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THE HARTOGS EXTENSION THEOREM

ON (n− 1)-COMPLETE COMPLEX SPACES

JOËL MERKER AND EGMONT PORTEN

ABSTRACT. Employing Morse theory and the method of analytic discs

but no ∂ techniques, we establish a version of the Hartogs extension the-

orem in a singular setting, namely: for every domain Ω of an (n − 1)-
complete normal complex space of pure dimension n > 2, and for every

compact set K ⊂ Ω such that Ω\K is connected, holomorphic or mero-

morphic functions in Ω\K extend holomorphically or meromorphically

to Ω.
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§1. INTRODUCTION

The goal of the present article is to perform a generalization of the clas-

sical Hartogs extension theorem in certain singular complex spaces which

enjoy appropriate convexity conditions, using the method of analytic discs

for local extensional steps and Morse-theoretical tools for the global topo-

logical control of monodromy.

In its original form, the theorem states that in an arbitrary bounded do-

main Ω ⋐ C
n (n > 2), every compact set K ⊂ Ω with Ω\K connected

is an illusory singularity for holomorphic functions, namely O(Ω\K) =
O(Ω)

∣∣
Ω\K

(for history, motivations and background, we refer e.g. to

[12, 21, 22]). By now, the shortest proof, due to Ehrenpreis, follows eas-

ily from the simple proposition that ∂-cohomology with compact support

vanishes in bidegre (0, 1) (see [14]). Along these lines and after results due

to Kohn-Rossi, the Hartogs theorem was generalized to (n − 1)-complete

complex manifolds by Andreotti-Hill [2], i.e. manifolds exhausted by a C∞

function whose Levi-form has at least 2 positive eigenvalues at every point.

We also refer to [17] for an approach via the holomorphic Plateau boundary

problem.
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2 JOËL MERKER AND EGMONT PORTEN

To endeavor the theory in general singular complex spaces
(
X,OX

)
, it

is at present advisable to look for methods avoiding global ∂ techniques, as

well as global integral kernels, because such tools are not yet available. The

geometric Hartogs theory was attacked long ago by Rothstein, who intro-

duced the notion of q-convexity. On the other hand, within the modern sheaf-

theoretic setting, the so-called Andreotti-Grauert theory allows to perform

extension (of holomorphic functions, of differentials forms, of coherent

sheaves, etc.) from shell-like regions of the form
{
z ∈ X : a < ρ(z) < b

}

into their inside
{
z ∈ X : ρ(z) < b

}
, where ρ is a fixed (n − 1)-convex

exhaustion function for X . Geometrically speaking, one performs holomor-

phic extension by means of the Grauert bump method through the level sets

of ρ in the direction of decreasing values, jumping finitely many times across

the critical points of ρ.

However, a satisfying, complete generalization of the Hartogs theorem

should apply to general excised bounded domains Ω\K lying in an (n− 1)-
complete complex space

(
X,OX

)
, not only to shells {a < ρ < b} relative

to the (n − 1)-convex exhaustion function. But then, after perturbing and

smoothing out ∂Ω, one must unavoidably take account of the critical points

of ρ
∣∣
∂Ω

and also of the possible multi-sheetedness of the intermediate step-

wise extensions. This causes considerably more delicate topological prob-

lems than in the well known Grauert bump method, in which monodromy

of the holomorphic (or meromorphic, or sheaf-theoretic) extensions from

{a < ρ < b} to {a′ < ρ < b} with a′ < a is almost freely assured1, even

across critical points of ρ. Considering simply a domain Ω ⋐ Cn (n > 2),

with obvious exhaustion ρ(z) := ||z||, the classical Hartogs theorem based

on analytic discs and on Morse theory was worked out in [19], where em-

phasis was put on rigor in order to provide with firm grounds the subsequent

works on the subject. The essence of the present article is to transfer such an

approach to (n − 1)-complete general complex spaces, where ∂ techniques

are still lacking, with some new difficulties due to the singularities.

§2. STATEMENT OF THE RESULTS

Thus, let
(
X,OX

)
be a reduced complex analytic space of pure dimen-

sion n > 2, equipped with an open cover X =
⋃

j∈J Uj together with

holomorphic isomorphisms ϕj : Uj → Aj onto some closed complex an-

alytic sets Aj contained in balls B̃j ⊂ C
Nj , some Nj > 2. By definition

([5, 10]), a C∞ function f : X → C is locally represented as f |Uj
= f̃j ◦ ϕj

for some collection of C∞ “ambient” functions f̃j : B̃j → C, j ∈ J . A

1 The reader in referred to point 2) of the proof of Prosition 4.1 below and to Figure 3 in

Section 4 for an illustration of the concerned univalent extension argument.
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real-valued continuous function ρ on X is an exhaustion function if sub-

level sets {z ∈ X : ρ(z) < c} are relatively compact in X for every c ∈ R.

A C∞ function ρ : X → R is called strongly q-convex if the C∞ ambient

ρ̃j : B̃j → R can be chosen to be strongly q-convex, i.e. their Levi-forms

i ∂∂(ρ̃j) have at least Nj − q + 1 positive eigenvalues at every point, for

all j ∈ J . Finally2, X is called q-complete if it possesses a C∞ strongly

q-convex exhaustion function. Note that the 1-complete spaces are precisely

the Stein spaces.

