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Abstract

The Euclidean k-means problem is a classical problem that has been extensively studied in the
theoretical computer science, machine learning and the computational geometry communities.
In this problem, we are given a set of n points in Euclidean space R

d, and the goal is to choose
k center points in R

d so that the sum of squared distances of each point to its nearest center
is minimized. The best approximation algorithms for this problem include a polynomial time
constant factor approximation for general k and a (1 + ǫ)-approximation which runs in time
poly(n) exp(k/ǫ). At the other extreme, the only known computational complexity result for
this problem is NP-hardness [1]. The main difficulty in obtaining hardness results stems from
the Euclidean nature of the problem, and the fact that any point in R

d can be a potential center.
This gap in understanding left open the intriguing possibility that the problem might admit a
PTAS for all k, d.

In this paper we provide the first hardness of approximation for the Euclidean k-means
problem. Concretely, we show that there exists a constant ǫ > 0 such that it is NP-hard to
approximate the k-means objective to within a factor of (1 + ǫ). We show this via an efficient
reduction from the vertex cover problem on triangle-free graphs: given a triangle-free graph, the
goal is to choose the fewest number of vertices which are incident on all the edges. Additionally, we
give a proof that the current best hardness results for vertex cover can be carried over to triangle-
free graphs. To show this we transform G, a known hard vertex cover instance, by taking a graph
product with a suitably chosen graph H, and showing that the size of the (normalized) maximum
independent set is almost exactly preserved in the product graph using a spectral analysis, which
might be of independent interest.
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1 Introduction

Clustering is the task of partitioning a set of items such as web pages, protein sequences etc.
into groups of related items. This is a fundamental task in machine learning, information
retrieval, computational geometry, computer vision, data visualization and many other
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domains. In many applications, clustering is often used as a first step toward other fine
grained tasks such as classification. Needless to say, the problem of clustering has received
significant attention over the years and there is a large body of work on both the applied
and the theoretical aspects of the problem [6, 4, 10, 13, 19, 21, 26, 33, 8, 28, 34]. A common
way to approach the task of clustering is to map the set of items into a metric space where
distances correspond to how different two items are from each other. Using this distance
information, one then tries to optimize an objective function to get the desired clustering.
Among the most commonly used objective function used in the clustering literature is the
k-means objective function. In the k-means problem, the input is a set S of n data points
in Euclidean space R

d, and the goal is to choose k center points C∗ = {c1, c2, . . . , ck} from
R

d so as to minimize Φ =
∑

x∈S mini ‖x− c(x)‖2, where c(x) ∈ C∗ is the center closest to
x. Aside from being a natural clustering objective, an important motivation for studying
this objective function stems from the fact that a very popular and widely used heuristic
(appropriately called the k-means heuristic [28]) attempts to minimize this k-means objective
function.

While the k-means heuristic is very much tied to the k-means objective function, there are
many examples where it converges to a solution which is far away from the optimal k-means
solution. This raises the important question of whether there exist provable algorithms for
the k-means problem in general Euclidean space, which is the focus problem of our paper.
Unfortunately though, the approximability of the problem is not very well understood. From
the algorithmic side, there has been much focus on getting (1 + ǫ)-approximations that run as
efficiently as possible. Indeed, for fixed k, Euclidean k-means admits a PTAS [26, 16]. These
algorithms have exponential dependence in k, but only linear dependence in the number of
points and the dimensionality of the space. As mentioned above, there is also empirical and
theoretical evidence for the effectiveness of very simple heuristics for this problem [33, 28, 25].
For arbitrary k and d, the best known approximation algorithm for k-means achieves a factor
of 9 + ǫ [21]. In contrast to the above body of work on getting algorithms for k-means, lower
bounds for k-means have remained elusive. In fact, until recently, even NP-hardness was not
known for the k-means objective [11, 1]. This is perhaps due to the fact that as opposed to
many discrete optimization problems, the k-means problem allows one to choose any point
in the Euclidean space as a center. The above observations lead to the following intriguing
possibility:

“Is there a PTAS for Euclidean k-means for arbitrary k and dimension d?”

In this paper we answer this question in the negative and provide the first hardness of
approximation for the Euclidean k-means problem.

◮ Theorem 1.1. There exists a constant ǫ > 0 such that it is NP-hard to approximate the

Euclidean k-means to a factor better than (1 + ǫ).

The starting point for our reduction is the Vertex-Cover problem on triangle-free graphs:
here, given a triangle-free graph, the goal is to choose the fewest number of vertices which
are incident on all the edges in the graph. This naturally leads us to our other main result
in this paper, that of showing hardness of approximation of vertex cover on triangle-free
graphs. Kortsarz et al [24] show that if the vertex cover problem is hard to approximate to a
factor of α ≥ 3/2, then it is hard to approximate vertex cover on triangle-free graphs to the
same factor of α. While such a hardness (in fact, a factor of 2− ǫ [22]) is known assuming
the stronger unique games conjecture, the best known NP-hardness results do not satisfy
α ≥ 3/2. We settle this question by showing NP-hardness results for approximating vertex
cover on triangle-free graphs, which match the best known hardness on general graphs.

