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Decision-makers effortlessly balance the need for urgency against the need for caution. Theoretical and

neurophysiological accounts have explained this tradeoff solely in terms of the quantity of evidence

required to trigger a decision (the “threshold”). This explanation has also been used as a benchmark test

for evaluating new models of decision making, but the explanation itself has not been carefully tested

against data. We rigorously test the assumption that emphasizing decision speed versus decision accuracy

selectively influences only decision thresholds. In data from a new brightness discrimination experiment

we found that emphasizing decision speed over decision accuracy not only decreases the amount of

evidence required for a decision but also decreases the quality of information being accumulated during

the decision process. This result was consistent for 2 leading decision-making models and in a model-free

test. We also found the same model-based results in archival data from a lexical decision task (reported

by Wagenmakers, Ratcliff, Gomez, & McKoon, 2008) and new data from a recognition memory task. We

discuss implications for theoretical development and applications.

Keywords: evidence accumulation, speed accuracy tradeoff, response time, decision making, sequential

sampling

Quantitative theories of decision making have provided insights

not only into the cognitive processes that underpin choice but also

into the associated neurophysiology and dozens of different topics

in applied and clinical settings (e.g., Churchland, Kiani, &

Shadlen, 2008; Forstmann et al., 2008; Gold & Shadlen, 2007;

Ratcliff & McKoon, 1995; Ratcliff & Smith, 2004; Roitman &

Shadlen, 2002; Rouder, 2000; Shurman, Horan, & Neuchterlein,

2005). There are several successful theories of simple decision

making that differ in detail but share a common framework, called

“sequential sampling”—the idea that information from the envi-

ronment is steadily accumulated until sufficient evidence has been

gathered to make a decision. Even though the models differ in

detail, they often agree on substantive questions of interpretation

(Donkin, Brown, Heathcote, & Wagenmakers, 2011).

Ratcliff’s (1978) diffusion model (see also Ratcliff & Smith,

2004) is the most influential and widely applied sequential sam-

pling model. It describes stimulus processing as the noisy accu-

mulation of evidence over time, and it applies to tasks in which a

participant decides quickly between two alternatives, such as

whether a stimulus is brighter or darker than average. The diffu-

sion process accumulates evidence about the stimulus by drifting

between two thresholds—representing the two alternatives—with

a response initiated when the accumulated evidence reaches either

threshold. The three key components of the diffusion model are (a)

the speed of information processing, quantified by drift rate, v; (b)

the response threshold, quantified by the separation between the

boundaries, a; and (c) the time taken for things other than the

actual decision making, such as stimulus encoding and response

execution, quantified by the nondecision parameter, ter.

The linear ballistic accumulator (LBA; Brown & Heathcote,

2008) is a sequential sampling model of the “accumulator” class,

with each choice alternative represented by a separate evidence

accumulator. Analogous to Ratcliff’s (1978) diffusion model, the

LBA assumes that evidence gathers in each accumulator according

to a drift rate parameter and that a response is initiated as soon as

the first accumulator reaches a threshold. In both models responses

can be slowed in several different ways: by a threshold increase, by

a decrease in the quality of information, and hence the rate of

accumulation, or when nondecision time increases.

Part of the success of sequential-sampling models arises from

their ability to separate the influences of different latent (not

directly observed) cognitive processes that are conflated in ob-

served data. Their ability has theoretical and practical implications.

For example, older adults typically make slower decisions than

younger adults; analysis with sequential sampling models has

shown that this slowdown is often due to increased caution rather

than poorer quality information (a change in threshold, not drift

rate; Forstmann et al., 2011; Ratcliff, Thapar, & McKoon, 2007,
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2010, 2011). This result exemplifies “selective influence,” the idea

that changes in a particular cognitive process (e.g., older adults are

more cautious) are captured in the model by changes in just one

model parameter (the threshold). Other examples of applied im-

plications include workload capacity (Eidels, Donkin, Brown, &

Heathcote, 2010), alcohol use (van Ravenzwaaij, Dutilh, &

Wagenmakers, 2012), sleep deprivation (Ratcliff & Van Dongen,

2011), and consumer choice (Hawkins et al., in press).

Selective influence is not just a useful property for data analysis,

it has also been used as a test of the models themselves. For

example, Ratcliff and Rouder (1998) found that a manipulation of

stimulus difficulty selectively influenced drift rates while a caution

manipulation selectively influenced thresholds, and they inter-

preted this as evidence in favor of their model. There have been

numerous other reports of selective influence. Ho, Brown, and

Serences (2009) found that changes in the response modality were

captured by their model’s nondecision time parameter. Voss, Ro-

thermund, and Voss (2004) reported a sequence of experiments

that confirmed selective influence of several different experimen-

tal manipulations on key components of the diffusion model.

Following Ratcliff and Rouder’s (1998) precedent, Usher and

McClelland (2001) and Brown and Heathcote (2005, 2008) took

pains to establish that their new theories of decision making

provided the same account of selective influence as the diffusion

model. Thus, one initial benchmark test used to judge new models

was the demonstration that caution manipulations selectively in-

fluenced threshold parameters. The usefulness of this test was

supported by dozens of different applied studies that reported

successful fits to data from experimental manipulations of decision

caution through selective changes in only the models’ threshold

parameters (e.g., Forstmann et al., 2011; Hawkins, Brown,

Steyvers, & Wagenmakers, 2012; Ratcliff & Rouder, 1998; Rat-

cliff et al., 2007; Starns & Ratcliff, 2010; Usher & McClelland,

2001; Wagenmakers, Ratcliff, Gomez, & McKoon, 2008).

However, in amongst the many studies that report selective

influence of caution manipulations on decision thresholds, there

have been hints that something more complex might be afoot.

Vanderkerckhove, Tuerlinckx, and Lee (2008) replicated Ratcliff

and Rouder’s (1998) analyses in a Bayesian framework and

reached quite a different conclusion, that the manipulation of

caution was best described in the diffusion model by changes in

both threshold and drift rate. Heathcote and Love (2012) identified

a similar result in their LBA analysis of lexical decision data

collected by Wagenmakers et al. (2008). Starns, Ratcliff, and

McKoon (2012, pp. 14–15) found similar evidence in favor of the

idea that drift rates are improved under accuracy emphasis.

Our aim here was to carefully test the selective influence as-

sumption about caution in a variety of experimental paradigms.

This test is important for both theoretical and practical reasons.

From a theoretical viewpoint, the assumption of selective influence

has become a yardstick with which to judge new theories. If the

assumption is unwarranted, then we may have been misguided

before. From a practical viewpoint, evidence accumulation models

are used frequently to understand decision making in domains

from consumer choice to short-term memory, from the effects of

alcohol to sleep deprivation and depression. If the assumption of

selective influence has been wrongly applied, it is possible that we

have been misled in some of these analyses.

Previous support for the assumption that response caution se-

lectively influences decision threshold has been drawn from stud-

ies in which data were analyzed under an a priori assumption of

selective influence. Support for the assumption was then inferred

from the ability of the model to adequately fit the data. This

approach ignores the question of whether a different model—one

that does not assume selective influence—might provide much

better agreement with the data. We report an experiment that

manipulates caution via instructions that either emphasize the

speed or accuracy of responding. This experiment provides the

basis for a set of converging model-based tests, and a model-free

test. Our model-based analyses begin by identifying relatively

unconstrained versions of the diffusion and LBA models that

provide an accurate account of the major trends in the distribution

of response times (RT) for correct and incorrect choices. One

model-based test compares drift rate parameter estimates to deter-

mine whether they differ significantly between speed and accuracy

emphasis conditions.

Further, four model-based tests compared the least constrained

models to models that impose the selective influence assumption

by constraining the different emphasis conditions to share the same

drift rate estimates (“constrained models”). Because they are less

flexible, the constrained models necessarily have greater misfit

than the least constrained models. We examine the constrained

model graphically to see if they miss any major trends in our data

and use the �
2 distributed deviance measure to test whether the

increase in misfit is statistically reliable. We also compared con-

strained and unconstrained models using Bayesian information

criterion (BIC) and Akaike information criterion (AIC; Myung &

Pitt, 1997). These measures balance goodness-of-fit against com-

plexity, quantified by the number of free parameters. Due to the

way it quantifies complexity, and for data sets of the size we

consider, BIC tends to select simpler models with fewer parame-

ters than does AIC. Even so, the results of BIC and AIC mostly

agree in the analyses below. When they do not agree, the interested

reader should refer to Wagenmakers and Farrell (2004, p. 194–

195) for a comparison (see also Burnham & Anderson, 2002, and

Kass & Raftery, 1995).

