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1. Introduction. For positive integers m, n, and any positive number
τ , define the set W (m,n; τ) to be the set of points X = (x11, . . . , x1n, . . . ,
xm1, . . . , xmn) ∈ Rmn for which there are infinitely many integer vectors
q = (q1, . . . , qn) ∈ Zn such that

(1.1)
∥∥∥ n∑

j=1

qjxij

∥∥∥ < |q|−τ , 1 ≤ i ≤ m,

where |q| = max{|qj | : j = 1, . . . , n}, and for any z ∈ R, ‖z‖ denotes the
distance from z to the nearest integer. The set

W (1, 1; τ) = {x ∈ R : ‖qx‖ < |q|−τ for infinitely many q ∈ Z}

was studied by Jarńık [8] and Besicovitch [3] and shown to have Hausdorff
dimension 2/(1 + τ), for τ > 1. Later Jarńık [9] and Eggleston [7] showed
that the set

W (m, 1; τ) = {(x1, . . . , xm) ∈ Rm : ‖qxi‖ < |q|−τ , 1 ≤ i ≤ m ,

for infinitely many q ∈ Z}

has dimension (m+1)/(1+ τ), for τ > 1/m. More recently it was shown by
Bovey and Dodson [5] that dim W (m,n; τ) = m(n − 1) + (m + n)/(1 + τ),
for τ > n/m.

In [7] Eggleston generalized the set W (m, 1; τ) by requiring that the
integers q in the definition belong to a given subsequence of integers. To
be precise, for any infinite subset Q ⊂ Zn, let WQ(m,n; τ) be the set of
points X ∈ Rmn such that (1.1) holds for infinitely many vectors q ∈ Q.
Then, under certain hypotheses on Q (roughly speaking Q must be suffi-
ciently “dense” or sufficiently “sparse”) Eggleston obtained the dimension
of WQ(m, 1; τ). These results were extended by Borosh and Fraenkel [4],
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who obtained the dimension of this set for all sequences Q. In this paper
the dimension of WQ(m,n; τ) will be determined for all sequences Q.

Theorem. Let Q ⊂ Zn be an infinite set of integer vectors and let ν,
0 ≤ ν ≤ n, be the unique number such that the series

∑
q∈Q |q|−ν−ε is

divergent when ε < 0, but is convergent when ε > 0. Then

dim WQ(m,n; τ) = m(n− 1) + (m + ν)/(1 + τ) ,

for all τ > ν/m.

This theorem will be proved in the next section. The result is identical
with that in [4] when n = 1. Also, Bovey and Dodson [5] obtain the dimen-
sion of WQ(m,n; τ) for certain sequences Q having ν = n and satisfying a
“coprimality” condition which, in essence, ensures that the vectors in the
set Q are pairwise linearly independent. No such condition is imposed here,
which causes considerable complications in the proof of the Theorem.

We conclude this section by remarking that throughout the above dis-
cussion, if τ does not satisfy the relevant inequality then the corresponding
set W or WQ has full Lebesgue measure, i.e. the complement of the set has
measure zero. In each case, this follows from Groshev’s theorem (see [10]).

2. Proof of Theorem. Since Borosh and Fraenkel have dealt with the
case n = 1, we will assume that n > 1. Also, for notational simplicity, we
will only deal with the case m = 1. The proof of the general case is similar.
We will use the notation x = (x1, . . . , xn) for points in Rn, and for any
x,y ∈ Rn,

x.y =
n∑

j=1

xjyj , |x|2 = (x.x)1/2 .

With this notation we have

W (1, n; τ) = {x ∈ Rn : ‖q.x‖ < |q|−τ for infinitely many q ∈ Q} .

Before starting the proof we first recall the definition of the Hausdorff
dimension of a set E in Rn. Let I be a countable collection of bounded sets
I ⊂ Rn. For any % > 0, the %-volume of the collection I is defined to be

V%(I) =
∑
I∈I

d(I)% ,

where d(I) = sup{|x− y|2 : x,y ∈ I} is the diameter of I. For every η > 0
define

m%(η, E) = inf V%(I) ,

where the infimum is taken over all countable collections, I, of sets I with
diameter d(I) ≤ η that cover E. Now define the %-dimensional Hausdorff
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outer measure of E to be

m%(E) = sup
η>0

m%(η, E) .

