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Abstract We show that the Hawking temperature is mod-

ified in the presence of dark energy in an emergent grav-

ity scenario for Kerr–Newman(KN) and Kerr–Newman–

AdS(KNAdS) background metrics. The emergent gravity

metric is not conformally equivalent to the gravitational met-

ric. We calculate the Hawking temperatures for these emer-

gent gravity metrics along θ = 0. Also we show that the

emergent black hole metrics are satisfying Einstein’s equa-

tions for large r and θ = 0. Our analysis is done in the

context of dark energy in an emergent gravity scenario hav-

ing k−essence scalar fields φ with a Dirac–Born–Infeld type

Lagrangian. In KN and KNAdS background, the scalar field

φ(r, t) = φ1(r) + φ2(t) satisfies the emergent gravity equa-

tions of motion at r → ∞ for θ = 0.

1 Introduction

Research on the context of the Hawking temperature has

gained momentum during last two decades. It has been

shown that the Hawking temperature [1–12] is modified in

the presence of dark energy in an emergent gravity sce-

nario for Schwarzschild, Reissner–Nordstrom and Kerr back-

ground in [13,14]. As seen in [13,14], for an emergent

gravity metric G̃µν is conformally transformed into Ḡµν

where Ḡµν = gµν − ∂µφ∂νφ (gµν is the gravitational met-

ric) for Dirac–Born–Infeld(DBI) [15–17] type Lagrangian

having φ as k−essence scalar field. The Lagrangian for k-

essence scalar fields contains non-canonical kinetic terms.

The general form of the Lagrangian for k-essence model is:

L = −V (φ)F(X) where X = 1
2

gµν∇µφ∇νφ and it does

not depend explicitly on φ to start with [13,14,18–25].

Relativistic field theories with canonical kinetic terms

have the distinction from those with non-canonical kinetic
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terms associated with k−essence, since the nontrivial dynam-

ical solutions of the k-essence equation of motion not only

spontaneously break Lorentz invariance but also change the

metric for the perturbations around these solutions. Thus the

perturbations propagate in the so called emergent or analogue

curved spacetime [18–22] with the metric different from the

gravitational one. Relevant literatures [26–43] for such fields

discuss about cosmology, inflation, dark matter, dark energy

and strings.

The motivation of this work is to calculate the Hawk-

ing temperature in the presence of dark energy for an emer-

gent gravity metric which is also a blackhole metric. We

consider two cases, (a) when the gravitational metric is a

Kerr–Newman and (b) when the gravitational metric Kerr–

Newman–AdS.

In [50–66], the author discussed about Hawking radia-

tion for Kerr, Kerr–Newman, Kerr–Newman–AdS etc. black

holes using different techniques. Here we calculate the

Hawking temperature for emergent gravity metric for Kerr–

Newman and Kerr–Newman–AdS backgrounds using tun-

neling mechanism. These temperatures are different from

usual temperatures of Kerr–Newman and Kerr–Newman–

AdS black holes.

In Sect. 2, we have described k-essence and emergent

gravity where the metric G̃µν contains the dark energy field

φ and this field should satisfy the emergent gravity equa-

tions of motion. Again, for G̃µν is to be a blackhole metric,

it has to satisfy the Einstein field equations. The formalism

for k-essence and emergent gravity used is as described in

[18–22].

In Sects. 3 and 5, we have shown that for Kerr–Newman

and Kerr–Newman–AdS both cases, the emergent gravity

metrics are mapped on to the Kerr–Newman and Kerr–

Newman–AdS type metrics in the presence of dark energy.

The emergent metric satisfies Einstein equations for large

r and the dark energy field φ satisfies the emergent gravity

equations of motion for along θ = 0 at r → ∞.

