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Abstract Asymptotic properties of the harmonic moment tail index Estimator are
derived for distributions with regularly varying tails. The estimator shows good robust-
ness properties and stands out for its simplicity. A tuning parameter allows for reg-
ulating the trade-off between robustness and efficiency. Small sample properties are
illustrated by a simulation study.

Keywords Tail index estimation · Regularly varying tail · Hill estimator ·
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1 Introduction

Many distributions in applied fields such as hydrology, insurance or finance belong to
the maximum domain of attraction of the Fréchet distribution which is characterized
by heavy-tailed distributions (see e.g. Embrechts et al. 1997; Beirlant et al. 2004; Reiss
and Thomas 2005; Resnick 2007). Recall that a (cumulative) distribution F is called
heavy-tailed, if 1− F is regularly varying with index −1/γ , i.e.
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194 J. Beran et al.

lim
t→∞

1− F(t x)

1− F(t)
= x−1/γ . (1)

An equivalent characterization can be given in terms of U (t) := F←(1− t−1) (with
F←(x) := inf{y : F(y) ≥ x}) by

lim
t→∞

U (t x)

U (t)
= xγ (x > 1). (2)

Suppose we have an i.i.d. sample X1, . . . , Xn with common distribution F satisfy-
ing (1) and denote by X1,n ≤ · · · ≤ Xn,n the corresponding order statistics. The best
known method for estimating the tail index γ is Hill’s estimator (Hill 1975)

γ
(H)
n,k = k−1

k∑

i=1

log

(
Xn−i+1,n

Xn−k,n

)
(k = 1, . . . , n − 1).

Consistency of γ
(H)
n,k for i.i.d. observations was first derived by Mason (1982) for

k →∞, n→∞ and k/n→ 0. Under varying conditions on k and the second-order
behavior of F , asymptotic normality of γ

(H)
n,k was derived by many authors (see e.g.

Hall 1982; Davis and Resnick 1984; Csörgő and Mason 1985; Csörgő et al. 1985;
Haeusler and Teugels 1985; Csörgő and Viharos 1997; de Haan and Resnick 1998;
de Haan and Peng 1998). An important specification in this context is the rate at
which F̄(t x)/F̄(t) converges towards x−1/γ (or equivalently, how fast U (t x)/U (t)
converges towards xγ ). A typical second-order assumption is (de Haan and Peng 1998;
de Haan and Ferreira 2006)

lim
t→∞

1

A (t)

(
U (t x)

U (t)
− xγ

)
= xγ xρ − 1

ρ
, (3)

where ρ ≤ 0 is a second-order parameter and |A| is some regularly varying function
with index ρ. Under this assumption, de Haan and Peng (1998) derived the asymptotic
expansion

γ
(H)
n,k

d= γ + γ√
k

Zk + A(n/k)

1− ρ
(1+ op(1)),

where Zk =
√

k
(

k−1 ∑k
i=1 Ei − 1

)
and Ei is a sequence of i.i.d. standard exponential

random variables. Hence, choosing k such that limn→∞
√

k A(n/k) = λ �= 0 leads to

asymptotic normality of
√

k
(
γ

(H)
n,k − γ

)
with mean λ/(1− ρ) and variance γ 2.

The aim of the current paper is to provide a similar expansion for harmonic moment
tail index estimators. This class includes Hill’s estimator as a special case. However, it
also includes methods that have robustness properties not shared by Hill’s estimator.
All estimators in this class are explicit and the degree of robustness can be controlled
by a tuning parameter.
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Harmonic moment tail index estimator 195

Robust tail index estimation has received some attention in the recent literature. For
instance, Brazauskas and Serfling (2000) studied the lack of robustness of classical
tail index estimators in a simple one-parameter Pareto model F(x) = 1 − (σ/x)1/γ ,
(x ≥ σ ) with σ > 0 known. Motivated by their findings, Finkelstein et al. (2006)
proposed an M-estimator of γ based on the probability integral transform. Their idea
is closely related to the harmonic moment tail index estimator (HME) introduced in
Fabián and Stehlík (2009) and Henry (2009) which can in principle be used for esti-
mating the tail index of any distribution with a regularly varying tail. Consistency and
asymptotic normality are derived in Henry (2009) under the very restrictive assump-
tion that there is an x0 > 0 such that the conditional distribution given X > x0 is
exactly Pareto, i.e. the exact equality P(X > x) = cx−1/γ holds for x > x0 and some
c, γ > 0. A special case of the HME is discussed in Stehlík et al. (2010), where it is
motivated by considering t scores (also see Stehlík et al. 2012 for some consistency
results). Robust tail index estimation for the generalized Pareto distribution is also
considered in Peng and Welsh (2002) and Juárez and Schucany (2004). Approaches
to robust tail index estimation in the general class of regularly varying tails are pro-
posed for instance in Beirlant et al. (2004), Vandewalle (2004), Vandewalle et al.
(2004, 2007) and Knight (2012). Beran and Schell (2012) address the issue of robust-
ness with respect to low quantiles using M-estimation. Different authors point out
the apparent contradiction between robust statistics and extreme value theory, since
classical robustness procedures try to reduce the influence of extreme observations,
whereas the methods of extreme value theory mainly focus on exactly these data points
(see e.g. Vandewalle et al. 2004). Nevertheless, as pointed out by Vandewalle (2004),
small errors in the estimation of the tail index can cause large errors in quantities based
on the tail index. Therefore robust procedures are needed to avoid undue sensitivity
of the estimate to a small portion of “outlying” observations.

The article is organized as follows. The class of harmonic moment tail index esti-
mators is defined in Sect. 2. Asymptotic properties are obtained in Sect. 3. Some
robustness properties are discussed in Sect. 4. The results are illustrated by a small
simulation study in Sect. 5. We conclude with some final comments in Sect. 6. Proofs
are given in the Appendix.

2 Motivation and definition of the harmonic moment tail index estimator

To motivate the class of HME we start with a Pareto distributed variable X . Thus,
X ≥ 1 and F(x) = 1− x−1/γ for some γ > 0. For an arbitrary threshold x0 > 1 let
Y = x−1

0 X · 1 {X > x0}. Then, conditionally on X > x0, Y is again Pareto distributed
with parameter γ , i.e.

P (Y ≤ y | X > x0) = FY (y|X > x0) = 1− y−1/γ .