The Hausdorff dimension of E is defined to be

dim E = inf{% : m%(E) = 0} .

We also require some further notation. For any finite set A, we let |A|
denote the cardinality of A. The notation a � b (respectively a � b) will
denote an inequality of the form a ≤ αb (respectively a ≥ αb), where α > 0
depends at most on n, ν and certain constants γ, δ and ε which will be
introduced below. If both the inequalities a � b, a � b hold then we write
a ≈ b. An integral plane in Rn is a set of the form

H(q, t) = {x ∈ Rn : q.x + t = 0} , q ∈ Zn , q 6= 0 , t ∈ Z .

Clearly this is an (n−1)-dimensional plane in Rn, orthogonal to the integer
vector q. For any two parallel planes H, H ′, we let |H − H ′|2 denote the
Euclidean distance between the planes, measured along the normal direction.
A set B ⊂ Rn of the form B = {x ∈ Rn : |x−b|2 ≤ d/2} is said to be a ball
of diameter d and centre b. If α > 0 is a real number then αB will denote
the ball with centre b and diameter αd. The unit cube U in Rn is the set

U = {x ∈ Rn : 0 ≤ xi ≤ 1 , i = 1, . . . , n} .

We can now begin the proof. Suppose that τ > ν. We first show that

dim WQ(1, n; τ) ≤ n− 1 + (1 + ν)/(1 + τ) .

Since the set WQ(1, n; τ) is invariant under translations by integer vectors,
it suffices to show that

(2.1) dim WQ(1, n; τ) ∩ U ≤ n− 1 + (1 + ν)/(1 + τ) .

For any non-zero q ∈ Q and any t ∈ Z let

T (q, t) = {x ∈ U : |q.x + t| < |q|−τ} .

This set consists of the set of points in U lying within a distance |q|−τ |q|−1
2 ≤

|q|−(1+τ) of the integral plane H(q, t). Clearly the number of integers t for
which T (q, t) is non-empty is � |q|. Since H(q, t) is (n − 1)-dimensional,
it can be seen that the set T (q, t) can be covered by a collection B(q, t) of
balls B of diameter 4|q|−(1+τ) such that

|B(q, t)| � |q|(1+τ)(n−1)

(if T (q, t) is empty we suppose that B(q, t) is empty). Now, by definition,

WQ(1, n; τ) ∩ U ⊂
⋃

q∈Q
|q|≥M

⋃
t∈Z

B(q, t)
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for all integers M ≥ 1, so the set WQ(1, n; τ)∩U is covered by the collection
of balls

BM =
⋃

q∈Q
|q|≥M

⋃
t∈Z

B(q, t) .

Now let % = n− 1 + (1 + ν)/(1 + τ) + ε for arbitrary ε > 0. The %-volume
of the collection BM satisfies

V%(BM ) �
∑
q∈Q
|q|≥M

∑
t∈Z

|B(q, t)||q|−%(1+τ)

�
∑
q∈Q
|q|≥M

|q|1+(1+τ)(n−1)−%(1+τ) =
∑
q∈Q
|q|≥M

|q|−ν−ε(1+τ) .

This series is convergent, by the definition of ν, so by taking M sufficiently
large the %-volume V%(BM ) can be made arbitrarily small. By the definition
of Hausdorff dimension this proves that dim WQ(1, n; τ) ∩ U ≤ %, and since
ε is arbitrarily small, (2.1) follows.

To prove the Theorem we will now prove the reverse inequality for
dim WQ(1, n; τ). Suppose, for now, that ν > 0 and let δ > 0 be an ar-
bitrarily small number satisfying

0 < δ < min{ν, τ − ν, 1} .

Some other restrictions will be imposed on δ below, but essentially δ is a
fixed “sufficiently small” number.

We also suppose that the series
∑

q∈Q |q|−ν is divergent, i.e. the series
in the statement of the theorem is divergent when ε = 0. If this assumption
does not hold we replace ν with ν + ε, ε < 0, throughout the following
argument to obtain dimWQ(1, n; τ) ≥ n − 1 + (1 + ν + ε)/(1 + τ), which
yields the result since ε < 0 is arbitrary.