Our model-free test was based on response deadline trials, in

which a signal prompted participants to make immediate choices.

Meyer, Irwin, Osman, and Kounios (1988) used response dead-

lines to examine the accumulation of evidence before a regular

(i.e., participant-initiated) decision would have been made. Re-

sponse deadline procedures have a long history in the study of

decision-making models (McElree & Dosher, 1989; Wickelgren,

1977). Meyer et al.’s procedure randomly intermixes deadline

trials with regular decision-making trials. We used their paradigm

to look for differences in evidence accumulation speed between

different caution conditions.

If caution affects only the threshold (the selective influence

assumption), processing should be identical in the speed-emphasis

and accuracy-emphasis conditions prior to a decision threshold

being reached. Hence the accuracy of deadline responses made

before the threshold is crossed should be unaffected by caution.

Alternatively, if caution affects the information extracted from the

stimulus (i.e., drift rate), cognitive processing will differ from

stimulus onset, and the accuracy of deadline responses will differ

with caution. Although deadline accuracy has the potential to

provide model-free evidence, in practice that evidence can be
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confounded by decision processes that reach threshold before the

response signal (Ratcliff, 1988, 2006). To address this problem we

also performed a model-based analysis on the deadline data.

Method

Participants

Forty-nine participants were recruited from a first year psychol-

ogy pool and from the general university population. Participants

were reimbursed at a rate of $15 per hour or given course credit.

Data from 15 participants were rejected because more than 10% of

their responses were faster than 0.18 s or slower than 1.5 s.

Although rejecting 15 participants from 49 is a higher exclusion

rate than for other cognitive experiments, the random-deadline task

we used is very demanding on participants. For example, when

developing this task, Meyer et al. (1988) found it necessary to train

their participants for 6 hr before data collection.

Stimuli

Stimuli were 64 � 64 pixel (2.5 cm � 2.5 cm) patches, similar

to those used by Ratcliff and Rouder (1998). Each pixel was either

black or white. There were two categories of stimuli: Pixels in light

squares had a 53% probability of being white, and pixels in a dark

square had a 47% chance of being white. Presentation of stimuli on

a computer screen was made dynamic by repeatedly cycling

through four squares, chosen at random from a pregenerated set of

50 squares from each category. Cycling occurred at a rate of 0.015

s per square, and continued until a response was made.

Procedure

On each trial, participants had to choose whether the stimulus

was predominately light or dark, by pressing D or L on the

keyboard, respectively. A randomly selected 20% of trials in-

cluded a response signal; the appearance of red asterisks above and

below the stimulus signaled the need to respond immediately.

Asterisks on the response signal trials appeared at lags of 0.04 s,

0.12 s, 0.2 s, 0.25 s, 0.3 s or 0.4 s after the presentation of the

stimulus. Participants were instructed to respond within 0.3 s of the

presentation of the asterisks. On the remaining 80% of trials,

participants had up to 5 s to respond.

The caution manipulation occurred in alternating blocks of

trials, beginning with accuracy emphasis in the first block. At the

beginning of accuracy-emphasis blocks “RESPOND ACCURATELY”

appeared on the screen until participants pressed the space bar. In

speed-emphasis blocks, “RESPOND QUICKLY” appeared in the

same manner. In the accuracy-emphasis condition, feedback was

given for correct or incorrect responses: “CORRECT” (in green

font) or “INCORRECT” (in red font), respectively. In the speed-

emphasis condition, in addition to the accuracy feedback, feedback

was also given on response time. In regular decision trials, if

response time was slower than 0.5 s, “TOO SLOW” appeared on

the screen. In response deadline trials, if the response time was

more than 0.3 s after the appearance of the asterisks, the feedback

“BAD TIME” was given, while if the response was within 0.3 s the

feedback “GOOD TIME” was given.

To improve compliance with the difficult procedure, we used a

part-task training method. Participants began by practicing regular

trials for approximately 30 min. Response deadline trials were then

introduced in a 15 min practice period, where only the three

slowest lags were used. The main test phase followed, with 20

participants completing one 1-hr session and the remaining 29

participants completing two 1-hr sessions within a 3-day period.

There were 14 blocks of 104 trials in each 1-hr session.

Results

Data From Free Response Trials

We fit the specific versions of the diffusion and LBA models

described by Heathcote and Love (2012) and Ratcliff and Tuer-

linckx (2002), respectively. The models were fit to data from

regular trials, with RTs outside the range 0.18 s to 1.5 s censored.

The diffusion model was fit via quantile maximum probability

estimation (Heathcote & Brown, 2004; Heathcote, Brown, & Me-

whort, 2002) based on the 10th, 30th, 50th, 70th and 90th quantiles

of correct and error responses in each experimental condition,

while the LBA was fit via maximum-likelihood estimation.

Quantile-based methods are standard practice for the diffusion

model, for practical computational reasons.

We use the same symbols to refer to nondecision time param-

eters and drift rate parameters shared by the diffusion and LBA

models. For both models ter � t0 � U(0, st0), that is, nondecision

time is uniformly distributed between t0 and t0 � st0. In the LBA

model, evidence accumulation is deterministic, with a rate that

varies from trial-to-trial according to a normal distribution with

mean v and standard deviation sv. In the diffusion model, these

same two parameters (v and sv) specify a normal distribution that

gives rise to a random sample of drift rate for each trial. Within

each trial, evidence accumulates on average at the speed given by

the drift rate sample, but there is also random variability from

moment to moment. This moment to moment variability is the

original “random walk” element of the model, and its standard

deviation was fixed arbitrarily at 0.1, following convention.

Since the diffusion and LBA models differ in their accumulator

structure, we use different symbols to reference those elements.

For the diffusion model, a represents the distance between the

thresholds. The starting point for accumulation, sometimes de-

noted z, was estimated by its relative position between the thresh-

olds, denoted Z � z/a. Both models assume uniformly distributed

variability in the accumulation starting point. For the diffusion

model we assumed the variability in start point was centered on z,

and we again estimated it as a proportion, in this case of the shorter

of the distances from z to a threshold, SZ � min(z, a-z)/a. For the

LBA the start-points are uniformly distributed between zero and an

upper bound denoted A. The distance from A to the threshold is B.

We used Donkin, Brown, and Heathcote’s (2011) method to

generate versions of the diffusion and LBA models that differed in

how the different experimental manipulations influenced model

parameters. The experimental manipulations in question were rep-

resented by a caution emphasis factor (speed vs. accuracy empha-

sis, denoted E), and stimulus factor (dark vs. light stimulus, de-

noted S). For the LBA we allowed for differences between

accumulators corresponding to dark vs. light responses in the A

and B parameters. This response factor (denoted R) allows the
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LBA to capture effects such as response bias (e.g., a bias to

respond light by having a lower threshold, B, for the light accu-

mulator). Effects of the response factor on A and B LBA param-

eters are analogous, respectively, to the Z and SZ factors in the

diffusion model. In the LBA we also allowed for differences in

drift rate parameters due to the match between a stimulus and an

accumulator. For example, the mean drift rate for a bright stimulus

will be higher for the bright (i.e., matching) accumulator than the

dark (i.e., mismatching) accumulator. Changing parameter values

across the match factor (denoted M) allows the LBA to capture the

effect of the stimulus on accuracy depending on the difference

between the “matching” drift rate and the “mismatching” drift rate.

In the diffusion model there is no corresponding factor, as the

diffusion drift rate is analogous to the difference between matching

and mismatching LBA drift rates.

Tables 1 and 2 denote different diffusion and LBA model

versions by indicating the factors that affect each parameter, with

an entry of “—” indicating a common value was estimated for all

conditions. Where a parameter might be influenced by more than

one factor we fit all possible orders of interactions among the

factors as well as main effects. The least constrained (most com-

plex) models that we fit are shown in the top row of each table. We

made the conventional assumption that sv � 1 for the LBA. For

both models we instantiated the notion of selective influence in the

most lenient sense possible: The assumption of selective influence

was operationalized as the assumption that drift rate parameters—

and only drift rate parameters—were not influenced by the re-

sponse caution factor (E). For both models we also estimated a

contamination probability parameter, p, for the proportion of

trials on which participants made an unbiased guess with an RT

that was uniformly distributed over the range from the fastest

RT that was not censored (0.18 s) to the longest RT that was not

censored (1.5 s).1 Estimates of p were allowed to differ between

speed and accuracy emphasis conditions.