We will mainly work with a normal (n − 1)-complete X , and we re-

call that a reduced complex space
(
X,OX

)
is normal if the sheaf of weakly

holomorphic functions, namely functions defined and holomorphic on the

regular part Xreg = X\Xsing which are L∞
loc on X , coincides with the com-

plete sheaf OX of holomorphic functions on X . Then Xsing is of codimen-

sion > 2 at every point of X ([5, 10]) and for every open set U ⊂ X , both

restriction maps

(2.1) OX(U) −→ OX

(
U\Xsing

)
and MX(U) −→ MX

(
U\Xsing

)

are bijective3, where MX denotes the meromorphic sheaf. To generalize

Hartogs extension, normality of X is an unavoidable assumption, because

there are examples of Stein surfaces S having a single singular point p̂ which

are not normal ([10], vol. II, p. 196), whence K := {p̂} fails to be removable

for holomorphic functions defined in a neighborhood of K.

We can now state our main result.

Theorem 2.2. Let X be a connected (n−1)-complete normal complex space

of pure dimension n > 2. Then for every domain Ω ⊂ X and every compact

set K ⊂ Ω with Ω\K connected, holomorphic or meromorphic functions on

Ω\K extend holomorphically or meromorphically and uniquely to Ω:

OX(Ω\K) = OX(Ω)
∣∣
Ω\K

or MX(Ω\K) = MX(Ω)
∣∣
Ω\K

.

Some comments on the hypotheses are in order. Firstly, connectedness

of X is not a restriction, since otherwise, Ω would be contained in a single

component of X . Secondly, as X is (n − 1)-complete, i ∂∂
(
ρ
∣∣
Xreg

)
has at

least 2 positive eigenvalues at every point z ∈ Xreg, and consequently, each

super-level set {
z ∈ X : ρ(z) > c

}
,

has a pseudoconcave boundary at every smooth point z ∈ Xreg with

dρ(z) 6= 0 and in fact, the Levi-form of this boundary has at least one

2 The previous definitions are known to be independent of the choices — covering,

embeddings ϕj , dimensions Nj , extensions (̃•), see [5, 7, 10].
3 The first statement yields immediately that every point z ∈ X has a neighborhood

basis
(
Vk

)
k∈N

such that Xreg ∩Vk is connected; also, Xreg itself is connected. The second

statement is known as Levi’s extension theorem ([8], p. 185).
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negative eigenvalue at z. Thirdly, by a theorem of Ohsawa ([20]), every

(connected) n-dimensional noncompact complex manifold is n-complete,

and in fact, easy examples show that Hartogs extension may fail: take the

product X := R × S of two Riemann surfaces, with R compact and S
noncompact, take a point s ∈ S and set K := R × {s}; by [6], there ex-

ists a meromorphic function function having a pole of order 1 at s, whence

O(X) does not extend through K. Consequently, in the category of strong

Levi-form assumptions, (n− 1)-convexity is sharp.

For the theorem, the main strategy of proof consists of performing holo-

morphic or meromorphic extension entirely within the regular part of X .

Proposition 2.3. WithX , Ω and K as in Theorem 2.2, holomorphic or mero-

morphic functions on
[
Ω\K

]
reg

extend holomorphically or meromorphically

to Ωreg.

Notice that both
[
Ω\K

]
reg

and Ωreg are connected (footnote 3). Then

by (2.1), extension immediately holds to Ω. This yields Theorem 2.2 if one

takes the proposition for granted; Sections 3 and 4 below are devoted to

prove this proposition.

For meromorphic extension, one could in principle well avoid the as-

sumption of normality. In the case of meromorphic extension, we get a

general result valid for reduced spaces without further local assumptions.

Theorem 2.4. Let X be a globally irreducible (n − 1)-complete reduced

complex space of pure dimension n > 2. Then for every domain Ω ⊂ X and

every compact set K ⊂ Ω with [Ω\K]reg connected, meromorphic functions

on Ω\K extend meromorphically and uniquely to Ω:

MX(Ω\K) = MX(Ω)
∣∣
Ω\K

.

If moreover the data lie in OX(Ω\K), the extension is weakly holomorphic.

The proof, also relying upon an application of Proposition 2.3, is post-

poned to Section 5; an example in §5.1 shows that requiring only that Ω\K
is connected does not suffices.

For the proposition, the main difficulty is that Xsing can in general cross

Ω\K. We will approach Xsing from the regular part and fill in progressively

Ωreg by means of the super-level sets of a suitable modification µ of the

exhaustion ρ, such that µ is still strongly (n − 1)-convex but exhausts only

Xreg in a neighborhood of Ω. To verify that the extension procedure devised

in [19] can be performed, preliminaries are required.
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§3. GEOMETRICAL PREPARATIONS

3.1. Smoothing out the boundary. To launch the filling procedure, we

want to view the connected open set Ω\K as a neighborhood of some con-

venient connected hypersurface M contained in
(
Ω\K

)
∩Xreg.

Lemma 3.2. Let X , Ω and K be as in Theorem 2.2. Then there is a do-

main D ⋐ Ω containing K such that M := ∂D ∩ Xreg is a C∞ connected

hypersurface of Xreg.

Proof. Suppose first that X = Cn. Let d be a regularized distance func-

tion ([23]) for K, i.e. a C∞ real-valued function with K = {d = 0} and
1
c
dist (x,K) 6 d(x) 6 c dist (x,K) for some constant c > 1, where dist is

the Euclidean distance in R
2n. By Sard’s theorem, there are arbitrarily small

ε > 0 such that M̂ := {d = ε} is a C∞ hypersurface of R2n bounding the

open set Ω̂ := {d < ε} which satisfies K ⊂ Ω̂ ⋐ Ω. However, since M̂
need not be connected, we must modify it.

