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Abstract. The HD(CP)2 Observational Prototype Experi-
ment (HOPE) was performed as a major 2-month field exper-
iment in Jülich, Germany, in April and May 2013, followed
by a smaller campaign in Melpitz, Germany, in September
2013. HOPE has been designed to provide an observational
dataset for a critical evaluation of the new German commu-
nity atmospheric icosahedral non-hydrostatic (ICON) model
at the scale of the model simulations and further to provide
information on land-surface–atmospheric boundary layer ex-

change, cloud and precipitation processes, as well as sub-grid
variability and microphysical properties that are subject to
parameterizations. HOPE focuses on the onset of clouds and
precipitation in the convective atmospheric boundary layer.
This paper summarizes the instrument set-ups, the intensive
observation periods, and example results from both cam-
paigns.

HOPE-Jülich instrumentation included a radio sounding
station, 4 Doppler lidars, 4 Raman lidars (3 of them provide
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temperature, 3 of them water vapour, and all of them parti-
cle backscatter data), 1 water vapour differential absorption
lidar, 3 cloud radars, 5 microwave radiometers, 3 rain radars,
6 sky imagers, 99 pyranometers, and 5 sun photometers oper-
ated at different sites, some of them in synergy. The HOPE-
Melpitz campaign combined ground-based remote sensing
of aerosols and clouds with helicopter- and balloon-based in
situ observations in the atmospheric column and at the sur-
face.

HOPE provided an unprecedented collection of atmo-
spheric dynamical, thermodynamical, and micro- and macro-
physical properties of aerosols, clouds, and precipitation with
high spatial and temporal resolution within a cube of approx-
imately 10 × 10 × 10 km3. HOPE data will significantly con-
tribute to our understanding of boundary layer dynamics and
the formation of clouds and precipitation. The datasets have
been made available through a dedicated data portal.

First applications of HOPE data for model evaluation have
shown a general agreement between observed and modelled
boundary layer height, turbulence characteristics, and cloud
coverage, but they also point to significant differences that
deserve further investigations from both the observational
and the modelling perspective.

1 Introduction

Clouds and precipitation play a central role in the climate
system and were repeatedly identified as the largest problem
in a realistic modelling of atmospheric processes, forcings,
and feedbacks (IPCC, 2013; Jakob, 2010). Uncertainties in
the characterization of clouds and precipitation have mani-
fold consequences on virtually all non-atmospheric climate
components from ocean mixed-layer stability to vegetation
variability, to net mass balance of ice sheets (Wilson and Jetz,
2016).

To achieve progress in the improvement of the represen-
tation of clouds and precipitation in atmospheric models, the
German research initiative High Definition Clouds and Pre-
cipitation for advancing Climate Prediction, HD(CP)2, was
launched. HD(CP)2 aims at a significant reduction in the
uncertainty of climate change predictions by means of bet-
ter resolving cloud and precipitation processes. The newly
developed convection-resolving HD(CP)2 icosahedral non-
hydrostatic model (ICON) will be used to develop new con-
vection parameterizations for future application in large-
scale general circulation models (GCMs) and climate mod-
els. HD(CP)2 and the accompanied development of ICON
originated from a coordinated initiative of German research
institutions, the German Meteorological Service (DWD), and
the Federal Ministry of Education and Research to provide
atmospheric scenarios, including multiple thermodynamic
phases, multi-mode microphysics, and a realistic orography
with high spatial resolution of 100 m in the horizontal and

10–50 m in the vertical at a temporal resolution of 1–10 s
over climatologically relevant scales, i.e. over several thou-
sand kilometres and several years. The 100-metre scale is
believed to be most critical for the onset of clouds and pre-
cipitation as it sufficiently resolves the convective boundary
layer (CBL) and cloud formation (Stevens and Lenschow,
2001). The anticipated high resolution shall thus enable us to
associate differences in modelled and observed atmospheric
fields to problems with the dynamical core or with parame-
terizations of physical processes rather than with resolution
issues.