Moreover, conditionally on X > x0, we have

Y−1/γ = 1− F(Y )
d= U,
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196 J. Beran et al.

where U is uniformly distributed on [0, 1]. Note that E[U p] = (p + 1)−1. Given an
i.i.d. sequence Y1, . . . , Yk of relative exceedances over a threshold x0, the strong law
of large numbers implies that

k−1
k∑

i=1

Y 1−β
i = k−1

k∑

i=1

(
Y−1/γ

i

)γ (β−1) d= 1

k

k∑

i=1

U γ (β−1)

i

a.s.→ E[U γ (1−β)] = 1/(γ (β − 1)+ 1),

provided that γ (β − 1)+ 1 �= 0. Hence,

1

β − 1

(
1

k−1
∑k

i=1 Y 1−β
i

− 1

)
a.s.→ γ.

Suppose now that the distribution of X is not necessarily Pareto but any heavy-tailed
distribution defined by (1). The idea is now the same as for Hill’s estimator, namely
to replace x0 by an order statistic Xn−k,n . Thus, we obtain the following definition.

Definition 1 (Harmonic moment tail index estimators) Let X1, . . . , Xn be i.i.d ran-
dom variables with distribution F of the form (1). The HME of γ is defined by

H (β)
n,k :=

1

β − 1

⎧
⎨

⎩

[
k−1

k∑

i=1

(
Xn−k,n

Xn−i+1,n

)β−1
]−1

− 1

⎫
⎬

⎭ ,

where 1 ≤ k ≤ n− 1 and β > 0 is a tuning parameter. For β = 1, H (β)
n,k is interpreted

as a limit for β → 1, i.e.

H (1)
n,k := lim

β→1
H (β)

n,k = k−1
k∑

i=1

log
(
Xn−i+1,n/Xn−k,n

)

is Hill’s estimator γ
(H)
n,k .

As it turns out, the tuning parameter β allows for regulating the trade-off between
efficiency and robustness. For β > 1 the effect of large contaminations is bounded,
since the HME benefits from the properties of the harmonic mean. However, a larger
value of β also implies an increased variance. For β < 1 the harmonic moment tail
index estimator also has a higher variance than Hill’s estimator. However, in some
situations, it possesses a smaller asymptotic bias such that the AMSE is smaller. The
class of harmonic moment tail index estimators is introduced in Henry (2009), using
the tuning parameter θ = 1/(β − 1). Asymptotic results are obtained however only
under the trivial and very restrictive assumption of an exact Pareto tail beyond a fixed
finite threshold u. In a related paper, Stehlík et al. (2010) propose a t score moment
estimator which is a harmonic moment tail index estimator with β = 2, but only
simulation results are reported.
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Harmonic moment tail index estimator 197

3 Asymptotic properties of the harmonic moment tail index estimator

To prove consistency, we use a similar approach as in Resnick (2007). Let Ex =
(x,∞] and denote by E the Borel σ -field on E = E0 = (0,∞]. The so-called tail
measure νγ : E → R+ is defined by νγ (Ex ) := x−1/γ . Moreover, let M+(E) be
the space of nonnegative Radon measures on E endowed with the vague topology.
Vague convergence in M+(E), which is consistent with the metric generating the
vague topology, is defined as follows.

Definition 2 Given a sequence {μn, n ≥ 0}with μi ∈ M+(E), μn is said to converge
vaguely to μ0 (μn

v→ μ0) if

μn( f ) :=
∫

E
f (x)μn(dx)→ μ0( f ) :=

∫

E
f (x)μ0(dx)

for all f ∈ C+K (E) := { f : E → R+ : f is continuous with compact support} as
n→∞.

Note that endowed with the vague metric M+(E) is a complete, separable, metric
space. According to Resnick (2007, Theorem 4.1) a regularly varying tail, i.e. X ∼ F ,
where 1− F ∈ RV−1/γ , implies

n

k
P

(
X

U (n/k)
∈ ·

)
v→ νγ (·) (4)

in M+(0,∞] as n → ∞ and k(n) → ∞ with k/n → 0. Suppose that X1, . . . , Xn

are i.i.d. random variables and define for k = k(n) ≤ n the tail empirical measure by

νn,k(·) := 1

k

n∑

i=1

1{(Xi/U (n/k)) ∈ · }.

We emphasize that νn,k depends on k. The tail empirical measure νn,k is a natural
estimator of n/k P (X/U (n/k) ∈ ·), since for any fixed t > 0,

n

k
P

(
X

U (n/k)
∈ (t,∞]

)
= n

k

(
1− F

(
tU

(n

k

)))
.

Estimating F by the empirical distribution function, denoted by Fn , results in

n

k

(
1− Fn

(
tU

(n

k

)))
= 1

k

n∑

i=1

1{Xi/U (n/k) ∈ (t,∞]} = νn,k(t,∞].

To be more precise (see Resnick 2007, Theorem 4.1), one can show

νn,k ⇒ νγ ,
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198 J. Beran et al.

in M+(0,∞] provided that n → ∞, k(n) → ∞ and k(n)/n → 0, where⇒ stands
for weak convergence in M+(0,∞] (endowed with the vague metric). Based on this,
we are ready to prove the consistency of the HME H (β)

n,k .

Theorem 1 (Consistency of the HME) If k(n)/n → 0, then νn,k ⇒ νγ implies the

consistency of H (β)
n,k , i.e.

H (β)
n,k

P→ γ.

Intuitively, the proof is based on the following arguments. Since νn,k depends on
U , and therefore on the unknown distribution function F , we define an estimator,
say ν̂n,k , of νn,k and show its convergence to νγ in probability. Rewriting H (β)

k,n as a
functional of ν̂n,k and using Theorem 4.2 in Billingsley (1968) in conjunction with the
continuous mapping theorem and a Slutsky argument leads to the desired consistency
result. Details are provided in the Appendix.

To derive the asymptotic normality of the HME, define

A0(t) :=
⎧
⎨

⎩

ρ[1− lims→∞ s−γ U (s)/(t−γ U (t))], ρ < 0,

1−
∫ t

0
s−γ U (s)ds/(t1−γ U (t)), ρ = 0.

(5)

This function is used to bound deviations in (3) uniformly in x (see Appendix). Based
on Lemma 1 and (14) (see Appendix), we can state the following theorem.

