~(2M ; 0--~ PN) =" (PxM(P) - PlD.GAs(P))/P 2 dp, (2.4) 

where Pau(P) denotes the pressure of an H E R  fluid at density p in an applied field 

of strength )-u. Once again, the low density behaviour of the integrand can be 

written in terms of virial coefficients 

(Pzu(P) - PD.GAs(P))/P 2 = BX2 M q- B ~ P  + " " ,  (2.5) 

where Bn zM is the value of the nth virial coefficient in an applied field of strength 

)-M. The  exact expression for B~ ~ is known (see Appendix A). As before we fit 

PzM(P) to an expression of the form 

C ~M-" (2.6) PzM(P) = ,=~1 " Y '  
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where C~ M = 1 and C2 ~ = B~ M - 1. Typica l ly  a f ive-term power  series in y accu- 

rately reproduces  the M C  data. Final ly we slowly switch off the external field at 

constant  density.  T h e  free energy  change per  particle in the last step is equal to 

AF(2 M--~ 0 ; PN) = -- d2` = -- d2` 

pN pN 

f02M N = - - N  1 ~ (sin20i)'~" ON d2`. (2.7) 
i=1  

In  the s imulat ions presented here we found  it more  convenient  to switch off 

the field at constant  pressure ra ther  than at constant  density.  As Q ? H / O 2 , ) e  = 

(t~G/~32,)e, we then measure  a free en tha tpy  difference ra ther  than a free energy 

difference. But  this is immaterial  since knowledge of  one suffices to de termine  the 

other.  

T h e  free energy of  the solid phase is c o m p u t e d  in a similar way. We  cons t ruc t  

a reversible path f rom the solid s t ructure  under  considerat ion to an Einstein 

crystal of  the same s t ructure  [16].  T o  this end we modi fy  the hamil tonian H 0 of  

the H E R  system by including ' external f ields '  which,  in the limit of  large coup-  

ling constant ,  eontrain the solid to approach  a molecular  Einstein crystal  

N N 

H(2,1, 22) = H0 + 21 ~ (ri -- r~ 2 + 2`2 E s in20i"  (2.9) 
i=1  i=1  

In  equat ion (2.9) t i - -  t o is the d isplacement  of  molecule  i f rom its average posi- 

tion, 0 i is the angle of  the axis of  the ith molecule  with the direct ion of  the 

aligning field. In  the limit of  large coupl ing  constants  (2,1, 2,2) the par t i t ion func-  

t ion co r respond ing  to the above hamil tonian can be evaluated analytically, provid-  

ed that  the probabi l i ty  of  hard-core  overlaps vanishes in the limit 2,1, 2,2-* oo 

0 ( 2 , 1 ,  2,2) , N-3/2(TZ/f12,l)3/2(N-1)(2TC/f12,2) N. (2.10) 
AI~O0 

At finite values of  2`1, )-2 the expression for the par t i t ion funct ion of  a perfect  

Einstein crystal  is still known in closed form. Correc t ions  to the part i t ion funct ion 

due to hard-core  overlaps can be c o m p u t e d  in a systematic  way using a cluster  

expansion [16] or numerica l ly  by  pe r fo rming  umbre l la  sampl ing of  the sys tem 

with the full hamil tonian f rom configurat ions of  the cor respond ing  ideal Einstein 

crystal. T h e  free energy  of  the solid wi thout  external fields is then obta ined  by 

integrat ing (c3F/t?21) = E ( ( r i  _ r i ) O  2)21,22 and (~F/t~2`2) = E ( sin2 0i)~1,  42 along 
i i 

some convenient ly  chosen path. Such  a path is descr ibed by  a set of  equat ions  of  

the fo rm:  2,1 = f l ( ( ) ,  2,z =f2(~)  such that  for 2,1 = 2,2 = 0 f o r  ~ = 0 and 2,I = 2,T ax 

and 2,2 = 2,~ax for ~ = 1. Wi th  these definitions the expressions for the free energy 

of  the solid wi thout  external fields becomes  

F(,~ l = 0, 22 = 0) = F(2,1 = 27 ax, 2,2 = 2,~ax) 

fo + (eF'](e2,~']-] (2.11) 

In  our  calculation we always used the parametr iza t ion 2,1 = 2~ax~ and 2`2 ~--- 2,~nax~. 

One point  requires special at tention.  T h e  free energy  computa t ions  are necessar-  
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ily carried out at constant volume and fixed box shape. Without  these constraints 

hard core overlaps cannot be eliminated by increasing ~1 and ~2. It is very 

important that the box shape chosen for the free energy integration is indeed the 

one corresponding to the equilibrium shape of the crystal unit cell at that particu- 

lar density. Otherwise one would end up computing the free energy of a strained 

crystal which is, of course, higher than the free energy of the unstrained solid. We 

found this effect to be quite appreciable. Once the free energy of the solid had 

been determined at one particular density and, where applicable, also the free 

energy of one nematic state point, the coexistence points were determined as 

follows. The  equation of state for all 3 (or 2) branches was fitted to an expression 

of the form given in equation (2.2) above, where we made use of our knowledge of 

the first 3 virial coefficients to fix the first three coefficients in the isotropic case. 

Once the dependence of P on p is given, the computation of F and hence 

p N  = F + P V  at any density is straightforward. The  points where the pressure 

and chemical potential of two phases are equal were determined numerically. 