For the diffusion model, we fit all models from the most

complex to the least complex (where all parameters were equal

across all conditions), resulting in 1,023 models to be analyzed for

each participant’s data. For the LBA model, there were 255 models

per participant, because we did not consider variants in which the

M factor was dropped (without this, the model is forced to predict

chance accuracy). Model variants were fit starting from the sim-

plest, with the best fits of simpler models providing starting points

for fits of more complex models.

Tables 1 and 2 show the results of the model fitting for the

diffusion and LBA models, respectively. For example, the second

entry on the top row of Table 1 reads “E,S,” which means that the

drift rate parameter (see column heading, “v”) was influenced by

factors E and S, in this particular model variant (the least con-

strained model—see row label). The least constrained variants of

the models (top rows in Tables 1 and 2) naturally fit the data best,

but these models did not provide the best descriptions of the data

because of their complexity, as shown by their higher BIC and AIC

values. We divided the model variants into those that respected the

selective influence assumption (i.e., no effect of speed vs. accuracy

emphasis on drift rate parameters) and those that did not. Both BIC

and AIC indicated that the best models for these data were models

that did not respect the selective influence assumption. That is, the

models with the best (smallest) AIC and BIC values in Tables 1

and 2 all include an effect of speed vs. accuracy emphasis (factor

E) on the drift rate parameter (v). This effect was quite pro-

nounced. The best of the models that respected the selective

influence assumption, shown in the lower halves of Tables 1 and

2, always had much poorer BIC and AIC values, with differences

of more than 166 in all cases.

Tables 1 and 2 do not allow direct comparison of the goodness-

of-fit of the diffusion versus LBA models. This is because the

deviance, AIC, and BIC values are based on maximum likelihood

values for the LBA model, but quantile-based pseudolikelihoods

for the diffusion model (see Speckman & Rouder, 2004, for a

discussion). To provide some comparison, we calculated, for each

participant, likelihood ratio G2 measures of misfit based on the

observed (O) and predicted (E) frequencies of responses between

the quantiles: 2�i Oiln�Oi ⁄ Ei�. Consistent with the slightly better

fit for the LBA than diffusion evident in Figures 1 and 2, misfit

summed over participants for the LBA (G2
� 5,469) was less than

for diffusion (G2
� 6,238). Similar results were obtained for

Pearson’s �
2.

Figures 1 and 2 illustrate the differences between the models in

accounting for the data, for the diffusion and LBA models, respec-

tively. All variants of both models adequately account for RT

distributions (center and right column in each figure), but imposing

the selective influence assumption causes a clear misfit for deci-

sion accuracy (left column). Even though the fit to the RT distri-

butions is generally quite good, there is a tendency for both models

to predict a greater degree of skew than observed in RT for

incorrect responses, although for the LBA this is only the case

under accuracy emphasis.

We confirmed that imposing the selective influence assumption

caused a statistically reliable decrease in goodness of fit by apply-

ing a �
2 test to the difference in fit between the two nested models.

This test indicated that the increase in misfit was highly significant

for both the diffusion model, �
2(136) � 500, p � .001, and the

LBA model, �
2(136) � 848, p � .001. Note that for the diffusion

model this test is approximate because of the quantile estimation

method (see Speckman & Rouder, 2004), but it nevertheless pro-

vides converging evidence with the AIC and BIC model selection

methods.

The bottom rows of Figures 1 and 2 show the fits of the least

constrained models that assume a selective influence of caution

(i.e., the “Selective Caution Effect” models in Tables 1 and 2).

Imposing the selective influence assumption on the effect of cau-

tion has little effect on the quality of fits to RT distribution.

However, the selective influence assumption causes both models

to clearly underestimate the difference in accuracy between speed

emphasis and accuracy emphasis conditions, particularly for the

LBA.

1 Ratcliff and Tuerlinckx (2002) modeled contamination in a similar
manner but assumed that the accuracy of contaminated trials equalled that
of noncontaminated trials. We assume chance accuracy because this
seemed more consistent with the idea that contaminated responses pro-
duced by a different process than uncontaminated responses. We found a
low and equal overall level of contamination with the most flexible
versions of both diffusion and LBA models that we fit (1.8%). However,
some participants had appreciably higher levels; in particular both models
estimated 13% contamination on average for one participant. Higher con-
tamination likely reflects the difficult nature of the task and some carry-
over effects from deadline to regular trials.
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Another way to investigate the selective influence assumption is

to compare drift rate parameters estimated from the speed-

emphasis and accuracy-emphasis conditions, which are shown in

Table 3, for the least constrained model fits. For the LBA, mean

drift rates (v) were higher when there was a match between the

stimulus and response than when there was a mismatch, F(1, 33) �

91, p � .001. Contrary to the assumption of selective influence,

this difference was larger under accuracy emphasis than speed em-

phasis, interaction F(1, 33) � 29.7, p � .001. The same was true for

the diffusion model, with higher mean drift rates under accuracy

emphasis than speed emphasis, F(1, 33) � 17.4, p � .001. This

interacted with stimulus type, F(1, 33) � 11.2, p � .005, due to a

larger emphasis effect for dark than light stimuli. The diffusion rate

variability parameter (sv) was fairly constant across conditions with no

effects approaching significance (ps � .4).

Data From Response Signal Trials

To reduce contamination by trials on which participants ignored

the response signal, we limited our analyses to those trials in which

responses occurred more than 0.05 s but less than 0.18 s after the

signal (similar rules have been used previously by Meyer et al.,

1988, and Ratcliff, 1988). By this criterion the shortest stimulus-

to-signal lag manipulation (0.04 s) failed; only 3.1% of 0.04-s

response signal trials were followed by a response within the

acceptable window, so we excluded the 0.04-s deadline data from

further analysis. The open and filled circles in Figure 3 show the

proportion of correct responses as a function of the signal lag

separately for the speed emphasis and accuracy emphasis condi-

tions, respectively. Note that the data are the same in all four

panels—only the model fits differ.

Table 1

Diffusion Model Results

Variant a v sv Z SZ t0 st0 p k D AIC BIC

Least Constrained E E, S E, S E E E E E 20 0 1,360 5,030
AIC Selected E E, S S — E E E — 16 102 1,190 4,126
BIC Selected E E, S — — — E — — 13 545 1,430 3,815
Selective Caution Effect E S S E E E E E 16 500 1,588 4,524
AIC Selected E S S E — E E E 15 512 1,532 4,285
BIC Selected E S — E — E — — 12 963 1,780 3,981

Note. a � the distance between the thresholds; v � mean drift rate; sv � standard deviation of drift rate; Z � the starting point for accumulation that
was estimated by its relative position between the thresholds; SZ � an estimated proportion of the shorter of the distances from z (the center of the start
point variability) to threshold; t0 � the lower bound of the uniformly distributed non-decision time; st0 � the width of the uniformly distributed nondecision
time; p � a contamination probability parameter, for the proportion of trials on which participants made an unbiased guess with a response time that was
uniformly distributed over the noncensoring range; k � number of model parameters; E � speed versus accuracy emphasis; S � dark versus light stimulus
manipulation; D � deviance; AIC � Akaike information criterion; BIC � Bayesian information criterion. D, AIC, and BIC were calculated by summing
deviance and the number of model parameters (k) for fits to individual participants and the number of data points per participant over participants. Values
for these statistics in the table have the deviance for the least constrained model subtracted and cannot be compared between Tables 1 and 2 because of
differences in calculation (see text). The AIC and BIC selected models have minimum AIC and BIC values within the full set of models (rows 2 and 3)
or within the set of models where caution does not influence drift rate parameters (rows 5 and 6). Table entries of E and S describe which factors influenced
each parameter, and em dashes signify parameters that were constant across all factors.