Lemma 2.1. For any integer k0 > 0 there exists an integer k > k0 such
that

(2.2)
∑
q∈Q

2k≤|q|<2k+1

1 ≥ 2kν/k2 .

P r o o f. The proof is the same as the proof of Lemma 2 of [4].

From now on, N will always denote an integer of the form 2k, where k is
such that (2.2) holds. By Lemma 2.1 there are infinitely many such integers.
Thus, writing

Q(N) = {q ∈ Q : N ≤ |q| < 2N} ,
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we have

(2.3) |Q(N)| ≥ Nν−δ/2 ,

for all sufficiently large N (of the above form). Now, for any vector q ∈
Q(N), let [q] ⊂ Q denote the set of all those vectors q′ ∈ Q(N) which are
linearly dependent on q. Clearly the relation of linear dependence is an
equivalence relation on the set Q(N) and we let [Q(N)] denote the corre-
sponding set of equivalence classes [q].

Lemma 2.2. There exists a number γ, δ ≤ γ ≤ ν, and a subset Q̃ ⊂ Q
such that , for infinitely many N ,

|[Q̃(N)]| ≈ Nγ−δ ,(2.4)
|[q]| ≈ Nν−γ ,(2.5)

for all equivalence classes [q] ∈ [Q̃(N)]. Thus

(2.6) |Q̃(N)| ≈ Nν−δ .

P r o o f. Let δ′ = δ/2, t = [1/δ′] (where [·] denotes the integer part of a
number here). For i = 0, 1, . . . , t, let

Γi(N) = {[q] ∈ [Q(N)] : N iδ′ ≤ |[q]| < N (i+1)δ′} .

For all sufficiently large N , we must have |[q]| < 2N < N (t+1)δ′ so
t∑

i=0

|Γi(N)|N (i+1)δ′ ≥ |Q(N)| .

Hence, by (2.3) we have, for all sufficiently large N ,
t∑

i=0

|Γi(N)|N (i+2)δ′−ν ≥ 1 .

Therefore, for some i there exist infinitely many N ’s for which

|Γi(N)| � Nν−(i+2)δ′ .

If ν − iδ′ > δ, put γ = ν − iδ′ ≤ ν, otherwise put γ = δ. Since |Γi(N)| ≥ 1
for each of these N ’s, we have

|Γi(N)| � Nγ−δ, |[q]| � N iδ′ ≥ Nν−γ ,

for all [q] ∈ Γi(N). We now select a subset [Q(N)]′ ⊂ Γi(N) such that
|[Q(N)]′| ≈ Nγ−δ and for each [q] ∈ [Q(N)]′, we select a subclass [q]′ of the
q’s in the equivalence class [q] such that |[q]′| ≈ Nν−γ . Defining the set Q̃
to be the union of all the vectors q ∈ [q]′, [q]′ ∈ [Q(N)]′, for all the above
N ’s, it is clear that this set has the properties (2.4), (2.5) and (2.6).

We now suppose that ν − γ > 0. The case where this does not hold will
be discussed below.
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Lemma 2.3. Let L, ε > 0 be positive numbers with L < 1. There exist
arbitrarily large integers N such that , for every ball C ⊂ U with diameter
L and every equivalence class [q] ∈ [Q̃(N)] there is a set S = S(C, [q]),
consisting of pairs (q, t), where q ∈ [q] and t ∈ Z, with the properties:

(i) for all (q, t) ∈ S, the plane H(q, t) intersects the ball 1
2C;

(ii) for all distinct pairs (q1, t1), (q2, t2) ∈ S,

(2.7) |H(q1, t1)−H(q2, t2)|2 � N−1−ν+γ−δ ;

(iii) the number of pairs (q, t) in S satisfies

(2.8) |S| � Lχ([q]) � LN1+ν−γ−ε ,

where χ([q]) =
∑

q∈[q] φ(|q|) and φ is the Euler function;
(iv) for any set I ⊂ C with d(I) > N−1+δ,

(2.9) |SI | � d(I)χ([q]) � d(I)N−1+ν−γ ,

where SI denotes the set of pairs (q, t) ∈ S for which H(q, t) intersects I.

