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This perspective article introduces the Harvard Clean Energy Project (CEP), a theory-driven
search for the next generation of organic solar cell materials. We give a broad overview of its setup
and infrastructure, present first results, and outline upcoming developments.

CEP has established an automated, high-throughput, in silico framework to study potential
candidate structures for organic photovoltaics. The current project phase is concerned with the
characterization of millions of molecular motifs using first-principles quantum chemistry. The scale
of this study requires a correspondingly large computational resource which is provided by dis-
tributed volunteer computing on IBM’s World Community Grid. The results are compiled and
analyzed in a reference database and will be made available for public use. In addition to finding
specific candidates with certain properties, it is the goal of CEP to illuminate and understand the
structure-property relations in the domain of organic electronics. Such insights can open the door
to a rational and systematic design of future high-performance materials. The computational work
in CEP is tightly embedded in a collaboration with experimentalists, who provide valuable input
and feedback to the project.

I. INTRODUCTION

The sun is an abundant source of energy and its in-
put on earth exceeds the global consumption by 4 orders
of magnitude. It is hence an obvious alternative to fos-
sil or nuclear energy supplies and will play an important
role in safely and sustainably covering the rising demands
of the future [1–4]. The current cost of electricity from
commercial silicon-based solar cells is unfortunately still
around 10 times higher than that of utility-scale electri-
cal power generation [5, 6]. These traditional inorganic
photovoltaics come with further shortcomings, such as a
complicated and energy-intensive manufacturing process
which leads to high production costs. They can also con-
tain rare or hazardous elements, and the devices tend to
be heavy, bulky, rigid, and fragile.

Carbon-based solar cells have emerged as one of the
interesting alternatives to this conventional technology
[7–9]. Organic photovoltaics (OPVs) range from crys-
talline small molecule approaches [10–12] and certain
dye-sensitized Grätzel cells [13] to amorphous polymers
(plastics) [14, 15]. OPVs have great potential in two im-
portant areas: they promise simple, low-cost, and high-
volume production [16] as well as the prospect of merging
the unique flexibility and versatility of plastics with elec-
tronic features. OPVs can be processed via roll-to-roll
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printing [17, 18]; there is active research in sprayable
and paintable materials [19–22]; OPVs can be semi-
transparent [23], variously colored [24], they are light-
weight [14], and can essentially be molded into any shape
[25]. These properties make OPVs a promising candi-
date to achieve the ubiquitous harvesting of solar en-
ergy [26, 27], with building-integrated [28–30] and ultra-
portable applications [31–33] as primary targets. The
Equinox Summit international committee, for example,
recently suggested the use of OPVs for the basic electri-
fication of 2.5 billion people in rural areas without access
to the power grid [34].

There are, however, still significant issues to overcome
in order to make plastic solar cells a viable technology
for the future. The cardinal problems are their relatively
low efficiency and limited lifetime [35, 36]: the power
conversion record has only reached 9.2% [37] and current
materials still degrade when exposed to the environment
[38–41]. An increase in efficiency to about 10-15% in
combination with lifetimes of over 10 years (for produc-
tion materials) could push the power generation costs
of OPVs below that of other currently available energy
sources [42, 43].

In 2008, we started the Harvard Clean Energy Project
(CEP) [44] to help find such high-efficiency OPV mate-
rials. This perspective article gives a general overview
of CEP and provides the context for a series of detailed
technical and result-oriented papers to follow. In Sec.
II we introduce the motivation and overall setup of the
project, followed by a presentation of its different com-
ponents: Sec. IIA discusses our OPV candidates library,
Sec. II B the use of cheminformatics descriptors to rapidly
assess the potential of these candidates, and Sec. II C is
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focused on the high-level calculation hierarchy in CEP.
Sec. IID is concerned with the calibration of the obtained
results. The CEP database is introduced in Sec. II E and
the World Community Grid (WCG) – our primary com-
putational resource – in Sec. II F. Throughout Sec. II
we also indicate the next stages and extensions to the
current setup. We summarize our discussion in Sec. III.

II. THE HARVARD CLEAN ENERGY PROJECT

The key parameters for the improvement of OPVs are
essentially known, however, engineering materials which
combine all these features is a hard problem [45–49]. Tra-
ditional experimental development is largely based on
empirical intuition or experience within a certain fam-
ily of systems, and only a few examples can be studied
per year due to long turnaround times of synthesis and
characterization [50]. Theoretical work is usually also re-
stricted to a small set of candidates for which different
aspects of the photovoltaic process are modeled [51–53].