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-019-7066-z&domain=pdf
mailto:goutammanna.pkc@gmail.com
mailto:bivashmajumder@gmail.com


553 Page 2 of 8 Eur. Phys. J. C (2019) 79 :553

We have calculated the Hawking temperature for emergent

gravity metrics for Kerr–Newman and Kerr–Newman–AdS

backgrounds in Sects. 4 and 6, respectively. We have clarified

that the Hawking temperature is spherically symmetric from

very general conditions and taking θ = 0 does not therefore

affect this property of the Hawking temperature. It has been

shown elaborately in [52], how the Hawking temperature is

independent of θ , although the metric functions depend on

θ . Also Hawking temperature is purely horizon phenomenon

of the spacetime where the temperature is not depending on

θ . So we can say that the Hawking temperature is spherically

symmetric.

2 k−essence and emergent gravity

The k-essence scalar field φ minimally coupled to the grav-

itational field gµν has action [18–22]

Sk[φ, gµν] =
∫

d4x
√

−gL(X, φ) (1)

where X = 1
2

gµν∇µφ∇νφ. The energy momentum tensor is

Tµν ≡
2

√−g

δSk

δgµν
= L X∇µφ∇νφ − gµν L (2)

LX = d L
d X

, LXX = d2 L
d X2 , Lφ = d L

dφ
and ∇µ is the covariant

derivative defined with respect to the gravitational metric

gµν . The equation of motion is

−
1

√−g

δSk

δφ
= G̃µν∇µ∇νφ + 2X L Xφ − Lφ = 0 (3)

where

G̃µν ≡ L X gµν + L X X∇µφ∇νφ (4)

and 1 + 2X L X X

L X
> 0. Carrying out the conformal transfor-

mation Gµν≡ cs

L2
x

G̃µν , with c2
s (X, φ) ≡ (1 + 2X L X X

L X
)−1 ≡

sound speed.

Then the inverse metric of Gµν is

Gµν =
L X

cs

[

gµν − c2
s

L X X

L X

∇µφ∇νφ

]

(5)

A further conformal transformation [13,14] Ḡµν ≡ cs

L X
Gµν

gives

Ḡµν = gµν −
L X X

L X + 2X L X X

∇µφ∇νφ (6)

Here one must always have L X �= 0 for the sound speed

c2
s to be positive definite and only then equations (1) − (4)

will be physically meaningful, since L X = 0 implies L is

independent of X , then from Eq. (1), L(X, φ) ≡ L(φ) i.e.,

L becomes a function of pure potential and the very defini-

tion of k-essence fields becomes meaningless because such

fields correspond to lagrangians where the kinetic energy

dominates over the potential energy. Also the very concept

of minimal coupling of φ to gµν becomes redundant, so the

Eq. (1) meaningless and Eqs. (4–6) ambiguous.

For the non-trivial configurations of the k− essence field

φ, ∂µφ �= 0 (for a scalar field, ∇µφ ≡ ∂µφ) and Ḡµν is not

conformally equivalent to gµν . So this k− essence field φ

field has the properties different from canonical scalar fields

defined with gµν and the local causal structure is also differ-

ent from those defined with gµν . Further, if L is not an explicit

function of φ then the equation of motion (3) is reduces to;

−
1

√−g

δSk

δφ
= Ḡµν∇µ∇νφ = 0 (7)

We shall take the Lagrangian as L = L(X) = 1−V
√

1 − 2X

with V is a constant. This is a particular case of the DBI

Lagrangian [13–17]

L(X, φ) = 1 − V (φ)
√

1 − 2X (8)

for V (φ) = V = constant and kinetic energy of φ >> V

i.e.(φ̇)2 >> V . This is typical for the k-essence field where

the kinetic energy dominates over the potential energy. Then

c2
s (X, φ) = 1 − 2X . For scalar fields ∇µφ = ∂µφ. Thus (6)

becomes

Ḡµν = gµν − ∂µφ∂νφ (9)

Note the rationale of using two conformal transformations:

the first is used to identify the inverse metric Gµν , while the

second realises the mapping onto the metric given in (9) for

the Lagrangian L(X) = 1 − V
√

1 − 2X .