P r o o f. To prove the lemma we will reduce the construction, for each
equivalence class, to a one-dimensional problem by orthogonally projecting
onto the line spanned by the equivalence class and then using the results of
[4]. Choose N sufficiently large that it satisfies the conditions imposed on
the number Q in the first two sentences of the proof of Lemma 4 of [4]. For
any equivalence class [q] ∈ [Q̃(N)] choose some q ∈ [q] and let u = q/|q|
(note that u depends only on [q], not on the particular choice of q ∈ [q]).
Let J be the interval [c.u−L/4, c.u+L/4], where c is the centre of C. Now,
suppose that the pair of integers (q, t) is such that q = |q| for some q ∈ [q]
and −t/q ∈ J . Then the plane H(q, t) intersects the ball 1

2C. Also, if (q′, t′)
is another such pair then the distance between the corresponding integral
planes is equal to |t/q − t′/q′|. Thus, the proof reduces to finding a set of
such pairs (q, t) satisfying the analogues of the conditions (ii), (iii) and (iv)
(in the analogue of (iv), I becomes a subinterval of J). However, Lemma 4
of [4] constructs a set of pairs (q, t) having the required properties, and the
above condition on the size of N is sufficient to ensure that this construction
works for each equivalence class [q] ∈ [Q̃(N)] (note that the notation in [4]
is slightly different from ours; in particular, our ν − γ corresponds to ν in
[4]). Thus we have proved the lemma.

We now suppose that L and C are fixed, and choose N so that Lemma 2.3
holds. For any equivalence class [q] ∈ [Q̃(N)] let

E([q]) =
⋃

(q,t)∈S([q])

(H(q, t) ∩ C) ,

where S([q]) is the set constructed in Lemma 2.3 (to simplify the notation
slightly we have suppressed the dependence of S on C). Since the planes
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H(q, t), (q, t) ∈ S([q]), pass through the ball 1
2C, the (n − 1)-dimensional

Lebesgue measure (which we denote by µn−1) of the set H(q, t)∩C satisfies
µn−1(H(q, t) ∩ C) � Ln−1, and hence by (2.8),

(2.10) µn−1(E([q])) � Lnχ([q]) � LnN1+ν−γ−δ

(taking ε < δ).
Now, for any p ∈ Q̃(N), p 6∈ [q], s ∈ Z and any pair (q, t) ∈ S([q]), let

F (p, s; q, t) = {x ∈ H(q, t) ∩ C : |p.x + s| < 2nN−ν−δ} .

This set consists of the intersection, in C, of the hyperplane H(q, t) with
the set of points in Rn lying within a distance 2nN−ν−δ|p|−1

2 ≥ N−1−ν−δ

of the hyperplane H(p, s). Thus, since p and q are linearly independent,
F (p, s; q, t) is a (possibly empty) strip on the planar set H(q, t) ∩ C. Let

F ([q]) =
⋃

p∈Q̃(N)
p6∈[q]

⋃
s∈Z

⋃
(q,t)∈S([q])

F (p, s; q, t) .

Lemma 2.4. For any [q] ∈ [Q̃(N)],

µn−1(F ([q]))
µn−1(E([q]))

� L−nN−δ .

P r o o f. For any p 6= 0 and any η ≥ 0, let

Ap(η) = {x ∈ U : ‖p.x‖ ≤ η} .

It is shown in [10] or in [6] that if p and p′ are any linearly independent
integer vectors then, for any η, η′ > 0,

(2.11) µn(Ap(η) ∩Ap′(η′)) = ηη′

(the arguments in [6] are geometrical and include pictures which illuminate
some of the geometrical arguments used in this part of this paper). Now,
by definition,

F ([q]) ⊂
⋃

p∈Q̃(N)
p6∈[q]

⋃
q∈[q]

(Ap(2nN−ν−δ) ∩Aq(0)) ,

so

(2.12) µn−1(F ([q])) ≤
∑

p∈Q̃(N)
p6∈[q]

∑
q∈[q]

µn−1(Ap(2nN−ν−δ) ∩Aq(0)) .

For η > 0 the set Ap(2nN−ν−δ) ∩ Aq(η) is an n-dimensional “thickening”
of the set Ap(2nN−ν−δ) ∩ Aq(0) (which consists of portions of (n − 1)-
dimensional planes) with “thickness” η|q|−1

2 . Thus

µn−1(Ap(2nN−ν−δ) ∩Aq(0)) = lim
η→0

µn(Ap(2nN−ν−δ) ∩Aq(η))/η|q|−1
2 .
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Hence by (2.5), (2.6), (2.11) and (2.12),

µn−1(F ([q])) ≤
∑

p∈Q̃(N)
p6∈[q]

∑
q∈[q]

lim
η→0

2nN−ν−δη/η|q|−1
2

� Nν−δNν−γN1−ν−δ = N1+ν−γ−2δ ,

so the result follows from (2.10).