The Clean Energy Project stands out from other com-
putational materials science approaches as it combines
conventional modeling with strategies from modern drug
discovery [54–61]: CEP features an automated, high-
throughput infrastructure for a systematic screening of
millions of OPV candidates at a first-principles electronic
structure level [62]. It also adopts techniques from chem-
informatics [63, 64] and heavily relies on data mining
[65, 66]. Pioneering work on cheminformatics-type ap-
proaches and massive electronic structure calculations
was, e.g., performed by Rajan et al. [67–69] and Ceder
et al. [70], respectively, in the context of inorganic solids.
An in silico study combining the scale and level of theory
found in CEP is, however, unprecedented.

FIG. 1: Structure and workflow of CEP.

As the starting point for CEP we have chosen to in-
vestigate the molecular motifs at the heart of OPV ma-
terials [45, 71]. A suitable motif is a necessary condi-
tion for a successful OPV development. Only a limited

number of structural patterns have been explored so far,
while the endless possibilities may well hold the key to
overcoming the current material issues. We emphasize
that a promising molecular structure is not a sufficient

condition though, as condensed matter and device con-
siderations have to be addressed as well. CEP is set up
with a calculation hierarchy in which we will successively
characterize relevant electronic structure aspects of our
OPV candidates. Eventually, we will go beyond single
molecule, gas-phase studies and consider intermolecular
and bulk phase problems.

In addition to the search for specific structures with
a desired set of properties, we also try to arrive at a
systematic understanding of structure-property relation-
ships [72–75]. Learning about underlying design princi-
ples is the key to moving from a screening effort towards
an active engineering of novel organic electronics [76, 77].

While its centerpiece is the in silico study of OPV can-
didates, we point out that an overarching theme of CEP
is also the tight integration of experimental and theoreti-
cal work. The project is in part guided by inputs from ex-
perimentalist collaborators (in particular the Bao Group
at Stanford University), and our most promising candi-
dates are subject to in-depth studies in their laboratories
[78]. CEP is designed as a community tool and we invite
and welcome joint ventures.

Fig. 1 summarizes the overall structure and workflow of
CEP, and in the following sections we discuss its various
components.

A. Molecular candidate libraries

The molecular structure of essentially all organic elec-
tronic materials features a conjugated π-backbone [79].
Modern semiconducting compounds are often composed
of linked or fused (hetero-)aromatic scaffolds [80].

We have developed a combinatorial molecule gen-
erator to build the primary CEP library. It con-
tains ∼10,000,000 molecular motifs of potential inter-
est (∼3,600,000 distinct connectivities, each with a set
of conformers) which cover small molecule OPVs and
oligomer sequences for polymeric materials. They are
based on 26 building blocks and bonding rules (see Fig.
2) which were chosen following advice from our experi-
mental collaborators considering promise and feasibility.
The fragments were linked and fused up to a length of
4-5 units according to the given rules. The generator is
graph-based and employs a SMILES (simplified molec-
ular input line entry specification) [81] string represen-
tation of the molecules as well as SMARTS (SMILES
arbitrary target specification) in its engine. It is built
around Marvin Reactor [82], and the Corina code [83]
provides force-field optimized 3-dimensional structures.
A detailed description of the library generator is in prepa-
ration.

The construction of the primary library was tailored
towards OPV donor candidates, but the obtained struc-
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FIG. 2: The 26 building blocks used for generating the CEP
molecular library. The Mg atoms represent chemical handles,
i.e., the reactive sites in the generation process. We introduce
simple links between two moieties (by means of substituting
two Mg for a single C-C-bond) as well as the fusion of two
rings.

tures are of interest for organic electronics in general
[84, 85]. Our generator approach is flexible and can read-
ily produce additional libraries (e.g., geared towards ac-
ceptor materials or Grätzel cell dyes) by using a differ-
ent set of fragments and connection rules. Substituents
can be incorporated in a similar fashion. Combinatorial
libraries allow for an exhaustive and systematic explo-
ration of well defined chemical spaces, but the number
of generated molecules grows exponentially. At a later
stage we plan to use a genetic algorithm [86–90] as a
complement to the current approach [62]. The fitness
function will be based on the information gathered from
the screening of the primary library. Finally, CEP also
provides the facility (e.g., to collaborators) to manually
add structures to the screening pool.

