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ABSTRACT

The meter-per-second precision achieved by today’s velocimeters enables us to search for 1−10 M⊕ planets in the habitable zone
of cool stars. This paper reports on the detection of three planets orbiting GJ 163 (HIP 19394), a M3 dwarf monitored by our
ESO/HARPS search for planets. We made use of the HARPS spectrograph to collect 150 radial velocities of GJ 163 over a period of
eight years.
We searched the radial-velocity time series for coherent signals and found five distinct periodic variabilities. We investigated the
stellar activity and called into question the planetary interpretation for two signals. Before more data can be acquired we concluded
that at least three planets are orbiting GJ 163. They have orbital periods of Pb = 8.632 ± 0.002, Pc = 25.63 ± 0.03, and Pd = 604 ± 8
days and minimum masses m sin i = 10.6 ± 0.6, 6.8 ± 0.9, and 29 ± 3 M⊕, respectively. We hold our interpretations for the two
additional signals with periods P(e) = 19.4 and P( f ) = 108 days.
The inner pair presents an orbital period ratio of 2.97, but a dynamical analysis of the system shows that it lays outside the 3:1 mean
motion resonance. The planet GJ 163c, in particular, is a super-Earth with an equilibrium temperature of Teq = (302± 10)(1− A)1/4 K
and may lie in the so-called habitable zone for albedo values (A = 0.34−0.89) moderately higher than that of Earth (A⊕ = 0.2−0.3).

Key words. techniques: radial velocities – stars: late-type – planetary systems – stars: individual: GJ 163

1. Introduction

In the past 15 years or so, we have witnessed impressive progress
in radial-velocity measurements. One spectrograph in particular,
the High Accuracy Radial velocity Planet Searcher (HARPS;
Mayor et al. 2003), broke the former 3 m/s precision barrier
and enabled the detection of exoplanets in a yet unknown mass-
period domain.

⋆ Based on observations made with the HARPS instrument on the
ESO 3.6 m telescope under the program IDs 072.C-0488, 082.C-0718,
and 183.C-0437 at Cerro La Silla (Chile).
⋆⋆ Table 6 is available in electronic form at http://www.aanda.org
⋆⋆⋆ Radial-velocity time series (Table 6) are also available at the
CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/556/A110

Notably, planets with masses below 10 M⊕ and equilib-
rium temperatures possibly between ∼175–270 K (for plausible
albedos) have started to be detected. That subset of detec-
tions includes GJ 581d (Udry et al. 2007; Mayor et al. 2009),
HD 85512b (Pepe et al. 2011), and GJ 667Cc (Bonfils et al. 2013;
Delfosse et al. 2012) which lie in the so-called habitable zone
(HZ) of their host star. Depending on the nature of their atmo-
spheres, liquid water may flow on their surface and, because liq-
uid water is thought to be a prerequisite for the emergence of
life as we know it, these planets constitute a prized sample for
further characterization of their atmosphere and the search for
possible biosignatures.

The present paper reports on the detection of at least three
planets orbiting the nearby M dwarf GJ 163. One of them,
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GJ 163c, might be of particular interest in terms of habitability.
Our report is structured as follows. Section 2 profiles the host
star GJ 163. Section 3 briefly describes the collection of radial-
velocity data. Section 4 presents our orbital analysis based on
both Markov chain Monte Carlo (MCMC) and periodogram al-
gorithms. Then, we investigate more closely which signal could
result from stellar activity rather than from planets (Sect. 5) and
retain a solution with three planets. We next investigate the role
of planet-planet interactions in the system (Sect. 6) and in partic-
ular whether planets b and c participate in a resonance. Section 7
discusses GJ 163c in term of habitability before we present our
conclusions in Sect. 8.

2. The properties of GJ 163

The star GJ 163 (HIP 19394, LHS 188) is an M3.5 dwarf
(Hawley et al. 1996), at a distance of 15.0 ± 0.4 pc (π =
66.69 ± 1.82 mas; van Leeuwen 2007), and is seen in the Do-
radus constellation (α = 04h09m16s, δ = −53◦22′23′′).

Its photometry (V = 11.811 ± 0.012; K = 7.135 ± 0.021;
Koen et al. 2010; Cutri et al. 2003) and parallax imply abso-
lute magnitudes of MV = 10.93 ± 0.14 and MK = 6.26 ± 0.14.
The J − K color of GJ 163’s (=0.813; Cutri et al. 2003) and
the Leggett et al. (2001) color-bolometric relation result in a
K-band bolometric correction of BCK = 2.59 ± 0.07, and in a
L⋆ = 0.022 ± 0.002 L⊙ luminosity, in good agreement with the
Casagrande et al. (2008) direct determination (Mbol = 8.956;
L⋆ = 0.021). The K-band mass-luminosity relation of Delfosse
et al. (2000) gives a 0.40 M⊙ mass with a ∼10% uncertainty.

Its UVW galactic velocities place GJ 163 between the old
disk and halo populations (Leggett 1992). We refined GJ 163’s
UVW velocities using both the systemic velocity we mea-
sured from HARPS spectra (Table 2) and proper motion from
Hipparcos (van Leeuwen 2007). We obtained U = 69.7,
V = −76.0, and W = 1.2 km s−1, which confirmed a member-
ship in an old dynamical population.

Stellar metallicity is known to be statistically related to dy-
namical populations. For the halo population, the metallic-
ity peaks at [Fe/H] ∼ −1.5 (Ryan & Norris 1991) whereas
that of the old disk peaks at [Fe/H] ∼ −0.7 (Gilmore et al.
1995). The widths of these distributions are wide, however,
and both populations have a small fraction of stars with so-
lar metallicity. Casagrande et al. (2008) attributes a metallicity
close to that of the median of the solar neighborhood to GJ 163
([Fe/H] = −0.08). And the Schlaufman & Laughlin (2010) pho-
tometric relation (or its slight update by Neves et al. 2012) finds
a quasi-solar metallicity of [Fe/H] = −0.01. It is therefore dif-
ficult to conclude whether GJ 163 belongs to the metal-rich tail
of an old population or if it is a younger star accelerated to the
typical galactic velocity of an old population.

The star GJ 163 is not detected in the ROSAT All-Sky Sur-
vey. We thus used the survey sensitivity limit (2.4×1025d2

pc erg/s;

Schmitt et al. 1995) to estimate log LX < 5.39 × 1027 erg/s
that, given GJ 163’s bolometric luminosity, translates to RX =

log LX/LBOL < −4.17. For an M dwarf of ∼0.4 M⊙, the RX ver-
sus rotation period of Kiraga & Stepien (2007) gives Prot > 40
days for this level of X flux. To obtain a better estimate of the
rotation period we compared Ca H & K chromospheric emis-
sion lines of GJ 163 with those of three other M-dwarf planet
hosts with comparable spectral types and known rotational peri-
ods: GJ 176 (M2V; Prot = 39 d; Forveille et al. 2009), GJ 674
(M2.5V; Prot = 35 d; Bonfils et al. 2007), and GJ 581 (M3V;
Prot = 94 d; Vogt et al. 2010). In Fig. 1 we show Ca emis-
sion for each star. The star GJ 163 has an activity level close to
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Fig. 1. Emission reversal in the Ca ii H line of GJ 674 (red line; M2.5V;
Prot = 35 d), GJ 176 (green dots; M2V; Prot = 39 d), GJ 163 (black line;
M3.5), and GJ 581 (blue dashes; M3V; Prot = 94 d), ordered from the
most prominent to the least prominent peaks. GJ 163 displays a lower
activity level, which is a strong indication of slow rotation.