3 Kerr–Newman metric and emergent gravity

We consider the gravitational metric gµν is Kerr–Newman

(KN) and denote ∂0φ ≡ φ̇, ∂rφ ≡ φ′. We consider that

the k-essence scalar field φ ≡ φ(r, t). The line element of

Kerr–Newman metric is [44–48]

ds2
K N = f (r, θ)dt2 −

dr2

g(r, θ)
+ 2H(r, θ)dφdt

−K (r, θ)dφ2 − Σ(r, θ)dθ2 (10)

where,

f (r, θ) =
∆(r) − α2sin2θ

Σ(r, θ)
;

g(r, θ) =
∆(r)

Σ(r, θ)
;

H(r, θ) =
αsin2θ(r2 + α2 − ∆(r))

Σ(r, θ)
;

K (r, θ) =
(r2 + α2)2 − ∆(r)α2sin2θ

Σ(r, θ)
sin2θ;
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Σ(r, θ) = r2 + α2cos2θ;
∆(r) = r2 + α2 + Q2 − 2G Mr.

It is to be noted that the above metric (10) also rediscov-

ered in [50,51]. In [52], elaborately shown how the Hawking

temperature is not depending on θ although the metric func-

tions depend on θ . In our case the emergent gravity metric

(9) Ḡµν contains extra terms (first derivative of k-essence

scalar fields) but these extra terms are still not depended on

θ . Therefore, the modified Hawking temperature will still be

independent of θ . For this reason, we will choose our evalu-

ation for some fixed θ ,i.e., θ = 0 only. Assuming the Kerr–

Newman metric along θ = 0. Then the above line element

(10) becomes

ds2
K N ,θ=0 = F(r)dt2 −

1

F(r)
dr2 (11)

with F(r) = ∆(r)
Σ

and Σ = r2 + α2.

Also in [53] have shown that the four dimensional spheri-

cally non-symmetric Kerr–Newman metric (10) transformed

into a two dimensional spherically symmetric metric (11) in

the region near the horizon by the method of dimensional

reduction.

The emergent gravity metric (9) components are

Ḡ00 = g00 − (∂0φ)2 =
∆

Σ
−φ̇2

Ḡ11 = g11 − (∂rφ)2 = −
Σ

∆
− (φ′)2

Ḡ01 = Ḡ10 = −φ̇φ′. (12)

Then the emergent gravity line element (12) along θ = 0

becomes

ds
2,emer
K N =

(

∆

Σ
−φ̇2

)

dt2−
(

Σ

∆
+ (φ′)2

)

dr2−2φ̇φ′dtdr

(13)

Now transform the coordinates [13,14] from (t, r ) to (ω, r )

such that

dω = dt −
(

φ̇φ′

∆
Σ

− φ̇2

)

dr (14)

and considering

φ̇2 =
∆2

Σ2
(φ′)2 (15)

we get the line element (13):

ds
2,emer
K N =

(

∆

Σ
− φ̇2

)

dω2 −
dr2

( ∆
Σ

− φ̇2)
(16)

We consider the solution of Eq. (15) as φ(r, t) = φ1(r) +
φ2(t).

Then the Eq. (15) reduces to

φ̇2
2 =

∆2

Σ2
(φ′

1)
2 = K (17)

where K is a constant and K �= 0 since k-essence scalar

field will have non-zero kinetic energy. Now from (17) we

get φ̇2 =
√

K and φ′
1 =

√
K [ (r2+α2)

r2−2G Mr+α2+Q2 ]
Therefore the solution of (15) is

φ(r, t) = φ1(r) + φ2(t)

=
√

K
[

(r − G M) + G M ln[(r − G M)2

+α2 + Q2 − (G M)2]

+
2G2 M2 − Q2

√

α2 + Q2 − (G M)2
tan−1

(

r − G M
√

α2 + Q2 − (G M)2

)]

+
√

kt (18)

where φ1(r) =
√

K [(r −G M)+G M ln[(r −G M)2 +α2 +
Q2 − (G M)2] + 2G2 M2−Q2√

α2+Q2−(G M)2
tan−1( r−G M√

α2+Q2−(G M)2
)]

and φ2(t) =
√

kt and choosing integration constant to be

zero. Therefore the line element (16) becomes

ds
2,emer
K N =

(

∆

Σ
− K

)

dω2 −
1

( ∆
Σ

− K )
dr2

=
β∆′

Σ
dω2 −

Σ

β∆′ dr2 (19)

where β = 1−K , M ′ = M
1−K

, ∆′ = r2 −2G M ′r + Q′2 +α2

and Q′ = Q√
1−K

.