3. RESULTS 

Figures 1 and 2 show the Monte Carlo equation-of-state data for hard ellip- 

soids of revolution with length-to-breadth ratios x = 3, 2"75, 2, 1"25, 0"8, 0"5, 

1/2"75 and 1/3. The  data displayed in figures 1 and 2 have been collected in tables 

1, 2 and 3. The  length of the individual Monte Carlo runs was between 104 and 

2 x 104 attempted moves per particle, excluding equilibration. For a number  of 

state points several independent runs were carried out. The scatter in the results 

for such simulations is a direct measure for the estimated error in the equation-of- 

state data. Typically we find a relative error in the density (or pressure) of the 

order of 1 per cent but in the vicinity of phase transitions the error tends to be 

somewhat larger. For systems with x in the interval 2 >/x ~> �89 we observe a phase 

diagram consisting of an isotropic fluid branch at low densities and a solid branch 

at high densities. As we go to the less spherical systems x ~> 2"75, x ~< 1/2"75, a 

nematic fluid branch appears in addition to the isotropic fluid and crystalline 

solid branches. This nematic branch is more clearly visible in figure 3. The  onset 

of orientational order was studied by monitoring the behaviour of the orientation- 

at correlation function gz(rl -- r2) -- (P2(1(rl) . 1(r2))) , where P2 stands for the 

second Legendre polynomial and 1 (r) is the unit vector characterizing the orienta- 

tion of a molecule at a position r. In the isotropic phase g2(r) decays to zero within 

approximately one molecular diameter, In the nematic phase g2(r) approaches a 

constant value at large r 

g2(r) ~ (P2)  2, (3.1) 
r ~ 0 o  

where ( P 2 )  is the average value of the nematic order parameter. In our simula- 

tions we observe that g2(r), which is initially short ranged, becomes long ranged 

as the density is increased. Upon reducing the density, g2(r) once more becomes 

short ranged. This behaviour is illustrated in figure 4. It  is important to note that 

the isotropic-nematic transition exhibits hysteresis. The  isotropic fluid can be 

overcompressed and the nematic fluid can be overexpanded. This effect is more 

pronounced for prolate than for oblate ellipsoids. Hysteresis effects are clearly 

visible in figure s 3 and 4. As a consequence the isotropic-nematic point cannot be 
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Figure  1. Equat ion of state data of hard ellipsoids of revolut ion with length- to-breadth  
ratios x = 3, 2.75, 1/2-75 and 1/3. T h e  pressure is in units kT/8ab 2, the density in 
units (8abZ) -1. Open circles: isotropic branch,  open tr iangles:  nematic  branch,  
pluses:  solid branch. T h e  data points have been tabulated in tables 1-3, the par- 
ameters describing the fits through the data (dashed curves) have been collected in 
table 6. 
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Figure  2. Equat ion of state data of hard ellipsoids of revolut ion with length- to-breadth  
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fluid branch, pluses:  solid branch. T h e  data points have been tabulated in tables 1 
and 3, the parameters describing the fits through the data (dashed curves) have been 
collected in table 6. 



1180  D .  F r e n k e l  a n d  B. M .  M u l d e r  

T a b l e  1. Equa t ion  of state data  for the  isotropic  fluid phase  of h a r d  ell ipsoids of revol-  
u t ion  wi th  l e n g t h - t o - b r e a d t h  rat io x = 3, 2.75, 2, 1"25, 0"8, 0"5, 1/2-75 and  1/3. 
C o n s t a n t - P  and  c o n s t a n t - V  M C  data  in the  table  can be  d i s t ingu i shed  because for 
the  fo rmer  the  pressure  is always a r o u n d  n u m b e r .  T h e  un i t  of dens i ty  is (8ab 2)- l, 

the  un i t  of p ressure  is kT/(8ab2). 

x = 3 x = 1/3 x = 2"75 x = 1/2'75 

P P P p P p P p 

1"000 0-352 1-000 0 '349 1-000 0"362 1'000 0-360 
1.000 0-360 2-000 0"479 2-000 0-488 2-000 0"482 
2"000 0-484 3"000 0-563 3.000 0.576 3"000 0'581 
2-000 0"481 4"000 0 '624  4.000 0 '639 4 '000 0.639 
3"000 0-565 6 '000 0.724 5.000 0 '689 5.000 0.695 
3"000 0"569 8"000 0.772 6.000 0"729 5.000 0.700 
4"000 0"628 9-000 0"801 7.000 0"755 6"000 0-728 
5.000 0-681 10.000 0 '823 8-000 0-787 7"000 0-756 
5 '000 0"680 11'000 0.839 9.000 0-816 8-000 0"787 
6"000 0-728 12.000 0"865 10.000 0 '847 9 '000 0-810 
7-000 0-759 13'000 0"890 11.000 0"859 10.000 0"837 
7-000 0-746 14-043 0"900 12-000 0.881 11.000 0 '858 
8-000 0.777 14"000 0-900 12-757 0 '900 12.000 0.874 
9"000 0-805 15"000 0"918 13-000 0.903 13-000 0 '888 
9-000 0"806 15-165 0.920 14.000 0.914 13'441 0.900 

10-000 0-826 14-469 0-920 13.408 0"900 
11"000 0"845 15.000 0-936 14.000 0-919 
11'000 0-846 15.817 0-940 14.634 0"920 
12'000 0-866 16-000 0.945 14"535 0 '920 
13"000 0"886 17.000 0 '954 15-000 0"927 
13'000 0-882 17-511 0"960 16"000 0 '934 
13'374 0-900 18"000 0.972 15"967 0 '940 
13-483 0-900 18.000 0 '963 15.848 0 '940 
13"449 0-900 18-419 0-980 17"000 0-958 
15"227 0-920 18.759 0-980 17'000 0-945 
15"175 0-920 19.000 0-974 17'564 0"960 
14.827 0-920 19.000 0-988 18-000 0"970 
15-000 0.922 20-000 0"979 18.000 0-972 
16"593 0-940 20-000 0-995 18"000 0"980 
17"000 0-947 20-282 1-000 19-000 0"985 
17.470 0"960 21"000 1 '994 21-483 1.000 
19"000 0-960 21.000 1-009 23 '012 1"020 
19"215 0-980 22.000 1-015 25'523 1"040 
21-000 0-994 22 '000 1"018 28-706 1"060 
21"322 1"000 22'881 1"020 
23"000 1-012 23 '000 1"020 
23.294 1-020 24 '000 1"029 
25 '000 1-029 25"656 1"040 
25.833 1-040 26 '000 1"046 