Now, by geometrical arguments, it can be seen from Lemma 2.4 and the
construction of the set F ([q]) that for N sufficiently large we can choose a
collection B([q]) of pairwise disjoint balls B⊂C, of diameter n−1(2N)−(1+τ),
whose centres b lie on E([q])\F ([q]), and satisfy

(2.13) |b− b′|2 ≥ N−(1+τ) if b 6= b′ ,

and such that

(2.14) |B([q])| � µn−1(E([q]))/(N−(τ+1))n−1 � Lnχ([q])N (1+τ)(n−1)

(by (2.10)).
Repeating the above constructions for all [q] ∈ [Q̃(N)] we can define the

collection of balls

B =
⋃

[q]∈[Q̃(N)]

B([q]) .

If B ∈ B([q]), B′ ∈ B([q]′), [q] 6= [q]′, and b, b′ are the centres of B, B′,
respectively, then it follows from the definition of the sets F (p, s; q, t) and
the fact that b ∈ E([q])\F ([q]) that

(2.15) |b− b′|2 ≥ N−1−ν−δ.

Collecting together the above results we obtain the following lemma.

Lemma 2.5. Let L, ε > 0 be positive numbers with L < 1. There exist
arbitrarily large integers N such that for every ball C ⊂ U with diameter L
there is a collection B of pairwise disjoint balls B ⊂ C, such that :

(i) each B ∈ B has diameter n−1(2N)−(1+τ);
(ii) for all B ∈ B, there exists q ∈ Q̃(N) such that

‖q.x‖ < |q|−τ for all x ∈ B ;

(iii) |B| ≥ c1L
nX(N)N (1+τ)(n−1), where X(N) =

∑
[q]∈[Q̃(N)] χ([q]) �

N1+ν−δ−ε.

P r o o f. Since by construction the balls in the collections B([q]) have
diameter n−1(2N)−(1+τ), (i) holds. The fact that the balls in B are pairwise
disjoint follows from (i) and (2.13) and (2.15) for N sufficiently large (since
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τ > ν + δ). Now, for any B ∈ B([q]), and any x ∈ B, there is a pair
(q, t) ∈ S([q]) such that the centre b of B lies on H(q, t), and hence

|q.x + t| ≤ |q.b + t|+ |q.(x− b)|
≤ |q|2|x− b|2 ≤ n1/2|q|n−1(2N)−(1+τ) < |q|−τ ,

which shows that (ii) holds for all B ∈ B([q]), and hence for all B ∈ B. To
show that (iii) holds we combine the estimate (2.14) with the definition of
B to yield

|B| �
∑

[q]∈[Q̃(N)]

Lnχ([q])N (1+τ)(n−1) = LnX(N)N (1+τ)(n−1) .

The estimate for X(N) follows from (2.4) and (2.8). This completes the
proof.

Lemma 2.6. Let B be the collection of balls constructed in Lemma 2.5
and let I be a set in Rn with d(I) ≥ 1

2n−1(2N)−(1+τ), which intersects h of
the balls B in B. Then if d(I) ≤ N−1+δ,

(2.16) h ≤ c2d(I)n−1N (1+τ)(n−1)(1 + d(I)N1+ν+δ),

while if d(I) > N−1+δ,

(2.17) h ≤ c2d(I)nN (1+τ)(n−1)X(N) .

P r o o f. For any [q] ∈ [Q̃(N)] and any pair (q, t) ∈ S([q]), let B(q, t)
be the set of balls B ∈ B whose centres lie on the plane H(q, t). We begin
by estimating the number h(q, t) of balls B ∈ B(q, t) which can intersect I.
Since the balls B ∈ B(q, t) have diameters n−1(2N)−(1+τ) and their centres
all lie on the (n − 1)-dimensional plane H(q, t) and are a distance at least
N−(1+τ) apart, it follows from volume considerations on the plane H(q, t)
that

(2.18) h(q, t) �
(

d(I)
N−(1+τ)

)n−1

.