SoCG’15



756 The Hardness of Approximation of Euclidean k-Means

◮ Theorem 1.2. It is NP-hard to approximate Vertex Cover on triangle-free graphs to within

any factor smaller than 1.36.

2 Main Technical Contribution

In Section 4, we show a reduction from Vertex-Cover on triangle-free graphs to Euclidean
k-means where the vertex cover instances have small cover size if and only if the corresponding
k-means instances have a low cost. A crucial ingredient is to relate the cost of the clusters to
the structural properties of the original graph, which lets us transition from the Euclidean
problem to a completely combinatorial problem. Then in Section 5, we prove that the
known hardness of approximation results for Vertex-Cover carry over to triangle-free graphs.
This improves over existing hardness results for vertex cover on triangle-free graphs [24].
Furthermore, we believe that our proof techniques are of independent interest. Specifically,
our reduction transforms known hard instances G of vertex cover, by taking a graph product
with an appropriately chosen graph H. We then show that the size of the vertex cover in the
new graph (in proportion to the size of the graph) can be related to spectral properties of H.
In fact, by choosing H to have a bounded spectral radius, we show that the vertex covers in
G and the product graph are roughly preserved, while also ensuring that the product graph
is triangle-free. Combining this with our reduction to k-means completes the proof.

3 Related Work

Arthur and Vassilvitskii [5] proposed k-means++, a random sampling based approximation
algorithm for Euclidean k-means which achieves a factor of O(log k). This was improved by
Kanungo et al. [21] who proposed a local search based algorithm which achieves a factor of
(9 + ǫ). This is currently the best known approximation algorithm for k-means. For fixed k

and d, Matousek [31] gave a PTAS for k-means which runs in time O(nǫ−2k2d logk n)). Here n

is the number of points and d is the dimensionality of the space. This was improved by Badoiu
et al. [7] who gave a PTAS for fixed k and any d with run time O(2(k/ǫ)O(1)

poly(d)n logk n).
Kumar et al. [26] gave an improved PTAS with exponential dependence in k and only linear
dependence in n and d. Feldman et al. [16] combined this with efficient coreset constructions
to give a PTAS for fixed k with improved dependence on k. The work of Dasgupta [11]
and Aloise et al. [1] showed that Euclidean k-means is NP-hard even for k = 2. Mahajan et
al. [30] also show that the k-means problem is NP-hard for points in the plane.

There are also many other clustering objectives related to k-means which are commonly
studied. The most relevant to our discussion are the k-median and the k-center objectives.
In the first problem, the objective is to pick k centers to minimize the sum of distances of
each point to the nearest center (note that the distances are not squared). The problem
deviates from k-means in two crucial aspects, both owing to the different contexts in which
the two problems are studied: (i) the k-median problem is typically studied in the setting
where the centers are one of the data points (or come from a set of possible centers specified
in the input), and (ii) the problem is also very widely studied on general metrics, without
the Euclidean restriction. The k-median problem has been a testbed of developing new
techniques in approximation algorithms, and has constantly seen improvements even until
very recently [20, 19, 27]. Currently, the best known approximation for k-median is a factor
of 2.611 + ǫ due to Bykra et al. [9]. On the other hand, it is also known that the k-median
objective (on general metrics) is NP-hard to approximate to a factor better than (1+1/e) [19].
When restricted to Euclidean metrics, Kolliopoulos et al. [23] show a PTAS for k-median



P. Awasthi, M. Charikar, R. Krishnaswamy, and A. K. Sinop 757

on constant dimensional spaces. On the negative side for k-median on Euclidean metrics,
it is known that the discrete problem (where centers come from a specified input) cannot
have a PTAS under standard complexity assumptions [17]. As mentioned earlier, all these
results are for the version when the possible candidate centers is specified in the input. For
the problem where any point can be a center, Arora et al. [4] show a PTAS when the points
are on a 2-dimensional plane.

In the k-center problem the objective is to pick k center points such that the maximum
distance of any data point to the closest center point is minimized. In general metrics, this
problem admits a 2-factor approximation which is also optimal assuming P 6= NP [18]. For
Euclidean metric when the center could be any point in the space, the upper bound is still 2
and the best hardness of approximation is a factor 1.82 [15].

4 Our Hardness Reduction: From Vertex Cover to Euclidean k-means

In this section, we show a reduction from the Vertex-Cover problem (on triangle-free graphs)
to the k-means problem. Formally, the vertex cover problem can be stated as follows: Given
an undirected graph G = (V, E), choose a subset S of vertices (with minimum |S|) such that
S is incident on every edge of the graph. More specifically, our reduction establishes the
following theorem.