28-437 1"060 
31"527 1"080 
35-723 1"100 
39-658 1"125 
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x = 3 x = 1/3 x ~ 2.75 x = 1/2.75 

P p P p P p P p 

1.000 0-377 1-000 0.3760 
2.000 0-517 2.000 0.5120 
3.000 0.608 3.000 0.6040 
4-000 0.671 4.000 0.6710 
5-000 0.709 5.000 0.7230 
6.000 0.760 6-000 0.7520 
7.000 0.794 7.000 0.7900 
8.000 0.838 8.000 0.8170 
9-000 0.855 9-000 0-8390 

10.000 0.866 10.000 0.8730 
11-000 0-894 11.000 0.8900 
12-000 0.914 12.000 0.9130 
13.000 0.930 13.000 0.9190 
14.000 0-948 14.000 0.941 
15.000 0.963 15.000 0.959 
16.000 0.974 16.000 0.968 
17.000 0.984 17-000 0.984 
17.000 0.986 17.000 0.982 
18.000 1.001 18.000 0-990 
18.000 1-001 18.000 0.996 
19.000 1.008 19.000 1.005 
19.000 1.013 19.000 1-009 
20.000 1-023 20.000 1.012 
20-000 1.019 20-000 1.017 
21-000 1.029 21.000 1.037 
21.000 1.036 21.000 1-020 
22.000 1.040 22.000 1.036 
22-000 1.041 22-000 1.038 
23.000 1-050 23-000 1.046 
23.000 1.052 24.000 1.052 
24.000 1.056 25.000 1-060 
25.000 1-065 26.000 1.075 
26.000 1.073 26-870 1.074 
28.220 1.096 27.000 1.076 
28-797 1.100 29.222 1.100 
31-080 1.117 31-180 1.117 
33.415 1-125 34.034 1.125 
35.890 1.138 35.130 1.132 
39-960 1.1580 42.080 1.160 
38.167 1.150 47.850 1-178 
47.720 1.184 

1.000 0.395 1.000 0.401 
2.000 0.539 2.000 0.536 
3'000 0.630 3.000 0.634 
4.000 0.699 4.000 0.706 
5-000 0.737 5.000 0-745 
6.000 0.780 6-000 0.784 
7.000 0.821 7.000 0.825 
8.000 0.854 8.000 0.852 
9.000 0-874 9.000 0.879 

10-000 0.900 10.000 0.900 
11.000 0.923 11.000 0.924 
12-000 0.947 12.000 0.941 
13.000 0-968 13.000 0.955 
14.000 0.974 14.000 0-975 
15"000 0.993 15.000 0.995 
16-000 1.008 16-000 1.004 
17-000 1-012 17-000 1.026 
18.000 1.035 18.000 1-034 
18.123 1.050 19.000 1.039 
20-000 1.059 20.000 1.045 

ext rac ted  direct ly  f r o m  the equa t ion  of  state data. T h i s  holds,  afortiori, for  the 

locat ion of  the so l i d - l i qu id  coexis tence  point .  T h e  dens i ty  j u m p  f rom solid to 

l iquid  is typical ly  of  the o rder  of  6-8  per  cent  as c o m p a r e d  wi th  1-2 per  cent  for 

the i s o t r o p i c - n e m a t i c  t ransi t ion.  In  fact, spon taneous  crysta l l izat ion of  the over -  

compres sed  fluid was hard  to achieve.  W e  only  obse rved  it in the  o v e r c o m p r e s s e d  

fluid phase of  el l ipsoids wi th  a/b = 1-25 and 0"8. In the v ic in i ty  of  the i so t rop i c -  

nemat i c  t rans i t ion  very  large and s luggish f luctuat ions  in the nemat i c  o rder  par-  

amete r  are obse rved  bo th  in the i so t ropic  and in the nemat i c  phase.  T yp i ca l  
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Table 2. Equation of state data for the nematic fluid phase of hard ellipsoids of revol- 
ution with length-to-breadth ratios x = 3, 2"75, 1/2"75 and 1/3. Most runs were at 
constant volume; constant-P runs are easily recognized by the fact that the pressure 
is a round number. Units as in table 1. 

x = 3 x = 2"75 x = 1/2"75 x = 1/3 

P p P p P p P p 

15.6602 0.940 21'3630 1'020 17"1150 0-960 
16-7127 0.960 22.4802 1'020 16'7325 0-960 
18.3252 0"980 23"4760 1'040 18'2150 0.980 
19.5922 1.000 23"6329 1.040 18-2439 0.940 
20-7425 1.020 25"0000 1'064 19-7830 1-000 
23.5652 1 " 0 4 0  25"0000 1'047 19'6489 1"000 
25'0000 1-053 26-1230 1.060 21.1220 1'020 
25.6909 1'060 28"5070 1 " 0 7 5  22'1896 1.020 
28.8181 1'080 29"2230 1 " 0 7 5  23-1310 1-040 
31"8018 1 " 1 0 0  29"4317 1 " 0 8 0  22"3931 1-040 
34-4831 1"120 30'0000 1'086 25"0000 1"065 

32"2151 1"100 25-9890 1-060 
30-7013 1'100 26.6520 1"080 
33"6447 1-120 30"1607 1-100 
35.3705 1.140 30-4810 1"000 