Theorem 2 (CLT for the HME) Assume that X1, . . . , Xn are i.i.d. random vari-
ables with common distribution F, satisfying (3). Then for any intermediate sequence
k(n)→∞, with k/n→ 0, satisfying

lim
n→∞
√

k A0(n/k) = λ, (6)

we have, for β > 1− 1/(2γ )

√
k
(

H (β)
n,k − γ

)
d→ N

(
λμβ, σ 2

β

)
, (7)

where

μβ := μβ(γ, ρ) = 1+ γ (β − 1)

1− ρ + γ (β − 1)
, σ 2

β := σ 2
β (γ ) = γ 2(1+ γ (β − 1))2

1+ 2γ (β − 1)
.

Remark 1 Note that, due to A0(t) ∼ A(t), (6) is equivalent to

lim
n→∞
√

k A(n/k) = λ for ρ < 0. (8)

Remark 2 Under the trivial assumption that for some fixed x0 > 0, we have the exact
equality 1 − F(x) = P(X > x) = cx−1/γ for all x > x0 and some c, γ > 0, we
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Harmonic moment tail index estimator 199

obtain asymptotically an N (0, σ 2
β )-distribution, i.e. no asymptotic bias. This simple

case has been considered already in Henry (2009). Moreover, for β = 1, Theorem 2
coincides with previous results for Hill’s estimator H (1)

n,k (see for instance Ferreira and
de Vries (2004), Theorem 3.2.5).

Corollary 1 Under the conditions of Theorem 2, the asymptotic mean-squared error
of H (β)

n,k is given by

AMSE(β) = k−1(λ2μ2
β + σ 2

β ).

Moreover,

(a) if ρ = 0, then μβ ≡ 1 and σβ is minimal for β = 1;
(b) if ρ < 0, then

AMSE(1) < AMSE(β) (β > 1)

and there exist some β∗ ∈ (1− 1/(2γ ), 1) such that

AMSE(1) > AMSE(β∗);

(c) if ρ →−∞, then μβ = 0 and

eff(β, 1) = AMSE(1)

AMSE(β)
< 1 (β �= 1, β > 1− 1/(2γ )).

Theorem 2 and Corollary 1 can be used to compare different HME for a fixed inter-
mediate sequence k(n). As in Theorem 2 in de Haan and Peng (1998), a comparison
of the mean-squared error at optimal levels k(β)

0 can be based on the following result:

Theorem 3 Assume that (3) holds with ρ < 0 and denote by k(β)
0 an intermediate

sequence minimizing the asymptotic second moment of H (β)
n,k − γ , which is given by

A2(n/k)μ2
β + k−1σ 2

β .
If μβ �= 0, then

√
k(β)

0

(
H (β)

n,k(β)
0

− γ

)
d→ N

(
sign(A)√−2ρ

σβ, σ 2
β

)
. (9)

Moreover

k(β)
0 (n) := k(β)

0 ∼
n

s←
(
n−1 τβ

) ,

where s← is the inverse of s ∈ RV2ρ−1 given by

A(t)2 ∼
∫ ∞

t
s(u)du and τβ := τβ(γ, ρ) = σ 2

β

γ 2μ2
β

= (1− ρ + γ (β − 1))2

1+ 2γ (β − 1)
.
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Corollary 2 Assume that (3) holds with ρ < 0. Then we have

eff0(β, 1) :=
AMSE

(
H (β)

n,k(β)
0

)

AMSE

(
H (1)

n,k(1)
0

) =
(
(1− ρ)−2τβ

) 1
2ρ−1 (1+ γ (β − 1))2

1+ 2γ (β − 1)
. (10)

Moreover, for any (γ, ρ) ∈ (0,∞) × (−∞, 0), there exists a β∗ ∈ (1 − 1/(2γ ), 1)

such that

eff0(β
∗, 1) < 1.

Figure 1a illustrates the efficiency of H (β)

n,k(β)
0

with respect to H (1)

n,k(1)
0

for the Pareto

distribution, as a function of γ . In particular, it shows a different behaviour for β < 1
and β > 1. Figure 1b shows the optimal value of β as a function of γ for different
values of ρ, i.e. βopt(γ, ρ) = arg minβ eff0(β, 1). The corresponding efficiency curves
can be found in Fig. 1c. Note that the efficiency gain does not exceed 5 %.

In the special case, where A(t) = Ctρ , the following explicit formula for the AMSE
can be obtained.

Corollary 3 Assume A(t) = Ctρ , then k(β)
0 from Theorem 3 is given by

k(β)
0 := k(β)

0 (n) =
[(
−1

2
ρ−1C−2γ 2τβ

)1/(1−2ρ)

n−2ρ/(1−2ρ)

]
,

where [x] means the integer part of x. Moreover, (9) holds with sign(A) = sign(C).
Therefore,

AMSE

(
H (β)

n,k(β)
0

)
= σ 2

β

(
1− 1

2
ρ−1

)
·
(
−2ρ C2γ−2τ−1

β

)1/(1−2ρ)

n2ρ/(1−2ρ).

Example 1 For the Fréchet distribution, we have A(t) = 1
2γ t−1. This leads to

AMSE

(
H (β)

n,k(β)
0

)
= 3

2
σ 2

β

[
2−1τ−1

β (γ,−1)
]1/3

n−2/3.

Example 2 For Y = |X | with X standard Cauchy distributed, we have

1− FY (x) = 2

π
x−1 − 2

3π
x−3 + o(x−3) (x →∞).

Therefore, A(t) = (π2/6)t−2 and

AMSE

(
H (β)

n,k(β)
0

)
= 5

4
σ 2

β

[
(π/3)2τ−1

β (1,−2)
]1/5

n−4/5.
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Fig. 1 a Asymptotic efficiency eff(β, 1) for β = 0.8, 0.9, 1.2, 1.5, 2, b βopt as a function of γ for different
ρ-levels, c eff0(βopt, 1) as a function of γ for different ρ-levels. d Simulated eff(β, 1) for the Fréchet

distribution with γ = 0.5 as a function of B(β)
n,k with n = 200 and k = 50, 75, 100, 125. The results are

based on 1000 samples

Example 3 For the Burr(η, τ, λ)-distribution (type XII) defined as
F(x) = 1 − (η/(η + xτ ))λ (x > 0) with η, τ, λ > 0, we obtain γ = (λτ)−1 and

A(t) = (λτ)−1t−1/λ. This leads to

AMSE

(
H (β)

n,k(β)
0

)
= σ 2

β

(
1+ 1

2
λ

)(
2λ−1τ−1

β ((λτ)−1,−λ−1)
)λ/(λ+2)

n−2/(2+λ).