◮ Theorem 4.1. There is an efficient reduction from instances of Vertex Cover (on triangle-

free graphs with m edges) to those of Euclidean k-means that satisfies the following proper-

ties:

(i) if the Vertex Cover instance has value k, then the k-means instance has cost ≤ m− k.

(ii) if the Vertex Cover instance has value at least k(1 + ǫ), then the optimal k-means cost is

≥ m− (1− Ω(ǫ))k. Here, ǫ is some fixed constant > 0.

In Section 5, we show that there exist triangle-free graph instances of vertex cover on
m = Θ(n) edges, and k = Ω(n) such that it is NP-hard to distinguish if the instance has
a vertex cover of size at most k, or all vertex covers have size at least (1 + ǫ)k, for some
constant ǫ > 0.

Now, let k = m/∆ where ∆ = Ω(1) from the hard vertex cover instances. Then, from
Theorem 4.1, we get that if the vertex cover has value k, then the k-means cost is at most
m(1 − 1

∆ ), and if the vertex cover is at least k(1 + ǫ), then the optimal k-means cost is

at least m(1 − 1−Ω(ǫ)
∆ ). Therefore, the vertex cover hardness says that it is also NP-hard

to distinguish if the resulting k-means instance has cost at most m(1 − 1
∆ ) or cost more

than m(1− 1−Ω(ǫ)
∆ ). Since ∆ is a constant, this implies that it is NP-hard to approximate

the k-means problem within some factor (1 + Ω(ǫ)), thereby establishing our main result
Theorem 1.1. In what follows, we prove Theorem 4.1.

4.1 Proof of Theorem 4.1

Let G = (V, E) denote the graph in the Vertex Cover instance I, with parameter k denoting
the number of vertices we can select. We associate the vertices with natural numbers [n].
Therefore, we refer to vertices by natural numbers i, and edges by pairs of natural numbers
(i, j).

SoCG’15



758 The Hardness of Approximation of Euclidean k-Means

Construction of k-means Instance Ikm

For each vertex i ∈ [n], we have a unit vector xi = (0, 0, . . . , 1, . . . , 0) which has a 1 in the

ith coordinate and 0 elsewhere. Now, for each edge e ≡ (i, j), we have a vector xe
def
= xi + xj .

Our data points on which we solve the k-means problem is precisely {xe : e ∈ E}. This
completes the definition of Ikm.

◮ Remark. As stated, the dimensionality of the points we have constructed is n, and we get
a hardness factor of (1 + ǫ). However, by using the dimensionality reduction ideas of Johnson
and Lindenstrauss (see, e.g. [12]), without loss of generality, we can assume that the points
lie in O(log n/ǫ2) dimensions and our hardness results still hold true. This is because, after
the transformation, all pairwise distances (and in particular, the k-means objective function)
are preserved upto a factor of (1 + ǫ/10) of the original values, and so our hardness factor is
also (almost) preserved, i.e., we would get hardness of approximation of (1 + Ω(ǫ)).

However, for simplicity, we stick with the n dimensional vectors as it makes the presenta-
tion much cleaner.

4.2 Completeness

Suppose I is such that there exists a vertex cover S∗ = {v1, v2, . . . , vk} of k vertices which
can cover all the edges. We will now show that we can recover a good clustering of low
k-means cost. To this end, let Evℓ

denote the set of edges which are covered by vℓ for
1 ≤ ℓ ≤ k. If an edge is covered by two vertices, we assume that only one of them covers it.
As a result, note that the Evℓ

’s are pairwise disjoint (and their union is E), and each Evℓ
is

of the form {(vℓ, wℓ,1), (vℓ, wℓ,2), . . . , (vℓ, wℓ,pℓ
)}.

Now, to get our clustering, we do the following: for each v ∈ S∗, form a cluster out of
the data points Fv := {xe : e ∈ Ev}. We now analyze the average connection cost of this
solution. To this end, we begin with some easy observations about the k-means clustering.
Indeed, since any cluster is of a set of data points (corresponding to a subset of edges in the
graph G), we shall abuse notation and associate any cluster F also with the corresponding
subgraph on V , i.e., F ⊆ E. Moreover, we use dF(i) to denote the degree of node i in F and
mF to denote the number of edges in F, mF = |F|. Finally, we refer by dG(i) the degree of
vertex i in G.

◮ Claim 4.2. For any clustering {F}: (a)
∑

F
dF(i) = dG(i); (b)

∑
i

∑
F

dF(i) = 2m = 2|E|.
Proof. Immediate, because every edge e ∈ E belongs to exactly one cluster in {F}. ◭

Our next claim relates the connection cost of any cluster F to the structure of the
associated subgraph, which forms the crucial part of the analysis.

◮ Claim 4.3. The total connection cost of any cluster F is
∑

i dF(i)(1− 1
mF

dF(i)).

Proof. Firstly, note that
∑

i dF(i) = 2mF. Now consider the center µF of cluster F. By
definition, we have that at coordinate i ∈ V :

µF(i) =
1

mF

∑

S∈F:i∈S

1 =
dF(i)
mF

.