This new metric (19) is also Kerr–Newman (KN) type

along θ = 0 in the presence of dark energy. Note that

K �= 1 since β cannot be zero, as then the metric (19)

becomes singular. Also we have the total energy density is

unity (Ωmatter + Ωradiation + Ωdarkenergy = 1) [14,49]. So

we can say that the dark energy density i.e., kinetic energy

(φ̇2
2 = K ) of k-essence scalar field (in unit of critical den-

sity) cannot be greater than unity. Again K cannot be greater

than 1 because the metric (19) will lead to wrong signature.

The possibility of non-zero K appears because that would

imply the absence of dark energy. Therefore, the only allowed

values of K are 0 < K < 1. So there is no question of

K approaching towards unity and confusions regarding this

limit is avoided. It can be shown that, for r → ∞, this metric

(19) is an approximate solution of Einstein’s equation.

Also mention that the mass and charge of this type black

hole are modified as M ′ = M
1−K

, Q′ = Q√
1−K

respectively

in the presence of dark energy density term K = φ̇2
2 .

Now we can show that the k−essence scalar field φ(r, t)

given by equation (18) to satisfy the emergent equation of

motion (7) along the symmetry axis θ = 0 at r → ∞. For

θ = 0, the emergent equation of motion (7) takes the form
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Ḡ00∂2
0 φ2 + Ḡ11∂2

1 φ1 − Ḡ11Γ 1
11∂1φ1

+Ḡ01∇0∇1φ + Ḡ10∇1∇0φ = 0. (20)

The first term vanishes since φ2(t) is linear in t and the last

two terms vanish because Ḡ01 = Ḡ10 = 0.

Using the expression for

Γ 1
11 =

G M(α2 − r2) + Q2r

(r2 + α2)(r2 − 2G Mr + α2 + Q2)

the second and third terms for r → ∞ goes as (1−K )
√

K

r2 .

From the Planck collaboration results [54,55], we have the

value of dark energy density (in unit of critical density) K is

about 0.696. Therefore, the second and third terms of (20) is

negligible as the denominator goes to infinity. Therefore, in

this limit the emergent equation of motion is satisfied.

4 The Hawking temperature for KN type metric in the

presence of dark energy

We use the tortoise coordinate defined by [53,56]

dr∗ =
dr

f (r)
(21)

with f (r) = β∆′

Σ
then the emergent line element (19) can be

written as

ds
2,emer
K N = f (r)(dω − dr∗)(dω + dr∗) (22)

At near the horizon the Eq. (21) can be written as

dr∗ =
(r2 + α2)dr

β(r − r+)(r − r−)
(23)

with r+ = G M ′ +
√

(G M ′)2 − Q′2 − α2 and r− = G M ′ −
√

(G M ′)2 − Q′2 − α2. Integrating equation (23) we get

r∗ =
1

β

[

r +
(

r2
+ + α2

r+ − r−

)

ln |r − r+|

+
(

r2
− + α2

r− − r+

)

ln |r − r−|
]

+ C (24)

where C is an integration constant.

The above Eq. (24) can be written in terms of surface

gravity when r > r+ as [53]

r∗ =
r

β
+

1

2χ+
ln

(

r − r+
r+

)

+
1

2χ−
ln

(

r − r−
r−

)

(25)

with surface gravity (+ sign for outer horizon and − sign for

inner horizon)

χ± ≡
1

2
f ′(r) |r=r±=

β

2

[

r± − r∓

r2
± + α2

]

. (26)

Also we calculate the Hawking temperature [1–12] for

(19) using tunneling formalism [52,58,62–64] for the two

horizons as follows.