To this aim, we pick finitely many disjoint closed simple C∞ arcs

γ1, . . . , γr which meet M̂ transversally only at their endpoints such that

M̂ ∪ γ1 ∪ · · · ∪ γr is connected. Since Ω\K is connected, we can insure

that each γk is contained in Ω\K.
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Fig. 1: Connectifying the smoothed out boundary

M

γ1
γ2 γ3

γ4

K

K
K

M̂
cM

We can then modify M̂ in the following way: we cut out a very small

ball in M̂ around each endpoint of every γk, and we link up the connected

components of the excised hypersurface with r thin tubes ≃ R × S2n−2

almost parallel to the γk, smoothing out the corners appearing near the end-

points. The resulting hypersurface M is C∞ and connected. Since each γk is

either contained in Ω̂ ∪ M̂ or in R2n
∖
Ω̂, a new open set D with ∂D = M is

obtained by either deleting from Ω̂ or adding to Ω̂ the thin tube around each

γk. All the tubes around the γk which are contained in R2n
∖
Ω̂ constitute thin

open tunnels between the components of Ω̂, whence D is connected.

On a general complex space X , the idea is to embed a neighborhood of

Ω smoothly into some Euclidean space RN and then to proceed similarly.
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We can assume that the holomorphic isomorphisms φj : Uj → Aj ⊂

B̃j ⊂ C
Nj are defined in slightly larger open sets U ′

j ⋑ Uj , for all j ∈ J .

Pick C∞ functions λj having compact support in U ′
j and satisfying λj = 1

on U j ; prolong them to be 0 on X outside U ′
j . By compactness, there is a

finite open cover:

Ω ⊂ Uj1 ∪ · · · ∪ Ujm .

Consider the C∞ map, valued in RN with N := 2(Nj1 + · · · + Njm) + m,

which is defined by:

Ψ :=
(
λj1 · φj1, . . . , λjm · φjm, λj1, . . . , λjm

)
.

It is an immersion at every point x of Uj1 ∪ · · · ∪ Ujm , because x belongs

to some Ujk , whence the jk-th component λjk · φjk ≡ φjk of Ψ is even

an embedding of Uk ∋ x. Furthermore, we claim that Ψ separates points.

Indeed, if we set:

Wjk :=
{
z ∈ X : λjk(z) = 1

}
,

then clearly Ujk ⊂ Wjk ⊂ U ′
jk

. Pick two distinct points x, y ∈ Uj1 ∪ · · · ∪
Ujm . Then x belongs to some Ujk , so λjk(x) = 1. If λjk(y) 6= 1, then

Ψ(y) 6= Ψ(x) and we are done. If λjk(y) = 1, i.e. if y ∈ Wjk , then the jk-th

component of Ψ distinguishes x from y, since λjk · φjk(y) = φjk(y) differs

from φjk(x) because φjk embeds U ′
jk

into R
2Njk . So Ψ embeds into R

N the

neighborhood Uj1 ∪ · · · ∪ Ujm of Ω.

We choose a regularized distance function dΨ(K) for Ψ(K) in RN . We

stratify X so that Xreg is the single largest stratum (remind it is connected)

and then stratify Xsing by listing all connected components of
[
Xsing

]
reg

,

then continuing with
[
Xsing

]
sing

, and so on inductively. By Sard’s theorem

and the stratified transversality theorem ([13]), for almost every ε > 0, the

intersection {
x ∈ R

N : dΨ(K)(x) = ε
}
∩Ψ

(
Ωreg

)

is a C∞ real hypersurface of Ψ(Ωreg) having finitely many connected com-

ponents which are contained in Ψ
(
[Ω\K]reg

)
. Importantly, we can construct

the thin connecting tubes so that they lie all entirely inside Ψ
([
Ω\K

]
reg

)
,

thanks to the fact that Ψ
(
Ωreg

)
is locally (arcwise) connected, also near

points of Ψ
(
Ωsing

)
. Then the remaining arguments are the same and we

put everything back to X via Ψ−1, getting a connected C∞ hypersurface

M ⊂ [Ω\K]reg and a domain D with K ⊂ D ⋐ Ω. (We remark that

normality of X was crucially used.) �

As we said, we will perform the filling procedure entirely inside Xreg.

This is possible thanks to an idea of Demailly which consists of modifying

the initial exhaustion ρ so that Xsing is put at −∞. A recent application of

this idea also appears in [4].
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3.3. Putting Xsing into a well. By Lemma 5 in [3], there exists an almost

plurisubharmonic function4 v on X which is C∞ on Xreg and has poles along

Xsing:

Xsing =
{
v = −∞

}
.

As in Section 2, if Aj = ϕj(Uj) is represented in a local ball B̃j ⊂ CNj of

radius rj > 0 centered at zj ∈ C
Nj as the zero-set {gj,ν = 0} of finitely

many functions gj,ν holomorphic in a neighborhood of the closure of B̃j , the

local ambient ṽj : B̃j → {−∞} ∪ R is essentially of the form5:

ṽj = log
(∑

ν

|gj,ν|
2
)
−

1

r2j − |z − zj |2
.

Thus, locally on each B̃j , the function v we pick from [3] is of the form:

ṽj = ũj + r̃j,

with ũj strictly psh, C∞ on B̃j

∖[
Aj

]
sing

, equal to {−∞} on
[
Aj

]
sing

and with

a remainder r̃j which is C∞ on the whole of B̃j . Notice that each ṽj is L∞
loc.

3.4. Modified strongly (n−1)-convex exhaustion function µ. Pick a con-

stant C > 0 such that maxD (ρ) < C.

Lemma 3.5. There exists ε0 > 0 such that for all ε with 0 < ε 6 ε0, the

function:

µ := ρ+ ε v

is C∞ on Xreg and satisfies:

(a) maxD (µ) < C;

(b) Xsing = {µ = −∞};

(c) µ is strongly (n− 1)-convex in a neighborhood of {ρ 6 C}.