So ‖µF‖2 = 1
mF

2

∑
i dF(i)2. Hence the total cost of this clustering, cF, is:

∑

e∈F

(‖xe−µF‖2) =
∑

e∈F

(‖xe‖2−‖µF‖2) = 2mF−
1

mF

∑

i∈V

dF(i)2 =
∑

i

dF(i)− 1
mF

dF(i)2.

Here we used mFµF =
∑

e∈F
xe in the first equality and ‖xe‖2 = 2 in the second one. ◭
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◮ Claim 4.4. There exists a clustering of our k-means instance Ikm with cost at most m−k,

where m is the number of edges in the graph G = (V, E) associated with the vertex cover

instance I, and k is the size of the optimal vertex cover.

Proof. Consider a cluster Fv, which consists of data points associated with edges covered by
a single vertex v. Then, by Claim 4.3, the connection cost of this cluster is precisely mFv

− 1,
since the sub-graph associated with a cluster is simply a star rooted at v. Here, mFv

is the
number of edges which v covers in the vertex cover (if an edge is covered by different vertices
in the cover, it is included in only one vertex). Then, summing over all clusters, we get the
claim. ◭

4.3 Soundness

In this section, we show that if there is a clustering of low k-means cost, then there is a very
good vertex cover for the corresponding graph. We begin with some useful notation.

◮ Notation 4.5. Given a set E′ ⊆
(

V
2

)
of mE′ = |E′| edges with corresponding node degrees

(d1, . . . , dn), we define Cost(E′) as the following:

Cost(E′)
def
=

∑

u∈V

du

(
1− du

mE′

)
.

Note that, by Claim 4.3, the connection cost of a clustering Γ = {F1,F2, . . . ,Fk} of the n

points is equal to
∑

i Cost(Fi). Recall that we abuse notation slightly and view each cluster
Fi of the data points also as a subset of E. Moreover, because Γ clusters all points, the
subgraphs F1,F2, . . . ,Fk form a partition of E. Using this analogy, we study the properties of
each subgraph and show that if the k-means cost of Γ is small, then most of these subgraphs
in fact are stars. This will in turn help us recover a small vertex cover for G. We begin with
a simple property of Cost(E′).

◮ Proposition 4.6. For any set of mE′ edges E′, mE′ − 1 ≤ Cost(E′) ≤ 2mE′ − 1.

Proof. We have Cost(E′) =
∑

u∈V du

(
1− du

mE′

)
= 2mE′ −

∑
u∈V

d2
u

mE′
. The proof follows from

noting that
∑

u∈V
d2

u

mE′
≥

∑
u∈V

du

mE′
= 2 and

∑
u∈V

d2
u

mE′
≤ mE′ + 1. The last inequality is due to

the fact that
∑

u∈V d2
u is maximized by the degree sequence (mE′ , 1, 1, . . . , 1). ◭

◮ Theorem 4.7. If the k-means instance Ikm has a clustering Γ = {F1, . . . ,Fk} with∑
F∈Γ Cost(F) ≤ m − (1 − δ)k, then there exists a (1 + O(δ))k-vertex cover of G in the

instance I.

Note that this, along with Claim 4.4 will imply the proof of Theorem 4.1.

Proof. For each i ∈ [k], let mi
def
= |Fi| and νi

def
=

∑
u du(Fi)2. Note that Cost(Fi) = 2mi− νi

mi
.

By Proposition 4.6, each i ∈ [k] satisfies mi − 1 ≤ Cost(Fi) ≤ 2mi − 1. Hence if we define δi

as δi
def
= Cost(Fi)− (mi − 1), then 0 ≤ δi ≤ mi. Moreover νi

mi
= mi + 1− δi. Thus:

m− (1− δ)k ≥
∑

i

Cost(Fi) =
∑

i

(δi + mi − 1) =
∑

i

δi + m− k =⇒ δk ≥
∑

i

δi.

This means, except ≤ 2δk clusters, the remaining clusters all have δi ≤ 1
2 . Moreover,

Theorem 4.8 implies all these (1− 2δ)k clusters are either stars or triangles and have δi = 0.

SoCG’15



760 The Hardness of Approximation of Euclidean k-Means

Since the graph is triangle free, they are all stars, and hence the corresponding center vertices
cover all the edges in the respective clusters. It now remains to cover the edges in the
remaining 2δk clusters which have larger δi values. Indeed, even for these clusters, we can
appeal to Theorem 4.8, and choose two vertices per cluster to cover all but δi edges in each
cluster. So the size of our candidate vertex cover is at most k(1 + 2δ), and we have covered
all but

∑
i δi edges. But now, we notice that

∑
i δi ≤ δk, and so we can simply include one

vertex per uncovered edge and would obtain a vertex cover of size at most k(1 + 3δ), thus
completing the proof. ◭

◮ Lemma 4.8. Given a graph GF = (V,F) with m = |F| edges and degrees (d1, . . . , dn); let

δ be such that 1
m

∑
u du

2 = m + 1 − δ. Then there always exists an edge {u, v} ∈ F with

du + dv ≥ m + 1 + δ. Furthermore, if δ < 1
2 , then δ = 0 and GF is either a star or triangle.