Table 2

LBA Model Results

Variant B A v t0 p k D AIC BIC

Least Constrained E, R E, R E, S, M E E 21 0 1,428 7,835
AIC Selected R E, R E, S, M E E 19 82 1,374 7,170
BIC Selected R R E, M E — 12 1,193 2,009 5,670
Selective Caution Effect E, R E, R S, M E E 17 848 2,004 7,190
AIC Selected E, R E, R S, M E E 17 848 2,004 7,190
BIC Selected E E, R M — E 12 1,646 2,462 6,122

Note. LBA � linear ballistic accumulator; B � the distance from the upper bound of the start-point distribution (which begins at zero) to the threshold;
A � the upper bound of the start-point distribution (which begins at zero); v � mean drift rate; t0 � the lower bound of the uniformly distributed nondecision
time; st0 � the width of the uniformly distributed nondecision time; p � a contamination probability parameter, for the proportion of trials on which
participants made an unbiased guess with a response time that was uniformly distributed over the noncensoring range; k � number of model parameters;
D � deviance; AIC � Akaike information criterion; BIC � Bayesian information criterion; E � the parameter changes with speed versus accuracy
emphasis; R � the parameter changes between the dark and light response accumulators; S � the parameter changes between dark versus light stimuli;
M � the parameter takes on one value for accumulators whose response matches the stimulus and a different value for accumulators whose response fails
to match the stimulus. D, AIC, and BIC were calculated by summing deviance and the number of model parameters (k) for fits to individual participants
and the number of data points per participant over participants. Values for these statistics in the table have the deviance for the least constrained model
subtracted and cannot be compared between Tables 1 and 2 because of differences in calculation (see text). The AIC and BIC selected models have
minimum AIC and BIC values within the full set of models (rows 2 and 3), or within the set of model where caution does not influence drift rate parameters
(rows 5 and 6). Table entries of E, S, R, M describe which factors influenced each parameter, and em dashes signify parameters that were constant across
all factors.
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For 0.12-s and 0.2-s signal lags, the proportion of correct re-

sponses was not significantly above chance and was not signifi-

cantly different between speed-emphasis and accuracy emphasis-

conditions. However, for the slowest three signal lags, the

proportion of correct responses was greater in the accuracy-

emphasis condition than the speed-emphasis condition, according

to repeated measures t tests (p � .01 for 0.25-s and 0.3-s lags, and

p � .05 for the 0.4-s lag). The differences in the proportion of

correct responses at later response signal lags between the speed-

emphasis and accuracy emphasis conditions suggest that the as-

sumption of selective influence does not hold in these data. Instead

it implies that, in agreement with the results for regular trials

reported above, drift rates are improved in the accuracy-emphasis

condition compared with the speed-emphasis condition.

Ratcliff (1988, 2006) demonstrated that the interpretation of

response deadline data can depend on whether the fastest decision

processes terminate (i.e., reached a threshold) before the response

signal. To test this idea in our data, we analyzed the deadline data,

using assumptions similar to Ratcliff’s, using diffusion and LBA

model fits from the regular, free response trials. This provides a

strong test of the models, similar to cross-validation methods, by

requiring them to accommodate data from some conditions using

parameters estimated from different conditions (see Busemeyer &

Wang, 2000, for a general treatment of this approach as a model-

selection method).

The model fits from the regular, free-response trials allowed the

models to predict both the probability of a decision being reached

prior to a response signal and the probability of those early

decisions being correct. Combined with the assumption that re-

sponses on the remaining signal trials were uninformed guesses,

with 50% accuracy, this enabled us to generate model predictions

for accuracy on deadline trials. We estimated one new free param-

eter for the response signal trials: a perceptual delay reflecting the

time taken to notice the response signal (ter,signal). Estimates of the

perceptual delay averaged across participants were 0.064 s and

0.062 s for the least constrained selective caution effect diffusion

models. Corresponding LBA estimates were 0.04 s and 0.057 s,

respectively.

The solid and dashed lines in Figure 3 show the model predic-

tions. The upper panels show predictions from the diffusion model,

and the lower panel shows predictions from the LBA model. For

each model, the left-hand panels show predictions from the least

constrained model that imposes the selective caution effect as-

sumption, and the right-hand panels show predictions based on

parameters from the best model chosen by BIC from all models fit.

All models fit well for the 0.2-s and 0.4-s lags. However, despite

the BIC selected models using fewer parameters (see Tables 1 &

2), they provide a much better fit at the 0.25-s and 0.3-s lags.

Recall that, for both the diffusion and LBA, BIC selected models

allowed caution to influence drift rates, so a greater proportion of

responses are correct at these shorter lags under accuracy emphasis

because the higher drift rates have allowed more information to

accrue. When caution is not allowed to influence drift rates accu-

racy is underpredicted at these shorter lags, but greater accuracy

Figure 1. Diffusion model fits. Decision accuracy (left column) and response time (RT) distributions for

correct (middle column) and error responses (right column). For RT distributions, the lines from bottom to top

correspond to 10th, 50th and 90th percentiles. In all panels, the data are shown by solid lines and symbols and

diffusion model fits by open symbols and dotted lines. Data points are accompanied by 95% within-subject

confidence intervals (Morey, 2008). The top row shows fits of the “Least Constrained” model specified in Table

1. The bottom row shows fits of the “Selective Caution Effect” model specified in Table 1.
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can be accommodated at the longest lag because enough time has

passed for a sufficient proportion of early-terminating decisions

(with greater than chance accuracy) to occur. As a final check, we

repeated the model-based analyses allowing the responses on the

unfinished trials to be “informed” guesses, for which the response

issued reflects the current state of the evidence accumulation

process. As also observed by Ratcliff (1988), this made little

difference to the results.

The models predict increasing response accuracy on the signal

trials with increasing signal lag. However, at very long lags (be-

yond those used in our experiment) the models actually predict

decreasing response accuracy. This occurs because very long sig-

nal lags lead to a situation in which almost all responses are made

before the signal. The only trials in which responses will be

observed after the signal (within the acceptable window) are those

for which the particular drift rate samples are very weak, leading

to very slow responses with close to chance level accuracy.

The Effect of Emphasizing Decision Speed on

Lexical Evidence

The brightness discrimination experiment above showed that

emphasizing decision speed changes the evidence derived from

perceptual processes but is this also true when the evidence is

derived from cognitive processes? We investigated this question in

linguistic processing by applying our analyses of regular (free

response) trials to lexical decision task data reported by Wagen-

makers et al. (2008, their Experiment 1). These analyses also test

the possibility that our results are specific to the particular speed–

accuracy tradeoff instructions we employed, or to situations in

which accuracy is relatively low as it was in our experiment

(around 70%). In contrast, Wagenmakers et al. reported accuracy

above 90% in many conditions. They manipulated speed- vs.

accuracy-emphasis factorially with a four-level stimulus-type fac-

tor (S), made up of three types of words: very-low frequency (vlf),

low frequency (lf) and high frequency (hf) and nonwords (nw).

Heathcote and Love (2012) report fits of the LBA model to these

data and observed a clear failure of selective influence; a model

with drift rate parameters fixed over emphasis conditions could not

Figure 2. Linear ballistic accumulator (LBA) model fits. Decision accuracy (left column) and response time

(RT) distributions for correct (middle column) and error responses (right column). For RT distributions, the lines

from bottom to top correspond to 10th, 50th and 90th percentiles. In all panels, the data are shown by solid lines

and symbols and LBA model fits by open symbols and dotted lines. Data points are accompanied by 95%

with-subject confidence intervals (Morey, 2008). The top row shows fits of the “Least Constrained” model

specified in Table 1. The bottom row shows fits of the “Selective Caution Effect” model specified in Table 2.

Table 3

Drift Rate Parameter Estimates From the Least Constrained

Diffusion and LBA Models

Model Parameter

Speed emphasis
Accuracy
emphasis

Dark Light Dark Light

Diffusion v 0.132 0.188 0.217 0.212
Diffusion sv 0.093 0.078 0.093 0.061
LBA v (match) 3.29 3.56 3.65 3.84
LBA v (mismatch) 2.18 2.07 1.46 1.46

Note. LBA � linear ballistic accumulator; v � mean drift rate; sv �

standard deviation of drift rate.
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account the effect of instructions on accuracy (this model fit is

shown in the lower panels of Figure 4). The top panels in Figure

4 show model fits, also reported by Heathcote and Love, in which

drift rate parameters were allowed to vary with emphasis, resulting

in much better fits to data. Confirming the impression from Figure

4, both BIC and AIC model selection supported an emphasis effect

on variability in drift rates (sv; see Heathcote & Love’s Table 1).

Hence, we conclude that the LBA model supports the conclusion

that emphasizing decision speed can influence the evidence de-

rived from linguistic processes.