Proof. Property (b) holds provided only that ε <
C−maxD (ρ)

maxD (v)
. Furthermore,

(a) is clear since ρ is C∞ and since Xsing = {v = −∞}. To check (c), we

compute Levi-forms as (1, 1)-forms:

(3.6)
i ∂∂ µ̃j = i ∂∂ ρ̃j + ε i ∂∂ ṽj

= i ∂∂ ρ̃j + ε i ∂∂ ũj + ε i ∂∂ r̃j .

4 i.e. by definition, a function which is locally the sum of a psh function and of a C∞

function, or equivalently, a function v whose complex Hessian i ∂∂ v has bounded negative

part.
5 In addition, a regularized maximum function ([3]) is used to smoothly glue these

different definitions on all finite intersections Aj1 ∩ · · · ∩ Ajm and the formula given here

is exact on a sub-ball C̃j ⊂ B̃j .
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Here, ε i ∂∂ ũj adds positivity to i ∂∂ ρ̃j (since ũj is psh), whereas the neg-

ative contribution due to i ∂∂ r̃j is bounded from below on {ρ 6 2C}, and

consequently, ε > 0 can be chosen small enough so that i ∂∂ µ̃j still has 2
eigenvalues > 0 at every point. �

In the next section, while applying the holomorphic extension procedure

of [19], we shall have to insure that the extensional domains attached to M
from either the outside or the inside cannot go beyond {ρ 6 C}. So we have

to prepare in advance the curvature of the limit hypersurface {ρ = C}∩Xreg.

Enlarging C of an arbitrarily small increment if necessary, we can as-

sume (thanks to Sard’s theorem) that C is a regular value of ρ
∣∣
Xreg

, so that

Λ := {ρ = C} ∩Xreg

is a C∞ real hypersurface of Xreg.

Lemma 3.7. Lowering again ε > 0 if necessary, the following holds:

(d) At every point q of the C∞ real hypersurface Λ = {ρ = C} ∩Xreg,

one can find a complex line Eq ⊂ T c
qΛ on which the Levi-forms of

both ρ and µ are positive.

Here, q 7→ Eq might well be discontinuous, but this shall not cause any

trouble in the sequel.

Proof. Each p ∈ {ρ = C} is contained in some Uj(p), whence ρ is rep-

resented by an ambient function ρ̃j(p) : B̃j(p) → R whose Levi-form has

at least Nj(p) − n + 2 eigenvalues > 0. By diagonalizing the Levi matrix

i ∂∂ρ̃j(p) at the central point of B̃j(p), we may easily define, in some small

open sub-ball C̃j(p) ⊂ B̃j(p) having the same center, a C∞ family q̃ 7→ F̃eq of

complex (Nj(p) − n + 2)-dimensional affine subspaces such that the Levi-

form of ρ̃j(p) is positive definite on every F̃eq , for every q̃ ∈ C̃j(p).

Next, if we set Vj(p) := ϕ−1
j(p)

(
C̃j(p)

)
, which is an open subset of Uj(p),

we can cover the compact set {ρ = C} by finitely many Vj(p), hence there is

a finite number of points pa, a = 1, . . . , A, such that

{ρ = C} ⊂ Vj(p1) ∪ · · · ∪ Vj(pA).

According to (3.6), on each C̃j(pa), a = 1, . . . A, we have:

i ∂∂ µ̃j(pa) = i ∂∂ ρ̃j(pa) + ε i ∂∂ ũj(pa) + ε i ∂∂ r̃j(pa).

We choose ε > 0 so small that the remainder ε i ∂∂ r̃j(pa) does not perturb

positivity on C̃j(pa) for every a = 1, . . .A, and we get that i ∂∂ µ̃j(pa) is still

positive on F̃eq for every q̃ ∈ C̃j(pa), and every a = 1, . . .A.



THE HARTOGS EXTENSION THEOREM ON (n− 1)-COMPLETE COMPLEX SPACES 9

Let q ∈ {ρ = C} ∩ Xreg. Then q ∈ Vj(pa) for some a. We set q̃ :=

ϕj(pa)(q) ∈ C̃j(pa) and we define:

Fq :=
(
d ϕj(pa)

)−1
(
F̃eq ∩ Teq Aj(pa)

)
.

Then the complex linear spaces F̃eq and Fq are at least of dimension 2 and the

Levi-form of µ is positive on any 1-dimensional subspace Eq ⊂ Fq ∩ T c
q Λ.

�

Next, applying Morse transversality theory, we may perturb µ in Xreg ∩
{ρ < 2C} in an arbitrarily small way, so that6:

(e) µ is a Morse function on Xreg ∩ {ρ < 2C} having finitely many or

at most countably many critical points; moreover, different critical

points of µ are located in different level sets {µ = c}.

Of course, if they are infinite in number, critical values can only accu-

mulate at −∞. Similarly, we may perturb ρ very slightly near {ρ = C} so

that:

(f) the C∞ hypersurface {ρ = C} ∩ Xreg does not contain any critical

point of µ.

Finally, again thanks to Morse transversality theory, we may perturb the

connected C∞ hypersurface M ⊂ ∂D of Lemma 3.2 in an arbitrarily small

way so that7:

(g) M does not contain critical points of µ, and µ
∣∣
M

is a Morse func-

tion on M having finitely many or at most countably many critical

points; moreover, any two different critical points of µ or of µ
∣∣
M

have different critical values.

We draw a diagram, where Xsing is symbolically represented as a con-

tinuous broken line having spikes, with a level-set {µ = ĉ} which is critical

for µ
∣∣
M

and a single critical point p̂ ∈ M ∩ {µ = ĉ}.