Proof. Since
∑

u du
2 =

∑
u∼v(du + dv), we can think of 1

m

∑
u du

2 as the the expectation of
du + dv over a random edge chosen uniformly, {u, v} ∈ E:

1
m

∑

u

du
2 = Eu∼v

[
du + dv

]
.

From this, we can immediately conclude the existence of an edge {u, v} with du+dv ≥ m+1−δ.
Now to complete the second part of the Lemma statement, suppose du ≥ dv. The number of
edges incident to {u, v} is:

du + dv − 1 ≥ m− δ
δ<1
=⇒ du + dv − 1 = m.

So all edges are incident to u or v, and dw ≤ 2 if w /∈ {u, v}. If dv ≤ 1, then we are done.

In the other case, we have dv ≥ 2 ≥ dw for all w /∈ {u, v}. Let α
def
= du and β

def
= dv. The

degree sequence (d1, . . . , dn) is strongly majorized by the following sequence, d′:

d′ def
=

(
α, β, 2, . . . , 2,︸ ︷︷ ︸

β − 1 many

α− β many︷ ︸︸ ︷
1, . . . , 1

)
.

Since
∑

u d2
u is Schur-convex, its value increases under majorization:

(α + β − 1)(α + β − δ) =m(m + 1− δ) =
∑

u

d2
u ≤

∑

u

d′
u

2

=α2 + β2 + 4(β − 1) + (α− β).

=⇒ 0 ≤(α + β − 1)δ + 2α + 4β − 4− 2αβ

=(α + β − 1)δ + 2α(1− β) + 4(β − 1).

So we obtain 2α(β− 1) ≤ (α + β− 1)δ + 4(β− 1). Since β ≥ 2, we divide both sides by β− 1:

2α ≤ α

β − 1
δ + 4 + δ ≤ δα + 4 + δ.

In particular, (2− δ)α ≤ 4 + δ =⇒ α ≤ 4+δ
2−δ < 3 as δ < 1/2. Hence α ≤ 2. Consequently,

du = dv = 2 and m = du + dv − 1 = 3. There are two possible cases: The graph is either a
3-cycle or 4-path. In the latter case, the corresponding δ is:

δ = m + 1− 1
m

∑

u

du
2 = 4− 1

3
(22 + 22 + 1 + 1) = 4− 10

3
=

2
3

>
1
2

;

which is a contradiction and the graph is a triangle. ◭
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Putting the pieces together, we get the proof of Theorem 4.1.

◮ Remark (Unique Games Hardness). Khot and Regev [22] show that approximating Vertex-
Cover to factor (2−ǫ) is hard assuming the Unique Games conjecture. Furthermore, Kortsarz
et al. [24] show that any approximation algorithm with ratio α ≥ 1.5 for Vertex-Cover
on 3-cycle-free graphs implies an α approximation algorithm for Vertex-Cover (on general
graphs). This result combined with the reduction in this section immediately implies APX
hardness for k-means under the unique games conjecture. In the next section we generalize
the result of Kortsarz et al. [24] by giving an approximation preserving reduction from
Vertex-Cover on general graphs to Vertex-Cover on triangle-free graphs. This would enable
us to get APX hardness for the k-means problem.

5 Hardness of Vertex Cover on Triangle-Free Graphs

In this section, we show that the Vertex Cover problem is as hard on triangle-free graphs as
it is on general graphs. To this end, for any graph G = (V, E), we define IS(G) as the size of
maximum independent set in G. For convenience, we define rel-IS(G) as the ratio of IS(G)
to the number of nodes in G:

rel-IS(G)
def
=

IS(G)
|V | .

Similarly, let VC(G) be the size of minimum vertex cover in G and rel-VC(G) be the ratio
VC(G)

|V | . The following is well known, which says independent sets and vertex covers are duals
of each other.

◮ Proposition 5.1. Given G = (V, E), I ⊆ V is an independent set if and only if C = V \ I

is a vertex cover. In particular, IS(G) + VC(G) = |V |.

We will prove the following theorem.

◮ Theorem 5.2. For any constant ε > 0, there is a (1+ε)-approximation-preserving reduction

for independent set from any graph G = (V, E) with maximum degree ∆ to triangle-free

graphs with poly(∆, ε−1)|V | nodes and degree poly(∆, ε−1) in deterministic polynomial time.

Combining Theorem 5.2 with the best known unconditional hardness result for Vertex Cover,
due to Dinur and Safra [14], we obtain the following corollary.

◮ Corollary 5.3. Given any unweighted triangle-free graph G with bounded degrees, it is

NP-hard to approximate Vertex Cover within any factor smaller than 1.36.