The HD(CP)2 project consists of a modelling, an observa-
tional, and a synthesis part (see http://www.hdcp2.eu for fur-
ther information concerning the overall project descriptions
and goals). As a first step of HD(CP)2, the high-resolution
HD(CP)2 model in large-eddy simulation (LES) mode must
be evaluated in order to test the suitability for parameteriza-
tion development application. The test bed for these observa-
tions was provided by means of the HD(CP)2 Observational
Prototype Experiment (HOPE).

Within the M module (modelling) of HD(CP)2, the new
ICON general circulation model was developed (Zängl et al.,
2015) and its performance in LES modelling was evaluated
(Dipankar et al., 2015). The O module (observations) was
defined to provide observational datasets for the initializa-
tion and evaluation of the newly developed ICON model and
other high-resolved LES models as well as for the develop-
ment of new parameterizations that are suitable for applica-
tion in a high-resolution model. The scope of the S module
(synthesis) was to provide first improvements of parameter-
izations from the use of model and observation results. The
key to this effort was the provision of modelled scenarios
at 100-metre grid resolution over thousands of kilometres,
which will be used to analyse, improve, or develop parame-
terizations related to cloud and precipitation development in
climate models.

The O4 project in the O module of HD(CP)2 was devoted
to HOPE and has been designed to provide a critical model
evaluation at the scale of the model simulations and further
to provide information on sub-grid variability and micro-
physical properties that are subject to parameterizations even
at high-resolution simulations such as planned with ICON.
Even for LES, unresolved sub-grid-scale processes are be-
lieved to be in particular critical for cloud formation and
the onset of precipitation and thus built the central focus of
HOPE. In order to derive the atmospheric state and the 3-
D fields of water vapour, temperature, wind, and cloud and
precipitation properties at the scale of 100 m resolution for an
area of about 10 × 10 × 10 km3, three nearby supersites, sep-
arated by a distance of approximately 4 km, complemented
by larger networks were deployed. The instrumentation was
selected in order to allow for detailed observations of the on-
set of clouds and precipitation in the convective atmospheric
boundary layer (ABL). When compared to model results, the
high-resolution HOPE data could elucidate to what extent a
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pure increase in model resolution improves model skills in
the ABL and to what extent unavoidable parameterizations
of physical processes – essentially turbulence and cloud mi-
crophysics – require new approaches.

HOPE complements the larger spatiotemporal full-domain
(O2) and supersite (O1) activities in the O module in
HD(CP)2 of which O2 provides continuous time series of 2-
D fields across the HD(CP)2 domain and O1 is devoted to the
provision of 1-D profiles at four dedicated locations in Ger-
many and the Netherlands, respectively. The scope of mod-
ule O3 was to establish a data flow from the observation mod-
ules to the model and synthesis modules. In 2016, HD(CP)2

entered its second phase, which puts a much stronger effort
on the synthesis part.

HOPE builds on the experience gained in previous field
campaigns like the Convective and Orographically induced
Precipitation Study (COPS) (Wulfmeyer et al., 2011), but
with a stronger focus on multi-sensor synergy covering a
micro- to mesoscale domain. COPS and the associated gen-
eral observation period (GOP) that was prepared in the
context of the Quantitative Precipitation Forecasting prior-
ity programme (SPP1167) of the German Science Founda-
tion (DFG) (Crewell et al., 2008) aimed at the observation
of orographically driven initiation of convection with su-
persites several tens of kilometres apart in strongly struc-
tured terrain. Complementary to COPS, HOPE covers a
smaller domain with higher resolution and is accompanied
by long-term supersite observations within the framework
of the Terrestrial Environmental Observatories (TERENO)
programme (Simmer et al., 2015) around the ground-based
remote-sensing supersite Jülich Observatory for Cloud Evo-
lution (JOYCE) (Löhnert et al., 2015), and the TROPOS
long-term aerosol observatory in Melpitz (Spindler et al.,
2012).

Although phase 1 of HD(CP)2, lasting from 2012 to 2015,
was mainly devoted to establish a scalable high-resolution
ICON model and to obtain data for model evaluation at vari-
ous scales, first highly resolved ICON-based LES have been
performed to evaluate the effect of resolution on reproducing
boundary layer fluxes and heights as well as on cloud forma-
tion. First results are reported in this overview.