32.6169 1.120 
34"7430 1.125 
37"2378 1-140 

12-9580 0-900 
14'3460 0.920 
14'7310 0.920 
15-6780 0.940 
15'9270 0-940 
16'0110 0.940 
16"0000 0.943 
17"0000 0-954 
17"0870 0-960 
17'3690 0.960 
17'5930 0.960 
17'6700 0-980 
17-8690 0"980 
18"4530 0-980 
18"8590 1'000 
19.8540 1'000 
20'9410 1-020 
20"9830 1-020 
22"4850 1"040 
22"9770 1.040 
24"7900 1.060 
25-0960 1-060 
26"2596 1"075 
26'9800 1.080 
30"6355 1'100 
30"9180 1-100 
35-2853 1"250 

examples  are shown in figure 5. T h e  order  pa ramete r  in figure 5 is defined as 

-- 2)~o, where  )~0 is the midd le  e igenvalue of the tensor  order  paramete r  O~p (for a 

discussion,  see [5]). Because of these large f luctuat ions  our  statistics on the 

nemat ic  order  parameters  were poor  and  hence no detai led s tudy  of the dens i ty  

dependence  of the order  paramete r  was a t tempted .  In  order  to locate the ther-  

m o d y n a m i c  phase t rans i t ions  the absolute  free energy  of the coexist ing phases 

needs  to be de te rmined .  T o  this  end  we employ  the me t hods  descr ibed  in w 2. T h e  

essence of the t echn iques  descr ibed in w 2 is that  a reversible  path  is cons t ruc ted  

which l inks the t h e r m o d y n a m i c  phase u n d e r  cons idera t ion  to a state of k n o w n  

free energy.  

Fo r  the isotropic phase the reference state is the ideal gas. T h e  reference state 

for the nemat ic  is an ideal gas in a ' f i e l d '  of s t rength  )-M. For  suff icient ly high 

values of ~M we first revers ibly  compress  the system at cons tan t  2 M and  then 

revers ibly  switch off the field. W e  do not  know a prior i  how large 2 M should  be 

chosen to ensure  that  such a pa th  is indeed reversible.  O u r  exper ience is that  a 

field s t reng th  )-M = 5 (in un i t s  kT)  is suff ic ient ly  h igh to avoid the first order  
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Table  3. Equat ion  of state data for the solid phase of hard  ellipsoids of revolution with 
l eng th - to -b read th  ratios x = 3, 2'75, 1'25, 0'8, 0'5, 1/2-75 and 1/3. These  simula- 

t ions were carried out at constant  pressure,  wi th  a fluctuating box shape, as 

descr ibed in the text. T h e  units  are as in table 1. For  x = 1'25 and x = 0-8 a 

orientat ional  o rder -d i sorder  t ransi t ion takes place at p = 1'20. 

x = 3 x = 1/3 x = 2.75 x = 1/2-75 

P p P p P p P p 

25.0000 1.111 25.0000 1-115 26-0000 1.127 24-8000 1.128 
26.0000 1.123 25.5300 1.123 27.5000 1.130 28.7600 1.145 

27.5000 1-144 25.5300 1-124 27-4800 1.139 28-7600 1.146 
27.5000 1.134 25.5300 1.126 27.4800 1.141 28.7600 1.145 
27.5200 1-129 26.0000 1.130 27-4800 1.135 28.7600 1.155 

27.5200 1.138 27.5000 1.144 28.0000 1-149 31.8700 1.179 

31.6800 1.173 27.5000 1.142 30.0000 1.159 35-3700 1.204 
36.0900 1.188 31.7300 1-190 32-2900 1.177 42.0900 1.231 

41.1300 1.223 36-3800 1-195 36-6200 1.195 49.2200 1.254 

47.2800 1-241 40.3500 1-229 41-5500 1.222 
50.0800 1.263 48.7000 1.245 

x = 2 x = 1/2 x = 1.25 x = 1/1-25 

28.0000 
28.2200 

30.0000 
31.0800 

35.8900 
39.9600 
47.7200 

1-137 26.8700 1.127 
1.134 28.2200 1-131 
1.146 30.0000 1.144 
1-162 31.1800 1.155 

1-198 35.1300 1-195 
1.226 42-0800 1-234 
1.254 47.8500 1.250 

12-0000 0.9819 12-0000 
13-0000 1.010 13.0000 
14-0000 1.039 14-0000 

15.0000 1.048 15-0000 
16-0000 1.065 16-0000 
17.0000 1-077 17.0000 
18.0000 1-080 18.0000 

19-0000 1.099 19-0000 
20.0000 1-105 20.0000 

21-0000 1-108 21.0000 
22.0000 1-116 22.0000 

23.0000 1-127 23.0000 
24.0000 1-135 24.0000 
25.0000 1-141 25.0000 

31.0000 1-178 31.0000 

32.0000 1-176 32.0000 

33.0000 1.188 33-0000 
34-0000 1.190 34.0000 
35.0000 1-198 35.0000 
35.0000 1.193 35-0000 

37.5000 1-201 37.5000 
40.0000 1-206 40.0000 

40.0000 1.216 40-0000 

45-0000 1.232 45.0000 
50.0000 1.247 50.0000 
55.0000 1-266 55-0000 

1-008 
1-014 
1-039 
1-056 
1-064 

1-081 
1.088 
1.095 

1.114 

1-116 
1.117 

1-128 
1.139 
1.143 
1.180 

1-183 
1.187 

1-192 
1-197 
1-195 

1.198 
1.218 

1.216 
1.230 
1.253 
1-271 
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Figure 3. Equat ion of state of hard ellipsoids of revolution with length- to-breadth ratios 
3, 2"75, 1/2"75 and 1/3, in the density range where a nematic branch is observed. 
Meaning  of symbols as in figure 1. 