We are going over to the Eddington–Finkelstein coordi-

nates (v, r) or (u, r) along θ = 0 i.e., introducing advanced

and retarded null coordinates [14]

v = ω + r∗ ; u = ω − r∗.

Using this coordinate the line element (19) becomes

ds
2,emer
K N =

(

β∆′

r2 + α2

)

dv2 − 2dvdr

=
β(r − r+)(r − r−)

r2 + α2
dv2 − 2dvdr. (27)

Also we calculate the Hawking temperature [1–12] for

(27) using tunneling formalism [52,58,62–64] for the two

horizons as follows.

A massless particle in a black hole background is

described by the Klein–Gordon equation

h̄2(−Ḡ)−1/2∂µ(Ḡµν(−Ḡ)1/2∂νΨ ) = 0. (28)

We can expands Ψ as

Ψ = exp(
i

h̄
S + · · · ) (29)

to obtain the leading order in h̄ the Hamilton-Jacobi equation

is

Ḡµν∂µS∂ν S = 0. (30)

We consider S is independent of θ and φ. Then the above

Eq. (30)

2
∂S

∂v

∂S

∂r
+

(

β(r2 − 2G M
′
r + α2 + Q′2)

r2 + α2

)

(

∂S

∂r

)2

= 0

(31)

The action S is assumed to be of the form

S = −Ev + W (r) + J (x i ) (32)

Then

∂v S = −E ; ∂r S = W
′ ; ∂i S = Ji (33)

Ji are constants chosen to be zero. Now putting the values of

Eq. (33) in Eq. (31) we get

−2EW
′
(r) +

(

β(r2 − 2G M
′
r + α2 + Q′2)

r2 + α2

)

(W
′
(r))2 = 0. (34)
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Then

W (r) =
∫ [E(r2 + α2) + E(r2 + α2)]dr

β(r − r+)(r − r−)

= 2π i

(

E

β

)

(

r2
+ + α2

r+ − r−

)

+ 2π i

(

E

β

)

(

r2
− + α2

r− − r+

)

= W (r+) + W (r−) (35)

The two values of W (r) correspond to the outer and inner

horizons, respectively.

Therefore the Eq. (32) becomes

S = −Ev + 2π i

(

E

β

)

(

r2
+ + α2

r+ − r−

)

+2π i

(

E

β

)

(

r2
− + α2

r− − r+

)

+ J (x i ) (36)

So the tunneling rates are

Γ K N
+emergent ∼ e−2 I mS+ ∼ e−2 I mW (r+)

= e
−4π

(

E
β

)

(

r2
++α2

r+−r−

)

= e
− E

K B T+ (37)

and

Γ K N
−emergent ∼ e−2 I mS− ∼ e−2 I mW (r−)

= e
−4π

(

E
β

)

(

r2
−+α2

r−−r+

)

= e
− E

K B T− (38)

where K B is Boltzman constant. From these above two

expressions (37) and (38) the corresponding Hawking tem-

peratures of the two horizons are

T K N
+emergent =

h̄c3β

4πkB

(

r+ − r−

r2
+ + α2

)

=
h̄c3β

2πkB

[
√

(G M ′)2−α2−Q′2

2G M ′(G M ′+
√

(G M ′)2−α2−Q′2)−Q′2

]

(39)

and

T K N
−emergent =

h̄c3β

4πkB

(

r− − r+

r2
− + α2

)

= −
h̄c3β

2πkB

[
√

(G M ′)2−α2−Q′2

2G M ′(G M ′−
√

(G M ′)2−α2−Q′2)−Q′2

]

(40)

with β = 1 − K .