Now suppose that d(I) ≤ N−1−ν−δ/4. In this case it follows from the
construction of the collection B that I can intersect balls from at most � 1
collections B(q, t), thus h � h(q, t). Next, suppose that N−1−ν−δ/4 <
d(I) ≤ N−1+δ. Then we can choose a collection of balls D of diameter
N−1−ν−δ/4 covering I, such that the number h′ of balls D is bounded by

h′ �
(

d(I)
N−1−ν−δ

)n

.

Using (2.18) to estimate the number of balls B intersecting each D we obtain,
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for this case,

(2.19) h � h′
(

N−1−ν−δ

N−(1+τ)

)n−1

= d(I)nN1+ν+δ+(1+τ)(n−1) .

Combining (2.18) and (2.19) proves (2.16).
Now, suppose that d(I) > N−1+δ. Then by (iv) of Lemma 2.3, for each

[q] ∈ [Q̃(N)], the number h′′ of collections B(q, t), (q, t) ∈ S([q]), which
have at least one ball intersecting the set I is bounded by h′′ � d(I)χ([q]).
Thus, using (2.18),

h ≤
∑

[q]∈[Q̃(N)]

d(I)χ([q])d(I)n−1N (1+τ)(n−1) = d(I)nX(N)N (1+τ)(n−1) ,

which completes the proof.

Now let % = n−1+(1+ν)/(1+τ)−δ. We will prove that dim WQ(1, n; τ)
≥ %, which, since δ is arbitrarily small, proves the Theorem. The proof is
based on some of the methods used in [1] and [2]. Choose N0 > 0 sufficiently
large that

(2.20) N
1+ν−(1+δ)(1+τ)
0 ≤ c1c

−1
2 4−n−1

(this is possible since τ > ν). Let F be any countable family of sets I in Rn

of positive diameter d(I) ≤ 1
2n−1(2N0)−(1+τ) with

(2.21) V%(F) =
∑
I∈F

d(I)% < 1 .

We will show that the family F cannot cover the set WQ(1, n; τ) and hence,
by definition, m%(WQ(1, n; τ)) > 0, which proves that dim WQ(1, n; τ) ≥ %.
To do this we construct a sequence of sets U ⊃ J0 ⊃ J1 ⊃ . . . , where Jj is
the union of Mj > 0 pairwise disjoint balls and integers N0 < N1 < . . . such
that for j ≥ 1, the following conditions are satisfied:

(i)j Jj intersects no I ∈ F with d(I) > 1
2n−1(2Nj)−(1+τ);

(ii)j each ball of Jj has diameter n−1(2Nj)−(1+τ);
(iii)j if x ∈ Jj , there is a q ∈ Q̃(Nj) such that ‖q.x‖ < |q|−τ ;

(iv)j Mj ≥ 4c2c
−1
1 nn2n(1+τ)N

1+ν−δ(1+τ)+(1+τ)(n−1)
j .

Supposing that such sequences exist, let

J∞ =
∞⋂

j=0

Jj .

Since the sequence Jj , j = 0, 1, . . . , is a decreasing sequence of non-empty
closed bounded sets in R, J∞ is non-empty. By (i)j , J∞ does not intersect
any set I ∈ F , while by (iii)j , J∞ ⊂ WQ(1, n; τ). Thus, F does not cover
WQ(1, n; τ).
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The construction is by induction. Let J0 be the ball of diameter 1 and
centre ( 1

2 , . . . , 1
2 ), and let N0 be as above. Now suppose that J0, J1, . . . , Jj−1,

N0, N1, . . . , Nj−1 have already been constructed satisfying the above condi-
tions, for some j ≥ 1. We will construct Jj and Nj . Let D be a ball of Jj−1

and let C = 1
4D. Applying Lemma 2.5 to C we choose Nj = N such that

N−1+δ
j < n−1(2Nj−1)−(1+τ), and we obtain the corresponding collection of

balls B = B(D). Let

Gj =
⋃

D∈Jj−1

B(D) .