I 1 i 1 I I . . . .  

a / b  = 3.00 a / b  = 3.00 

1 - - 

, \ ,  l \  
~ 0.50 ', ' r  ~ ~ 

' \ " " v 

025 L, _ _ 

0 0.5 1 1.5 0 0.5 I 1.5 Z 

Figure 4. Example  of the behaviour  of the orientat ional  correlation funct ion g2(r)= 
(P2( l (0)  . l ( r ) ) ) ,  at densit ies p = 0.92 (drawn curve), p = 1-00 (dashed curve) and 
p = 108  (dash-dot) .  T h e  left hand  figure shows the behaviour  ofga(r)  on compres -  
sion, the right hand figure shows the behaviour  on expansion.  T h e  length- to-  

breadth  ratio, in this figure is a/b = 3. 

"el 

0 

0.5 

4-.4. 

.§ ,~ 
�9 §  . .  

! 

, I i I , I * 

o zoooo 4oo00 60ooo aoooo 

n u m b e r  o f  p a s s e s  

Figure  5. Slow fluctuations i n  the nemat ic  order  parameter  of hard  ellipsoids of revol- 
ution. Pluses:  b/a = 3, p = 0-98 (nematic);  open tr iangles:  b/a = 3, p = 0"92 (super  
expanded  nematic) ;  open  squares:  a/b = 3, p = 0.90 (isotropic). 
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Table 4. Equation of state data of a fluid of hard ellipsoids of revolution under the 
influence of an external perturbation ). ~ sin 2 0 i (see equation (2.3)), with ). = 5 (in 

i 

units hT) for x----3, 2"75, 1/2'75 and 1/3. All runs were carried out at constant 
pressure. For x -= 3 data were shown for a system of N = 90 ellipsoids (P -- 1 to 12, 
upper part) and N = 108 ellipsoids (P = 1 to 25, lower part). No systematic system- 
size dependence was observed. Units as in table 1. 

x = 3 x = 2-75 x = 1/2"75 x = 1/3 

P p P p P p P p 

1.000 0.374 
2-000 0.510 
3.000 0-593 
4.000 0.652 
5-000 0-712 
6.000 0.759 
7-000 0"785 
8'000 0"823 
9.000 0"858 

10'000 0'863 
11.000 0"899 
12-000 0-908 

1-000 0"372 
2-000 0-504 
3'000 0.602 
5.000 0"709 
7.000 0.794 
9.000 0.842 

11.000 0"891 
13"000 0.939 
15"000 0'962 
17-000 0"991 
19-000 1 '009 
21'000 1"038 
23 '000 1 '064 
25"000 1-080 

1.00 0.378 1"00 0.379 1.000 0"377 
2.00 0-512 2-00 0.512 2-000 0"501 
3.00 0'598 3.00 0"600 3.000 0'595 
5-00 0.719 5'00 0.718 4-000 0-650 
7.00 0-802 7.00 0"786 5'000 0'706 
9.00 0.849 9.00 0-841 6'000 0"754 

11-00 0.891 11"00 0-902 7"000 0.785 
13.00 0-937 13"00 0-927 8.000 0.815 
15.00 0.966 15"00 0.960 9'000 0-846 
17.00 0-987 17-00 1-004 10"000 0.869 
19.00 1.016 19-00 1.021 11.000 0-891 
21-00 1-037 21.00 1.043 12-000 0-908 
23-00 1-530 23-00 1-060 13-000 0-938 
25-00 1-079 25.00 1.085 14-000 0-953 

15.000 0'968 
16'000 0-980 

t ransi t ion.  T a b l e  4 conta ins  the equa t ion  of  state of  H E R s  wi th  x = 3, 2-75, 1/2.75 

and 1/3 at 2M = 5. T h e  dif ferent  con t r ibu t ions  to the  G i b b s  free energy  of  the 

nema t i c  phase have been  col lec ted  in table 5. N o t e  that  the es t imated  er ror  in the 

absolute  free energy  of  the nemat i c  phase is re la t ively  large. T h i s  is due  to the fact 

that  it is diff icul t  to obta in  good statistics on the free en tha ipy  change  along the 

revers ib le  path  l inking the nema t i c  phases wi th  and wi thou t  appl ied  field 2 M . T h e  

values g iven in table 5 were  ob ta ined  by averaging  the resul ts  of  one  set of  runs  in 

wh ich  the  field was swi tched  off and one set of  runs  in wh ich  the  field was 

swi tched  on. Both  sets consis ted  of  10 runs  o f  104 passes each. All  M o n t e  Car lo  

equa t ion  of  state data  were  fi t ted to an express ion  of  the f o r m  

P(y)  ---- (6fiz) ~ c . y " .  (2.2) 
n = l  

T h e  n u m b e r  of  t e rms  in the fit, m, was fixed by the r e q u i r e m e n t  that  increas ing m 

did not  subs tant ia l ly  lower  the Z 2 of  the fit. T h e  coeff ic ients  of  all fits to the M C  