6 The previous four properties being preserved, especially (d) on {ρ = C}.
7 The perturbed M being still contained in {ρ < C} and in the original connected

corona Ω\K .
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Xsing

Xsing

Fig. 2: The smooth boundary M , a level-set of µ and Xsing

M

bp

{µ = bc} {ρ = C}

{ρ = C}

§4. HOLOMORPHIC EXTENSION TO Dreg

For c ∈ R, we introduce

Xµ>c := {z ∈ X : µ(z) > c}.

This open set is contained in Xreg, since Xsing = {µ = −∞}. For every

connected component M ′
µ>c of

Mµ>c := M ∩Xµ>c = M ∩ {µ > c},

we want to fill in (by means of a finite number of families of analytic discs) a

certain domain Q′
µ>c which is enclosed by M ′

µ>c inside {µ > c}. Similarly

as in Proposition 5.3 of [19], we must consider all the connected compo-

nents M ′
µ>c and analyze the combinatorics of how they merge or disappear.

Let V(M) be a thin tubular neighborhood of M , whose thinness shrinks

to zero while approaching Xsing. For every connected component M ′
µ>c of

Mµ>c, we denote by V
(
M ′

µ>c

)
µ>c

the part of V(M) around M ′
µ>c again

intersected with {µ > c}. It is a connected tubular neighborhood of M ′
µ>c

inside {µ > c}.

Proposition 4.1. Let c ∈ R with c < maxM (µ) < C be any regular

value of µ and of µ
∣∣
M

. Let M ′
µ>c be any nonempty connected compo-

nent of M ∩ Xµ>c. Then there is a unique connected component Q′
µ>c of

Xµ>c

∖
M ′

µ>c which is relatively compact in Xreg and contained in {ρ < C}
with the property that two different domains Q′

µ>c and Q′′
µ>c are either dis-

joint or one is contained in the other. Furthermore, for every holomorphic

or meromorphic function f defined in the thin tubular neighborhood V(M)
of M , there exists a unique holomorphic or meromorphic extension F , con-

structed by means of a finite number of (n−1)-concave Levi-Hartogs figures

and defined in

Q′
µ>c

⋃
V
(
M ′

µ>c

)
µ>c

,

such that F = f when both functions are restricted to V
(
M ′

µ>c

)
µ>c

.
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Proof. We only describe the modifications one must bring to the arguments

of [19].

1) The Levi-form of the compact C∞ boundary {µ = c} of the super-

level set {µ > c} (contained in Xreg) has 1 negative eigenvalue, so that the

Levi extension theorem with analytic discs (cf. the survey [18]) applies at

each point of {µ = c}. In Section 3 of [19], we defined (n − a)-concave

Hartogs figures for 1 6 a 6 n − 1, but we used only 1-concave ones,

because the Levi-form of exterior of spheres {||z|| < r} in C
n had (n − 1)

negative eigenvalues. Here, we start from (n− 1)-concave Hartogs figures,

we modify them similarly as in Section 3 of [19] (details are skipped) and

we call them (n− 1)-concave Levi-Hartogs figures.

Next, we use a finite number of these figures, via some local charts of

Xreg, to cover {µ = c} and to show that holomorphic8 (or meromorphic)

functions in {µ > c} extend to a slightly deeper super-level set {µ > c− η}
(provided no critical point of µ or of µ

∣∣
M

is encountered in the shell {c >

µ > c− η}), for some η > 0 which depends on X , on n, on µ, but not on c.

2) Contrary to the Cn case treated in [19], µ may have critical points on

Xreg. Grauert’s theory shows how to jump across them with ∂ techniques,

and we summarize how we can proceed here9, using only analytic discs in

Levi-Hartogs figures.

Consider a point p̂ ∈ Xreg which is critical: dµ(p̂) = 0, and set ĉ :=
µ(p̂). The Morse lemma provides local real coordinates centered at p̂ in

which µ = x2
1 + · · ·+ x2

k − y21 − · · · − y22n−k, for some k. Since i ∂∂ µ has

at least 2 positive eigenvalues everywhere, k is > 2. This is a crucial fact,

because this implies that super-level sets {µ > ĉ + δ} are all connected10

in a neighborhood of p̂, for every δ ∈ R close to 0, and moreover, that

these domains grow regularly and continuously as δ decreases from positive

values to negative values.

8 Since the configuration is always local and biholomorphic to Cn (n = dimXreg) and

since holomorphic envelopes coincide with meromorphic envelopes in Cn, meromorphic

functions enjoy exactly the same extension properties. Thus, in [19], results stated for

holomorphic functions are immediately true for meromorphic functions too.
9 We emphasize that, from the point of view of holomorphic extension, jumping across

critical points of µ on Xreg is much simpler than jumping across critical points of µ
∣∣
M

, cf.

the Cn case [19].
10 In R3 already, this is true for the “exterior” x2 + y2 − z2 > δ of the standard cone.
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Fig. 3: Filling outside a neighborhood of p̂ and shifting p̂
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2

−k
η
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Next, we fix a ball B̂ centered at p̂ and we cut out a small neighborhood

Û ⊂ B̂ of p̂. If V̂ ⊂ Û is a small neighborhood, we consider the C∞

hypersurface:
{
µ > ĉ+ η

2
}
∖
V̂ .

Placing finitely many (n− 1)-concave Levi-Hartogs figures at points of this

hypersurface, we get holomorphic or meromorphic extension to
{
µ > ĉ −

η

2

}∖
V̂1, where V̂1 ⊂ V̂ is slightly bigger than V̂ . Repeating the filling

process finitely many times until
{
µ = ĉ− kη

2

}
does not intersect B̂, where k

is an odd integer, we fill in B̂
∖
Û . At each step, monodromy of the extension

is assured thanks to connectedness of
{
µ > ĉ + δ

}∖
Û , for every small

δ ∈ R. However, we cannot fill in Û directly this way.