B. Cheminformatics descriptors

While the main objective of CEP is the first-principles

characterization of OPV candidates, we also explore the
use of cheminformatics descriptors [91, 92] and ideas from
machine learning [93, 94], pattern recognition [95, 96],
and drug discovery [54, 56, 64] to rapidly gauge their
quality. We have devised descriptor models for param-
eters such as the short-circuit current density (Jsc), the
open-circuit voltage (Voc), and the power conversion ef-
ficiency (PCE). Our models are the first step in a suc-
cessive ladder of approximations for these key quantities
associated with photovoltaic performance.

The basic strategy behind this approach is to identify

and exploit correlations between certain physicochemical
or topological descriptors and the properties of interest.
Suitable descriptors are combined into models which are
then empirically parametrized using a training set of ex-
perimentally well-characterized reference systems. As de-
scriptors are easily computed, we can quickly (i.e., within
a few days on a single workstation) obtain an initial as-
sessment and preliminary ranking of the entire molecular
library.

In Fig. 3 we present the linear regression model for Voc

along with the histogram of the calculated values for the
molecular library. We note that our model for Voc shows
a very good correlation. This can be rationalized con-
sidering the principle dependence of Voc on intramolecu-
lar properties which are apparently well reflected in the
employed molecular descriptors. The Jsc model behaves
similarly well although Jsc is also linked to bulk effects.
For the fill factor – a quantity primarily determined by
morphology and device characteristics – we could in con-
trast only obtain poor models.

The early stages of this work [97] utilized descriptors
from the Marvin code by ChemAxon [82] and for the
modeling we employed the R statistics package [98]. Re-
cently, we started using the more comprehensive descrip-
tor set from Dragon [99] and the specialized modeling
code StarDrop [100]. A focus of our current work is to
utilize the quantum chemical results discussed in the fol-
lowing section as a descriptor basis in our models.

As in biomedical applications of cheminformatics, we
do not expect quantitative results, but this technique can
yield valuable trends which we use to prioritize and prune
the high-level screening and to uncover molecular motifs
of particular interest. In Ref. [97] we give an introduc-
tion to this approach with a detailed discussion of the
systematic construction and optimization of descriptor
models.

C. First-principles screening hierarchy

Electronic structure theory offers a way to probe the
properties of OPV materials and the photophysical pro-
cesses in organic solar cells [101, 102]. The complexity
of these problems, however, poses severe methodological
challenges. Multi-scale simulations have improved con-
siderably in recent years [51, 103], but in practice we still
commonly choose to model, approximate, or deduce the
different aspects of the problem separately. CEP adopts
such a divide-and-conquer approach and combines it with
a calculation hierarchy to screen for promising material
candidates. This multi-level setup is designed to succes-
sively address the relevant issues in OPVs and provide
results at an increasing level of theory. At each stage,
the candidates are rated with respect to the investigated
parameters. The scoring is freely customizable to reflect
different research priorities. The most promising can-
didates and related structures from the library receive
priority in the CEP hierarchy and their characterization
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FIG. 3: Top: Linear regression model for Voc with the training
set data. Bottom: Histogram of the projected Voc values in
the molecular library with the position of the training set
marked in green (with arbitrary height). See Ref. [97] for
details.

is expedited. On the other hand, if a candidate is unfit
with respect to a tested criterium and hence unlikely to
be successful overall, it has lower priority and may be
characterized in less detail.

The early CEP stages concentrate on various molecular
properties of our material candidates and are hence most
useful to assess macroscopic quantities which primarily
depend on them, such as the Voc. The later stages will
shift the focus to intermolecular and condensed phase
characteristics. The latter are central to, e.g., exciton
and charge transport processes [46, 51, 52, 104–106], for
which molecular properties alone are clearly of limited
value. Bulk structure considerations impact quantities
like the external quantum efficiency and thus Jsc as well
as the overall PCE. Since the cost and complexity of such
studies increase significantly, they can only be performed
for a subset of highest rated candidates.