This article mainly serves as a guide through the sites
and instrumentation used during the HOPE campaigns and
aims to motivate readers to learn about the details and spe-
cific conclusions described in the individual publications this
overview is built upon. The structure is as follows. Section 2
describes the site set-ups and measurements performed dur-
ing HOPE including information about the meteorological
conditions and data availability. Examples from each of the
research topics are presented in Sect. 3. In Sect. 4, first com-
parisons between models and observations are discussed. A
summary and conclusions on the further applications of the
HOPE data as well as designs for future observational strate-
gies are presented in Sect. 5. Individual work performed dur-
ing HOPE is published in this ACP/AMT HOPE special is-

sue or, in part, in other journals and is cited in the present
overview correspondingly.

2 Description of the HOPE field campaigns

The technological aspect of HOPE was to unite most of the
mobile ground-based remote-sensing and surface flux obser-
vations available in Germany within a single domain in order
to capture the vertical structure and horizontal variability of
wind, temperature, humidity, and aerosol and cloud conden-
sate with the best possible temporal and spatial resolution.
Thus, we were able to accommodate active remote sensing
from lidar and radar and passive remote sensing from mi-
crowave radiometer and sun photometer, whenever possible
with scanning capabilities. During HOPE, 3-D water vapour,
temperature, and wind measurements were possible with un-
precedented spatiotemporal resolution in the boundary layer.
In order to understand the forcing of and the response to
surface properties, distributed surface flux and surface stan-
dard meteorological observations were deployed as well. Of
course, it is not possible to obtain an instantaneous 3-D pic-
ture of the atmosphere from a limited number of directional
observations. However, ongoing improvements in sensor de-
tection accuracy and optimized scanning strategies will cap-
ture the 4-D boundary layer properties even better in the fu-
ture.

The measurement activities during HOPE mainly con-
sisted of a major field experiment in Jülich, Germany,
denoted as HOPE-Jülich, conducted from 3 April to
30 May 2013 followed by a smaller campaign that was per-
formed in Melpitz, denoted as HOPE-Melpitz, Germany,
which was conducted from 9 to 29 September 2013. Fig-
ures 1 and 2 give an overview of the broad spectrum of in-
struments installed during the two campaigns and their over-
all set-up. A detailed introduction is given below.

2.1 Instrumentation

2.1.1 HOPE-Jülich

In order to derive the atmospheric state of water vapour, tem-
perature, wind, and cloud and precipitation properties with
100 m resolution for an area of about 10 × 10 × 10 km3, three
nearby (ca. 4 km) supersites, complemented by larger net-
works, were in operation. Figure 3 gives an overview about
the different sites and networks within HOPE-Jülich, which
are further described in Table 1. The monitored area encom-
passes approximately 40 km in radius around the Jülich re-
search centre (FZJ). The natural topography around Jülich is
rather flat with an average elevation of around 100 m above
sea level (a.s.l.). Approximately 20 km south of Jülich the
Eifel mountains approach up to 800 m a.s.l. Locally, within
a radius of 10 km, the area around Jülich is dominated by
open-pit coal mining. Two open-pit mines are located within
1–3 km east and west of the HOPE-Jülich area, respectively.
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Figure 1. Set-up of the HOPE-Jülich campaign showing the lo-
cation of the three supersites Jülich (JUE), Hambach (HAM), and
Krauthausen (KRA) as well as the outpost Wasserwerk (WAS) with
their main instrumentation. The cones and arrows illustrate the field
of view and scanning capabilities of the specific remote-sensing in-
struments.

Along a 10 km line between these two pit mines, the eleva-
tion range spans over 571 m, from as low as −270 m a.s.l.
within the pit mines (pit mine of Hambach; see Fig. 3) to
301 m a.s.l. at the top of the debris hill Sophienhöhe. The in-
struments and observations were deployed at supersites in the
rather flat terrain between the pit mines or within networks.
The TERENO sites as well as the X-band radar sites JuX-
Pol and BoXPol that are shown in Fig. 3 also contributed
to the HOPE observations, even though they are operated
in the frame of other research projects, mainly TERENO
(Zacharias et al., 2011) and the Transregional Collaborative
Research Centre 32 (TR32) (Simmer et al., 2015), which are
implemented for longer time periods than was the case for
HOPE.