Given two simple graphs G = (V1, E1) and H = (V2, H2), we define the Kronecker product
of G and H, G⊗H, as the graph with nodes V (G⊗H) = V1 × V2 and edges:

E(G⊗H) =
{
{(u, i), (v, j)}

∣∣{u, v} ∈ E(G), {i, j} ∈ E(H)
}

.

Observe that, if AG and AH denote the adjacency matrix of G and H, then AG⊗H = AG⊗AH .
Given any symmetric matrix M , we will use σi(M) to denote the ith largest eigenvalue of

M . For any graph G on n-nodes, we define the spectral radius of G, ρ(G), as the following:

ρ(G)
def
= max

p⊥e

∣∣pT AGp
∣∣

‖p‖2
= max(σ2(AG), |σn(AG)|).

Here e is the all 1’s vector of length n.
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◮ Proposition 5.4. If H is triangle-free, then so is G⊗H.

Proof. Suppose G⊗H has a 3-cycle of the form ((a, i), (b, j), (c, k), (a, i)). Then (i, j, k, i)
is a closed walk in H. H is triangle-free, therefore i = j wlog; a contradiction as H has no
loops. ◭

The following Lemma says that as long as H has good spectral properties, the relative size
of maximum independent sets in G will be preserved by G⊗H.

◮ Lemma 5.5. Suppose H is a d-regular graph with spectral radius ≤ ρ. For any graph G

with maximum degree ∆, rel-IS(G⊗H) ≥ rel-IS(G) ≥
(

1− ρ∆
2d

)
rel-IS(G⊗H).

Proof. Suppose V (G) = [n] and V (H) = [N ]. Let A
def
= AG be the adjacency matrix of G

and B be the normalized adjacency matrix of H, B
def
= 1

d AH .

For the lower bound, consider an independent set I in G. It is easy to check that I × [N ]
is an independent set in G⊗H, thus IS(G⊗H) ≥ N · IS(G) so rel-IS(G⊗H) ≥ rel-IS(G).

For the upper bound, consider the indicator vector f ∈ {0, 1}[n]×[N ] of an independent
set in G⊗H. The corresponding set contains no edges from G⊗H, so fT (A⊗ B)f = 0.

Define p : V → [0, 1] as pu
def
= 1

N

∑
j∈N fu,j . For each u ∈ [n], pick u with probability pu. Let

I0 ⊆ [n] be the set of picked nodes. Next, start with I ← I0. As long as there is an edge of
G contained in I, arbitrarily remove one of its endpoints from I. At the end of this process,
the remaining set I is an independent set in G, and its size is at least the size of I0 minus
the number of edges contained in I0. Hence |I| ≥ |I0| − |EG(I0, I0)|. Observe that

E
[
|I0|

]
=

∑

u

pu =
1
N
‖f‖2 since f is a {0, 1} vector.

The probability of any pair i 6= j being contained in I0 is given by Prob
[
{i, j} ⊆ I0

]
= pupv.

Therefore, the expected number of edges contained in I0 is:

E
[
|EG(I0, I0)|

]
=

∑

u<v

Auvpupv =
1
2

pT Ap
(T heorem 5.6)

=
1

2N
fT (A⊗ J̃N )f

(T heorem 5.7)

≤ 1
2N

∣∣∣fT A⊗ (J̃N −B)f
∣∣∣

(T heorem 5.8)

≤ ρ∆
2Nd

‖f‖2.

Putting it all together:

E
[
|I|

]
≥ E

[
|I0|

]
− E

[
|EG(I0, I0)|

]
=

1
N
‖f‖2 − 1

2
pT Ap ≥ ‖f‖

2

N

(
1− ρ∆

2d

)
.

Therefore, IS(G) ≥ 1− ρ∆
2d

N IS(G⊗H) =⇒ rel-IS(G) ≥
(

1− ρ∆
2d

)
rel-IS(G⊗H). ◭

In the remaining part, we prove the supporting claims.

◮ Claim 5.6. pT Ap = 1
N fT (A⊗ J̃N )f where J̃N is the N -by-N matrix of all 1/N ’s.

Proof. Let eu,v ∈ R
V ×V be the matrix whose entry at uth row and vth column is 1, and all

others 0. Notice A =
∑

u,v Au,veu,v. Let JN be the N -by-N matrix of all 1’s. For any pair
(u, v) ∈ V 2,

pupv =
1

N2

∑

i,j

fu,ifv,j =
1

N2
fT

(
eu,v ⊗ JN

)
f =

1
N

fT
(

eu,v ⊗ J̃N

)
f.

pT Ap =
1
N

∑

u,v

Au,vfT
(

eu,v ⊗ J̃N

)
f =

1
N

fT
[( ∑

u,v

Au,veu,v
)
⊗ J̃N

]
f

=
1
N

fT (A⊗ J̃N )f.