To investigate whether the diffusion model supports the same

conclusions as the LBA model for Wagenmakers et al.’s (2008)

data, we used the same free-response-data fitting methods as with

our perceptual data, with one exception. In preliminary investiga-

tions we found little evidence of contamination and so we report

fits with only a single estimated contamination probability param-

eter (p), rather than allowing separate estimates for each speed and

accuracy emphasis condition: estimates of the contamination pro-

portion were less than 1% on average.

Table 4 reports model selection results similarly to Tables 1 and

2. As always, the least constrained model (top row) had the best fit

to data (deviance) but did not provide the most parsimonious

description of the data, as shown by BIC and AIC. According to

AIC, the best model for these data was one that did not respect the

selective influence assumption. However, BIC did select a model

that respected the selective influence assumption. To further in-

Figure 3. Proportion of correct responses as a function of the signal lag for speed emphasis and accuracy

emphasis in data (symbols), and corresponding predictions for the Diffusion and linear ballistic accumulator

(LBA) models (lines). Error bars represent one standard error, calculated on a within-subject basis, for the

comparison between speed- versus accuracy-emphasis (Morey, 2008). The x-axis positions of the speed- and

accuracy-emphasis data are offset slightly, for clarity only.
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vestigate this tension, we once again compared the decrease in

goodness of fit resulting from imposing the selective influence

assumption, using nested model likelihood ratio tests against a �
2

distribution. As before, the reduction in fit of the diffusion model

with the selective influence assumption was highly significant,

�
2(136) � 237, p � .001.

Figure 5 shows goodness of fit of the diffusion model to the

lexical decision data. As before, the key is in accommodating the

Figure 4. Linear ballistic accumulator (LBA) model fits to Wagenmakers et al.’s (2008) data. Response

accuracy (left column), and response time (RT) distributions for correct responses (middle column) and error

responses (right column). For RT distributions, the lines from bottom to top correspond to 10th, 50th and 90th

percentiles. In all panels, the data are shown by solid lines and symbols and LBA model fits by dotted lines and

open symbol. Model fits are averaged over participants and stimulus conditions. Data points are accompanied

by 95% with-subject confidence intervals (Morey, 2008). The top row shows fits of the “Least Constrained”

model for which the E (speed emphasis) factor could affect drift rate parameters. (The top row fits come from

Table 1 in Heathcote & Love, 2012). The bottom row shows fits of the “Selective Caution Effect” model that

removes the effect of E on v and sv parameters.

Table 4

Diffusion Model Results for Fits to Wagenmakers et al.’s (2008) Data

Variant a v sv Z SZ t0 st0 k D AIC BIC

Least Constrained E E, S E, S E E E E 27 0 918 3,362
AIC Selected E E, S S E E E E 23 66 848 2,930
BIC Selected E S — — E E — 14 635 1,111 2,378
Selective Caution Effect E S S E E E E 19 237 883 2,603
AIC Selected E S S E — E E 19 237 883 2,603
BIC Selected E S — E — E — 14 635 1,111 2,378

Note. a � the distance between the thresholds; v � mean drift rate; sv � standard deviation of drift rate; Z � the starting point for accumulation that
was estimated by its relative position between the thresholds; SZ � an estimated proportion of the shorter of the distances from z (the center of the start
point variability) to threshold; t0 � the lower bound of the uniformly distributed non-decision time; st0 � the width of the uniformly distributed nondecision
time; p � a contamination probability parameter, for the proportion of trials on which participants made an unbiased guess with a response time that was
uniformly distributed over the noncensoring range; k � number of model parameters; D � deviance; AIC � Akaike information criterion; BIC � Bayesian
information criterion; E � speed versus accuracy emphasis; S � lexical stimulus manipulation with four levels (high, low and very low word frequency
and nonwords). D, AIC, and BIC were calculated by summing deviance and the number of model parameters (k) for fits to individual participants and the
number of data points per participant over participants. Values for these statistics in the table have the deviance for the least constrained model subtracted.
The AIC and BIC selected models have minimum AIC and BIC values within the full set of models (rows 2 and 3) or within the set of model where caution
does not influence drift rate parameters (rows 5 and 6). Table entries of E and S describe which factors influenced each parameter, and em dashes signify
parameters that were constant across all factors.
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difference in response accuracy between the speed and accuracy

emphasis conditions (left panels). With the selective influence

assumption imposed (lower row), the diffusion model does not

accommodate this difference nearly as well as when the assump-

tion is relaxed (upper row).

Table 5 contains the drift rate parameter estimates from the least

constrained diffusion and LBA models. Although the main effect

of emphasis on the rate (v) parameter was not significant (F � 1),

a failure of selective influence was indicated by a significant

interaction between emphasis and stimulus type, F(3, 48) � 4.46,

ε � .53, p � .03. The interaction was caused by the effect of

emphasis on drift rate being mostly confined to the most difficult

low frequency stimuli; an analysis of variance restricted to esti-

mates for these stimuli showed a significant main effect, F(1,

16) � 6.94, p � .02. This interaction of selective influence with

stimulus class may explain why BIC failed to pick an on-average

effect of selective influence. Stronger effects were evident for the

LBA model. The main effect of emphasis on mean drift rate (v)

Figure 5. Diffusion model fits to Wagenmakers et al.’s (2008) data. Response accuracy (left column), and

response time (RT) distributions for correct responses (middle column) and error responses (right column). For

RT distributions, the lines from bottom to top correspond to 10th, 50th and 90th percentiles. In all panels, the

data are shown by solid lines and symbols and diffusion model fits by dotted lines and open symbols. Model fits

are averaged over participants and stimulus conditions. Data points are accompanied by 95% with-subject

confidence intervals (Morey, 2008). The top row shows fits of the “Least Constrained” model specified in Table

4. The bottom row shows fits of the “Selective Caution Effect” model specified in Table 4

Table 5

Drift Rate Parameter Estimates From the Least Constrained Diffusion and LBA Models Fit to Wagenmakers et al.’s (2008) Data

Model Parameter Emphasis High frequency Low frequency Very-low frequency Nonword

LBA v(match) Accuracy 2.81 2.40 2.16 2.49
LBA v(match) Speed 3.39 2.97 2.76 3.14
LBA v(mismatch) Accuracy 0.19 0.27 0.36 0.12
LBA v(mismatch) Speed 0.91 1.05 1.33 0.78
LBA sv(match) Accuracy 0.69 0.67 0.73 0.73
LBA sv(match) Speed 0.64 0.70 0.77 0.76
LBA sv(mismatch) Accuracy 1.00 1.06 1.22 0.90
LBA sv(mismatch) Speed 1.43 1.53 1.55 1.38
Diffusion v Accuracy 0.609 0.350 0.243 0.287
Diffusion v Speed 0.634 0.307 0.187 0.302
Diffusion sv Accuracy 0.235 0.141 0.169 0.093
Diffusion sv Speed 0.241 0.135 0.205 0.079

Note. LBA � linear ballistic accumulator; v � mean drift rate; sv � standard deviation of drift rate.
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was significant for both the matching accumulator, F(1, 16) �

23.7, p � .001, and the mismatching accumulator, F(1, 16) � 15.9,

p � .001. The main effect of emphasis on drift rate standard

deviation was also significant for the mismatching accumulator,

F(1, 16) � 24.8, p � .001, but it was the interaction with stimulus

type that was significant for the matching accumulator, F(3, 16) �

4.78, ε � .95, p � .006, with the drift rate for accuracy emphasis

being greater than the drift rate for speed emphasis for the high

frequency words, whereas the opposite was so for the other three

types of stimuli.

The results of the LBA model analyses indicate a failure of the

selective caution effect assumption for the lexical decision data.

The results of the diffusion model analysis were less strong, but

nevertheless there was some evidence that the selective influence

assumption has to be abandoned in order to improve goodness of

fit, particularly for the error rates. Although the failure of selective

influence is less marked for the diffusion than LBA model—

consistent with our results from the perceptual paradigm—even

for the diffusion model the majority of the evidence rejects the

selective caution effect assumption: Imposing selective influence

clearly underestimates the error rate effect and is rejected by AIC

model selection, and there are significant effects of emphasis on

mean drift rate parameter estimates.

The Effect of Emphasizing Decision Speed on

Mnemonic Evidence

The brightness discrimination and lexical decision experiments

showed that emphasizing decision speed changes the evidence

derived from both perceptual and lexical processes, but does this

extend to evidence derived from episodic memory? Our new

experiment further tests the generality of our findings over differ-

ent speed and accuracy emphasis instructions and in a third accu-

racy range (80% in our recognition memory task, compared with

70% in the perceptual experiment and 90% in lexical decisions).