Table 1. Observed and inferred stellar parameters for GJ 163.

Spectral Type M3.5
V 11.811 ± 0.012
π [mas] 66.69 ± 1.82
Distance [pc] 15.0 ± 0.4
MV 10.93 ± 0.06
K 7.135 ± 0.021
MK 6.26 ± 0.06
L⋆ [L⊙] 0.022 ± 0.003
dvr/dt [m s−1 yr−1] 0.491 ± 0.013
M⋆ [M⊙] 0.40 ± 0.04
age [Gyr] 1–10

that of GJ 581 which is a very quiet M dwarf; GJ 163 is much
quieter than the 35–40 days rotational period M dwarfs (GJ 176
and GJ 674) and should have a rotational period close to that of
GJ 581.

3. Observations

We observed GJ 163 with HARPS, a fiber-fed spectrograph at
the ESO/3.6 m telescope of La Silla Observatory (Mayor et al.
2003; Pepe et al. 2004). Our settings and computation of radial
velocities (RV) remained the same as for our guaranteed time
observations (GTO) program and we refer the reader to Bonfils
et al. (2013) for a detailed description. We gathered RVs for 154
epochs spread over 2988 days (8.2 years) between UT 30 Octo-
ber 2003 and 04 January 2012. Table ?? (available in electronic
form) lists all RVs in the barycentric reference frame of the solar

A110, page 2 of 14

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201220237&pdf_id=1


X. Bonfils et al.: Low-mass planets around the nearby M dwarf GJ 163

Table 2. Modeled and inferred parameters for GJ 163 system.

Unit Prior Posterior

Systemic velocity, γ [km s−1] Uniform (γmin = −100, γmax = +100) 58.59728 ± 0.00026

Orbital period, Pb [days] Jeffreys (Pmin = 1, Pmax = 104) 8.63182 ± 0.00155
Radial-velocity semi-amplitude, Kb [m/s] Jeffreys (Kmin = 0.1, Kmax = 100) 6.13 ± 0.33
Orbital eccentricity, eb [ ] Uniform (emin = 0, emax = 0.91) 0.073 ± 0.050; <0.101 (1-σ upper limit)
Argument of periastron, ωb [rad] Uniform (ωmin = 0, ωmax = 2π) 1.234 ± 0.953
Mean longitude, λb [rad] 0.111 ± 0.274
Semi-major axis, ab [AU] 0.06070 ± 0.00001
Time of inferior conjunction, Ttr,b [days] 52 936.1209 ± 0.4038
Planetary minimum mass, mb sin i [M⊕] 10.6 ± 0.6

Orbital period, Pc [days] Jeffreys (Pmin = 1, Pmax = 104) 25.63058 ± 0.02550
Radial-velocity semi-amplitude, Kc [m/s] Jeffreys (Kmin = 0.1, Kmax = 100) 2.75 ± 0.35
Orbital eccentricity, ec [ ] Uniform (emin = 0, emax = 0.91) 0.099 ± 0.086; <0.144 (1-σ upper limit)
Argument of periastron, ωc [rad] Uniform (ωmin = 0, ωmax = 2π) 3.962 ± 1.394
Mean longitude, λc [rad] 0.428 ± 0.524
Semi-major axis, ac [AU] 0.1254 ± 0.0001
Time of inferior conjunction, Ttr,c [day] 52 922.2303 ± 2.2951
Planetary minimum mass, mc sin i [M⊕] 6.8 ± 0.9

Orbital period, Pd [days] Jeffreys (Pmin = 1, Pmax = 104) 603.95116 ± 7.55862
Radial-velocity semi-amplitude, Kd [m/s] Jeffreys (Kmin = 0.1,Kmax = 100) 4.42 ± 0.51
Orbital eccentricity, ed [ ] Uniform (emin = 0, emax = 0.91) 0.373 ± 0.077
Argument of periastron, ωd [rad] Uniform (ωmin = 0, ωmax = 2π) 2.064 ± 0.357
Mean longitude, λd [rad] 2.530 ± 0.301
Semi-major axis, ad [AU] 1.0304 ± 0.0086
Time of inferior conjunction, Ttr,d [days] 52 876.6622 ± 35.8448
Planetary minimum mass, md sin i [M⊕] 29.4 ± 2.9

Notes. Tepoch = 52 942.80392 days. An additional 10% uncertainty should be added quadratically to the planetary mass uncertainties when
accounting for the 10% uncertainty on the stellar mass.
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Fig. 2. RV time series of GJ 163.

system. Four measurements have significantly higher uncertain-
ties: the RVs taken at epochs BJD = 2 454 804.7, 2 455 056.9,
2 455 057.9, and, 2 455 136.8 have uncertainties greater than
twice the median uncertainty. We removed them and perform
our analysis with the remaining 150 RVs.

The proper motion of GJ 163 (µ = 1.194 ± 0.002 arcsec/yr)
implies a secular change in the orientation of its velocity vector.
This results in an apparent radial acceleration dv/dt = 0.491 ±
0.013 m s−1 yr−1 (e.g., Kürster et al. 2003), that we subtracted
from the RVs listed in Table ?? prior to our analysis. The RV
time series is shown in Fig. 2.

4. Radial-velocity analysis

The RV variability of GJ163 (σe = 6.31 m/s) is unexplained
by photon noise and instrumental errors combined, which are
expected to account only for a σi ∼ 2.8 m/s dispersion (see
Sect. 3 in Bonfils et al. 2013). We therefore analyzed the time
series and found that this excess of variability results from up
to five different superimposed signals. We describe our analysis
below, made in a Bayesian framework using a MCMC algorithm
(Sect. 4.1). We also report that similar results are obtained with
a classical periodogram analysis (Sect. 4.2).

4.1. MCMC modeling

We used a MCMC algorithm (Gregory 2005, 2007; Ford 2005),
which starts with random values for all free parameters of a
model, to sample the joint probability distribution of the model
parameters. Then this initial solution evolves at the manner of a
random walk: each iteration attempts to change the solution ran-
domly, subsequent iterations are accepted following a pseudo-
random process, and all accepted solutions form the so-called
chain of solutions.