The trick is to shift p̂. One introduces a C∞ perturbation µ′ of µ local-

ized near p̂ (namely µ′ = µ elsewhere) such that µ′ has another critical point

p̂′ (having the same Morse index of course), with corresponding neighbor-

hoods disjoint: Û ∩ Û ′ = ∅ and both contained in B̂ ∩ B̂′. We repeat the

Levi-Hartogs filling with µ′, getting holomorphic or meromorphic extension{
µ′ > ĉ − k′ η

2

}∖
Û ′, a domain which contains B̂′

∖
Û ′, hence contains Û .

Monodromy is again well controlled, just because topologically, B̂
∖
Û and

B̂′
∖
Û ′ are complete shells.

3) We prove the proposition by decreasing c. Provided c does not cross

critical values of µ
∣∣
M

, the domains Q′
µ>c do grow regularly and continu-

ously, even when c crosses critical values of µ, according to what has been

said just above. At a critical value ĉ of µ
∣∣
M

, for a domain Qµ>bc whose clo-

sure contains the corresponding unique critical point p̂ ∈ M , similarly as

in [19], three cases may occur:

(i) the domain Q′
µ>bc+δ grows regularly and continuously as δ decreases

in a neighborhood of 0;
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(ii) precisely when δ becomes negative, the domain Q′
µ>bc+δ is merged

with a second domain Q′′
µ>bc+δ whose closure also contains p̂ for δ =

0 (the case of three domains or more never occurs);

(iii) the domain Q′
µ>bc+δ is contained in a bigger domain Q′′

µ>bc+δ for all

small δ > 0, and exactly at δ = 0, the closure of the domain Q′
µ>bc is

subtracted from Q′′
µ>bc, yielding a new domain Q′′′

µ>bc which starts to

grow regularly and continuously as Q′′′
µ>bc+δ for small δ < 0.

We then check by decreasing induction on c that such domains are rela-

tively compact and are either disjoint or one is contained in the other, and we

achieve extension by means of (n − 1)-concave Levi-Hartogs figures simi-

larly as in [19]. But here, a single fact remains to be established, namely that

the domains Q′
µ>c remain all contained inside the relatively compact region

{ρ < C}.

This is true at the beginning of the filling process, namely for c slightly

smaller than maxM (µ), because Mµ>c is then diffeomorphic to a small

spherical cap (hence connected) and the relatively compact domain enclosed

by Mµ>c in Xµ>c

∖
Mµ>c is just the piece Dµ>c of D, which is diffeomorphic

to a thin cut out piece of ball close to M and clearly contained in {ρ < C},

since D ∪M ⊂ {ρ < C} by (a).

To prove that all Q′
µ>c are contained in {ρ < C}, we proceed by con-

tradiction. Let c∗ be first c (as c decreases) for which some Q′
µ>c is not

contained in {ρ < C}. In the process described above of constructing the

domains Q′
µ>c, the only discontinuity occurs in (iii) and it consists of a sup-

pression. Consequently, the domains Q′
µ>c cannot jump discontinuously

across {ρ = C}, hence at c = c∗ (which might be either critical or noncriti-

cal), all Q′
µ>c∗ are still contained in {ρ 6 C} and the boundary of at least one

domain, say Q∗
µ>c∗ , touches the C∞ border hypersurface {ρ = C} ∩Xreg.

Fig. 4: Tangent contact of the boundary of Q∗

µ>c∗ with {ρ = C}

{ρ = C}

{ρ = C}

Xsing

M

M

p∗

Xsing

{µ = c∗}

N∗

c∗

Q∗

µ>c∗

R∗

c∗

Xsing

On the other hand, by definition and by construction, for each c, the

boundary of each Q′
µ>c consists of two parts: M ′

µ>c, which is contained in

M , hence remains always in {ρ < C}, together with a certain closed region

R′
µ=c ∪ N ′

µ=c contained in {µ = c}, with R′
µ=c open and N ′

µ=c being the

boundary in {µ = c} of R′
µ=c. In fact, similarly as in Section 5 of [19],
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R′
µ=c is always contained in {µ = c}

∖
M and N ′

µ=c, always contained in

M ∩ {µ = c} is a C∞ real submanifold of Xreg of codimension 2 provided

c is noncritical for µ
∣∣
M

, while N ′
µ=c may have as a single singular (corner)

point p̂ for c = p̂ critical. But since N ′
µ=c is a subset of M ∩ {µ = c}, it is

always contained in {ρ < C}.

Consequently, the boundary of Q∗
µ>c∗ can touch {ρ = C} only at some

point p∗ ∈ R∗
µ=c∗ . So we have µ(p∗) = c∗ and ρ(p∗) = C, namely p∗ lies in

{µ = c∗} and on the C∞ hypersurface {ρ = C}.

By (f) above, p∗ ∈ {ρ = C} cannot be a critical point of µ, whence

{µ = c∗} and {ρ = C} are both C∞ real hypersurfaces passing through p∗.
Furthermore, {µ > c∗} is still contained in {ρ 6 C}, by definition of c∗,
whence Tp∗{ρ = C} = Tp∗{µ = c∗}.