Remark 3 (Comments on scale and quantile estimation) The estimation of the tail
index using the generalized Pareto Distribution (GPD) is motivated by

lim
u→xF

sup
0<x<xF−u

|Fu(x)− Gγ,σ (u)(x)| = 0,
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202 J. Beran et al.

where xF is the right endpoint of the distribution, Fu(x) = P(X − u ≤ x | X > u),
and Gγ,σ (x) = 1 − (

1+ γ xσ−1
)−1/γ

is the GPD (see Balkema and de Haan 1974;
Pickands 1975). Here, γ and σ can be interpreted as shape and scale parameters,
respectively. It turns out however that, for the purpose of estimating high quantiles,
there is no need for estimating σ separately. The reason is that the general first-order
condition for the tail quantile function U implies that

U (t x) ≈ U (t)+ a(t)
xγ − 1

γ
.

High quantiles U (1/p) = F←(1− p) may therefore be estimated by

Û (1/p) = Û (n/k)+ â(n/k)
(k/np)γ̂ − 1

γ̂

where k is an intermediate sequence, p = pn = o(1), and â(n/k) is a scale estimate.
For γ > 0, a(t) = γU (t) is a valid choice for the auxiliary function. A consistent scale
estimator is then obtained for instance by â(n/k) = γ̂ Û (n/k) (cf. Ferreira and de
Vries 2004). Given an asymptotically normal estimator γ̂ of the tail index, this directly
leads to consistent estimation of high quantiles x pn := U (1/pn) (where npn = o(k)),
without the need for a separate scale estimator. For instance, we may set

x̂ pn := Xn−k,n

(
k

npn

)γ̂

(Weissman 1978). Under the assumptions of Theorem 2 (ρ < 0), npn = o(k),
log(npn) = o(

√
k), and

√
k
(
γ̂ − γ

) d→ ζ,

where ζ is a Gaussian random variable whose variance does not depend on ρ, the
(high) quantile estimator x̂ pn is asymptotically normal in the sense that

√
k

log(dn)

(
x̂ pn

x pn

− 1

)
d→ ζ

(see Theorem 4.3.8 and Corollary 4.3.9 in Ferreira and de Vries 2004). The only
requirement on the tail index estimator γ̂ is that, under the second-order condition,
the limit ζ is normal with a variance that does not depend on ρ. This is true for Hill’s
estimator as well as for the HME discussed here. In particular, defining x̂ pn by

x̂ (β)
pn
:= Xn−k,n

(
k

npn

)H (β)
n,k
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Harmonic moment tail index estimator 203

we obtain

√
k

log(dn)

(
x̂ (β)

pn

x pn

− 1

)
d→ N (λμβ, σ 2

β ).

Similarly, estimates of tail probabilities (return levels) can be obtained applying
Theorem 4.4.7 in Ferreira and de Vries (2004).

Remark 4 The (high) quantile estimator x̂ pn includes γ̂ in the exponent of (kn−1 p−1
n ).

This means that even a small bias in γ̂ may cause large errors (see also Beirlant et al.
2004). Thus, in most applications high quantile estimates based on a robust method
such as the HME with β > 1 are likely to perform better than nonrobust estimates,
because usually the Pareto tail is reached only asymptotically. The same comments
apply to return levels of extreme events.

Remark 5 Although many tail index estimators exist in the literature, we focus on
a comparison with Hill’s method. There are several reasons for doing so. First of
all, Hill’s estimator is usually considered a benchmark, because it has the smallest
asymptotic variance. The second reason is that the asymptotic normality of the HME
was established under the same second-order conditions as for the Hill estimator. Due
to having the same normalizing function A and the same second-order parameter, the
relative asymptotic efficiency (defined by the ratio of asymptotic mean-squared errors)
can easily be derived. As pointed out by de Haan and Ferreira (2004, p. 116–118),
a completely general comparison of tail index estimators is difficult due to differing
second-order conditions. The essential reason is that the asymptotic bias depends on
the auxiliary function and is therefore not directly comparable. Moreover, even for
estimators whose asymptotic normality has been established under the same second-
order condition, it does not seem to be possible to find a uniformly best tail index
estimator (see e.g. de Haan and Peng 1998).

Remark 6 (Comments on confidence intervals) Confidence intervals based on Theo-
rems 2 and 3 can be obtained in an analogous manner as for Hill’s estimator (see e.g.
Ferreira and de Vries 2004; Cheng and Peng 2001; Lu and Peng 2002; Qi 2008; Worms
and Worms 2011, and references therein). Essentially, two different approaches can
be distinguished: (a) the sequence k = k(n) is such that the asymptotic mean-squared
error is minimized or (b) k(n) is such that the variance dominates the mean-squared
error asymptotically. In case (a), a bias correction is needed so that the second-order
parameter ρ as well as the function A (or equivalently the parameter λ) has to be
estimated. In case (b), no asymptotic bias occurs and the usual bootstrap techniques
can be adopted.

4 Robustness of the harmonic moment tail index estimator

After considering the efficiency of H (β)
n,k in the previous section, we investigate its

robustness properties. The definition of an influence function (Hampel 1968; Hampel
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Fig. 2 Simulated mean of H (β)
n,k (x) (on log-scale) for different values of β and sample size n = 1000.

The results are based on 1000 samples from a Pareto distribution with γ = 0.5. The number of order
statistics included in the estimation was k = 20 (a) and k = 100 (b, c)

et al. 1986) in the context of consistent tail index estimation poses considerable diffi-
culties due to the asymptotically vanishing portion k/n of data used in the functional.
We therefore consider instead

H (β)
n,k (x) := H (β)

n,k (X1, . . . , Xn−1, x)− H (β)
n−1,k−1(X1, . . . , Xn−1)

and

B(β)
n,k := lim

x→∞H (β)
n,k (x).
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Hence, for fixed n and k, B(β)
n,k measures the worst effect of one arbitrarily large

contamination on the HME. The asymptotic value of B(β)
n,k is given by

B(β)
n,k

P→
⎧
⎨

⎩

(1− β)−1 − γ, for 1− γ−1 < β < 1,

∞, for β = 1,

0, for β > 1.

provided that n, k →∞, but k/n→ 0 (see Appendix).
Figure 2 displays H (β)

n,k (x), for n = 1000 and k = 20, 100 using the Pareto

distribution with γ = 0.5. The outlier x ranges from 5 to 10100 times the expected
maximum of a sample. Figure 2a illustrates the lack of robustness of the Hill estimator
(see B(1)

n,k). In contrast, B(β)
n,k (β �= 1) is bounded asymptotically.