The second-to-last identity follows from the bi-linearity of Kronecker product. ◭
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◮ Claim 5.7. fT (A⊗ J̃N )f ≤ |fT A⊗ (B − J̃N )f |.

Proof. We have fT (A ⊗ J̃N )f = fT
[
A ⊗

(
J̃N − B)

]
f + fT (A ⊗ B)f . As noted above, f

being an independent set implies fT (A⊗B)f = 0:

fT (A⊗ J̃N )f = fT
[
A⊗

(
J̃N −B)

]
f ≤ |fT A⊗ (J̃N −B)f |. ◭

◮ Claim 5.8. |fT A⊗ (B − J̃N )f | ≤ ∆ρ
d ‖f‖2.

Proof. Define C
def
= B − J̃N . For any symmetric matrix M , let ρ(M) be its spectral radius,

ρ(M)
def
= maxp

|pT Mp|
‖p‖2 . Observe that ρ(M) = max(|σi(M)|). We have:

|fT A⊗ (B − J̃N )f | = |fT A⊗ Cf | ≤ ρ(A⊗B)‖f‖2
2.

We know that the spectrum of the Kronecker product of two symmetric matrices correspond
to the pairwise product of the spectrum of corresponding matrices, i.e., all eigenvalues of
A⊗ C are of the form σi(A) · σj(C) for each i and j. Therefore,

ρ(A⊗ C) = max(|σi(A)σj(C)|) = max(|σi(A)|) max(|σj(C)|) = ρ(A) · ρ(C).

Observe that ρ(A) ≤ ∆, since A is the adjacency matrix of a graph with degree ≤ ∆. Now
we will upper bound ρ(C). Since H is a regular graph and B is its normalized adjacency
matrix, the largest eigenvector of B is all 1’s and the corresponding eigenvalue is 1. Therefore
C has the same eigenspace with B. Moreover Ce = 0, thus:

ρ(C) = max(|σi(C)| : 1 ≤ i ≤ n) = max(|σi(B)| : 2 ≤ i ≤ n)

= max(σ2(B), |σn(B)|) =
1
d

ρ(G). ◭

We now prove the main theorem needed for our reduction.

◮ Theorem 5.9. Given a graph G = (V, E) with maximum degree ∆, for any ε > 0, we can

construct in polynomial time, a triangle-free graph Ĝ = (V̂ , Ê) with:

rel-IS(G) ≤ rel-IS(Ĝ) ≤ (1 + ε) rel-IS(G).

Moreover Ĝ has (a) poly(∆, ε−1)|V | nodes, (b) degree O
(
∆3ε−2

)
.

Proof. For any d and N , it is known how to construct [29, 32] in deterministic polynomial
time, a O(d)-regular Ramanujan graph H with girth Ω(logd N) and spectral radius at most
ρ ≤ O(

√
d). Thus for some choice of d = O(∆2ε−2) and N = dO(1) = poly(∆, ε−1), we can

find a d-regular graph H with girth at least Ω(1) and spectral radius ρ ≤ dε/∆. For such

H, let Ĝ ← G⊗H. We have
(

1− ρ∆
2d

)−1

≤
(
1− ε/2

)−1 ≤ 1 + ε. Proposition 5.4 implies
G⊗H is triangle free. By Theorem 5.5:

rel-IS(G) ≤ rel-IS(G⊗H) ≤
(

1− ρ∆
2d

)−1

rel-IS(G) ≤
(

1 + ε
)

rel-IS(G).

Now we prove the remaining properties:
(a) |V (G⊗H)| = |V (G)| · |V (H)| ≤ |V | · poly(∆, ε−1).
(b) dmax(G⊗H) ≤ dmax(G)× dmax(H) ≤ O(∆d) = O(∆3ε−2). ◭
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◮ Note. Noga Alon has provided an alternate construction where one can obtain a triangle

free graph Ĝ such that rel-IS(Ĝ) = rel-IS(G). This however, does not lead to improved

constant in our analysis. For the sake of completeness, we include the alternate theorem in

the Appendix (see Theorem A.1).

Before we end the section with the proof of Theorem 5.3, we need the following hardness
result from [14], which follows from Corollary 2.3 and Appendix 8 (weighted to unweighted
reduction) of [14]. As noted in [14], the construction produces bounded degree graphs.

◮ Theorem 5.10 (Dinur, Safra [14]). For any constant ε > 0, given any unweighted graph G

with bounded degrees, it is NP-hard to distinguish between:

(Yes) rel-IS(G) > c− ε,

(No) rel-IS(G) < s + ε;

where c and s are constants such that 1−s
1−c ≈ 1.36.