As can be seen from Table 1, most instruments were de-
ployed at the three supersites Jülich (JUE), Krauthausen
(KRA), and Hambach (HAM) with its outpost close to a
pump station “Wasserwerk” (WAS). At each supersite one
or several main remote-sensing facilities were deployed. At
JUE this was the instrumentation of the permanently in-
stalled JOYCE, at HAM the Karlsruhe Institute for Tech-
nology mobile facility KITcube and the lidar systems of the
Institute for Physics and Meteorology (IPM) of the Univer-
sity of Hohenheim (UHOH) were deployed, and at KRA
the Leipzig Aerosol and Cloud Remote Observations Sys-
tem (LACROS) was operated. In some publications that are
based on HOPE-Jülich observations, the supersite names are
also referring to the main facility deployed at each site, e.g.
LAC for LACROS at the supersite KRA, JOY for JOYCE
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Figure 2. Illustration of the set-up of the HOPE-Melpitz campaign
showing the deployed main instrumentation. The cones illustrate the
field of view of the specific remote-sensing instruments.

at the supersite JUE, and KIT for KITcube at the supersite
HAM. The instrumentation that was present at each site is
listed in Table 2. In total, the HOPE-Jülich set of instruments
included a radio sounding station, 5 Doppler lidars, 4 Raman
lidars, 1 differential absorption lidar (DIAL), 3 cloud radars,
5 microwave radiometers, 3 precipitation radars, 6 sky im-
agers, 99 pyranometers, and 5 sun photometers. Below, the
operating institutions and available measurement devices at
all three supersites are briefly outlined. Concerning technical
details of the individual instruments, such as instrument cali-
bration and stability, restrictions in the instrument resolution,
or the assessment of uncertainties, we refer the reader to the
literature cited in Table 2. In addition, results shown in Sect.
3 and 4 of this article are based on already published articles
which are cited at the respective positions in text and con-
tain detailed information on the applied instrumentation and
methodologies.

Jülich supersite

All measurements during HOPE-Jülich were built around
the central supersite Jülich where JOYCE (Löhnert et al.,
2015) is operated continuously at FZJ. JOYCE (http://www.
joyce.cloud) is a joint research initiative of the Institute for
Geophysics and Meteorology (IGMK) of the universities of
Cologne and Bonn and FZJ. It is permanently installed at
FZJ. Amongst other instruments (see Löhnert et al., 2015),
JOYCE contributed to HOPE with observations of a continu-
ously scanning 35 GHz cloud radar, a Doppler lidar, and three
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Table 1. Sites and networks deployed during HOPE-Jülich. Information on the individual instruments are given in Table 2. For details on the
affiliations see Sect. 2.1.1. as well as the title page of this article.

Supersite
or network

Abbreviation Location Instruments

Krauthausen KRA 50.8797◦ N,
6.4145◦ E;
99 m a.s.l.

TROPOS: LACROS supersite with Mira-35, PollyXT, CHM15kx, WiLi,
HATPRO, Parsivel2, Pyranometer, all-sky imager
MPIM: Cimel

Jülich JUE 50.909◦ N,
6.4139◦ E;
111 m a.s.l.

IGMK/FZJ: JOYCE with Mira-35, CHM15k, HALO Streamline, HATPRO,
Parsivel2, all-sky imager, Cimel
MPIM: ARL-2
UniBas: BASIL
TROPOS: Pyranometer

Hambach HAM 50.897◦ N,
6.463◦ E;
114 m a.s.l.

KIT: KITcube with Mira-35, WindTracer, HALO Streamline, CHM15k,
HATPRO, radiosonde station, Parsivel2, energy balance stations (at HAM
and WAS sites, see Fig. 1), wind mast
IPM: DIAL, TRRL
MPIM: Cimel

Pyranometer
network

PYR Area enclosed by 50.846◦ N, 6.379◦ E and 50.945◦ N, 6.485◦ E.
All pyranometers operated by TROPOS.