More precisely, for each iteration we generated a new solu-
tion and computed its posterior probability. The posterior proba-
bility is the product of the likelihood (the probability of observ-
ing the data given the parameter values) by the prior probability
of the parameter values. The new solution was accepted with
a probability that is a function of the ratio between its posterior
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probability and the posterior probability of the previous solution,
such that solutions with a higher posteriori probability were ac-
cepted more often. Step-by-step, accepted solutions built a chain
that reached a stationary state after enough iterations. We then
discarded the first 10 000 iterations and kept only the stationary
part of the chain. The distributions of parameter values of all
the remaining chain links then corresponded to the targeted joint
probability distribution for the model parameters.

Our implementation closely follows that of Gregory (2007);
however, we chose to run ten chains in parallel. Each chain
was attributed a parameter β that scaled the likelihood such that
chains with a lower β value presented a higher acceptance prob-
ability. We also paused the MCMC iteration after every ten steps
and proposed the chains to permute their solutions (which was
again accepted pseudo-randomly and according to the posterior
likelihood ratio between solutions). This approach is reminis-
cent of simulated annealing algorithms and permits evasion out-
side of local minima and better exploration of the wide parame-
ter space. Only the chain with β = 1 corresponds to the targeted
probability distribution. Eventually, we discarded all chains but
the one with β = 1. We adopted the median of the posterior distri-
butions for the optimal parameter values, and the 68% centered
interval for their uncertainties.

We fitted the data with different models. We chose a model
without planets where the sole free parameter was the systemic
velocity. We also chose models composed of either one, two,
three, four, five, or six planets in Keplerian orbits. We ran our
MCMC algorithm to build chains of 500 000 links and eventually
removed the first 10 000 iterations.

Table 2 reports optimal parameter values and uncertainties
for the model composed of three planets. The parameter val-
ues are the median of the posterior distributions and the uncer-
tainties are the 68.3% centered intervals (equivalent to 1-σ for
gaussian distributions). Notably, the orbital periods of the three
planets are Pb = 8.631 ± 0.002, Pc = 25.63 ± 0.03, and Pd =

604± 8 days. Assuming a mass M⋆ = 0.4 M⊙ for the primary,
we estimated their minimum masses to m sin i = 10.6 ± 0.6,
6.8 ± 0.9, and 29 ± 3 M⊕, respectively1. When we fitted the
data with a model composed of only one planet we found b, and
when we did with a model composed of two planets we found
both planets b and d. When we tried a more complex model
composed of four or five planets, we recovered the Keplerian
orbits described in the three-planet model, as well as Keplerian
orbits with periods P(e) = 19.4 and P( f ) = 108 days. For the
most complex model with six planets, the parameters never con-
verged to a unique solution. The sixth orbit is found with orbital
periods around 37, 42, 75, 85, and 134 days and, for a few thou-
sand chain links, the 19.4-day period is not part of the solution
but is replaced by one of the orbital periods found for the sixth
planet.

More complex models include more free parameters and thus
always lead to better fits (i.e., to higher likelihood). To choose
whether the improvement in modeling the data justifies the addi-
tional complexity, we computed Bayes ratios between the differ-
ent models. They lead to the posterior probability of one-, two-,
and three-planet models over none-, one-, and two-planet mod-
els to be as high as 1016, 1011, and 107, respectively, whereas
the posterior probabilities for the models with four, five, and six
planets over the models with three, four, and five planets were
only 75, 62, and 5, respectively. We required that more complex

1 An additional ∼10% uncertainties should be added quadratically
to the mass uncertainty when accounting for the ∼10% stellar-mass
uncertainty.

models needed a Bayes ratio >100 to be accepted and thus con-
clud that our data show strong evidence for at least three plane-
tary signals, and perhaps some evidence for more planets.

4.2. Periodogram analysis

We now present an alternative analysis of the radial-velocity
time series based on periodograms. We used floating-mean
Lomb-Scargle periodograms (Lomb 1976; Scargle 1982; Cum-
ming et al. 1999) and implemented the algorithm as described in
Zechmeister et al. (2009). We chose a normalization such that 1
indicates a perfect fit of the data by a sine wave at a given pe-
riod whereas 0 indicates no improvement compared to a fit of
the data by a constant. To evaluate the false-alarm probability of
any peak, we generated faked data sets made of noise only. To
make these virtual time series we used bootstrap randomization,
i.e., we shuffled the original RVs and retained the date. Shuffling
the RVs insures that no coherent signal is present in the virtual
time series and keeping the dates conserves the sampling. For
each trial we computed a periodogram and measured the power
of the highest peak. With 10 000 trials we obtained a distribution
of power maxima, which we used as a statistical description for
the highest power one can expect if the periodogram was com-
puted on data made of noise only. We searched for the power
values that encompassed 68.3%, 95.4%, and 99.7% of the distri-
bution of power maxima (equivalent to 1-, 2-, and 3-σ). A peak
found with a power higher than those values (in a periodogram of
the original time series) was attributed a false-alarm probability
(FAP) lower than 31.7, 4.6, or 0.3%.

We started with a periodogram of the raw RVs. It shows
sharp peaks around periods P = 8.6 and 1.13 days (Fig. 3, top
panel). They have powers p = 0.50 and 0.41, respectively, much
above the power p = 0.21 of a 0.3% FAP. We noted that they
were both aliases of each other with our typical one-day sam-
pling and thus tried both periods as starting values for a Keple-
rian fit. To perform the fit, we used a non-linear minimization
with the Levenberg-Marquardt algorithm (Press et al. 1992). We
converged on local solutions with reduced χ2 (respectively rms)
of 2.52 ± 0.06 (resp. 4.53 m/s) and 3.02 ± 0.06 (resp. 5.02 m/s),
respectively. We thus adopted Pb = 8.6 days for the orbital pe-
riod of the first planet.

We continued by subtracting the Keplerian orbit of planet b
to the raw RVs and by doing a periodogram of the residu-
als (Fig. 3, second panel). We computed a power p = 0.21
for the 0.3% FAP threshold and located eight peaks with more
power. They had periods 0.996, 0.999, 1.002, 1.007, 1.038,
25.6, 227 and 625 day, and powers 0.48, 0.30, 0.30, 0.24, 0.30,
0.28, 0.25 and, 0.41, respectively. We identified that several
candidates periods are aliases of each other and tried each as
a starting value for a Keplerian fit, to a model now composed
of two planets. We converged on local solutions with reduced
χ2 (resp. rms) of 2.01 (resp. 3.55 m/s), 2.10 (resp. 3.71 m/s),
1.98 (resp. 3.50 m/s), 2.21 (resp. 3.91 m/s), 2.13 (resp. 3.76
m/s), 2.14 (resp. 3.77 m/s), 2.19 (resp. 3.87 m/s), and 1.84 (resp.
3.24 m/s), respectively. Among the peaks with highest signifi-
cance, the one at P ∼ 600 days provided the best fit and we thus
adopted this solution.