Table 

Hard ellipsoids 1187 

5. Contributions to the absolute free energy of (i) a nematic state point of HERs 
with x = 3, 2.75, 1/2'75 and 1/3 (upper part), and (ii) a solid state point of HERs 
with x = 3, 2"75, 2, 1.25, 0"8, 0"5, 1/2.75 and 1/3 (lower part). Meaning of symbols: 
(i) upper part-FsoT: orientational contribution to the free energy (in units kT) of a 
gas of linear molecules at p = 0  and 2 = 5  (at 2 = 0 ,  FRO T =  --ln 2). AFEx: the 
increase in the excess free energy of a gas of HERs upon compression from zero 
density to density p (column 4), corresponding to a pressure P (column 3). The free 
enthalpy at this pressure, G(2; P), is given in column 5. The change in free enthalpy 
caused by switching off the perturbation 2 = 5--*0, is shown in column 6. 
G(2 = 0; P) (column 7) is the resulting value for the free enthalpy of the nematic 
phase at pressure P. (ii) lower part-2M maximum value of 2 a and 22 in equation 
(2.11). FEINST()tM): free energy per particle of an N-particle, fixed centre-of-mass, 
interacting Einstein crystal (see [16]): FENINST(2M) = F ~ I N S T ( 2 M )  - -  (3/2N) in (fl2M/rcN) 
+ AF,,  where AF u is the free energy difference between the interacting and non- 

interacting Einstein crystal; this (very small) term was obtained by umbrella sam- 
pling. AF is the Monte Carlo value for the free energy difference between the 
interacting Einstein crystal and the fixed centre-of-mass HER solid at the same 
density and box shape, but at 21 = 22 = 0. F(p) is the free energy of the uncon- 
strainted HER solid at density p; (F(p)= FEINST(2M)- A F - - ( I n  V)/N. R is the 
relative compression (expansion) of the equilibrium rhombohedral crystal unit cell 
along its three-fold symmetry axis referred to the shape at close packing. The last 
column contains the number of particles, N, for which the free energy computation 
was performed. 

FROT(2 = 5 ; 
a/b p = 0) AF~x P p G(2 ; P) AG G(2 = 0 ; P) 

3 1 "46356 8"205 25 1"0794 31"905 0"567 _ 0 " 1 6  31"338 
2"75 1"46356 7"977 25 1 "0755 31 "759 0"749 + 0"18 31"010 
1/2'75 1'46356 8'168 25 1"0838 31"779 0'627 _ 0"06 31"152 
1/3 1"46356 6'632 16 0"9830 23"355 0"854 + 0'16 22'502 

a/b 2 M FEINST(2M) AF F(p) p R N 

3 8095"69 20.7282 10-409 -4- 0'02 10.2711 1 " 1 6 5  0-917 90 
2.75 8095"69 20"7248 10"453 -4- 0"02 10"2233 1-170 0"951 90 
2 22019"08 23.2095 12.001 +_ 0.02 11-1612 1"240 0.949 90 
1.25 8095"69 2 0 " 7 3 0 1  15.901 ___ 0.05 4"782 1'050 0.800 96 
1/1-25 22019-08 23"2157 18-252 _+ 0-06 4"917 1"060 1-250 96 
1/2 22019'08 23.2242 12-165 _+ 0'02 11.0177 1-230 1-065 108 
1/2-75 8095"69 20-7368 10.020 __ 0.01 10-6748 1 " 1 8 0  1.100 108 
1/3 8095"69 20"7366 10'056 _+ 0-01 10'6385 1'170 1"090 108 

data have been  collected in table 6. Equa t i on  (2.2) provides  a conven ien t  para-  

met r i za t ion  of the M C  data in the dens i ty  range which  we studied.  However ,  the 

values of the ind iv idua l  h igher  order  coefficients in equa t ion  (2.2) have little 

physical  significance because these coefficients t end  to change  appreciable  as the 

n u m b e r  of terms,  m, in equa t ion  (2.2) is varied.  T h e  free energy of the solid phase 

is ob ta ined  by  cons t ruc t ing  a reversible  path to a molecular  E ins te in  crystal  (see 

w 2). T h i s  involves  s imu l t aneous ly  swi tch ing  on a t rans la t ional  o rder ing  field 21 

(' h a rmon ic  s p r i n g s ' )  and  an or ien ta t ional  o rder ing  field 3~2 (see equa t ion  (2.9)). 

We chose the m a x i m u m  values of 21 and  22 suff icient ly high to guarantee  that  

correct ions  to the free energy  of the perfect  E ins te in  crystal due to the hard-core  
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6. Coefficients for the generalized y-expansion (equation (2.2)) fits to the Monte 
Carlo equation of state data. C1n refers to the isotropic fluid branch; C~ and C~ are 
known exactly, C~ was computed from our knowledge of B3, C~ and C~ are par- 
ameters that yield the best fit to the MC data in table 1. C N refers to the nematic 
fluid branch; all three coefficients were determined by fitting the MC data. C s 
refers to the solid phase; all three coefficients were obtained by fitting the MC data. 
C2 refers to the HER fluid in an external field 2 = 5 (table 4). Ca and C~ are known 
exactly ; C~ and C~ are best fit values. 

x = 3  x = 1 / 3  x = 2 " 7 5  x=1 /2"75  x = 2  x = 1 / 2  x =  1"25 x=1 /1"25  

C~ 1 1 1 1 1 1 1 1 
C~ 4.454 4.454 4.211 4.211 3-538 3.538 3.053 3.053 
C~ 5.944 6.832 5.392 6.069 4.018 4.180 3.073 3.141 
C~ -- 3.019 -- 3"955 --3"273 -- 3.947 -- 1.616 --1.688 0'242 --0-787 
C~ 0.825 0'921 1.464 1'594 0"642 0.693 -0-723 0"238 

C~ 8.676 14.426 - 32"367 12-780 
C~ --7-385 -16"433 58-818 - 1 2 ' 7 1 4  
C~ 7.299 10"657 19.214 8"736 

C~ 21.191 18'848 27-168 31"596 27.695 29.917 4.082 --0-367 
C~ --20-918 --17.141 -28.735 --32.896 --25.997 --28.990 --3"817 1"972 
C~ 8.964 7"349 11'478 12"233 9.576 10.602 4'763 2.845 