Figure 3a shows (for ρ = −0.25,−0.5,−0.75,−1,−2,−4) values of β = β(γ ) as
a function of γ where eff(β, 1) = 0.9. Figure 3b is the same but with eff(β, 1) = 0.8.
Note that for β above the corresponding curve the efficiency loss is higher. Figure 1d
illustrates the trade-off between efficiency and robustness in the class of HME.

Remark 7 In summary, under the ideal assumption of an exact Pareto distribution,
Hill’s estimator is more efficient than H (β)

n,k for all β > 1, but the efficiency of H (β)
n,k

increases as β approaches 1 from above. On the other hand, for Hill’s estimator B(1)
n,k

diverges to infinity, whereas B(β)
n,k converges to zero for β > 1, thus indicating much

smaller sensitivity to contamination. In practice, one may use for instance a range of
β ∈ [1.2, 1.5], since the efficiency loss remains acceptable (less than 20 %) at least for
small values of γ , while maintaining a relatively high degree of robustness. It should
be noted however that the efficiency loss depends on the unknown parameter γ (see
Fig. 1). A possible pragmatic approach may therefore be as follows. Given a desired
efficiency value e0 solve AEFF(γ, β) = e0 to obtain β = β(γ ) as a function of γ .
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Fig. 3 a (for ρ = −0.25,−0.5,−0.75,−1,−2,−4) values of β = β(γ ) as a function of γ where
eff(β, 1) = 0.9. b same as in a, but with eff(β, 1) = 0.8
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Fig. 4 a Densities of Fpar(x; 0.5), Fpar(x; 1) and Fpar(x; 0.5, 1, 0.1); b and c averaged Hill-plot and MSE
based on samples from Fpar(x; 0.5) with sample size n = 200; d and e averaged Hill-plot and MSE based
on samples from Fpar(x; 0.5) with sample size n = 200 contaminated by samples from Fpar(x; 1) with
sample size ñ = 20. The results in b, c, d and e are based on 1000 samples
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Fig. 5 One sample from a Pareto distribution (γ = 0.5) with sample size n = 200 (left) and the same
sample contaminated by 20 observations from Pareto with γ = 2 (right). Histograms are shown in a and
b, Hill-plots in c and d

Compute an initial consistent estimate γ̂0. Then choose β̂ := β(γ̂0) and calculate the

corresponding estimate γ̂ = H (β̂)
k,n . Note that, as illustrated in Fig. 3, the second-order

parameter ρ does not have much influence on the value of β(γ ).

Remark 8 It may be useful to point out that robustness and modelling of extreme
values are not necessarily contradictory concepts. Though it may be difficult to identify
outliers formally when estimating the tail index, it can generally be recommended in
practice to use several different robust and nonrobust estimators. In case of a strong
discrepancy between the computed values, one may suspect the presence of outliers
with respect to a Pareto tail.

5 Simulation study

We consider the following mixture of Pareto distributions,

Fpar(x; γ1, γ2, ε) = (1− ε)Fpar(x; γ1)+ εFpar(x; γ2)

= 1− (1− ε)x−1/γ1 − εx−1/γ2 , (11)

where γ2, γ1 > 0, and 0 ≤ ε < 0.5 is the fraction of contamination. Note that
for ε = 0, H (β)

n,k is asymptotically unbiased. Therefore, for ε �= 0, the effect of
contamination becomes immediately apparent. Moreover, if ε > 0 and γ1 > γ2, then
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Fig. 6 Simulated results for Fréchet samples (γ = 1) with sample size n = 200 (left) and Fréchet samples
(γ = 1) where 20 out of ñ = 220 observations were replaced by Fréchet variables with γ = 2 (right); a
and b histograms of the samples; c and d averaged Hill-plots based on N = 1000 simulated samples; e and
f MSE based on N = 1000 simulated samples
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Fpar(x; γ1, γ2, ε) satisfies (3) with γ = γ1 and ρ = (γ2 − γ1)/γ2 < 0. On the other
hand, if γ1 < γ2 (and ε > 0), (11) corresponds to a Pareto distribution contaminated
by a longer tailed distribution.

Figure 4 illustrates the results for ε > 0 and γ1 < γ2. Figure 5 shows that using
H (β)

n,k with β > 1 can lead to a substantial bias reduction, even if the contamination
(of the Pareto distribution) is hardly visible.

Finally, we consider 1000 Fréchet distributed samples with γ = 0.5 and sample size
n = 200. These were contaminated by Fréchet distributed samples with γ = 2 and
sample size ñ = 20. Hence, 10 % of the resulting sample originates from a distribution
with much heavier tails, causing observations far on the right. Nevertheless, it is
unlikely that this kind of contamination is noticed by looking at the histogram (see
Fig. 6a,b). As expected, Hill’s estimator as well as H (β)

n,k with β < 1 turn out to be

more sensitive to this type of contaminations than H (β)
n,k with β > 1 (see Fig. 6d,f).

6 Final remarks

In this paper we considered HME, γ̂ = H (β)
n,k , characterized by a tuning parameter β.

The asymptotic distribution of γ̂ was derived under general conditions. For β > 1,
γ̂ is robust against large outliers. The HME class thus provides a simple approach
to robust tail index estimation, with γ̂ being an explicit function of order statistics.
Moreover, for β < 1 it is possible to obtain a smaller mean-squared error than for
Hill’s estimator (β = 1). Further optimality properties under robustness constraints
and more general classes of estimators including more general transformations are
some of the questions to be considered in future research.