Method

Participants

Forty-eight students from the University of Newcastle, Austra-

lia, participated in the experiment in return for course credit. One

participant was excluded from further analysis due to very low

accuracy, less than 55% overall. For the remaining 47 participants

overall accuracy ranged from 63% to 93%.

Stimuli

Stimuli consisted of 1,648 words with both frequency and

concreteness ratings in the MRC psycholinguistic database

(Coltheart, 1981). Of these words, 48 were used to construct a set

of two study-test lists for practice, and the remainder to construct

a set of 16 experimental study-test lists. Within the practice and

experimental sets, words were allocated to lists and ordered ran-

domly for each participant. In practice lists, 12 words were studied

and 24 tested. In experimental lists, 56 words were studied and 100

tested. The first four and last four study words acted, respectively,

as primacy and recency “buffers.” Two of the primacy and two of

the recency buffers were randomly selected for testing, whereas all

of the remaining study words were tested. Responses to buffer

words were not analyzed.

Procedure

Testing took place in two 1-hr sessions on different days. The

first session consisted of the two practice lists, one with speed and

one with accuracy emphasis instructions and eight experimental

lists. The second session used the other eight experimental lists. In

each session speed and accuracy instructions were alternated be-

tween lists, with half of the participants beginning with speed and

half with accuracy in session one, with the opposite order in

session two. Participants were told that approximately half of the

test words were studied on the last list (old words) and half not

(new words).

Stimuli were presented on a computer screen and responses

collected through the computer keyboard. Half of the participants

responded old by pressing “z” key and new by pressing “/,” with

the opposite assignment for the remaining participants. Words

were studied one at a time, being present on the screen for 1 s,

preceded and followed by blank screens for 0.15 s and 0.25 s.

Following study, a screen informed the participants of the type of

the next test (speed or accuracy). Each test word stayed on the

screen until a response was made or 6 s elapsed, in which case

“TIME LIMIT EXCEEDED! NO RESPONSE RECORDED!”

was displayed. In speed blocks “TOO SLOW” was displayed after

a response slower than 0.65 s and “TOO FAST” after a response

faster than 0.25 s. In accuracy blocks “CORRECT” was displayed

after correct responses and “INCORRECT” after incorrect re-

sponses.

Results

As for the lexical decision data, preliminary investigations

found little evidence of contamination: estimates of the contami-

nation proportion 4% on average for diffusion and 1% for LBA.

Thus, we report fits with only a single estimated contamination

probability parameter (p), rather than allowing separate estimates

for each speed and accuracy emphasis condition. Tables 6 and 7

report model selection results for the diffusion and LBA models,

respectively, using the same format as in earlier analyses. For the

least constrained models of both types, speed vs. accuracy empha-

sis (E) was allowed to affect all parameters except rate variability

(sv). Allowing rate variability to vary with emphasis hardly im-

proved fit and did not change model selection results but did lead

to unstable parameter estimates for some participants, which is

why we exclude those models. For the diffusion model, both drift

rate parameters (v and sv) were allowed to vary with stimulus (S,

i.e., studied or old test words vs. unstudied or new test words). For

the LBA model, threshold (B) was allowed to vary with the

response accumulator factor (R), and both drift rate parameters

were allowed to vary with the stimulus-accumulator match (M)

factor and mean drift rate (v) was allowed to vary with the stimulus

(S). Allowing sv to vary with the stimulus did not improve fit much

or change model selection results and again led to unstable param-

eter estimates for some participants.

The top three rows of Tables 6 and 7 show that BIC and AIC

both rejected the selective influence assumption for the diffusion

and LBA models, respectively. The reduction in fit between the
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least constrained and selective influence models was also highly

significant for both the diffusion model, �
2(94) � 2528, p � .001,

and the LBA model, �
2(94) � 1731, p � .001.

Figures 6 and 7 show the goodness of fit of the diffusion and

LBA models, respectively, to the recognition memory data. For

both models, the fit of the least constrained model is quite accu-

rate, except for slower error responses. Once again, the assumption

of selective influence causes the models not to be able to fit the

difference in response accuracy between the speed and accuracy

emphasis conditions (left panels). With the selective influence

assumption imposed (lower row), neither model can accommodate

this difference as well as when the assumption is relaxed (upper

row). Once again this failure is most marked for the diffusion

model, although selective influence also causes problems in RT,

for both slow correct responses in the speed condition and fast

error responses in the accuracy condition.

Figures 6 and 7 show the goodness of fit of the diffusion and

LBA models, respectively, to the recognition memory data. For

both models, the fit of the least constrained model is quite accu-

rate, except for the slowest of the incorrect responses (top line in

right panels). Once again, assuming selective influence causes the

models to underestimate the difference in response accuracy be-

tween the speed and accuracy emphasis conditions (left panels).

With the selective influence assumption imposed (lower row),

neither model can accommodate this difference as well as when

the assumption is relaxed (upper row). Once again this failure is

most marked for the LBA model, although selective influence also

causes problems in fits to error RTs for both models.

Table 8 shows the drift rate parameter estimates for least con-

strained diffusion and LBA models. There was a significant inter-

action between stimulus (new vs. old) and emphasis, F(1, 46) �

4.43, p � .04, due to a significantly higher drift rate for new

stimuli under accuracy than speed emphasis, F(1, 46) � 6.13, p �

.02, but no significant difference for old stimuli (F � 1). For the

LBA model there was a significant three-way interaction between

stimulus, emphasis and match, F(1, 46) � 13.2, p � .001. This

Table 6

Diffusion Model Results for Fits to Recognition Memory Data

Variant a v sv Z SZ t0 st0 k D AIC BIC

Least Constrained E E, S S E E E E 17 0 1,598 6,673
AIC Selected E E, S S E E E E 17 0 1,598 6,673
BIC Selected E E, S S E E E E 17 0 1,598 6,673
Selective Caution Effect E S S E E E E 15 2,528 3,938 8,416
AIC Selected E S S E E E E 15 2,528 3,938 8,416
BIC Selected E S — — E E — 12 3,291 4,419 8,001

Note. a � the distance between the thresholds; v � mean drift rate; sv � standard deviation of drift rate; Z � the starting point for accumulation that
was estimated by its relative position between the thresholds; SZ � an estimated proportion of the shorter of the distances from z (the center of the start
point variability) to threshold; t0 � the lower bound of the uniformly distributed non-decision time; st0 � the width of the uniformly distributed nondecision
time; p � a contamination probability parameter, for the proportion of trials on which participants made an unbiased guess with a response time that was
uniformly distributed over the noncensoring range; k � number of model parameters; D � deviance; AIC � Akaike information criterion; BIC � Bayesian
information criterion; E � speed versus accuracy emphasis; S � mnemonic stimulus manipulation with two levels (test item either previously studied or
not). D, AIC, and BIC were calculated by summing deviance and the number of model parameters (k) for fits to individual participants and the number
of data points per participant over participants. Values for these statistics in the table have the deviance for the least constrained model subtracted, and
cannot be compared between Tables 6 and 7 due to differences in estimation procedures. The AIC and BIC selected models have minimum AIC and BIC
values within the full set of models (rows 2 and 3) or within the set of model for which caution does not influence drift rate parameters (rows 5 and 6).
Table entries of E and S describe which factors influenced each parameter, and em dashes signify parameters that were constant across all factors.