Thanks to (d), there is a complex line

Ep∗ ⊂ T c
p∗{ρ = C} = T c

p∗{µ = c∗}

on which the Levi-forms of both ρ and µ are positive definite. On the other

hand, since {−µ < −c∗} is contained in {ρ < C}, the Levi-form of −µ
in the direction of Ep∗ should then be > the Levi-form of ρ in the same

direction. This is a contradiction, and the proof that all Q′
µ>c remain in

{ρ < C} is completed. This finishes our proof of Proposition 4.1. �

4.2. End of proof of Proposition 2.3. As in Section 2 of [19], one checks

that extension holds from
[
Ω\K

]
reg

to Ωreg provided holomorphic or mero-

morphic functions defined in the thin tubular neighborhood V(M) of M ⊂
Xreg do extend uniquely to Dreg

⋃
V(M). So we work with M , V(M) and

Dreg, and since everything is exhausted as c → −∞, the conclusion of the

proof of Proposition 2.3 is an immediate consequence of the following.

Proposition 4.3. For every regular value c > −∞ of µ
∣∣
M

, holomorphic

or meromorphic functions defined in V(M) do extend holomorphically or

meromorphically and uniquely to

Dµ>c

⋃
V
(
Mµ>c

)
µ>c

.

Proof. We set c1 := maxM(µ) = maxD(µ) < C. There is a unique “µ-

farthest point” p1 ∈ M with µ(p1) = c1 and this point is obviously a critical

point of Morse index equal to −(2n − 1) for µ
∣∣
M

, by virtue of (g). Conse-

quently, for all c < c1 close to c1, there is a single connected component in

Mµ>c, namely Mµ>c itself, which is diffeomorphic to a small spherical cap

and encloses the domain Dµ>c, diffeomorphic to a thin cut out piece of ball.

For such c < c1 close to c1, the proposition is thus a direct consequence of

the previous Proposition 4.1.

For arbitrary noncritical c, there is a well defined connected component

M1
µ>c of Mµ>c with p1 ∈ M1

µ>c, and we denote by M2
µ>c, . . . ,M

k
µ>c the other
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connected components of Mµ>c. Also, each connected component D∼
µ>c of

Dµ>c is bounded by some of the M j
µ>c, inside {µ > c}. The problem is that

the various extensions provided by Proposition 4.1 need not stick together,

but fortunately, we can go to deeper super-level sets {µ > c′}.

Lemma 4.4. For every c′ with −∞ < c′ 6 c which is noncritical for µ
∣∣
M

,

the µ-farthest point p1 belongs to a unique connected component M ′
µ>c′ of

M∩{µ > c′} and the enclosed domain Q′
µ>c′ constructed by Proposition 4.1

contains D in a neighborhood of p1.

Proof. Indeed, if this were not true, there would exist the first c′ = c∗ (as

c′ 6 c decreases) for which Q′
µ>c′ switches to the other side of M near p1.

According to the topological combinatorial processus (i), (ii), (iii) above,

this could only occur in case (iii) with c∗ critical, where a component is

suppressed from a bigger one Q′′
µ>c∗ bounded by some M ′′

µ>c∗ , the sup-

pressed component necessarily being Q′
µ>c∗ itself. Then the bigger com-

ponent Q′′
µ>c∗ would contain the side of M which is exterior to D near p̂1,

whence

c′′1 := max
{
µ(q) : q ∈ M ′′

µ>c∗

}

would necessarily be > c1, which contradicts c1 = maxM (µ). �

Fig. 5: Filling deeper and connecting the components Mk
µ>c

Dµ>c

p1

Dµ>c

γ♯γ♯

M

M

{ρ = c}

{ρ = c′}

Next, since M is connected (according to Lemma 3.2), we can pick

a C∞ Jordan arc γ running in M which starts at p1 and visits every other

connected component M2
µ>c, . . . ,M

k
µ>c of Mµ>c. Since γ is compact, there

is a noncritical c′ > −∞ such that γ ⊂ {µ > c′}. Fix such a c′ and denote

by M ′
µ>c′ the connected component of M ∩ {µ > c′} to which p1 belongs.

Then let Q′
µ>c′ be as in Lemma 4.4.

Lemma 4.5. The domain Q′
µ>c′ contains Dµ>c.

Proof. Near p1, this domain already contains a piece of D thanks to

Lemma 4.4. From the beginning, M is oriented, since it bounds the do-

main D. Thus, we can push γ slightly inside D, getting a curve γ♯ almost

parallel to γ which is entirely contained in D, and also contained in {µ > c′}
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if the push is sufficiently small. Furthermore, γ♯ is also entirely contained in

Q′
µ>c′ , because the extensional domain Q′

µ>c′ is, at least near p1, located on

the same side (with respect to M) as D.

Let D∼
µ>c be any connected component of Dµ>c. By construction, γ♯

visits D∼
µ>c. Thus, every point of D∼

µ>c may be joined to some point of γ♯

by means of some auxiliary C∞ curve running in D∼
µ>c. All such auxiliary

curves do not meet M , hence they do not meet M ′
µ>c′ , whence they all run

in Q′
µ>c′ . Consequently, by means of γ♯ and of the auxiliary curves in each

D∼
µ>c, we may connect, without crossing M even once, every point of Dµ>c

with the starting point of γ♯, contained in Q′
µ>c′ near p1. Thus Dµ>c is

effectively contained in Q′
µ>c′ . �

To conclude, an application of Proposition 4.1 yields unique extension

to Q′
µ>c′

⋃
V
(
M ′

µ>c′

)
µ>c′

, and by plain restriction, we get unique extension

to Dµ>c

⋃
V
(
Mµ>c

)
µ>c

.