Proof of Theorem 5.3. Given a bounded degree graph G, consider the graph Ĝ given by
Theorem 5.9 for some small constant ε0 < ε. Since G is bounded degree and ε0 is constant,
Ĝ is also bounded degree. Furthermore, Ĝ satisfies rel-IS(G) ≤ rel-IS(Ĝ) ≤ (1 + ε0) rel-IS(G).
Completeness follows immediately: rel-IS(Ĝ) > c−ε. For the soundness, suppose rel-IS(Ĝ) >

s + ε. Then rel-IS(G) ≥ s+ε
1+ε0

≥ s + ε for suitable ε0. The hardness of Vertex Cover follows
from Proposition 5.1. ◭

6 Conclusions

In this paper we provide the first hardness of approximation for the fundamental Euclidean k-
means problem. Although our work clears a major hurdle of going beyond NP-hardness for this
problem, there is still a big gap in our understanding with the best upper bound being a factor
(9 + ǫ). We believe that our result and techniques will pave way for further work in closing
this gap. Our reduction from vertex cover produces high dimensional instances (d = Ω(n))
of k-means. However, by using the Johnson-Lindenstrauss transform [12], we can project the
instance onto O(log n/ǫ2) dimensions and still preserve pairwise distances by a factor (1 + ǫ)
and the k-means cost by a factor of (1 + ǫ)2. We leave it as an open question to investigate
inapproximability results for k-means in constant dimensions. It would also be interesting
to study whether our techniques give hardness of approximation results for the Euclidean
k-median problem. Finally, our hardness reduction in Section 5 provides a novel analysis
by using the spectral properties of the underlying graph to argue about independent sets in
graph products – this connection could have applications beyond the present paper.

Acknowledgments. We would like to thank Noga Alon and Oded Regev for valuable feed-
back on the results in Section 5, in particular for suggesting alternate proofs of Proposition 5.4
and Theorem 5.5. We would also like to thank Noga for pointing out that the graph product
construction in Section 5 does not eliminate even cycles. Finally we thank the anonymous
reviewers for their comments.
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A An Alternative Proof of Theorem 5.2

The following were suggested by Noga Alon as an alternative to Theorem 5.2.

◮ Theorem A.1. Let G = (V, E) be an arbitrary graph with maximum degree ∆. It is possible

to construct in polynomial time a triangle free graph Ĝ such that rel-IS(Ĝ) = rel-IS(G).

Before proving the theorem, we need the following standard facts about (n, d, λ) graphs.

◮ Lemma A.2. Let H = (U, F ) be an (n, d, λ) graph, assume λ < d/4 and let B be a set of

vertices of H. Let N(B) denote the set of all neighbors of B in H. Then:

1. If |B| > λ
d n, then |N(B)| > n− λ

d n.

2. If |B| ≤ λ
d n, then |N(B)| ≥ λ

2d n.
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Proof. (1) is proved in Corollary 1 in [2]. We will prove (2). When 2λ2

d2 n ≤ |B| ≤ λ
d n, it

follows from the same corollary again, which implies that in this range |N(B)| ≥ n
2 . For

|B| ≤ 2λ2

d2 n, the result follows from the expander mixing lemma (see [3], corollary 9.2.5), as
there are d|B| edges between B and N(B). ◭

Proof of Theorem A.1. Let H = (U, F ) be a (n, d, λ)-expander with λ ≤ 2
√

d− 11 Let
Ĝ = G⊗H. Further, let d

2λ ≥ ∆. It is well known that such graphs exist. It is easy to see
that any rel-IS(G⊗H) ≥ rel-IS(G), since any independent set S in G leads to an independent
set S ⊗ U in G⊗H.

For the other direction, let S ⊂ V × U be an independent set in G⊗H. Define T as:

T
def
= {v ∈ V : |{u ∈ U : (v, u) ∈ S}| ≥ λ

d
n}.

By Lemma A.2 (1), T is an independent set in G. Let T ′ be a maximal (with respect to
containment) independent set in G that contains T . By maximality, every vertex in V \T ′ has
at least one neighbor in T ′. Thus T ′ is a dominating set in G and there is a collection of stars
{Sv : v ∈ T ′}, covering all the vertices of G. As T ′ is an independent set, |T ′| ≤ rel-IS(G)|V |.
To complete the proof it suffices to show that for each of the stars Sv in our collection, whose
set of vertices in G is Vv, we have:

|{(v′, u) : (v′, u) ∈ S, v′ ∈ Vv}| ≤ |U | = n (1)

The number of leaves of the star Sv is at most ∆. For each such leaf v′, the set of vertices of

H given by Bv′

def
= {u ∈ U : (v′, u) ∈ S} is of cardinality smaller than λ

d n. Moreover, all its
neighbors in H cannot belong to the set Bv = {u ∈ U : (v, u) ∈ S} where v is the center of
the star Sv. By Lemma A.2 (2), the number of these neighbors is at least d

2λ ≥ ∆ times the
cardinality of Bv′ . This implies that the total size of all sets Bv′ where the sum ranges over
all leaves v′ of Sv is at most the number of vertices in U −Bv, implying (1) and completing
the proof. ◭

1 This means that all non-trivial eigenvalues of H are bounded by λ.
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