The usual Hawking temperature for Kerr–Newman black

hole is [52]

T K N
± =

h̄c3

4πkB

(

r± − r∓

r2
± + α2

)

=
h̄c3

2πkB

[
√

(G M)2−α2−Q2

2G M(G M±
√

(G M)2−α2−Q2) − Q2

]

(41)

The above temperatures (39,40) are modified in the presence

of dark energy. These temperatures are different from usual

Hawking temperature (41) as the presence of terms β =
1 − K , M ′ = M

1−K
and Q′ = Q√

1−K
where K is the dark

energy density (in unit of critical density).

5 Kerr–Newman–AdS background

We consider the gravitational metric gµν is Kerr–Newman–

AdS (KNAdS). The line element of KNAdS metric [62–66]

is

ds2
K N Ad S =

1

Σ
[∆r − ∆θα

2sin2θ ]dt2 −
Σ

∆r

dr2 −
Σ

∆θ

dθ2

−
1

Σ(Ξ)2
[∆θ (r

2 + α2)2

−∆rα
2sin2θ ]sin2θ dφ2

+
2α

ΣΞ
[∆θ (r

2 + α2) − ∆r ]sin2θ dtdφ (42)

where

Σ = r2 + α2cos2θ; Ξ = 1 −
α2

l2
(43)

∆θ = 1 −
α2

l2
cos2θ; ∆r = (r2 + α2)

(

1 +
r2

l2

)

−2G Mr + Q2. (44)

The parameters M and α are related to the mass and angular

momentum of the black hole, G is the gravitational constant

and l is the curvature radius determined by the negative cos-

mological constant (Λ < 0) Λ = − 3
l2 .

Again we choose symmetric axis along θ = 0 as before

since in [52] elaborately shown that the Hawking temperature

is independent of θ . Then the line element (42) reduces to

ds2
K N Ad S,θ=0 = F(r)dt2 −

1

F(r)
dr2 (45)

with F(r) = ∆r

Σ
and Σ = r2 + α2.

Using this (45) the emergent gravity metric (9) compo-

nents are

Ḡ00 = g00 − (∂0φ)2 =
∆r

Σ
− φ̇2

Ḡ11 = g11 − (∂rφ)2 = −
Σ

∆r

− (φ′)2

Ḡ01 = Ḡ10 = −φ̇φ′. (46)

Again we consider the k-essence scalar field φ(r, t) is spher-

ically symmetric. So the emergent gravity line element for

KNAdS background along θ = 0 is

ds
2,emer
K N Ad S =

(

∆r

Σ
− φ̇2

)

dt2 −
(

Σ

∆r

+ (φ′)2

)

dr2

−2φ̇φ′dtdr. (47)
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Transform the coordinates (t, r) to (ω, r) as

dω = dt −
(

φ̇φ′

∆r

Σ
− φ̇2

)

dr (48)

and we choose

φ̇2 =
∆2

r

Σ2
(φ′)2. (49)

Then the line element (47) becomes

ds
2,emer
K N Ad S =

(

∆r

Σ
− φ̇2

)

dω2 −
dr2

(∆r

Σ
− φ̇2)

(50)

We consider again the solution of Eq. (49) as φ(r, t) =
φ1(r) + φ2(t).

Then the Eq. (49) is

φ̇2
2 =

∆2
r

Σ2
(φ′

1)
2 = K (51)

where K is a constant and K �= 0. From (51) we get

φ̇2 =
√

K and φ′
1 =

√
K [ (r2+α2)

(r2+α2)(1+ r2

l2
)−2G Mr+Q2

]. So the

solution of Eq. (49) is

φ(r, t) = φ1(r) + φ2(t)

=
C

√
K

2
ln|r2 + λr + m| +

D
√

K

2
ln|r2−λr+n|

+
√

K (2A − λC)

2

√

m − λ2

4

tan−1

⎛

⎝

r + λ
2

√

m − λ2

4

⎞

⎠

+
√

K (2B + λD)

2

√

n − λ2

4

tan−1

⎛

⎝

r − λ
2

√

n − λ2

4

⎞

⎠ +
√

K t

(52)

where

φ1(r) =
√

K

∫

(r2 + α2)