Next, we pursued the procedure and looked at the residuals
around the two-planet solution (Fig. 3, third panel). We recov-
ered some of the previous peaks, with slightly more power ex-
cesses (p = 0.30 and 0.28), at periods 25.6 and 1.038 days. We
noted again that both periods are probably aliases of each other
with the typical one-day sampling. We performed three-planet
fit trying both periods as initial guesses for the third planet. We
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converged on χ2 = 1.50 (rms = 2.59 m/s) and χ2 = 1.53 (rms =
2.66 m/s) for the guessed periods of 25.6 and 1.038 days, re-
spectively. With the periodogram analysis, the solution with
Pb = 25.6 days is only marginally favored over the solution with
Pb = 1.038 days.

The fourth iteration unveiled one significant power excess
around the period 1.006 days (p = 0.22), as well as two other
peaks above the two-σ confidence threshold, with periods 19.4
and 108 days (p = 0.16 and 0.14; Fig. 3, fourth panel). We
noted that the periods 1.006 and 108 days were aliases under our
typical one-day sampling. We tried all three periods (1.006, 19.4,
and 108 days) as starting values and converged on χ2 = 1.26
(rms = 2.15 m/s), χ2 = 1.37 (rms = 2.32 m/s), and χ2 = 1.32
(rms = 2.26 m/s), respectively. Again, no period is significantly
favored.

We adopted the solution with Pd = 108 days and computed
the periodogram of the residuals. The maximum power is seen
again around 19.4 day, now above the three-σ confidence level.
Conversely, if we had adopted the solution with Pd = 19.4 days,
the period around 108 day (and 1.006 days) would now be the
most significant, and above the three-σ threshold too.

Eventually, the sixth iteration unveiled no additional signif-
icant power excess. The final five-Keplerian fit has a reduced
χ2 = 1.21, for a rms = 2.02 m/s. For reference, we give the
orbital elements derived in this section in Table 5 (available in
electronic form only).

5. Challenging the planetary interpretation

At this point, we identified up to five significant signals entan-
gled in the RV data. If not caused by planets orbiting GJ 163,
some radial velocity periodic variations could be caused by stel-
lar surface inhomogeneities such as plages or spots. The peri-
odicity is then similar than the orbital period Prot, or might be
one of its harmonics Prot/2, Prot/3, etc. (Boisse et al. 2011).
Considering the activity of GJ 163 (Sect. 2), we found the rota-
tion is moderate to long, probably greater than two more active
stars of our sample, GJ 176 and GJ 674 (i.e., Prot > 35 days),
and possibly as long as the rotation period of GJ 581 (∼94 d).
And therefore, up to three out of the five periodicities identified
above might be confused with an activity-induced modulation:
the 19.4-, 25.6-, and 108-day periodicities. In this section,
we investigated time variability of these signals (Sect. 5.1) and
searched for their possible counterparts in various activity indi-
cators (Sect. 5.2).

5.1. Search for changes in RV periodic signals

To explore the possible non-stationarity of one signal, we fit-
ted the data with a model composed of the four other signals
and looked at the residuals. In practice, we chose to start the
minimization close from the five-planet solution. We used the
solution with five planets (Sect. 4.2) and removed from the solu-
tion the planet corresponding to the signal we want to study. We
then performed a local minimization and computed the resid-
uals, which thus included the signal of interest. Next, we di-
vided the residual time series in three observational seasons
(2008, 2009, and 2010+2011). We did not included the obser-
vations before 2008 because there are too few and we grouped
together 2010 and 2011 data.

We repeated the procedure for all signals except for the
longest period (because the ∼604-day signal can not be recov-
ered on the time-scale of one season). This produced 4 × 3 =
12 peridograms, shown in Fig. 5. To help locate where the unfit-

Fig. 3. Periodogram analysis of the GJ 163 RV time series, first four
iterations. Horizontal lines mark powers corresponding to 31.7, 4.6,
and 0.3% false-alarm probability, respectively (i.e., equivalent to 1-, 2-,
and 3-σ detections).

ted signal should appear we located its period with a vertical red
dashed line.

For both signals b and c, we see clear power excesses at the
right periods and for all seasons. This gives further credit that
they are the result of orbiting planets. Conversely, the power
excess expected for signal (e) is seen in season 2009 only and
no power excess is seen for signal ( f ) in season 2009. This casts
doubts on the nature of both signals (e) and ( f ) and there must
be more data before we can draw further conclusions.

5.2. Periodicities in activity indicators

Stellar activity can be diagnosed with spectral indices or by
monitoring the shape of the spectral lines, both conveniently
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(e)

2008

2009

2010
+
2011

b c (f)

Fig. 5. Seasonal periodograms of residual time series obtained after fitting the RV time series with four-planet models. From top to bottom, the
rows are for seasons 2008, 2009, and 2010+2011, respectively. From left to right, the columns are periodograms to investigate signals b, (e), c,
and ( f ), respectively. The periodicity of each signal is located with a vertical dashed red line. Power excesses are seen at all seasons for signals b
and c, but not for signals (e) and ( f ).

measured on the same spectra as those used to measure the ra-
dial velocities. We measured 2 spectral indices based on Ca ii H
& K lines and on the Hα line, as well as the full width at half
maximum (FWHM) and the bisector span (BIS) of the cross-
correlation function (CCF). Their values are given in Table ??
along with the radial-velocity measurements.

Among these indicators, we identified a significant periodic-
ity for the FWHM only. Its periodogram indicates some power
excess around a period of 30 days, with a false-alarm proba-
bility <0.3% (i.e., a confidence level >3σ). We also looked
for non stationarity in FWHM and found it is only pseudo-
periodic. For instance, in 2008, the maximum power is seen
at 30 days, with significant power around 19 days, compatible
with the period P(e) identified in RV data. The possible link be-
tween this signal with the RV 19.4-day periodicity is however
unclear since their strongest power is identified in periodograms
of different seasons. We also show the periodogram of FWHM
for the 2009 season, where the strongest peak is seen around the
period of 38 days (i.e., twice 19 days), albeit with a modest sig-
nificance.

It is also unclear whether this stellar activity can be linked to
the stellar rotation, as a 19- to 38-day rotational period would be
short compared to our estimate in Sect. 2.

6. Dynamical analysis

After analyzing the RV data with both a MCMC algorithm and
with iterative periodograms, we identified up to five superim-
posed coherent signals. In Sect. 5 we scrutinized several activity
indicators and looked for non-stationarity of these signals to fi-
nally cast doubts on the planetary nature for two of them. We
retained a nominal solution with three planets (Table 2) and now
perform a dynamical analysis.

Table 3. Fundamental frequencies for the nominal orbital solution in
Table 2.