Appendix

Proof of Theorem 1 See supplementary material. ��
Proof of Theorem 2 Two auxiliary lemmas, taken from de Haan and Ferreira (2006),
are required for the proof of asymptotic normality. The following Lemma allows to
bound the deviations in (3) uniformly in x . ��
Lemma 1 (de Haan and Ferreira (2006, p. 48, Theorem 2.3.9)) Suppose the second-
order condition (3) holds, then for any ε, δ > 0, there exists t0 = t0(ε, δ) > 1 such
that for all t , t x > t0,

∣∣∣∣∣

U (t x)
U (t) − xγ

A0(t)
− xγ xρ − 1

ρ

∣∣∣∣∣ ≤ εxγ+ρ max(xδ, x−δ), (12)

with

A0(t) :=
⎧
⎨

⎩

ρ[1− lims→∞ s−γ U (s)/(t−γ U (t))], ρ < 0,

1−
∫ t

0
s−γ U (s)ds/(t1−γ U (t)), ρ = 0.

(13)
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Theorem 5.1.4 in de Haan and Ferreira (2006) provides an expansion of the empir-
ical tail function 1− Fn .

Lemma 2 (de Haan and Ferreira (2006, Theorem 5.1.4)) let X1, X2, . . . be i.i.d. with
distribution F as in (1). Moreover, suppose that the function U satisfies (3) and let
ε > 0, k(n)→∞ such that

√
k A0(n/k) is bounded as n→∞. Then the underlying

sample space can be enlarged to include a sequence of Brownian motions Wn such
that for all x0 > 0,

sup
x≥x0

x (1/2−ε)/γ
∣∣∣
√

k
{n

k
[1− Fn(xU (n/k))]− x−1/γ

}

−Wn(x−1/γ )−√k A0(n/k)x−1/γ xρ/γ − 1

γρ

∣∣∣∣
P→ 0, (14)

as n→∞.

The essential approximation will be

√
k
(

x̂ (β)
H,k − 1/(1+ γ (β − 1))

)
= I + II + III, (15)

where

x̂ (β)
H,k =

1

k

k∑

i=1

(
Xn−k,n

Xn−i+1,n

)β−1

= Xβ−1
n−k,n

1

k

k∑

i=1

1

Xβ−1
n−i+1,n

and

I = √k(1− β)

[(
Xn−k,n

U (n/k)

)β−1 ∫ 1

Xn−k,n/U (n/k)

n

k
(1− Fn(tU (n/k)))

dt

tβ

]
,

II = √k(1− β)

[(
Xn−k,n

U (n/k)

)β−1 ∫ ∞

1

(n

k
(1− Fn(tU (n/k)))− t−1/γ

) dt

tβ

]
,

III = √k
γ (1− β)

1+ γ (β − 1)

((
Xn−k,n

U (n/k)

)β−1

− 1

)
.

To obtain (15), we rewrite x̂ (β)
H,k as an integral with respect to the empirical distrib-

ution function Fn

x̂ (β)
H,k = Xβ−1

n−k,n

∫ ∞

Xn−k,n

n

k

1

sβ−1 dFn(s). (16)

For β �= 1, we obtain by integration by parts

∫ ∞

t
(1− F(s))

ds

sβ
= − 1

1− β
t1−β(1− F(t))+ 1

1− β

∫ ∞

t
s1−βdF(s),
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and therefore

∫ ∞

t
s1−βdF(s) = t1−β(1− F(t))+ (1− β)

∫ ∞

t
(1− F(s))

ds

sβ
.

Thus, setting t = Xn−k,n and F = Fn , yields

x̂ (β)
H,k =

n

k
Xβ−1

n−k,n

[
X1−β

n−k,n

(
1− Fn(Xn−k,n)

)+ (1− β)

∫ ∞

Xn−k,n

(1− Fn(s))
ds

sβ

]

= 1+ (1− β)

(
Xn−k,n

U (n/k)

)β−1 ∫ ∞

Xn−k,n/U (n/k)

n

k
(1− Fn(tU (n/k)))

dt

tβ
,

where in the last step we have substituted s by tU (n/k) inside the integral.
Together with

∫ ∞

1
t−1/γ−βdt = 1

β − 1+ γ−1 =
γ

1+ γ (β − 1)
for β > 1− γ−1,

we obtain (15).
First consider I. The asymptotic approximation in (14) yields

∫ 1

Xn−k,n/U (n/k)

√
k
(n

k
{1− Fn(tU (n/k))} − t−1/γ

) dt

tβ

≤
(

1− Xn−k,n

U (n/k)

)
sup
t∈B

∣∣∣∣
1

tβ
(
Cn(γ, ρ, k)+ op(1)

)∣∣∣∣ ,

where B :=
[

Xn−k,n
U (n/k)

, 1
]

and

Cn(γ, ρ, k) := Wn(t−1/γ )−√k A0(n/k)t−γ−1 tρ/γ − 1

γρ
.

Thus, due to

√
k

((
Xn−k,n

U (n/k)

)−1/γ−β+1

− 1

)
− γ (−1/γ − β + 1) Wn(1)

P→ 0,

we obtain

√
k
∫ 1

Xn−k,n/U (n/k)

t−1/γ−βdt = −√k
1

−γ−1 − β + 1

[(
Xn−k,n

U (n/k)

)−1/γ−β+1

− 1

]

d= −γ Wn(1)+ op(1).
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This yields

(1− β)
√

k
∫ 1

Xn−k,n/U (n/k)

n

k
{1− Fn(tU (n/k))} dt

tβ
+ (1− β)γ Wn(1)

P→ 0.

Moreover, since Xn−k,n
U (n/k)

P→ 1, we can use Slutsky’s theorem to show that

(1− β)
√

k

(
Xn−k,n

U (n/k)

)β−1 ∫ 1

Xn−k,n/U (n/k)

n

k
(1− Fn(tU (n/k)))

dt

tβ

+(1− β)γ Wn(1)
P→ 0.