(r2 + α2)(1 + r2

l2 ) − 2G Mr + Q2
dr

=
√

K

∫

(r2 + α2)

(r2 + λr + m)(r2 − λr + n)
dr

=
C

√
K

2
ln|r2 + λr + m| +

D
√

K

2
ln|r2 − λr + n|

+
√

K (2A − λC)

2

√

m − λ2

4

tan−1

⎛

⎝

r + λ
2

√

m − λ2

4

⎞

⎠

+
√

K (2B + λD)

2

√

n − λ2

4

tan−1

⎛

⎝

r − λ
2

√

n − λ2

4

⎞

⎠ (53)

and

φ2(t) =
√

K t. (54)

Now we clarify the parameters of the above Eq. (52): C =
−1

2λ2+m−n
, D = 1

2λ2+m−n
, A = 1

m+n
[α2 − n(m−n)

2λ2+m−n
], B =

1
m+n

[α2 + m(m−n)

2λ2+m−n
], λ = [( 1

2
(−T +

√
T 2 + 4H3))1/3 +

( 1
2
(−T −

√
T 2 + 4H3))1/3 − 2(l2+α2)

3
]1/2, m = 1

2
[(l2 +

α2) + λ2 + 2G Ml2

λ
], n = 1

2
[(l2 + α2) + λ2 − 2G Ml2

λ
],

H = − 1
9
[l4 + 2(3α2 + 2Q2)l2 + α4], T = − 1

27
[2l6 −

6(12Q2+11α2−18G2 M2)l4−6α2(12Q2+11α2)l2+2α6].
For this type of k-essence scalar field φ (52), the line ele-

ment (50) reduces to

ds
2,emer
K N Ad S = (

∆r

Σ
− K )dω2 −

1

(∆r

Σ
− K )

dr2

=
β∆′

r

Σ
dω2 −

Σ

β∆′
r

dr2 (55)

where β = 1 − K , M ′ = M
1−K

, ∆′
r = (r2 + α2)(1 + r2

l ′2
) −

2G M ′r + Q′2, Q′ = Q√
1−K

and l ′2 = (1 − K )l2. Similar

reasons as before here also the only allowed values of K

are 0 < K < 1. Also it can be shown that this metric (55)

is an approximate solution of Einstein’s equations at r →
∞ along θ = 0. Note that the parameters M, Q, l are also

modified in the presence of dark energy density (K ).

We can show that the k−essence scalar field (52) is satis-

fied emergent gravity equation of motions (7) along θ = 0

at r → ∞. For θ = 0, the emergent equation of motion

(7) takes the form Ḡ00∂2
0 φ2 + [Ḡ11∂2

1 φ1 − Ḡ11Γ 1
11∂1φ1] +

Ḡ01∇0∇1φ + Ḡ10∇1∇0φ = 0. The first term vanishes since

φ2(t) is linear in t and the last two terms vanish because

Ḡ01 = Ḡ10 = 0. Using the value of

Γ 1
11 =

1

Σ∆

[

−2r5

l2
+

2πα2r3

3
− G M(r2 − α2)

+(Q2 −
α4

l2
)r

]

we get the terms within third bracket are vanished at r → ∞.

6 The Hawking temperature for KNAdS type metric in

the presence of dark energy

We calculate the Hawking temperature using tunneling for-

malism [58,64–66]. The horizons of the metric (55) in the

presence of dark energy are determined by

∆′
r = (r2 + α2)

(

1 +
r2

l ′2

)

− 2G M ′r + Q′2

=
β

l ′2
[r4 + r2(α2 + l ′2) − 2G M ′l ′2r + l ′2(α2 + Q′2)]

=
β

l ′2
(r − rd

++)(r − rd
−−)(r − rd

+)(r − rd
−) = 0 (56)
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The equation ∆′
r = 0 has four roots, two real positive roots

and two complex roots. We denote rd
++ and rd

−− are complex

roots and rd
+ and rd

− are positive real roots in the presence of

dark energy (K ). Here we consider rd
+ > rd

− so that rd
+ is the

black hole event horizon and rd
− is the Cauchy horizon of the

KNAdS type black hole (55).