Table 7

LBA Model Results for Fits to Recognition Memory Data

Variant B A v sv t0 k D AIC BIC

Least Constrained E, R E E, S, M M E 18 0 1,692 8,874
AIC Selected E, R E E, S, M M E 18 0 1,692 8,874
BIC Selected R — E, M M E 11 1,089 2,123 6,512
Selective Caution Effect E, R — S, M M — 12 1,731 2,859 7,647
AIC Selected E, R — S, M M — 12 1,731 2,859 7,647
BIC Selected E — S, M M — 10 2,212 3,152 7,142

Note. LBA � linear ballistic accumulator; B � the distance from the upper bound of the start-point distribution (which begins at zero) to the threshold;
A � the upper bound of the start-point distribution (which begins at zero); v � mean drift rate; sv � standard deviation of drift rate; t0 � the lower bound
of the uniformly distributed non-decision time; k � number of model parameters; D � deviance; AIC � Akaike information criterion; BIC � Bayesian
information criterion; E � speed versus accuracy emphasis; R � the parameter changes between the dark and light response accumulators; S � mnemonic
stimulus manipulation with two levels (test item either previously studied or not); M � the parameter takes on one value for accumulators whose response
matches the stimulus and a different value for accumulators whose response fails to match the stimulus. D, AIC, and BIC were calculated by summing
deviance and the number of model parameters (k) for fits to individual participants and the number of data points per participant over participants. Values
for these statistics in the table have the deviance for the least constrained model subtracted, and cannot be compared between Tables 6 and 7 due to
differences in estimation procedures. The AIC and BIC selected models have minimum AIC and BIC values within the full set of models (rows 2 and 3)
or within the set of model for which caution does not influence drift rate parameters (rows 5 and 6). Table entries of E, S, R, M describe which factors
influenced each parameter, and em dashes signify parameters that were constant across all factors.
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occurred because the difference between match and mismatch

rates (analogous to drift rate in the diffusion model) was smaller

under speed (0.85) than accuracy (1.58) emphasis, F(1, 46) �

33.4, p � .001, with this difference being larger for new stimuli

(0.82 vs. 2) than old stimuli (0.88 vs. 1.16). Hence, both models

supported an effect of emphasis on drift rate that was strongest for

new stimuli.

Discussion

The results of both the diffusion and LBA model analyses

indicate a failure of the selective caution effect assumption for the

recognition memory data. Once again the failure of selective

influence was larger for the LBA model than the diffusion model,

but for both models all of our tests—AIC, BIC, �
2 and significance

tests on the least constrained model parameter estimates—sup-

ported a failure of the selective influence assumption. As for the

perceptual and lexical paradigms the strongest effect of imposing

selective influence was to underestimate the effect of speed versus

accuracy emphasis instructions on observed error rates. Further, in

the diffusion model fit to the recognition memory data, the selec-

tive influence assumption also caused some problems with the fit

for the RT data. In agreement with findings for the lexical decision

experiment the effect of emphasis on rates interacted with stimu-

lus, being greatest for new stimuli in recognition memory.

Starns et al. (2012) reported evidence based on BIC for a failure

of selective influence (slower drift rates in the speed than accuracy

emphasis condition) in fits of the diffusion model to their recog-

nition memory data. They noted that the average RT in their speed

condition was very fast (526 ms), which they attributed to practice,

as their participants performed 20 sessions. Starns et al. suggested

that the fast RTs for their speed condition may have weakened

mnemonic evidence, and so decreased drift rates, by impairing

participants’ ability to form effective retrieval cues. They con-

trasted (p. 14) the considerably faster RTs for their speed condition

(526 ms) with the 580 ms RTs in Ratcliff, Thapar, and McKoon’s

(2004) for their young participants in their speed condition and

concluded that Ratcliff et al.’s data supported the selective influ-

ence assumption for the diffusion model because of their partici-

pant’s overall longer RTs.

However, it is possible that neither practice nor extremely fast

RTs explain the difference in selective influence, as Ratcliff and

Smith (2004) did not report any test of selective influence, and

there is evidence of substantial misfit for their model (see their

Figure 3). Our recognition memory experiment used only two

sessions and mean RT even in our speed-emphasis condition was

slower than in Starns et al. (2012, 0.55 s). This suggests that

neither extensive practice nor the fast RTs in the speed condition

of Starns et al.’s participants may be necessary for a failure of the

Figure 6. Diffusion model fits to recognition memory data. Response accuracy (left column), and response

time (RT) distributions for correct responses (middle column) and error responses (right column). For RT

distributions, the lines from bottom to top correspond to 10th, 50th and 90th percentiles. In all panels, the data

are shown by solid lines and symbols and diffusion model fits by open symbols and dotted lines. Model fits are

averaged over participants and stimulus conditions. Data points are accompanied by 95% with-subject confi-

dence intervals (Morey, 2008). The top row shows fits of the “Least Constrained” model specified in Table 6.

The bottom row shows fits of the “Selective Caution Effect” model specified in Table 6.
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selective caution effect assumption. Regardless, their suggestion

that compromised retrieval-cue encoding is the cause remains

viable, as discuss further below.

General Discussion

One of the most useful features of decision-making models is

that they tease apart the effects of different cognitive changes that

might otherwise be confused. This feature has proven useful in

applied studies, for example in understanding the cognitive effects

of aging (Forstmann et al., 2011; Ratcliff, Thapar, & McKoon,

2006a, 2006b, 2007, 2011) alcohol use (van Ravenzwaaij et al.,

2012), sleep deprivation (Ratcliff & Van Dongen, 2011), and

practice (Heathcote & Hayes, 2012). The ability to attribute dif-

ferent cognitive effects to different model parameters has even

been taken as evidence in favor of the models themselves, and

subsequently as a benchmark test that new decision-making theo-

ries must pass. Data from our three experiments using very dif-

ferent cognitive tasks and converging analytic procedures provide

strong evidence against one of the most fundamental assumptions

of selective influence: the assumption that changes in decision

caution can be explained by changes in the amount of evidence

required to trigger a decision, without positing changes in the

quality of that evidence.

Using two different decision-making models, diffusion and

LBA models, we found that that an emphasis on accurate decision

making led to both an increase in the amount of evidence required

to trigger a decision and an increase in the quality of evidence

extracted from the stimulus. In the parlance of evidence accumu-

lation models, speed–accuracy tradeoffs influenced both the deci-

sion threshold (or boundary separation) and the drift rate. Our

findings depart from dozens of prior studies, all of which modeled

the effects of speed–accuracy manipulations without changes in

drift rate parameters, by allowing changes only in the amount of

evidence required to trigger a decision, and sometimes in the time

taken for nondecision processes such as button pressing. Our

results do not provide evidence against the models themselves, but

rather against the way the models are linked with data. This

changes the approach that ought to be taken in the many applica-

Figure 7. Linear ballistic accumulator (LBA) model fits to recognition memory data. Response accuracy (left

column), and response time (RT) distributions for correct responses (middle column) and error responses (right

column). For RT distributions, the lines from bottom to top correspond to 10th, 50th and 90th percentiles. In all

panels, the data are shown by solid lines and symbols and diffusion model fits by open symbols and dotted lines.

Model fits are averaged over participants and stimulus conditions. Data points are accompanied by 95%

with-subject confidence intervals (Morey, 2008). The top row shows fits of the “Least Constrained” model

specified in Table 7. The bottom row shows fits of the “Selective Caution Effect” model specified in Table 7.

Table 8

Drift Rate Parameter Estimates From the Least Constrained

Diffusion and LBA Models Fit to Our Recognition Data

Model Parameter

Speed emphasis
Accuracy
emphasis

New Old New Old

Diffusion v 0.216 0.298 0.245 0.286
LBA v(match) 3.48 3.58 4.03 3.78
LBA v(mismatch) 2.66 2.70 2.03 2.62

Note. LBA � linear ballistic accumulator; v � mean drift rate.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

1239EMPHASIZING DECISION SPEED



tions of evidence accumulation models to clinical and cognitive

investigations.

It is possible that the difference between our finding and prior

work can be explained by the approach taken to model selection.

Most previous studies have used a confirmatory approach, where

the selective influence of speed–accuracy tradeoffs on threshold

parameters is assumed a priori, and good fits to data are taken as

support for the assumption. In contrast, we directly compared

models that did and did not make the assumption of selective

influence, and we found better support for the latter sort. Reassur-

ingly, our findings align with some previous studies that have

tested the assumption of selective influence. Vanderkerckhove et

al. (2008) and Starns et al. (2012) used Ratcliff’s diffusion model

and found that speed-emphasis instructions sometimes led to lower

drift rate estimates than accuracy-emphasis instructions in a rec-

ognition memory task. Heathcote and Love (2012) found the same

result in an LBA analysis of Wagenmakers et al.’s (2008) data.

However, our results differ from some very new results reported

by Starns and Ratcliff (in press). Starns and Ratcliff examined the

effects of speed vs. accuracy emphasis on drift rates in a variety of

data sets (see their Table 1) and found no evidence that drift rates

varied as a function of emphasis.