In the first CEP phase, we perform a set of den-
sity functional theory (DFT) calculations [108, 109] em-
ploying the BP86 [110, 111], B3LYP [110, 112, 113],

PBE0 [114–119], BH&HLYP [110, 112, 120], and M06-2X
[121, 122] functionals as well as Hartree-Fock (HF) the-
ory in combination with the single-ζ STO-6G [123, 124],
double-ζ def2-SVP, and triple-ζ def2-TZVP [125] basis
sets. We test and compare both restricted and spin-
polarized settings. Our selection of functionals covers
both generalized gradient approximation (GGA) and hy-
brid designs with a progression in the amount of exact
exchange [113] (BP86 and HF can be seen as the limit-
ing cases). The latter has a systematic influence on or-
bital localization and thus eigenvalues [126]. The GGA
BP86 is a cost effective way to obtain good geometries,
B3LYP is arguably the most widely used functional in
molecular quantum mechanics, PBE0 has shown favor-
able performance in a variety of areas, as has the highly
parameterized M06-2X. (We will further test meta-GGAs
like TPSS [127] and double-hybrids like B2PLYP [128]
when they become available for CEP.) This range of
model chemistries was chosen to put our analysis on a
broader footing, but also to assess the performance of
the different theoretical methods [109]. In total, each
molecule is characterized by a BP86/def2-SVP geometry
optimization and 14 single-point ground state calcula-
tions. We obtain geometries, total energies (including
their decomposition into different contributions), molec-
ular orbitals (MOs) and their energy eigenvalues, elec-
tron and spin densities, electrostatic potentials, multipole
moments, Mulliken [129, 130] and natural populations
[131, 132], as well as natural atomic, localized molecu-
lar, and bond orbital analysis [133–135] for the different
model chemistries [136].

These basic electronic quantities can be used as a first
approximation to the following points. The MO energies
and their differences can be related to ionization poten-
tials, electron affinities, gaps, and partial density of states
(we note that the application of Koopmans’ theorem is
problematic in DFT) [126, 137–142]. The electronic lev-
els have to be tuned for an efficient light absorption, for
the necessary interplay between donor, acceptor, and lead
materials, as well as for atmospheric stability [45]. The
delocalization of the frontier orbitals can be associated
with (intramolecular) exciton and charge carrier mobility
[143–147]. Their spatial overlap indicates the transition
character and probability of the corresponding excitation
[148–150]. Excess spin densities reflect the inadequacy of
simple closed-shell solutions and can also point to a com-
plex and potentially unstable electronic situation [151].
Charge maps can identify chemically unstable sites in
these highly unsaturated molecules as well as patterns
which may have an impact on their packing in the con-
densed phase. The molecular multipole moments can
correspondingly be correlated to the organization in the
bulk structure and also to transport properties [152–155].
The wavefunction analysis techniques are of interest for
the study of structure-property relations. The obtained
data can furthermore be utilized as quantum chemical
descriptors for the models described in Sec. II B. The
results of a consecutive oligomer series can be used to
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FIG. 4: (a-e) Distribution of CEP hits in the gap-LUMO plane suggested by Scharber et al. [107]. Note that the density plots are
on a logarithmic scale, and the red entries correspond to O(10,000) compounds and O(150,000) individual electronic structure
calculations; (a) and (b) show the raw data from BP86/def2-SVP and BP86/def2-SVP//HF/def2-SVP (i.e., calculations which
incorporate 0% vs. 100% exact exchange), respectively; (c) and (d) display the corresponding data after preliminary calibration;
(e) shows the OPV relevant parameter space with the 10% PCE region (with respect to a PCBM acceptor). About 0.3% of the
screened compounds fall in this high-efficiency region; (f) indicates the dynamic gap range, i.e., the range of available LUMO
energies given a particular HOMO and vice versa; (g) displays the PCE histogram according to the Scharber model, and (h)
the dipole moment histogram; (e-h) are all at BP86/def2-SVP//PBE0/def2-TZVP level of theory (calibrated).

extrapolate to the polymer limit [156–159].

One example for how this basic information can be
employed is the model developed by Scharber et al. in
Ref. [107]. The authors assume (based on observations
on actual OPV materials) that condensed matter aspects
in such systems can be tuned to a certain viable level
(i.e., a fill factor and external quantum efficiency of each
65% can be achieved). If that is the case, their PCE
can be approximated using only gap and lowest unoc-
cupied molecular orbital (LUMO) energy values. This
model can readily be applied to the current CEP data as
shown in Fig. 4. Our preliminary analysis reveals that
only about 0.3% of the screened compounds (i.e., between
5,000-9,000 depending on the model chemistry) have the
necessary energetic levels to realize OPVs with 10% or
higher efficiency. This underscores the importance of
carefully selecting the compounds to be synthesised and
tested, and at the same time the value of the fast the-
oretical characterization and extensive search that CEP
can provide towards this task. An unaided search has
only a small chance of success, while CEP finds several
thousand suitable structures. Fig. 4 also displays the
dynamic gap range and dipole moment distribution of
the screened candidates as examples for the wide range
of electronic properties found in the CEP library. This
versatility will be vital to a successful discovery of mate-
rials with specifically adjusted features (e.g., for different
acceptors or tandem devices [160]).