Now we use the Eddington–Finkelstein coordinates (v, r)

or (u, r) along θ = 0 i.e., advanced and retarded null coor-

dinates [14]

v = ω + r∗; u = ω − r∗

with

dr∗ =
(r2 + α2)dr

β

l ′2
(r − rd

++)(r − rd
−−)(r − rd

+)(r − rd
−)

(57)

we get the emergent gravity line element (55) becomes

ds
2,emer
K N Ad S =

β∆′
r

Σ
dv2 − 2dvdr

=
[

β

l ′2
(r−rd

++)(r−rd
−−)(r − rd

+)(r − rd
−)

r2 + α2

]

dv2

−2dvdr. (58)

Proceedings exactly same as KN type case we can calculate

the Hawking temperatures for KNAdS type black hole (58)

as:

T K N Ad S
+emergent =

h̄c3β

4πkB l2

[

(rd
+−rd

++)(rd
+ − rd

−−)(rd
+ − rd

−)

(rd
+)2 + α2

]

= −
h̄c3(1−K )Λ

12πkB

[

(rd
+−rd

++)(rd
+−rd

−−)(rd
+−rd

−)

(rd
+)2 + α2

]

(59)

and

T K N Ad S
−emergent =

h̄c3β

4πkB l2

[

(rd
−−rd

++)(rd
−−rd

−−)(rd
−−rd

+)

(rd
−)2+α2

]

= −
h̄c3(1 − K )Λ

12πkB

[

(rd
−−rd

++)(rd
−−rd

−−)(rd
−−rd

+)

(rd
−)2+α2

]

(60)

where kB is the Boltzman constant. These temperatures

T K N Ad S
+emergent and T K N Ad S

−emergent are different from usual Hawking

temperature for KNAdS black hole as reported on [62–66].

Here Λ < 0, rd
+ and rd

− are positive and rd
+ > rd

−; rd
++ and

rd
−− are complex conjugate, these make sure that the temper-

ature of event horizon is positive.

Note that an Anti-de Sitter (AdS) space has negative cos-

mological constant in a vacuum, where empty space itself

has negative energy density but positive pressure, unlike our

accelerated Universe where observations of distant super-

novae indicate a positive cosmological constant correspond-

ing to the de-Sitter space [49] which has positive energy den-

sity but negative pressure. Dark energy is one of the candidate

being regarded as the origin of this accelerated expansion

where pressure is negative. So for AdS space, the cosmolog-

ical constant is negative which cannot be associated with dark

energy. Therefore, here the dark energy comes only from the

k-essence scalar field. Also note that the Hawking tempera-

ture for KNAdS black hole is already evaluated in [64].

7 Conclusion

In this work we have determined the Hawking temperatures

in the presence of dark energy for emergent gravity met-

rics having Kerr–Newman and Kerr–Newman–AdS back-

grounds. We have shown that in the presence of dark energy

the Hawking temperatures are modified. We did the cal-

culation for Kerr–Newman and Kerr–Newman–AdS back-

ground metrics along θ = 0 since the Hawking tempera-

ture is independent of θ and show that the modified met-

rics i.e., emergent gravity black hole metrics for both cases

are satisfies Einstein’s equations for large r and the emer-

gent black hole always radiates. These new emergent grav-

ity metrics are mapped on to the Kerr–Newman and Kerr–

Newman–AdS type metrics. Throughout the paper our anal-

ysis is done in the context of dark energy in an emergent grav-

ity scenario having k−essence scalar fields φ with a Dirac–

Born–Infeld type lagrangian. In both cases the scalar field

φ(r, t) = φ1(r) + φ2(t) also satisfies the emergent gravity

equations of motion at r → ∞ for θ = 0.
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