Sky imager
network

SKY KRA: 50.897◦ N, 6.463◦ E; 99 m a.s.l.
JUE: two instruments within 500 m of 50.909◦ N, 6.4139◦ E; 111 m a.s.l.

X-band
radar
network

XRD KIT: KiXPol at 50.8566◦ N, 6.3799◦ E; 114 m a.s.l.
MIUB: BoXPol at 50.7312◦ N, 7.07124◦ E; 99.5 m a.s.l.
FZJ: JuXPol at 50.932◦ N, 6.455◦ E; 300 m a.s.l.
All Instruments operated by the individual institutions.

Sun
photometer
network

SUN Aachen: 50.777◦ N, 6.0606◦ E; 230 m a.s.l.
KRA: 50.879◦ N, 6.4145◦ E; 99 m a.s.l.
Hombroich: 51.151◦ N, 6.6436◦ E; 70 m a.s.l.
HAM: 50.897◦ N, 6.4630◦ E; 114 m a.s.l.
JUE: 50.909◦ N, 6.4139◦ E; 111 m a.s.l.
All instruments, except for JUE, provided by NASA/GSFC and operated by MPIM.
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microwave radiometers (one continuously scanning, one ver-
tically pointing, and one continuously obtaining temperature
profiles) for the spatiotemporal characterization of humidity
and liquid water fields and for provision of the line-of-sight-
integrated amount of water vapour and liquid water (Rose et
al., 2005). The observations at the supersite Jülich were sup-
ported by high-resolved measurements of the vertical profile
of the atmospheric temperature and water vapour mixing ra-
tio, both at daytime and at night, which have been performed
with the multi-wavelength polarization Raman lidar system
BASIL of the Università degli Studi della Basilicata (Uni-
Bas), Italy (Di Girolamo et al., 2009, 2016), and the lidar
system ARL-2 of the Max Planck Institute for Meteorology
(MPIM) (Wandinger et al., 2016). Temperature and moisture
turbulent fluctuations have been observed by BASIL and are
reported by Di Girolamo et al. (2017). BASIL as well as the
ARL-2 lidar also provided measurements of aerosol scatter-
ing properties at 355, 532, and 1064 nm wavelength.

Hambach supersite

With the newly designed observing system KITcube
(Kalthoff et al., 2013), the Institute of Meteorology and Cli-
mate Research (IMK) of the Karlsruhe Institute of Technol-
ogy (KIT) provides meteorological and convection-related
parameters and contributed to measurements of the develop-
ment of clouds with high temporal and spatial resolution in
the HOPE area. KITcube was the main facility at the super-
site HAM and consists of a surface-based network with mete-
orological stations and a 30-metre tower measuring the stan-
dard parameters of temperature, humidity, air pressure, wind
speed and direction, sensible heat fluxes, the energy balance
components at the Earth’s surface (Kalthoff et al., 2006),
and soil moisture and soil temperature profiles (Krauss et
al., 2010). These stations in general are distributed over the
whole area of KITcube to account for surface inhomogene-
ity. For instance, KIT operated two eddy-covariance stations
– one at the main site HAM, and a second one at the outpost
WAS, approximately 2.5 km to the west. KITcube also in-
cludes scanning Doppler wind lidars to measure wind speed,
wind direction, and turbulence characteristics in the CBL.
One Lockheed WindTracer was installed at supersite HAM,
with a second WindTracer at the outpost WAS (see Fig. 3b)
to allow dual-Doppler applications. Both were installed to-
gether with a Leosphere Windcube. Additionally, a Doppler
lidar of KIT IMK-IFU (Halo Photonics Streamline) was op-
erated at the TERENO site Selhausen. These instruments
were complemented by a microwave radiometer, a scanning
35 GHz cloud radar monitoring the development of clouds,
a vertically pointing micro rain radar and disdrometers pro-
viding information about precipitation, and a ceilometer for
cloud base height detection. At a second KITcube outpost de-
noted KiXPol, approximately 7.5 km southwest of HAM, a
polarimetric X-band rain radar was operated, providing vol-
ume scans of polarimetric moments, vertical cross sections

(RHI scans) on demand, as well as the horizontal precipi-
tation field for the HOPE-Jülich area every 5 min and with
250 m radial resolution. In situ vertical profiles of tempera-
ture, humidity, and wind profiles as well as convective in-
dices were gathered by radiosondes launched regularly ev-
ery sixth full hour at the KITcube main site. Land and full-
sky images were taken by S14 camera systems at HAM and
WAS.