Frequency Period Angle
(◦/yr) (yr) (deg)

nb 15 231.673258 0.023635 6.1715
nc 5134.634175 0.070112 24.7197
nd 217.437041 1.655652 144.9791
g1 0.054525 6602.468907 –178.2139
g2 0.243159 1480.513345 –122.6748
g3 0.000241 1 490 684.180450 118.3562

Notes. nb, nc, and nd are the mean motions, and g1, g2, and g3 are the
secular frequencies of the pericenters.

The orbital solution given in Table 2, shows a planetary sys-
tem composed of three planets, two of them in very tight orbits
(ab = 0.06 and ac = 0.13 AU), and another farther away, but in
an eccentric orbit, such that the minimum distance at pericenter
is only 0.65 AU. The stability of this system is not straightfor-
ward, in particular taking into account that the minimum masses
of the planets are of the same order as Neptune’s mass. As a
consequence, mutual gravitational interactions between planets
in the GJ 163 system cannot be neglected and may give rise to
some instability.

6.1. Secular coupling

The ratio between the orbital periods of the two innermost plan-
ets determined by the fitting process (Table 2) is Pc/Pb = 2.97,
suggesting that the system may be trapped in a 3:1 mean motion
resonance. To test the accuracy of this scenario, we performed
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Fig. 4. Radial velocity curves for planets b, c, and d, from top to bottom.

a frequency analysis of the nominal orbital solution listed in Ta-
ble 2 computed over 1 Myr. The orbits of the planets are inte-
grated with the symplectic integrator SABA4 of Laskar & Robu-
tel (2001), using a step size of 0.01 yr and including general rel-
ativity corrections. We conclude that, in spite of the proximity
of the 3:1 mean motion resonance, when we adopt the minimum
values for the masses, the two planets in the GJ 163 system are
not trapped in this resonance.

The fundamental frequencies of the systems are then the
mean motions nb, nc, and nd, and the three secular frequencies
of the pericenters g1, g2, and g3 (Table 3). Because of the prox-
imity of the two innermost orbits, there is a strong coupling
within the secular system (see Laskar 1990). Both planets b
and c precess with the same precession frequency g2, which has
a period of 1480 yr. The two pericenters are thus locked and
∆̟ = ̟c − ̟b oscillates around 180◦, with a maximum am-
plitude of about 28◦ (Fig. 7). This behavior is not a dynamical
resonance, but merely the result of the linear secular coupling.
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Fig. 6. Periodogram of the full width at half maximum of the cross-
correlation function for both the whole data set (top panel), season 2008
only (middle panel), and season 2009 (bottom panel). For reference, the
period of RV signals are shown with vertical red dashed lines.

To present the solution more clearerly, it is useful to make
a linear change of variables into eccentricity proper modes (see
Laskar 1990). In the present case, because of the proximity of
the 3:1 mean motion resonance and because of the high value of
the outer planet eccentricity, the linear transformation is numer-
ically obtained by a frequency analysis of the solutions. Using
the classical complex notation

zp = epei̟p (1)

for =̨b, c, d, we have for the linear Laplace-Lagrange solution
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Fig. 7. Evolution of the angle ∆̟ = ̟b − ̟c (red line) that oscil-
lates around 180◦ with a maximum amplitude of 28◦. The black line
also gives the ∆̟ evolution, but obtained with the linear secular model
(Eq. (2)).
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Fig. 8. Evolution of the GJ 163 eccentricities with time, starting with
the orbital solution from Table 2. The color lines are the complete solu-
tions for the various planets (b: red, c: green, d: blue), while the black
curves are the associated values obtained with the linear secular model
(Eq. (2)).

where (S) is given by

(S) =

















0.019139, −0.080497, 0.001192
0.018850, 0.087791, 0.001538
−0.000015, −0.000011, 0.373356

















. (3)

The proper modes uk (with k = 1, 2, 3) are obtained from the zp

by inverting the above linear relation. To a good approximation,
we have uk ≈ ei(gk t+φk), where gk and φk are given in Table 3.

From Eq. (2) it is then easy to understand the meaning of
the observed libration between the pericenters ̟b and ̟c. In-

(b)

(c)

(d)

-6 -4 -2 0 2

Fig. 9. Stability analysis of the nominal fit (Table 2) of the GJ 163 plan-
etary system. For fixed initial conditions, the phase space of the sys-
tem is explored by varying the semi-major axis ap and eccentricity ep

of each planet, b, c, and d, respectively. The step size is 10−5 AU in
semi-major axis and 10−2 in eccentricity. For each initial condition, the
system is integrated over 200 yr and a stability criterion is derived with
the frequency analysis of the mean longitude (Laskar 1990, 1993). As
in Correia et al. (2005, 2009, 2010), the chaotic diffusion is measured
by the variation in the frequencies. The red zone corresponds to highly
unstable orbits, while the dark blue region can be assumed to be stable
on a billion-year timescale. The contour curves indicate the value of χ2

obtained for each choice of parameters.

deed, for both planets b and c, the dominant term is u2 with fre-
quency g2, and they thus both precess with an average value of g2

(black line, Fig. 7).

It should also be noted that Eq. (2) provides good approx-
imations of the long-term evolution of the eccentricities. In
Fig. 8 we plot the eccentricity evolution with initial conditions
from Table 2. Simultaneously, we plot the evolution of the
same elements given by the above secular, linear approxima-
tion. The eccentricity variations are very limited and are de-
scribed well by the secular approximation. The eccentricity of
planets b and c are within the ranges 0.061 < eb < 0.101 and
0.067 < ec < 0.109, respectively. These variations are driven
mostly by the secular frequency g2, of period approximately
1480 yr (Table 3). The eccentricity of planet d is nearly con-
stant with 0.372 < ed < 0.374 (Fig. 8).
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6.2. Stability analysis

In order to analyze the stability of the nominal solution (Table 2)
and confirm that the inner subsystem is outside of the 3:1 mean
motion resonance, we performed a global frequency analysis
(Laskar 1993) in the vicinity of this solution, in the same way
as achieved for other planetary systems (e.g. Correia et al. 2005,
2009, 2010).

For each planet, the system is integrated on a regular 2D
mesh of initial conditions, with varying semi-major axis and ec-
centricity, while the other parameters are retained at their nom-
inal values (Table 2). The solution is integrated over 200 yr for
each initial condition and a stability indicator is computed to be
the variation in the measured mean motion over the two con-
secutive 100 yr intervals of time (for more details see Correia
et al. 2005). For regular motion, there is no significant varia-
tion in the mean motion along the trajectory, while it can vary
significantly for chaotic trajectories. The result is reported in
Fig. 9, where “red” represents the strongly chaotic trajectories,
and “dark blue” the extremely stable ones.