We again emphasize that this first phase of CEP only

addresses a subset of the important material issues [161]
and has the inherent accuracy of the employed model
chemistries and calibrations, if taken at face value. There
are, however, four factors that add considerable value to
these calculations: i) we correlate the computed results
to actual experimental quantities to provide insights into
their relationship; ii) we use the electronic structure data
as a source for new cheminformatics descriptors, which
will put our modeling efforts on a more physical founda-
tion; iii) the analysis of the aggregated data from millions
of molecules in combination with structural similarity
measures can reveal guiding trends, even if the absolute
result for an individual candidate might be inaccurate
due to a particular limitation of its electronic structure;
iv) by employing a variety of different model chemistries,
we compensate for the chance of such a failure in any
particular method. We do not rely on any single result
but use a composite scoring with many contributions.

The calculations allow for the elimination of unfit
candidates and provide a first set of predictions for
promising structural trends. For these we can carry
out the subsequent levels of increasingly more sophisti-
cated calculations which are planned as following: we
will calculate i) vibrational spectra and partition func-
tions to gauge phonon-scattering and trapping in vibra-
tional modes [162, 163]; ii) anionic/cationic states for
improved electron affinity/ionization potential values; a
Dyson orbital analysis [164] can improve our insights
into the charge transfer processes [165]; iii) optimized
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geometries in the ionic states to deduce the reorgani-
zation during charge migration [163]; iv) triplet states
and gaps to indicate potential for singlet fission pro-
cesses [166]; v) linear response properties to assess the
charge mobility [167, 168]; vi) excited states employ-
ing the maximum overlap method [169] and/or (range-
separated) time-dependent DFT [170, 171] with an elec-
tron attachment/detachment density [172] and natural
transition orbital analysis [173] for a more sound descrip-
tion of the absorption process. Each higher level result
can be used to assess the interpretations at the lower
levels. Further studies could involve the calculation of
transfer integrals between oligomer pairs [163], packing
and interactions in the bulk phase, as well as the use
of high-level wavefunction theory for more reliable re-
sults in complicated bonding situations. We also want
to consider the opposite approach, i.e., how well sim-
ple semiempirical and model Hamiltonian calculations
(which are popular in other communities) perform com-
pared to first-principles DFT [101, 174]. Possible stages
of the CEP hierarchy were recently vetted in a successful
proof-of-principle study: we predicted exceptional charge
mobility in a novel organic semiconductor and this pre-
diction could be confirmed experimentally [78]. We also
used quantum chemical calculations in an earlier study
to explain the observed mobility values in another system
[175].

D. Empirical result calibration

To bridge the gap between theory and experiment, we
have introduced an empirical calibration of the compu-
tational results. Such a calibration is a pragmatic way
to approximately account and correct for differences in
experimental and theoretical property definitions, as well
as in vacuo vs. bulk, and oligomer vs. polymer results.

We have established the organic electronics 2011
(OE11) training set of experimentally well-characterized
organic electronic materials for the calibration and
aligned the theoretical findings with the correspond-
ing data from experiment. The current calibration is
largely based on data from bulk-heterojunction setups
with PCBM as acceptor and introduces a corresponding
bias. A different focus can be chosen provided appropri-
ate reference data. The use of training sets is a common
technique in other areas of quantum chemistry [121, 176].
The details of this work will be presented elsewhere. A
preliminary calibration of the current CEP results was
used in the analysis shown in Fig. 4, and panels (a-d) in
particular demonstrate the success of this approach.

E. Database and data mining

The results of all calculations are used to build up a
reference database – the Clean Energy Project Database
(CEPDB). This data collection is comparable to the more

general but much smaller NIST Computational Chem-
istry Comparison and Benchmark Database (CCCBDB)
[177]. As mentioned before, the information accumu-
lated in CEPDB is not only relevant to OPVs but to
organic electronics in general. It is also designed to pro-
vide benchmarks for the performance of various theoret-
ical methods in this family of systems as well as a pa-
rameter repository for other calculations (e.g., for model
Hamiltonians [178–180] or custom force fields [181]). It
will be available to the public by 2012.