Also at supersite HAM, two lidar systems from IPM of
UHOH observed 3-D thermodynamic fields of temperature
and moisture including their turbulent fluctuations. A tem-
perature rotational Raman lidar (TRRL) measured tempera-
ture profiles (Behrendt et al., 2015; Hammann et al., 2015;
Radlach et al., 2008) and a water vapour DIAL measured ab-
solute humidity profiles (Muppa et al., 2016; Späth et al.,
2016; Wagner et al., 2013). In contrast to the Raman li-
dar technique, the DIAL technique, which is based on the
alternating emission of laser pulses at frequencies strongly
and weakly absorbed by water vapour, does not require cal-
ibration. By sending out the laser beam vertically into the
atmosphere, high-resolution observations of the convective
boundary layer and the lower free troposphere can be made
with the instrument (Muppa et al., 2016; Wagner et al., 2013).
But the same system also allows for observations in any di-
rection of interest and thus to map the structure of the water
vapour field and its development (Milovac et al., 2016). Like
the DIAL, the TRRL of IPM also has scanning capabilities
and an intrinsic high spatial and temporal resolution of 1–10 s
and 15–100 m up to a range of about 5 km. Consequently,
both systems are capable of resolving turbulent fluctuations
in the convective boundary layer from the surface to the en-
trainment zone. Derived products include statistical moments
of moisture and temperature turbulent fluctuations (Behrendt
et al., 2015; Muppa et al., 2016; Wulfmeyer et al., 2015),
profiles of stability variables such as buoyancy (Behrendt et
al., 2011), and the boundary layer depth, aerosol backscatter
fields, and cloud boundaries. The self-calibrating DIAL tech-
nique has excellent absolute accuracy (Bhawar et al., 2011)
and has been acknowledged as water vapour reference stan-
dard of WMO.

Krauthausen supersite

Continuous observations with the TROPOS mobile facility
LACROS (Bühl et al., 2013) were performed at the super-
site KRA. LACROS employs a 35 GHz cloud radar, a multi-
wavelength Raman polarization lidar, a ceilometer, a Doppler
lidar, a microwave radiometer, an optical disdrometer, and an
all-sky imager. The Raman polarization lidar PollyXT (Engel-
mann et al., 2016), deployed at supersite KRA, is part of the
lidar network PollyNet (Baars et al., 2016) and provides au-
tomatically derived profiles of aerosol scattering properties
and water vapour mixing ratio. Observations of the vertical
velocity in the boundary layer and at cloud bases were pro-
vided by the Doppler wind lidar WiLi (Bühl et al., 2012).
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The focus of the LACROS observations was set on the con-
tinuous vertical profiling of the full tropospheric column to
derive aerosol and cloud microphysical properties and cloud
droplet dynamics (Bühl et al., 2016). LACROS at supersite
KRA as well as JOYCE at supersite JUE are part of Cloud-
net (Illingworth et al., 2007), providing a target categoriza-
tion mask and microphysical parameters of clouds based on
co-located vertically pointing observations of at least a cloud
radar, a lidar, and a microwave radiometer.

Networks deployed in the HOPE-Jülich area

Beside the supersite observations at JUE, KRA, and HAM,
different instrument networks were also distributed in the
vicinity of the three supersites. The pyranometer network
(PYR) of 99 autonomous meteorological stations includ-
ing pyranometers developed by TROPOS (Madhavan et al.,
2016) was deployed within a radius of about 5 km around the
supersite JUE to capture the broadband downwelling solar
irradiance with high spatial and temporal resolution.

The Meteorological Institute of the University of Bonn
(MIUB) coordinated the operation of six sky imagers within
the SKY network that were provided by several partner insti-
tutes to obtain imagery for cloud classification and the deter-
mination of cloud morphology (Beekmans et al., 2016).