In Fig. 9 we show the vicinity of the best-fitted solution
where the minima of the χ2 level curves correspond to the nom-
inal parameters (Table 2). For the inner system (top and cen-
ter panels) we observe the presence of the large 3:1 mean mo-
tion resonance. We confirm that the present system is outside
the 3:1 resonance, in a more stable area at the bottom-right side
(Fig. 9, top), or at the bottom-left side (Fig. 9, center). These
results are somehow surprising, because if the system had been
previously captured inside the 3:1 mean motion resonance, we
would expect that the subsequent evolution drive it to the op-
posite side, where the period ratio is above 3, instead of 2.97.
Indeed, during the initial stages of planetary systems, capture
in mean motion resonances can occur as a result of orbital mi-
gration due to the interactions within a primordial disk of plan-
etesimals, (e.g., Papaloizou 2011). However, as the eccentrici-
ties of the planets are damped by tidal interactions with the star,
this equilibrium becomes unstable. For first order mean mo-
tion resonances it has been demonstrated that the system exits
the resonance with a higher period ratio (Lithwick & Wu 2012;
Delisle et al. 2012; Batygin & Morbidelli 2013), and this behav-
ior should not differ much for higher order resonances.

For the outer planet (Fig. 9, bottom), we observe that the
planet lies in a very stable region. Nevertheless, since the con-
tour curves of minimal χ2 vary smoothly is this zone (unlike
those for the inner system), we conclude that this eccentricity
may be overestimated. Additional observational data will help
to solve this issue, since longer orbital periods become better de-
termined as we acquire data for extended time spans (because
we cover more revolutions of the planet around the star). Since
the system is already stable with the nominal parameters from
Table 2, we do not explore this possibility in great depth in the
present paper, but more detailed dynamical studies on this sys-
tem must take this possibility into account.

We also tested briefly the stability of the five-planet solution
(Table 5) and found that it is not stable (even with eccentricities
of planets e and f fixed to zero), in particular because of planet e.

6.3. Long-term orbital evolution

From the previous stability analysis, it is clear that the GJ 163
planetary system listed in Table 2 is stable over Gyr timescales.
Nevertheless, we also tested directly this by performing a nu-
merical integration of the orbits.

Fig. 10. Long-term evolution of the GJ 163 planetary system over 1 Gyr
starting with the orbital solution from Table 2. We did not include tidal
effects in this simulation. The panel shows a face-on view of the system
invariant plane. x and y are spatial coordinates in a frame centered on
the star. Present orbital solutions are traced with solid lines and each dot
corresponds to the position of the planet every 0.1 Myr. The semi-major
axes are almost constant, and the eccentricities present slight variations
(0.061 < eb < 0.101, 0.067 < ec < 0.109, and 0.372 < ed < 0.374).

In a first experiment, we integrated the system over 1 Gyr
using the symplectic integrator SABA4 of Laskar & Robutel
(2001) with a step size of 0.01 yr, including general relativity
corrections, but without tidal effects. The result displayed in
Fig. 10 show that the orbits evolve in a regular way, and remain
stable throughout the simulation, which is of the same order as
the age of the star.

Since the two inner planets are very close to the star, in a
second experiment we aun a numerical simulation that included
tidal effects. Several tidal models have been developed so far,
from the simplest ones to the more complex (for a review see
Correia et al. 2003; Efroimsky & Williams 2009). The qualita-
tive conclusions are more or less unaffected, so for simplicity we
adopt here a linear model with constant ∆t (Singer 1968), where
∆t is a time delay between the initial perturbation of the planet
and the maximal tidal deformation. The tidal force acting on
each planet is then given by (Mignard 1979)

Fp = −∆tp
3k2GM2R5

p

r10
p

(

2(rp · ṙp)rp + r2
p

(

rp × ωp + ṙp

))

, (4)

where rp is the position of each planet relative to the star, k2 is
the potential Love number, G is the gravitational constant, M is
the mass of the star, Rp is the planet radius, and ωp is the spin
vector of the planet. Because the spin evolves in a much shorter
timescale than the orbit (e.g., Correia 2009), we consider that
the spin axis is normal to the orbit, and its norm is given by the
equilibrium rotation for a given eccentricity (Eq. (48), Correia
et al. 2011)

ωp

np

=
(1 + 15

2
e2

p +
45
8

e4
p +

5
16
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p)

(1 + 3e2
p +

3
8
e4

p)(1 − e2
p)3/2

ŝp, ŝp =
rp × ṙp

||rp × ṙp||
· (5)

In this experiment we use the ODEX integrator (e.g., Hairer
et al. 2011) for the numerical simulations. We adopt k2 = 0.5
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Fig. 11. Some possibilities for the long-term evolution of the GJ 163 planetary system over 1 Myr, including tidal effects with ∆tp = 105 s. Time
scales are inversely proportional to ∆t (Eq. (4)), so 1 Myr of evolution roughly corresponds to 1 Gyr with ∆tp = 100 s (Qp ∼ 103) or 10 Gyr with
∆tp = 10 s (Qp ∼ 104). We show the ratio Pc/Pb of the orbital periods of the two inner planets (top) and their eccentricities eb (red) and ec (green)
(bottom). We use three different sets of initial conditions: Table 2 (left); Table 2 with ac = 0.060679 and ∆tc = 5 × 107 s (middle); Table 4 (right).

and Rp = 0.25 RJup for all planets, and M = 0.4 M⊙ (Table 1).
Typical dissipation times for gaseous planets are ∆tp ∼ 10 to

100 s, corresponding to dissipation factors Qp ∼ 104 to 103, re-

spectively (Q−1
p ≈ np∆tp). However, computations with such

low ∆tp values (or high Qp), become prohibitive on account of
long evolution times. In order to speed up the simulations, in
this paper we have considered artificially high values for the
tidal dissipation, about one thousand times the expected values
(∆tp = 105 s or Qp ∼ 1). Time scales are inversely proportional
to ∆tp (Eq. (4)), so 1 Myr of evolution roughly corresponds to
1 Gyr with ∆tp = 100 s (or 10 Gyr with ∆tp = 10 s).

In Fig. 11 (left) we plot the evolution of the orbital period
ratio of the two inner planets together with their orbital eccen-
tricities. We observe that, although the system remains stable,
the eccentricities are progressively damped, while the present
period ratio increases towards the 3:1 mean motion resonance
because of the inward migration of the semi-major axes. Around
0.35 Myr the system crosses the 3:1 resonance, but capture can-
not occur because we have a divergent migration (e.g., Hen-
rard & Lamaitre 1983). With a more realistic tidal dissipation
(∆tp = 102 s), this event is scheduled to occur in less than 1 Gyr,
so we may wonder why the present system is still evolving in
such a dramatic way.