C~ 1 1 1 1 
C~ 3.895 3"895 3.740 3-740 
C~ 3.781 4.466 3'503 4"052 
C~ --1.085 --1'891 --0.693 --1'287 

in te rac t ions  were  negl ig ib le .  W e  o b s e r v e d  tha t  the  abso lu te  free ene rgy  of  the  

sol id  phase  was ra the r  sensi t ive  to the  shape  of  the  crys ta l  un i t  cell. T h e  un i t  cell  

d i m e n s i o n s  used  in the  free ene rgy  ca lcu la t ion  at a g iven  de ns i t y  c o r r e s p o n d e d  to 

those  o b t a i n e d  by  averag ing  the f luc tua t ing  box  shape  in the  c o n s t a n t - P  M o n t e  

Car lo  s imu la t ions  (see w 2). T h e  e q u i l i b r i u m  shape  of  the  un i t  cell  at f inite p ress -  

ure  is, in genera l ,  no t  the  same as tha t  at close pack ing ,  a l t hough  the  r h o m b o -  

hedra l  s y m m e t r y  is ma in t a ined .  W e  find tha t  the  d i s to r t i on  is a lways  in the  

d i rec t ion  of  cub ic  s y m m e t r y ,  i.e. as the  dens i ty  is l owered  the  par t i c les  pack  as if  

they  were  less an i somet r i c .  T h e  change  in the  aspec t  ra t io  of  the  c rys ta l  un i t  cell  

at the  dens i t y  where  the  free ene rgy  ca lcu la t ion  was p e r f o r m e d ,  r e fe r red  to the  

aspect  ra t io  at close packing ,  is g iven for all c rys ta l s  in tab le  5. N o t e  tha t  for the  

sys t ems  wi th  x = 1-25 and x = 0"8 the  c rys ta l  close to me l t i ng  is face cen t r ed  

cubic .  Also  shown in tab le  5 are the  va lues  of  2 t and  22 used  in the  c o m p u t a t i o n ,  

the  abso lu te  free ene rgy  of  the  E ins te in  crys ta l  for this  va lue  21 and  22 and the  

free ene rgy  di f ference  be tween  the  E ins te in  crys ta l  and  the  u n p e r t u r b e d  crysta l .  

T o  eva lua te  the  in tegra l  in equa t ion  (2.11) we used  a 10-po in t  G a u s s - L e g e n d r e  

quad ra tu r e .  In  o r d e r  to make  the  i n t eg rand  a s lowly  va ry ing  func t ion  of  the  

in t eg ra t ion  var iable ,  we e m p l o y e d  the  same t r a n s f o r m a t i o n  as d e s c r i b e d  in [16].  

As we now know the  abso lu te  free ene rgy  of  the  i so t rop ic  fluid,  the  sol id  and,  

whe re  app l i cab le  the  n e m a t i c  phases ,  the  loca t ion  of  the  phase  t r ans i t ions  is 

s t r a igh t fo rward .  U s i n g  the  y - e x p a n s i o n  fits to the  equa t ion  of  s tate da ta  we can 

c o m p u t e  the  p re s su re  and  free energy ,  and  hence  the  chemica l  po ten t ia l ,  at any  

dens i ty .  W e  use an i te ra t ive  n u m e r i c a l  p r o c e d u r e  to locate  the  po in t s  whe re  the  

p re s su re  and  chemica l  po ten t i a l  of  two phases  are s i m u l t a n e o u s l y  equal .  T h e  
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Table 7. Coexistence points in the phase diagram of hard ellipsoids of revolution. The 
first four columns give the coexisting densities, the pressure and the chemical 
potential at the isotropic-nematic transition. Columns 5 to 8 give the same informa- 
tion for the fluid-solid transition. The number of particles is given in column 9. 

a/b P[so PNEM PIN PIN PFL PSOL PFS ltVS N 

3 0.969 0.988 18.69 25.15 1-096 1'163 30"84 36-75 90 
2.75 1.072 1.089 30.00 35-68 1.118 1 " 1 8 2  33-36 38"73 90 
2 . . . . .  1.185 1 " 2 5 2  46.97 49.03 90 
1-25 . . . .  0'983 1.039 14"34 18"44 96 
1/1"25 . . . .  0-998 1'060 1 5 " 5 1  19-54 96 
1/2 . . . .  1'175 1 " 2 4 5  45.76 48.23 108 
1/2.75 1.040 1.066 25"69 41.60 1 '137 1-206 36'54 41 '60 108 
1/3 0-952 0.972 1 7 " 4 7  24'03 1'121 1 " 1 9 5  34-22 39"85 108 

coexistence points  thus  ob ta ined  have been  collected in table 7. Note  that,  as we 

have not  made  a systematic  s tudy  of the sys tem size dependence  of the phase 

t rans i t ions  all our  results  apply to system sizes of ,~ 10 ~ particles.  A graphic  

i l lus t ra t ion of the resu l t ing  ' phase d i a g r a m '  is shown in figure 6. For  the sake of 

comple teness  we have inc luded  the data of Hoover  and  Ree [1] on hard  spheres in 

this figure. In  figure 6 four  different  phases can be d i s t inguished ,  viz. isotropic 

fluid, nemat i c  fluid, or ien ta t ional ly  ordered crystal  and  or ien ta t iona l ly  d isordered  