Three scanning polarimetric X-band rain radars jointly op-
erated within the XRD network by the University of Bonn
(BoXPol), the Jülich Research Centre (JuXPol) (Diederich et
al., 2015), and KIT (KiXPol) provided 3-D fields of polari-
metric moments over the domain and precipitation estimates
(Trömel and Simmer, 2012; Xie et al., 2016).

Within the sun photometer network (SUN), the vertically
integrated aerosol characteristics and water vapour field at
the three HOPE-Jülich supersites as well as at two more-
remote sites (Aachen and Insel Hombroich; see Table 1) were
derived. Except for the one operated within JOYCE at su-
persite JUE, all sun photometers were provided by NASA
Goddard Space Flight Center (GSFC), Langley, USA, and
operated by MPIM.

Additionally, two ground-based scanning spectral ra-
diometers, SpecMACS from the Munich Institute for Meteo-
rology (MIM) of the Ludwig Maximilian University (LMU)
of Munich (Ewald et al., 2016) and EAGLE from Leipzig
Institute of Meteorology (LIM) of the University of Leipzig
(Jäkel et al., 2013), participated in the campaign. These in-
struments provide the solar radiation reflected at cloud sides
from which vertical profiles of cloud microphysical proper-
ties shall be inferred.

2.1.2 HOPE-Melpitz

The HOPE-Melpitz campaign basically combined the re-
mote sensing of aerosol and cloud properties of the LACROS
supersite with the in situ observations of the helicopter-
borne Airborne Cloud Turbulence Observation System (AC-

TOS) (Siebert et al., 2013) (see Fig. 2). The follow-up cam-
paign HOPE-Melpitz became necessary because of problems
with the availability of a helicopter carrying ACTOS during
HOPE-Jülich.

The Melpitz site (51.525◦ N, 12.928◦ E; 86 m a.s.l.) is
the TROPOS research station for the continuous physical
and chemical in situ aerosol characterization of background
aerosol characteristics in central Germany (Spindler et al.,
2012). The site is located in a rural area, 40 km northeast of
Leipzig (Fig. 4). The topography around the Melpitz site is
rather flat over an area of several hundred square kilometres,
ranging between 100 and 250 m a.s.l. Melpitz is part of the
European Monitoring and Evaluation Programme (EMEP)
(Tørseth et al., 2012) as well as the European Aerosols,
Clouds and Trace gases Research Infrastructure (ACTRIS)
and provides a comprehensive set of in situ observed chem-
ical, microphysical, and optical aerosol properties. Based on
the co-location of the ground-based aerosol instrumentation,
the airborne ACTOS platform, and the remote-sensing fa-
cility LACROS, the HOPE-Melpitz campaign thus provides
the opportunity to investigate the relationship between tropo-
spheric aerosols and clouds and aerosol conditions.

Similar to HOPE-Jülich, during HOPE-Melpitz the
LACROS instrumentation comprised the polarization Ra-
man lidar PollyXT-OCEANET (Engelmann et al., 2016)
with near-range capabilities, a Humidity–Temperature Pro-
filer (HATPRO) microwave radiometer, WiLi, 50 pyranome-
ters, an all-sky imager, and a radiosonde station (provided
from KITcube; see Table 2). Two sun photometers were in-
stalled, one at the site of Melpitz and one at TROPOS in
Leipzig (51.3◦ N, 12.4◦ E; 120 m a.s.l.), in order to distin-
guish rural and urban aerosol conditions.

Measurements of the broadband irradiances at the surface
were carried out with a mobile station following the rec-
ommendations of the Baseline Surface Radiation Network
(McArthur, 2005) and can serve as high-quality reference for
the pyranometer network. In addition, spectral irradiances
were observed with a rotating shadowband radiometer of
type GUVis-3511 (Witthuhn et al., 2017).