Next, consider II. Uniform convergence in (14) allows to write

II
d= (1− β)

((
Xn−k,n

U (n/k)

)β−1 ∫ ∞

1
Wn(t

−1/γ )
dt

tβ

+√k A0(n/k)

∫ ∞

1
t−1/γ tγ /ρ − 1

ργ

dt

tβ
+ op(1)

)

d= (1− β)

∫ ∞

1
Wn(t−1/γ )

dt

tβ
+ (1− β)

√
k A0(n/k)

∫ ∞

1
t−1/γ tγ /ρ − 1

ργ

dt

tβ
,

where in the last step we again make use of Slutsky’s theorem. Note,

∫ ∞

1
Wn(t−1/γ )

dt

tβ
= γ

∫ 1

0
Wn(s)s−γ−1+γβds

and

∫ ∞

1
t−1/γ tγ /ρ−1

ργ

dt

tβ
= 1

(1− ρ + γ (β − 1))(1+ γ (β − 1))
,

where we implicitly assume that β > 1 − 1/γ . Under the additional assumption
limn→∞

√
k A0(n/k) = λ, we end up with

II
d= (1− β)γ

∫ 1

0
Wn(s)s

−γ−1+γβds + λ(1− β)

(1− ρ + γ (β − 1))(1+ γ (β − 1))
.

Considering the remaining term, we obtain by the delta method

III = γ (1− β)

1+ γ (β − 1)

√
k

((
Xn−k,n

U (n/k)

)β−1

− 1

)
= γ 2(1− β)2

γ (1− β)− 1
Wn(1).
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Altogether, we get

√
k
(

x̂ (β)
H,k − 1/(1+ γ (β − 1))

)

d→−γ (1− β)Wn(1)+ γ (1− β)

∫ 1

0
Wn(s)s−γ−1+γβds

+ λ(1− β)

(1− ρ + γ (β − 1))(1+ γ (β − 1))
+ γ 2(1− β)2

γ (1− β)− 1
Wn(1)

= γ (1− β)

γ (1− β)− 1
Wn(1)+ (1− β)γ

∫ 1

0
Wn(s)s−γ−1+γβds

+ λ(1− β)

(1− ρ + γ (β − 1))(1+ γ (β − 1))
.

Now, since γ (1− β)/(γ (1− β)− 1)Wn(1)+ (1− β)γ
∫ 1

0 Wn(s)s−γ−1+γβds is a
linear combination of Gaussian random variables, we obtain the desired central limit
theorem after computing its variance.

E

{[
(γ (1− β)− 1)−1W (1)+

∫ 1

0
W (s)s−γ−1+γβds

]2
}

= (γ (1−β)−1)−2 E[W 2(1)] + 2(γ (1− β)− 1)−1
∫ 1

0
E[W (1)W (s)]s−γ−1+γβds

+
∫ 1

0

∫ 1

0
E[W (t)W (s)]t−γ−1+γβdt s−γ−1+γβds

=: S1 + S2 + S3.

Obviously, S1 = (γ (1− β)− 1)−2. Moreover, due to E[W (s)W (t)] = min(s, t),
we obtain

S2 = 2(γ (1− β)− 1)−1
∫ 1

0
s−γ+γβds = −2(γ (1− β)− 1)−2.

Furthermore, we have

S3 = 2
∫ 1

0

∫ s

0
tγ+γβdt sγ−1+γβds = 2(γ (1− β)− 1)−1(2γ (1− β)− 1)−1,

provided β > 1− (2γ )−1. Note that for β ≤ 1− (2γ )−1 S3 is not defined.
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Finally, we obtain

Var

(
γ (1− β)

γ (1− β)− 1
Wn(1)+ (1− β)γ

∫ 1

0
Wn(s)s−γ−1+γβds

)

= γ 2(1− β)2
[
(γ (1− β)− 1)−2 − 2(γ (1− β)− 1)−2

+2(γ (1− β)− 1)−1(2γ (1− β)− 1)−1
]

=
1
γ
(1− β)2

(
1− γ−1 − β

)2 (
2− 2β − γ−1

) .

Now, we are ready to state the central limit theorem for x̂ (β)
H,k . Suppose k is inter-

mediate, β > 1− 1/(2γ ) and limn→∞
√

k A0(n/k) = λ. Then

√
k
(

x̂ (β)
H,k − 1/(1+ γ (β − 1))

)
d→ N

(
λμ̃β, σ̃ 2

β

)
, (17)

where

μ̃β(γ, ρ) := μ̃β = (1− β)/
[
(1− ρ + γ (β − 1))(1+ γ (β − 1))

]

and

σ̃ 2
β (γ ) := σ̃ 2

β =
γ 2(1− β)2

(1+ γ (β − 1))2(1+ 2γ (β − 1))
.

We can construct an estimator for γ using the map g(θ) = 1
β−1

( 1
θ
− 1

)
, since

g(1/(1+ γ (β − 1))) = γ . Applying the delta method yields

√
k

(
1

β − 1

(
1

x̂ (β)
H,k

− 1

)
− γ

)
d→ N

(
λ(1+ γ (β − 1))

1− ρ + γ (β − 1)
,
γ 2(1+ γ (β − 1))2

1+ 2γ (β − 1)

)
.

��
Proof of Corollary 1 The proof of (a) and (c) is straightforward. The assertion (b)
follows from

d

dβ
AMSE(1) > 0 for ρ < 0. (18)

��
Proof of Theorem 3 The idea of the proof is based on de Haan and Ferreira (2006, p.
79). Setting t = n/k we minimize the approximation of AMSE(H (β)

n,k ), i.e.

arg min
t>0

(
n−1tσ 2

β + A2(t)μ2
β

)
. (19)
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Since A(t) is a regularly varying function with index ρ, there exists a positive decreas-
ing function s ∈ RV2ρ−1 such that as t →∞,

A2(t) ∼
∫ ∞

t
s(u)du.

Thus, for any c > 1 and sufficiently large t we have

n−1tσ 2
β + c−1μ2

β

∫ ∞

t
s(u)du < n−1tσ 2

β + A2(t)μ2
β < n−1tσ 2

β + cμ2
β

∫ ∞

t
s(u)du.

(20)

The minimum of the right hand side is given by

σ 2
β

cnμ2
β

= s(t) ⇐⇒ t = s←
(

σ 2
β

cnμ2
β

)
= s←(n−1c−1γ 2τβ).

Similarly, we obtain for the left hand side t = s←(n−1cγ 2τβ). Therefore, the

infimum in (19) is attained at t (β)
0 := s←(n−1γ 2τβ). Replacing t by n/k yields

k(β)
0 ∼

n

s←(n−1γ 2τβ)
.