The primary purpose of CEPDB is to store and provide
access to the CEP data. Candidates with a certain set
of desired parameters can readily be identified. CEPDB
also serves as the hub for all data mining, analysis, and
scoring operations to facilitate the study of global trends,
correlations, and OPV design rules. Finally, CEPDB is
also responsible for bookkeeping, archiving the raw data
(including the binary MO eigenvectors for subsequent
calculations), keeping track of the project progress, and
prioritizing the study, which are clearly important tasks
considering the scope of the project and the volume of
data.

F. The World Community Grid

The massive demand in computing time for CEP
is largely provided by the World Community Grid
[182, 183], a distributed volunteer computing platform
for philanthropic research organized by IBM. Presently,
∼560,000 users have signed up ∼1,800,000 computers to
the various WCG projects. Participants can donate com-
puting time by running the supported science applica-
tions on their personal computers, either on low priority
in the background or in screensaver mode during idle
times (see Fig. 5). In CEP, we use a custom version of
the Q-Chem 3.2 program package [184] which was ported
to the Berkeley Open Infrastructure for Network Com-
puting (BOINC) [185] environment. From the user per-
spective, the participation in a WCG project is fully au-
tomated and usually does not require any input or main-
tenance beyond the initial setup.

The WCG is a powerful resource and provides us with
the means for our high-throughput investigation. It is,
however, also unusual due to the non-specialized hard-
ware and host demands. These limitations have to be
taken into consideration in the design of suitable tasks.
In addition to the WCG, CEP utilizes the Harvard FAS
Odyssey cluster as well as accounts at NERSC [186] and
TeraGrid [187] for problems which are outside the scope
of volunteer grid computing (e.g., due to their size and
computational complexity). CEP currently characterizes
about 20,000 oligomer sequences per day, and so far we
have studied ∼2,600,000 structures in ∼35,000,000 cal-
culations, utilizing ∼4,500 years of CPU time. Close to
100% of these calculations were performed on the grid,
but the use of cluster resources will become more impor-
tant in the more demanding stages of the project. Their
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FIG. 5: Top: CEP project homepage and hub for project par-
ticipants. Bottom: The CEP ’screensaver’ as it is displayed
on volunteer hosts.

contribution in terms of volume, however, will remain
very limited.

One important aspect in a computational study at this
scale is that all processes have to be automated to keep
it feasible, efficient, and reduce human error. We cre-
ated the necessary facilities using the Python scripting
language [188, 189].

III. CONCLUSIONS

This initial presentation of the Harvard Clean Energy
Project outlined its overall architecture, the machinery
we put in place, and upcoming extensions. We pointed
to first results and more detailed reports on the various
aspects of the project – tied together by this perspective
– will be given in subsequent publications.

CEP applies a modern cyberinfrastructure paradigm
to computational materials science and in particular to
renewable energy research. Engineering successful OPV
materials is a complex challenge as a number of optical
and electronic requirements have to be met. We showed
that CEP with its large-scale screening is well equipped
for a knowledge-based search of systems with suitable fea-
tures. It provides a unique access to data for a wide ar-
ray of potential compounds with diverse electronic struc-

tures and it is ideally suited to identify highly promising
donor or acceptor candidates in the infinite space of or-
ganic electronics. Our work can thus complement and ac-
celerate traditional research approaches, and it can help
develop an understanding of structure-property relation-
ships to facilitate the rational design of new materials.
We hope that joint efforts with experimental collabora-
tors can contribute to overcoming the current limitations
of OPV materials in order to provide a clean source of
electricity which can compete with conventional power
production.
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Quotes:

The Clean Energy Project stands out from other com-
putational materials science approaches as it combines
conventional modeling with strategies from modern drug
discovery: CEP features an automated, high-throughput
infrastructure for a systematic screening of millions of
OPV candidates at a first-principles electronic structure
level.

A suitable molecular motif is a necessary condition for
a successful OPV development.

CEP applies a modern cyberinfrastructure paradigm
to computational materials science and in particular to
renewable energy research.

FIG. 6: ToC graphic: The Harvard Clean Energy Project uti-
lizes idle computing time on the personal computers of project
volunteers – organized by IBM’s World Community Grid – to
perform a large-scale quantum chemical screening of material
candidates for organic photovoltaics. (Cover art created by
Lauren Aleza Kaye.)

Keywords:

organic photovoltaics; distributed volunteer comput-
ing; quantum chemistry; high-throughput screening;
computational materials science; World Community
Grid; reference database
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