One possibility is that the system is already fully evolved by
tidal effect, and the eccentricities of the two inner planets are
overestimated (see next section). Another possibility is to sup-
pose that planet c is terrestrial, since its minimum mass is 6.8 M⊕
(Table 2). Terrestrial planets usually dissipate much more en-
ergy than gaseous planets, with typical values Qp ∼ 101−102

(e.g. Goldreich & Soter 1966). Thus, adopting ∆tc = 5 × 107 s
(that is, dissipation for planet c becomes 500 times larger than
for the gaseous planets) we repeated the previous simulation,
keeping all the other parameters equal, except the initial semi-
major axis of this planet ac = 060679 AU. In Fig. 11 (middle)
we observe that in this case the orbital period ratio of the two

inner planets decreases. Therefore, the system may have crossed
the 3:1 resonance in the past, but evolved to the present situation.
We adopted ac above the value in the nominal solution (Table 2),
so we can see the resonance crossing from above. If we use the
nominal value, the orbital period ratio behavior is the same, but
decreases to values below the initial 2.97 ratio.

Both the size of the planet and the dissipation rates (∆t)
are poorly constrained. More generally, the evolution would be
longer for a smaller planet and lower dissipation rates (Eq. (4)).
For an Earth composition, planet c minimum mass converts to a
radius of roughly 1.7 Rearth (Valencia et al. 2007) and, for the
same∆tc, the evolution would take 10 Gyr instead of 1 Gyr. Even
for smaller planetary sizes, that scenario would remain possible
if ∆tc assumed higher values.

6.4. Dissipation constraints

In the previous section we saw that the present orbits of the
two inner planets in the GJ 163 are still evolving by tidal effect.
Unless the system started with a much higher value for the ec-
centricities, and depending on its age, the present eccentricities
should have already been damped to lower values. In addition,
dissipation within a primordial disk should have also contributed
to circularize the initial orbits (e.g., Papaloizou 2011). Thus, it
is likely that the eccentricities given by the best-fit solution (Ta-
ble 2) are overestimated, as it is usual when we use insufficient
or inaccurate data (e.g., Pont et al. 2011).

One can perform a fit fixing both eccentricities eb and ec at
zero. This procedure has been done in many previous works, but
as explained in Lovis et al. (2011), it is not a good approach. In-
deed, if we do so in the case of the GJ 163 system the subsequent
evolution of the eccentricities shows a decoupled system (∆̟
is in circulation), where the eccentricities are mainly driven by
angular momentum exchanges with the outer planet, and show
some irregular variations.
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Table 5. Fitted orbital solution for the GJ 163 planetary system: 5 Keplerians.

Parameter GJ 163 b GJ 163 (e) GJ 163 c GJ 163 (f) GJ 163 d

P [days] 8.631 ± 0.001 19.46 ± 0.02 25.60 ± 0.02 108.4 ± 0.5 603 ± 12
T [JD-2 400 000] 55 042.553 ± 0.01 55 040.5 ± 1.4 55 057.7 ± 4.8 55 037.6 ± 5.6 55 275 ± 24
e 0.11 ± 0.04 0.32 ± 0.17 0.08 ± 0.08 0.41 ± 0.15 0.41 ± 0.07
ω [deg] 97 ± 22 125 ± 31 –145 ± 68 141 ± 23 88 ± 17
K [m/s] 6.22 ± 0.26 1.69 ± 0.32 3.07 ± 0.27 1.94 ± 0.38 3.82 ± 0.38
V [km s−1] 58.5965 ± 0.0008
m2 sin i [M⊕] 11 3.7 7.7 7.2 25
a [AU] 0.061 0.10 0.13 0.33 1.0

Nmeas 153
Span [days] 3068
σ (O-C) [ms−1] 2.02
χ2

red
1.21

Notes. Keplerian signals labeled b, c and d are interpreted as due to orbiting planets whereas those labeled (e) and ( f ) require more data for robust
interpretations (and are not considered planet detections at this stage; see Sects. 4 and 5).

Table 4. Orbital parameters for the planets orbiting GJ 163, obtained
with a tidal constraint for the proper modes u1 and u2.

Param. [unit] b c d

γ [km s−1] 58.597

P [days] 8.633 25.645 600.895
λ [deg] 18.252 23.653 141.887
e 0.0106 0.0094 0.3990
ω [deg] 74.73 235.447 126.915
K [m/s] 6.121 2.901 4.711

m sin i [M⊕] 10.661 7.263 22.072
a [AU] 0.06069 0.12540 1.02689

Tepoch [JD] 2 452 942.80 (fixed)
R 50 (fixed)
u1 0.0275
u2 0.1180
√

χ2 1.52

Over long times, the variations of the planetary eccentrici-
ties are usually well described by the secular equations (Eq. (2),
Figs. 7 and 8). The best procedure to perform a fit to the ob-
servational data that takes into account the eccentricity damping
constraint is then to make use of these equations. As for the
Laplace-Lagrange linear system (Eq. (2)), we can linearize and
average the tidal contribution from expression (4) to the eccen-
tricity, and we obtain for each planet p an additional contribution
(Correia et al. 2011)

żp = −γp zp, γp = ∆tp
21k2GM2R5

p

2 mp a8
p

· (6)

Instead of directly damping the eccentricity, from the previous
expression it can be shown that tidal effects damp the proper
modes uk as (Laskar et al. 2012)

uk ≈ e−γ̃k tei (gk t+φk), γ̃k = [(S)−1 diag(γb, γc, γd) (S)]kk. (7)

For the present GJ 163 system, only γb is relevant. However,
since the inner system is strongly coupled, both proper modes u1

and u2 are damped with γ̃1, γ̃2 ∼ γb ≈ 10−10 yr−1 (with ∆tb =
100 s), which is compatible with the age of the system. Dissipa-
tion in a primordial disk can add some extra contribution to γb,
so we expect proper modes u1 and u2 to be considerably damped

today. The initial conditions for the GJ 163 planetary system
should then take into account this extra information, as has been
done for the HD 10180 system (Lovis et al. 2011). We have thus
chosen to modify our fitting procedure in order to include a con-
straint for the tidal damping of the proper modes u1 and u2 using
the additional constraint

uk =
∑

j

(S)−1
k j z j ≈ 0. (8)

For that purpose, we added an additional term to the χ2 mini-
mization corresponding to these proper modes

χ2
R = R

(

u2
1 + u2

2

)

, (9)

where R is a positive constant that is chosen arbitrarily to obtain
a small value for u1 and u2 simultaneously. Using R = 50 we get

u1 ∼ 0.03 and u2 ∼ 0.12 and obtain a final
√

χ2 = 1.52, which
is nearly identical to the results obtained without this additional

constraint (R = 0,
√

χ2 = 1.43).
The best-fit solution obtained by this method is listed in Ta-

ble 4. We believe that this solution is a more realistic repre-
sentation of the true system than the nominal solution (Table 2).
Indeed, with this constraint, eccentricity variations of the two in-
nermost planets are regular and slowly damped, while the vari-
ations in the ratio of the orbital periods is almost imperceptible
(Fig.11, right). In addition, the inner system is still coupled,
the two pericentre being locked (∆̟ = ̟c − ̟b oscillates
around 180◦, with a maximal amplitude of about 26◦).