Now let
F1

j = {I ∈ F : 1
2n−1(2Nj)−(1+τ) < d(I) ≤ N−1+δ

j } ,

F2
j = {I ∈ F : N−1+δ

j < d(I) ≤ 1
2n−1(2Nj−1)−(1+τ)} ,

and let Hj be the set of balls in Gj which intersect a set I ∈ F1
j ∪ F2

j . We
define Jj to be the union of the balls in the collection Gj\Hj . Thus, we have
Jj ⊂ Jj−1 and (i)j holds (because d(I) ≤ 1

2n−1(2N0)−(1+τ), I ∈ F , if j = 1,
and because of (i)j−1 if j > 1). Also, (ii)j and (iii)j follow from (i) and (ii)
of Lemma 2.5. It remains to consider (iv)j .

If I ∈ F1
j ∪ F2

j , I cannot intersect B(D) for two distinct balls D ∈ Jj−1

(because of (ii)j−1, if j > 1). Therefore, by Lemma 2.6,

|Hj | ≤ c2

∑
I∈F1

j

d(I)n−1N
(1+τ)(n−1)
j (1 + d(I)N1+ν+δ

j )(2.22)

+ c2

∑
I∈F2

j

d(I)nN
(1+τ)(n−1)
j X(Nj) .

It follows from (2.21) and the definitions of F1
j , F2

j , that, if δ is sufficiently
small,∑

I∈F1
j

d(I)n−1 ≤ N
1+ν−δ(1+τ)
j ,

∑
I∈F1

j

d(I)n ≤ N
−(1−δ)(1−(1+ν)/(1+τ)+δ)
j ,

∑
I∈F2

j

d(I)n ≤ N
1+ν−(1+δ)(1+τ)
j−1 .

Hence,

|Hj | ≤ c2(N
1+ν−δ(1+τ)
j + N

1+ν+δ−(1−δ)(1−(1+ν)/(1+τ)+δ)
j(2.23)

+ N
1+ν−(1+δ)(1+τ)
j−1 X(Nj))N

(1+τ)(n−1)
j

≤ 2c2N
1+ν−(1+δ)(1+τ)
j−1 X(Nj)N

(1+τ)(n−1)
j

for sufficiently large Nj if δ is sufficiently small (using the estimate for X(N)
in Lemma 2.5 with ε sufficiently small).
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Now suppose that j = 1. By (iii) of Lemma 2.5 (with d(C) = 1/4),
together with (2.20) and (2.23),

|G1| ≥ c14−nX(N1)N
(1+τ)(n−1)
1 ≥ 2|H1| .

Hence
M1 ≥ |G1| − |H1| ≥ c12−2n−1X(N1)N

(1+τ)(n−1)
1 ,

so (iv)1 holds for sufficiently large N1 if δ is sufficiently small (again using
the above estimate for X(N)).

Next suppose that j > 1. Then, by (iii) of Lemma 2.5, (ii)j−1 and (iv)j−1

|Gj | ≥ Mj−1c1n
−n(2Nj−1)−n(1+τ)X(Nj)N

(1+τ)(n−1)
j(2.24)

≥ 4c2N
1+ν−(1+δ)(1+τ)
j−1 X(Nj)N

(1+τ)(n−1)
j ≥ 2|Hj | .

Thus, Mj ≥ |Gj | − |Hj | ≥ |Gj |/2, and it follows from (2.24) that (iv)j holds
for sufficiently large Nj if δ is sufficiently small. This completes the proof
of the Theorem when ν − γ > 0.

To obtain the lower bound for dim WQ(1, n; τ) in the cases when ν−γ =
0, ν > 0, and when ν = 0, we observe that in both these cases we may choose
a subset Q̃ ⊂ Q such that for an increasing sequence of N ’s, Q̃(N) contains
exactly one vector q. This is the analogue of Lemma 2.2 for this case and
provides sufficient vectors to obtain the required lower bound. Since there is
only one vector q ∈ Q̃(N) the analogue of Lemma 2.3 can easily be obtained
(with ν−γ = δ = ε = 0, and omitting the function χ) simply by considering
the set of planes H(q, t), t ∈ Z which intersect 1

2C. Similarly, the collection
B of Lemma 2.5 can be constructed easily (the sets F and Lemma 2.4 are not
now required since these planes are parallel and hence do not intersect each
other) and the analogue of Lemma 2.6 can be proved by the same means as
above. Finally, the required lower bound can be obtained as before.
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