This completes the proofs of Propositions 4.3 and 2.3. �

§5. MEROMORPHIC EXTENSION ON NONNORMAL COMPLEX SPACES

5.1. An example. To see that the weaker assumption that Ω\K is connected

does not suffice, we consider X = C2/
(
(−1, 0) ∼ (+1, 0)

)
, the euclidean

C2 with two points identified. If we define the structure sheaf by OC2,z at

all single points and by OC2,± =
{
(f, g) ∈ OC2,−1 × OC2,1 : f(−1, 0) =

g(+1, 0)
}

at the double point (±1, 0), the space
(
X,OX

)
is reduced and

modelled near (±1, 0) on {(z, w) ∈ C2 × C2 : z = w}. This makes it

easy to check that the function |z1 + 1|2 + |z1 − 1|2 + |z2|
2 descends to a

1-convex exhaustion of X via the quotient projection π : C2 → X . Letting

Ω := X and K := π
(
{|z1+1|2+|z2|

2 = 1}
)
, we see that Ω\K is connected.

Furthermore, O(Ω\K) consists of all functions holomorphic in C2
∖{

|z1 +

1|2 + |z2|
2 = 1

}
which satisfy f(−1, 0) = f(+1, 0). Then obviously, the

conclusion of Theorem 2.4 does not hold.

5.2. Proof of Theorem 2.4. To begin with, we observe that Proposition

2.3 carries over without change to the more general setting of Theorem

2.4: indeed, thanks to the connectedness of [Ω\K]reg, we may construct

M and D as in Lemma 3.2; the construction of an almost psh function v
with Xsing = {v = −∞} holds without assumption of normality ([3]), and

then Propositions 4.1 and 4.3 do go through (notice that both Ω\K and Ωreg

are connected). Thus MX(Ω\K) extends uniquely as MX

(
Ωreg ∪ [Ω\K]

)
,

holomorphicity being preserved.

Extension across Ωsing∩K is slightly more complicated than in the nor-

mal case due to the fact that Ωsing may have components of codimension one.
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Let π : X̂ → X be the normalization of X . Let Xnorm be the set of the nor-

mal points of X . Recall that π restricts to a biholomorphism on π−1(Xnorm).
Topologically, π is a local homeomorphism over irreducible points of X
and separates the irreducible local components at reducible points. For ev-

ery open U ⊂ X , setting Û = π−1(U), we have a canonical isomorphism

π∗ : MX(U) → M bX
(Û) ([8], p. 155). Hence it is enough to extend from

M bX

(
Ω̂\L

)
to M bX

(Ω̂), where Ω̂ := π−1(Ω) and L := π−1
(
Ωsing ∩K

)
.

By the Levi extension theorem, we can extend through all points of

z ∈ L with dimz π
−1(Ωsing) 6 n − 2. Let H be an irreducible compo-

nent of Ωsing of codimension one. Since dim Ω̂sing 6 n − 2, it follows

that Ĥ ′ := π−1(H) ∩ Ω̂reg is dense, open and connected in Ĥ = π−1(H).
Because X is (n − 1)-convex, it cannot contain any compact analytic hy-

persurface according to Lemma 5.3 just below, and H has to intersect Ω\K.

For dimensional reasons, Ĥ ′ intersects
[
π−1(Ω\K)

]
reg

, and we can apply

the following version of the Levi extension theorem for complex manifolds

([9]): Let Y be an analytic subset of a complex manifold of M of codimension

at least one. If U ⊂ M is a domain containing M\Y and intersecting each

irreducible one-codimensional component of Y , then holo-
/

meromorphic

functions on U extend holo-
/

meromorphically to M .

The remaining part of the singularity lies in Ω̂sing and can be removed

by the Levi extension theorem. If the original function on Ω\K is holo-

morphic, the extension on Ω̂ is so too, and its push-forward to Ω is weakly

holomorphic. The proof of Theorem 2.4 is complete. �

Lemma 5.3. An (n− 1)-convex complex space X of pure dimension n can-

not contain any analytic hypersurface Y which is compact.

Proof. Let ρ be an (n − 1)-convex exhaustion function. Let
(
Uj

)
j∈J

be a

locally finite covering of X by open subsets which can be embedded onto

analytic subsets Aj of euclidean domains B̃j ⊂ CNj such that the push-

forward of ρ extends as an (n − 1)-convex function ρ̃j ∈ C∞
(
B̃j

)
. By an

inductive deformation of ρ, we may arrange that all ρ̃j can be chosen to be

Morse functions without critical points on Aj .

If there is a compact analytic hypersurface Y ⊂ X , then ρ|Y attains a

global maximum at some point z0 ∈ Y . We can assume that z0 lies in some

ball B̃j , we denote by Ej ⊂ Aj ⊂ B̃j ⊂ CNj the local representative of

Y and we drop the index j, because the rest of the argument is local. By

construction
{
z : ρ̃(z) = ρ̃(z0)

}
is a smooth (n− 1)-convex real hypersur-

face such that E ⊂ {ρ̃ 6 ρ̃(z0)}. Bending this hypersurface a little, we can

arrange that E is in fact contained in {ρ̃ < ρ̃(z0)}∪{z0} near z0. By (n−1)-
convexity of ρ̃, there is a piece Λ of a small (N − n + 1)-dimensional com-

plex plane passing through z0 and contained in the complex tangent plane
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T c
z0
{ρ̃ = ρ̃(z0)} on which the Levi-form i ∂∂ρ̃ is positive. Thus Λ is con-

tained in {ρ̃ > ρ̃(z0)} ∪ {z0} and has a contact of order exactly two with

{ρ̃ = ρ̃(z0)} at z0. Furthermore, if we pick a nonzero vector v ∈ Tz0C
N

which points into {ρ > ρ(z0)}, the translates Λǫ := Λ + ε v do all lie in

{ρ > ρ(z0)} for every small ε > 0, whence Λε ∩ E is empty. But given that

Λ0 ∩ Y = {z0} 6= ∅, this contradicts the persistence, under perturbation, of

the intersection of two complex analytic sets of complementary dimensions

in CN . The lemma is proved. �
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