(' plastic ') crystal.  T h e  latter phase is only  observed for the more  spherical  el l ip- 

soids (1-25 ~> x ~> 0-8). T h e  rotator  phase has a face-centred cubic  s t ruc ture .  As 

the or ien ta t ional ly  d isordered  solid phase is approached  f rom the ordered  solid, 

the or ien ta t ional  order  parameter ,  S = (P2(cos 0)),  appears  to go to zero con t in -  

uously.  Moreover ,  we find no evidence  for d i s con t inuous  changes  in the dens i ty  
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Figure 6. ' Phase diagram' of hard ellipsoids of revolution. Vertical axis: density in units 
(8ab2)-1, horizontal axis: length-to-breadth ratio, x. The shaded areas correspond 
to two-phase regions. The dots are the computed coexistence points (see table 7). 
The points for x = 1 were taken from [1]. The following phases can be distin- 
guished: I, isotropic fluid; N, nematzc fluid; S, orientationally ordered solid; PS, 
plastic solid. 
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Figure 7. Deviation from perfect symmetry between the equations of state of hard ellip- 
soids of revolution with inverse length-to-breadth ratios. The vertical axis shows 
the percentual difference between the pressure of a fluid of HERs with a/b = x at 
density p and the pressure for HERs with a/b = x -1, at the same density. Dashed 
curve: isotropic branch; dotted curve: nematic branch; drawn curve: solid branch. 
The pressures used to draw these plots were obtained from the best fits to the 
Monte Carlo data (see table 6). 

at the t rans i t ion.  We  therefore ident i fy  the o rder -d i sorder  t rans i t ion  in the solid 

as a h igher  order,  or possibly  weakly first order,  phase t rans i t ion .  In  figure 6 we 

have sketched the behav iour  of the isotropic nemat ic  t rans i t ion  in the l imits  x--+ 0 

and  x--+ oo. As expla ined in the in t roduc t ion ,  the I - N  t rans i t ion  takes place at a 

packing fract ion which goes to zero l inearly with x or 1/x  respectively.  One  of the 

more  s t r ik ing  features of figure 6 is its high degree of apparen t  s y m m e t r y  unde r  

in te rchange  of x and  1Ix. T h i s  ' s y m m e t r y '  is already presen t  in the equa t ion  of 

state data. For  all equa t ion  of state poin ts  s tudied,  we find that  the pressure  at a 

given dens i ty  for ell ipsoids with a/b-rat io  x and 1/x  differs by  at mos t  7 per  cent. 

T o  visualize the s y m m e t r y  in the equa t ion  of state data, we have plot ted in figure 

7 the densi ty  dependence  of the percentua l  devia t ion of the pressure  ratio P ( x ) /  

P ( 1 / x )  f rom the value 1. At low densit ies  this ratio approaches 1 because the 

second virial  coefficients of H E R s  with l eng th - to -b read th  ratios x and  1/x are 

identical .  However ,  at higher  densi t ies  the ratio may differ f rom 1 because the 

th i rd-  and  higher  virial  coefficients of H E R s  wi th  a/b = x and  a/b = 1 /x  have no 
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such symmetry [5, 8]. One should expect the asymmetry to become more pro- 

nounced as the ellipsoids become less spherical. It is however quite surprising to 

find that even for quite anisometric ellipsoids (x = 3, 1/3) the asymmetry is only a 

few per cent, even at densities where the virial series is expected to converge 

poorly, if at all. It should be added that symmetry in the phase diagram is not just 

to be expected at low densities but also at higher densities in those parts of the 

phase diagram where there is a high degree of orientational order (see [17]). In 

the subsequent paper [-8] a comparison is made between the Monte Carlo data 

presented here and theoretical predictions based on the generalized y-expansion 

of Barboy and Gelbart [15]. 
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APPENDIX A 

In this appendix we consider the free energy of our system in the presence of 

an external field, coupling to the orientation of the particles, to lowest order in the 

density. The  free energy functional for this situation is given by 

N{fd#2~O(~) In ~ ( ~ ) + l n p - l - A  flF[-q/] = 

.=2 ~ - - T )  p . -1  . (A1) 

Here $(fl) is the one particle orientation distribution function with unit norm, (2 a 

unit sector along the symmetry axis of the particles, p the number  density, u((~) 

the external field and B , [ $ ]  a generalized virial coefficient. The equilibrium 

distribution is found by minimizing the free energy with respect to the function 

$, under the constraint that it be of unit norm. To  lowest order in the density one 

simply finds 

$0(fi) ~ exp ( - flu(fi)). (A 2) 

For our interaction we chose : 

u(~) = - k  cos 2 0 -  - k~  z, k > 0, (A3) 

where 0 is the angle between the molecular symmetry axis and the field direction. 

The  next step is to calculate the second virial coefficient 

B2[Oo] = ~ d~ dfi '0o(fi)00(~)E(~ . (2'). (A 4) 

Here E(~' . (2') is the excluded volume of two ellipsoids with fixed orientations. 

This quantity can be developed in to a Legendre-polynomial  series [18] 

{41 + 1"~ ^ A, 
E(~ �9 n ' ) =  ,=o'-" ~--5--J e'P~'(n'n)" (A5) 
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Explicit expressions for the coefficients e t are found in the accompanying 

paper  [8]. Turn ing  to ~po(~) we will now consider its expansion. Defining K = [3k 

we have 

1 tC~2" ~ I " [ 4 l +  1"~ 
exp (K~ 2) = .:o:i :.:o,. m. 

where the coefficient c,t are given by 1191 

n! F(n + �89 
cot = (n - l ) !F(n + l + 3/2)'  (A7)  

with 

exp ( g ~  2) = - - - 7  ctP2t(~), 
/=0 

(A 8) 

r(l + �89 
1Fl(l + �89 21 + 3/2, K).  (A 9) 

q - F(2l + 3/2) 

Here a series representation for the confluent hypergeometric function was used 
[20]. Inserting these results into (A 4) one finds the desired correction to the free 

energy 

1 ~ [ 4 l  + 1~ 2 

B2[~o] = 2c---~o t=oL t - - - - ~ ) e t c ,  " (A 10) 
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