All these previous results, combined with our own, rule out

several hypotheses about what conditions might cause drift rate

differences between speed-emphasis and accuracy-emphasis con-

ditions. Nevertheless, some plausible hypotheses remain consistent

with all the results so far. For example, it may be that very fast

responses under speed stress are the key element (Starns & Rat-

cliff’s, in press, data sets did not have such responses). Alterna-

tively, it may be that a large difference in the accuracy of responses

under speed vs. accuracy emphasis is key. These hypotheses are

the subject of ongoing research.

Theoretical Implications

Our results raise the question of how a decision maker might

change the quality of information extracted from the stimulus in

response to speed vs. accuracy emphasis instructions. One hypoth-

esis is suggested by prior studies showing that the information

extracted from a decision stimulus can change in quality during the

course of a single decision. Ratcliff and McKoon (1989, also

Gronlund & Ratcliff, 1989) analyzed data from a recognition

memory task in which participants sometimes had to judge

whether an item had previously been studied (item recognition)

and sometimes had to judge whether a pair of previously studied

items had been studied together, or in different pairings. They

observed that information about item recognition became available

earlier in a decision than information about associative recogni-

tion. Cohen and Nosofsky (2003) identified similar effects through

experimental manipulation of stimulus structure in a multidimen-

sional categorization task, finding that information from one di-

mension was usually processed earlier than information from other

dimensions. In some cases, this effect could lead to information

favoring opposite responses to accumulate early vs. late in the

decision process. Smith and Ratcliff (2009) identified related

changes in the nature of information extracted from a stimulus

during the course of simple perceptual decisions.

These findings bear a suggestive relationship to ours: When

decision times are shortened (e.g., by emphasizing response speed

rather than accuracy), the type of information being accumulated

could change, because less of the later-arriving information would

be available. Because of the unitary nature of our stimuli, it is not

obvious what kinds of information might be accumulated in early

versus late processing, but many hypotheses are plausible. For

example, in our Experiment 1, perhaps small patches of the per-

ceptual stimuli are processed early—leading to greater variability

between stimulus samples, and so lower drift rates—and these

patches are only later integrated into more informative global

precepts. Starns and Ratcliff (in press) suggested a similar expla-

nation for their finding that drift rates were lower under speed

emphasis than accuracy emphasis in a recognition memory task.

Starns et al. attributed the lower drift rates to compromised re-

trieval cues in the very fast decisions made under speed-emphasis

and noted that this fits with recent memory models, some of which

assume that memory probes have few active features early in a test

trial, with additional features filling in over time (Diller, Nobel, &

Shiffrin, 2001; Malmberg, 2008; see p. 19 of Starns and Ratcliff,

in press, for more detail).

These ideas hinge on the assumption that the quality of infor-

mation extracted from the environment improves systematically

during a decision, such that faster decisions will necessarily be

based on poorer information than slow decisions. Hence, these

ideas are consistent with a broader notion of selective influence in

the sense of assuming that the information extracted from the

stimulus at any given time during a decision is not influenced by

speed–accuracy tradeoffs. That is, even though the rate of infor-

mation extraction might change during a decision, this change is

identical in the speed and accuracy emphasis conditions.

A more radical hypothesis allows the information extracted

from the stimulus at all moments during decision making to differ

between speed-emphasis and accuracy-emphasis conditions. Even

this more radical assumption is not without precedent. One possi-

bility is that average information quality is decreased under speed-

emphasis purely because some decision-makers, on some trials,

resort to uninformed guessing. Although simple, this explanation

is hard to reconcile with data from high-accuracy experiments with

small differences between speed- and accuracy-emphasis condi-

tions, in which the assumption of selective influence nevertheless

fails (e.g., Vanderkerckhove et al., 2008).

Recent studies of the neurobiology of simple decisions suggest

two further possibilities. First, Ho et al. (2012) examined fine

perceptual discriminations, similar to the brightness task used here.

For such tasks, neurons in lower visual cortex have simple tuning

functions: each responds maximally to a preferred stimulus, with

outputs that decrease with distance from the preferred stimulus.

The particular bell-shape of the tuning curve leads to the curious

property that the most active neurons (those tuned to prefer the

presented stimulus magnitude, “on-tuned”) are not the most infor-

mative neurons on which to base a decision. Instead, the most

informative neurons are those tuned slightly away from the pre-

sented stimulus (“off-tuned”; Scolari & Serences, 2009). Ho et al.

showed that, when decision accuracy was emphasized, responses

were best predicted by activity of the most informative off-tuned

neurons, but when decision speed was emphasized, responses were

better predicted by the activity of the less informative, but more

active, on-tuned neurons. This suggests that decision-makers

might base their evidence accumulation on different neural inputs

under speed versus accuracy emphasis, with accuracy emphasis
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resulting in slower, but more informative information being ac-

crued than speed emphasis. This suggestion which agrees with

single-cell recordings from monkeys (Heitz & Schall, 2012) in

which neurons in regions implicated in decision making increased

their firing rates differently depending on whether speed or accu-

racy was emphasized.

Second, Ratcliff, Hasegawa, Hasegawa, Smith, and Segraves

(2007) recorded firing directly from the cells of monkeys who

were performing a simple decision task and identified the firing

rate of those cells with the process of evidence accumulation. They

noted a brief period when evidence accumulates indiscriminately,

in favor of both responses, just after stimulus presentation. This

phenomenon could correspond to a period of low-drift rate accu-

mulation early during the decision process, which is consistent

with our results, as discussed above.

Limitations and Further Research

Our model selection methods, although a substantial advance

over not testing the assumption of selective influence at all, are still

far from optimal. Reassuringly, the model selection methods we

employed mostly provided converging evidence, but these meth-

ods do not employ state of the art mechanisms for assessing the

relative complexity of different theories (e.g., AIC and BIC simply

count the number of estimated parameters in a model to measure

its complexity). New Bayesian approaches to evidence accumula-

tion models open up the possibility of using much more sophisti-

cated model selection methods. Vanderkerckhove et al. (2008)

reanalyzed data reported by Ratcliff and Rouder (1998) using

Monte-Carlo methods to sample from posterior distributions for

the parameters, and based their model selection on analyses of

parameter estimates. With these methods, Vandekerckhove et al.

came to a conclusion similar to ours.

A limitation of our analyses, and of evidence accumulation

models in general, is that measurements of drift rates confound the

effects of better information accumulation with the effects of

faster information accumulation. The improved drift rates ob-

served under accuracy emphasis reflect more diagnostic informa-

tion being accumulated sooner, but this could equally well occur

because all information is being accumulated faster (i.e., faster

evidence accumulation overall), or because higher quality infor-

mation is being accumulated (but without an overall increase in

rate).

Evidence accumulation models, and the assumption of selective

influence, have been applied to data from dozens of different

paradigms. We found evidence against the assumption using data

from perceptual decisions, lexical decisions and recognition mem-

ory decisions. Further investigation will be required to determine

if other paradigms yield similar evidence. Two notable features of

the data from our brightness discrimination task were the low

overall accuracy rates (around 70%) and the very large differences

in accuracy rate between speed-emphasis and accuracy-emphasis

conditions (about 17%). It is tempting to speculate that these

conditions are prerequisites for a failure of the selective influence

of caution. However, our analyses of Wagenmakers et al.’s (2008)

lexical decision data speak against this idea. Wagenmakers et al.’s

data had high accuracy (around 90%) with a smaller difference

between speed and accuracy emphasis (about 10%), but still

showed a failure of the selective influence hypothesis. Similarly,

Vanderkerckhove et al.’s (2008) analysis reached similar conclu-

sions to ours but used data from Ratcliff and Rouder (1998) that

included many conditions with almost perfect accuracy and very

small changes between speed- and accuracy-emphasis conditions

(less than 5%). Again, further investigation will be required to

determine if there are particular conditions under which caution

does not influence the rate at which information is accumulated.

However, our results do clearly indicate that there are at least some

conditions and paradigms where this assumption cannot be safely

made.

Conclusions

A common assumption in both the development and application

of decision-making theories is that changes in decision caution

(fast and careless vs. slow and careful) are due to changes in the

amount of evidence required to trigger a decision and are not due

to changes in the nature of the evidence. Our data challenge this

assumption. The most immediate implication is that applications of

decision-making models to data should not assume selective in-

fluence by fiat but should instead use model selection methods to

see if the assumption is warranted in each data set. A more

far-reaching conclusion is that theoretical development in simple

decision making may have been a little more heavily influenced

than needed though the use of the selective influence assumption

as a benchmark test. This could warrant the reinvestigation of

some earlier theoretical conclusions about competing models.
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