Note that the optimal sequence of order statistics depends on β. Now, considering
the asymptotic distribution of H (β)

n,k(β)
0

, we can write

√
k(β)

0

(
H (β)

n,k(β)
0

− γ

)
d≈ σβ Z +

√
k(β)

0 A
(

n/k(β)
0

)
μβ, (21)

where Z is normal distributed. To obtain an expression of AMSE(H (β)
n,k0

), we have to

evaluate
√

k(β)
0 A

(
n/k(β)

0

)
for large n. Therefore, note that

k(β)
0 A2

(
n/k(β)

0

)
∼ n

t (β)
0

·
∫ ∞

t (β)
0

s(u)du.

Now,

vs←(v)+
∫ ∞

s←(v)

s(u)du =
∫ v

0
s←(u)du
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leads to

k(β)
0 A2

(
n/k(β)

0

)
∼ n

s←(n−1γ 2τβ)

[∫ γ 2τβ/n

0
s←(u)du − γ 2τβ

n
s←(γ 2τβ/n)

]

= γ 2τβ

⎛

⎜⎜⎜⎝

∫ γ 2τβ/n
0 s←(u)du

n−1γ 2τβ s←(n−1γ 2τβ)
︸ ︷︷ ︸

=:D

−1

⎞

⎟⎟⎟⎠ .

We need the following result in order to proceed.

Proposition 1 (Karamata’s theorem) Suppose f ∈ RVα . If α < −1, then

lim
t→∞

t f (t)∫∞
t f (s)ds

= −α − 1. (22)

Since (1/s)← ∈ RV1/(1−2ρ) and s←(1/x) = (1/s)←(x), we obtain

lim
x→∞

∫ 1/x
0 s←(u)du

x−1s←
(
x−1

) = lim
x→∞

∫∞
x (1/s)← (u) du

u2

x−1 (1/s)← (x)
= 1− 2ρ

−2ρ
.

Note, x−2 (1/s)← (x) ∈ RV1/(1−2ρ)−2. Hence, for n→∞, n−1γ 2τβ → 0 and

lim
n→∞ D = 1− 2ρ

−2ρ
.

Altogether, we obtain for ρ < 0,

lim
n→∞ k(β)

0 A2
(

n/k(β)
0

)
= γ 2τβ

(
1− 2ρ

−2ρ
− 1

)
= γ 2τβ

−2ρ

and therefore
√

k(β)
0

(
H (β)

n,k(β)
0

− γ

)
d→ N

(
sign(A)√−2ρ

σβ, σ 2
β

)
.

For Hill’s estimator there exist a corresponding result (de Haan and Ferreira 2006)

√
k(1)

0

(
H

n,k(1)
0
− γ

)
d→ N

(
sign(A)γ√−2ρ

, γ 2
)

.

Inserting k(β)
0 into the approximation of AMSE(H (β)

n,k(β)
0

) yields

AMSE

(
H (β)

n,k(β)
0

)
= 1

k(β)
0

σ 2
β

(
1− 1

2ρ

)
= s←

(
n−1γ 2τβ

)

n
σ 2

β

(
1− 1

2ρ

)
.
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Hence, without explicit knowledge of the function s it is not possible to minimize
AMSE(H (β)

n,k(β)
0

) with respect to β. However, we can use the regular variation of s to

compare the AMSE(H (β)

n,k(β)
0

) for two different values of β. This was already done in

de Haan and Peng (1998) for different tail index estimators including Hill’s method.
��

Proof of Corollary 2 Considering the ratio of AMSE(H (β)

n,k(β)
0

) and AMSE(H (1)

n,k(1)
0

)

yields

eff0(β, 1) = s←
(
n−1γ 2τβ

)

s←
(
n−1γ 2τ1

) (1+ γ (β − 1))2

1+ 2γ (β − 1)
.

Since s← ∈ RV1/(2ρ−1), we have

lim
n→∞

s←
(
n−1γ 2τβ

)

s←
(
n−1γ 2τ1

) =
(
(1− ρ)−2τβ

)1/(2ρ−1)

.

Therefore, we obtain

eff0(β, 1) =
(
(1− ρ)−2γ 2τβ

)1/(2ρ−1) (1+ γ (β − 1))2

1+ 2γ (β − 1)
.

Moreover, we have

∂

∂β
e f f0(β, 1)

∣∣∣∣
β=1

∂

∂β
eff0(β, 1)

∣∣∣∣
β=1
= 1

2ρ − 1

2γρ

(1− ρ)
> 0,

since ρ < 0. Thus, for any distribution with regularly varying tail there exists some
β < 1 such that H (β)

n,k(β)
0

outperforms H (1)

n,k(1)
0

. ��

Proof of Corollary 3 Using the results from Corollary 2, the proof is straightforward.
��

Proof of B(β)
n,k . To derive the limits of B(β)

n,k , we will use

x̂ (β)
H,k =

1

k

k∑

i=1

(
Xn−k,n

Xn−i+1,n

)β−1
P→ 1

γ (β − 1)+ 1
.

Simple calculations yield

H (β)
n,k (x) = 1

β − 1

1

(b + a)

(
1− a

(k − 1)−1b

)
,
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where

a := a(x) =
(

Xn−k,n

x

)β−1

and b :=
k∑

i=2

(
Xn−k,n

Xn−i+1,n

)β−1

.

For β > 1, we have limx→∞ a(x) = 0.
Moreover,

b

k − 1
= 1

k − 1

k−1∑

i=1

(
Xn−k,n−1

Xn−i+1,n−1

)β−1
P→ 1

γ (β − 1)+ 1
.

Thus,

B(β)
n,k =

1

β − 1

1

b
= 1

β − 1

1

k − 1

k − 1

b
P→ 0.

For β = 1, we have

H (1)
n,k (x) = 1

k

k∑

i=2

log(Xn−i+1,n)+ 1

k
log(x)−

(
1

k − 1

k∑

i=2

log(Xn−i+1,n)

)

= 1

k

(
log(x)− 1

k − 1

k∑

i=2

log(Xn−i+1,n)

)
x→∞→ ∞ = B(1)

n,k .

For 1− (2γ )−1 < β < 1, we have a(x)→∞ as x →∞ and

B(β)
n,k =

1

1− β

(
1

k − 1

k∑

i=2

(
Xn−k,n

Xn−i+1,n

)β−1
)−1

P→ γ (β − 1)+ 1

1− β
= 1

1− β
− γ.
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