6.5. Additional constraints

We can assume that the dynamics of the three known planets
is not disturbed much by the presence of an additional small-
mass planet close by. We can thus test the possibility of an ad-
ditional fourth planet in the system by varying the semi-major
axis, the eccentricity, and the longitude of the pericenter over a
wide range, and performing a stability analysis as in Fig. 9. The
test was completed for a fixed value K = 0.2 m/s, corresponding
to an Earth-mass object at approximately 1 AU, whose radial-
velocity amplitude is at the edge of detection (Fig. 12).

From the analysis of the stable areas in Fig. 12, one can see
that additional planets are possible beyond 2.5 AU (well outside
the outer planet’s apocenter), which corresponds to orbital peri-
ods longer than 6 yr. Because the eccentricity of the outer planet
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is high, there are some high-order mean motion resonances that
destabilize several zones up to 4 AU. In addition, the same kind
of resonances disturb the inner region between planet c and the
pericenter of planet d (Fig. 10), although some stability appears
to be possible in the range 0.3 < a < 0.5 AU. Stability can also
be achieved for planets extremely close to the star, with orbital
periods shorter than 8 days.

We can also try to find constraints on the maximal masses
of the current three-planet system if we assume co-planarity of
the orbits. Indeed, up to now we have been assuming that the
inclination of the system to the line-of-sight is 90◦, which gives
minimum values for the planetary masses (Table 2).

By decreasing the inclination of the orbital plane of the sys-
tem, we increased the mass values of all planets and repeated
a stability analysis of the orbits, as in Fig. 9. As we decrease
the inclination, the stable dark-blue areas become narrower, to a
point that the minimum χ2 of the best-fit solution lies outside the
stable zones. At that point, we conclude that the system cannot
be stable anymore. It is not straightforward to find a transition
inclination between the two regimes, but we can infer from our
plots that the stability of the whole system is still possible for
an inclination of 30◦, but becomes impossible for an inclination
of 5◦ or 10◦. Therefore, we conclude that the maximum masses
of the planets may be most probably computed for an inclination
around 20◦, corresponding to a scaling factor of about 3 for the
possible masses.

Even when adopting an inclination of 20◦, the two inner
planets lie outside the 3:1 mean motion resonance, more or less
at the same place as for 90◦ (Fig. 9). The reason why the sys-
tem becomes unstable for lower inclination values is because the
mass of the outer planet d grows to a point such that high or-
der mean motion resonances between planets d and b and/or c
destroy the whole system. In particular, the 3:1 resonant island
also disappears completely for low inclination values.

7. Gl163c in the habitable zone?

With a separation of 0.1254 AU, GJ 163c receives ∼1.34 times
more energy from its star than Earth does from the Sun. Consid-
ering the case where the whole planetary surface re-radiates the
absorbed flux (e.g., β factor of Kaltenegger & Sasselov (2011)
equal to 1), the equilibrium temperature of GJ 163c is

Teq = (302 ± 10)(1 − A)1/4 [K].

Scaled to our solar system, its illumination is equivalent to that
of a planet located midway between Venus and Earth.

To be located in the HZ, and thus potentially harbor liquid
water, the equilibrium temperature of a planet with an atmo-
sphere as dense as the Earth’s should be between 175K and 270K
(see Selsis et al. 2007, for a complete discussion). In the case of
GJ 163c this condition is fulfilled for large range of Bond albe-
dos (A = 0.34−0.89), but not for an albedo similar to that of the
Earth’s. The albedo of the Earth is equal to 0.3 in the optical
and is as low as 0.2 in the near-IR, where early M dwarfs radi-
ate most of their energy. With these values GJ 163c would lie
outside the HZ. An albedo greater than 0.34 is, however, pos-
sible if 40–50% of the atmosphere is covered by clouds (see,
for example, Fig. 1 of Kaltenegger & Sasselov 2011). The pre-
cise location of GJ 163c with respect to the habitable zone may
further depend on additional heating such as tidal (Barnes et al.
2012) or radiogenic (Ehrenreich et al. 2006) heatings, and more
detailed studies are thus welcome.

Two other conditions besides host liquid water on its surface
are needed for a planet in the HZ to be truly habitable. First, the

planet should not have accreted a massive H-He envelope, other-
wise the surface pressure would be too strong and could lead to
a runaway greenhouse effect. In the 3–10 M⊕ range, planets can
have very different structures for a given mass, and it is impos-
sible to know without a radius measurement whether GJ 163c is
embedded in a massive H-He envelope or not. Second, the planet
should contain water among the components of its atmosphere.

Numerous discussions exist about two characteristics of
planets inside the HZ around M dwarfs and their effect on habit-
ability: their location inside the tidal lock radius of their star and
the high activity level of M dwarfs. In Delfosse et al. (2012) we
summarized the results of recent works in this domain. The main
conclusion is that tidal effect and atmospheric erosion from the
neighborhood of active stars does not “preclude the habitabil-
ity of terrestrial planets orbiting around cool stars (Barnes et al.
2011)”. In particular, the thick atmosphere that may enshroud
a planet of ∼7 Earth-mass seems stable even around very active
M dwarfs (Tian 2009).

8. Conclusion

We have presented the analysis of 150 HARPS RVs of the nearby
M dwarf GJ 163 and demonstrated that it encodes at least three
signals compatible with the gravitational pull of orbiting planets
and identified two additional signals that need further observa-
tions before counting them as additional planets. Signals b and
d have periodicities that seem incompatible with the possible ro-
tational periods of the star. Signals b and c are also recovered
when the data set is divided in observational season, lending cre-
dence that at least three planets orbit around GJ 163. We derived
their orbital periods (∼8.6, 25.6, and 604 days) and their mini-
mum masses (∼10.6, 6.8, and 29 M⊕), which correspond to a hot,
a temperate, and a cold planet in the super-Earth/Neptune mass
regime. The super-Earth GJ 163c may retain further attention for
its potential habitability. It receives about 30% more energy than
Earth in our solar system and could qualify as a habitable-zone
planet for a wide range of albedo values (175 ≤ Teq ≤ 270 K,
for 0.34 ≤ A ≤ 0.89).

We also performed a detailed dynamical analysis of the sys-
tem to show that, despite a period ratio Pc/Pb = 2.97, planets b
and c do not participate in a 3:1 resonance. The system is found
to be stable over a time comparable to the age of the system and,
as far as the orbital parameters of the first three planets remain
unchanged, it also appears complete down to Earth-mass planets
for a wide range of separations (0.1 . a . 2.2 AU).

The system GJ 163 is singular both for its potentially habit-
able planet GJ 163c and for its particular hierarchical structure
and dynamical history. And therefore, before its atmosphere can
be characterized and searched for biomarkers with future obser-
vatories, it is already a unique system that connects the potential
habitability of a planet with the dynamical history of a planetary
system.
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