Detailed information on the ACTOS set-up are given in
Siebert et al. (2013). ACTOS provides dynamic, thermody-
namic, and cloud and aerosol microphysical properties of
warm shallow boundary layer clouds. The standard ACTOS
instrumentation comprises sensors for the wind vector, tem-
perature, and humidity under clear and cloudy conditions.
Observed microphysical parameters of liquid clouds include
the cloud droplet number–size distribution in the range from
1 to 180 µm as well as the integral properties of this cloud
droplet spectrum, e.g. liquid water content and effective ra-
dius. Aerosol number–size distributions for the size range
from 8 nm to 2.8 µm are obtained with a resolution of 2 min.
The total aerosol number concentration was recorded in the
aerosol particle size range from 8 nm to 2 µm with 1 Hz
resolution (Düsing et al., 2017) and with 50 Hz resolution
(Wehner et al., 2011). Additionally, a mini-CCNC (cloud
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Figure 4. Topography around the location of the HOPE-Melpitz campaign. (a) Large-scale topography; (b) aerial photograph of the Melpitz
field site with the locations of the pyranometers of the PYR.

condensation nuclei counter) was used for measuring the
cloud droplet condensation nuclei (CCN) number concentra-
tion at different supersaturations.

The two ground-based spectral radiometers EAGLE and
SpecMACS from LIM and LMU, respectively, which were
operated during HOPE-Jülich, were also deployed during
HOPE-Melpitz. Besides ACTOS, airborne observations with
spectral radiometers for cloud remote sensing from the Freie
Universität Berlin (Schröder et al., 2004) were performed on
some days.

2.2 Datasets

2.2.1 HOPE-Jülich

HOPE-Jülich was conducted from 3 April to 31 May 2013
as this period in the year favours low-level cloud formation.
Only the measurements of the PYR continued until end of
July to capture high-sun conditions. An extensive operation
plan documenting the daily availability of all central instru-
ments of HOPE-Jülich can be found in the Supplement to
this article.

The weather conditions during the campaign varied from
several warm and cold front passages interrupted by a few
high-pressure systems with high-level cirrus clouds at the
beginning of the campaign and more low-level convective
clouds later on. Since the campaign focused on the onset
of clouds and precipitation, intensive observation periods
(IOPs) have been called out whenever clear skies, boundary
layer clouds, or precipitation-developing clouds were fore-
cast. During IOPs, instruments requiring continuous human
control were measuring in addition to autonomously oper-
ating instruments. Furthermore, radiosondes were launched
more frequently at supersite Hambach, depending on the
weather situation and its variability. Table 3 summarizes the

IOPs during HOPE-Jülich and the corresponding weather
conditions. IOPs with especially well-suited weather con-
ditions have been labelled as “golden days” and have been
more deeply analysed by all participating groups.

As an example, a detailed depiction of IOP7
(25 April 2013) consisting of a turbulently driven boundary
layer development topped with afternoon single cumulus
clouds in the afternoon can be found in Löhnert et al. (2015).
There, it is demonstrated that a holistic view of the daily
development of the boundary layer is only possible through
the synergetic treatment of different ground-based remote
sensors.

2.2.2 HOPE-Melpitz

Weather conditions have not been optimal for the helicopter
operations due to problems with low-level overcast clouds
(no flight permit inside clouds) and icing conditions. During
the 3 weeks of the campaign, five IOPs have been performed
on which 10 ACTOS flights were performed, covering 15 h
of measurements (Table 4). However, the helicopter flights
captured a spectrum of different meteorological conditions
as can be seen from Table 4.

2.2.3 Data availability

All officially participating partners have been submitting
their quality-controlled data in a common format to the
HD(CP)2 data archive centre for Standardized Atmospheric
Measurement Data (SAMD). Data processing of specific
sensors (i.e. microwave radiometer, cloud radar, ceilome-
ter) deployed by different supersites was made uniform. All
the data processing is documented by means of metadata.
See Stamnas et al. (2016) for a detailed overview on the
data format and database. All data are publicly available
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Table 3. Summary of intensive observation periods during HOPE-Jülich. Bold typeface denotes “golden days”.

IOP no. Date Sky situation

1 Apr 13 broken convective clouds
2 Apr 14 low-cloud deck until noon, broken cirrus in the afternoon
3 Apr 15 convective clouds, precipitation
4 Apr 18 few PBL clouds, broken cirrus
5 Apr 20 clear

6 Apr 24 clear

7 Apr 25 PBL clouds

8 Apr 26 frontal clouds, precipitation

9 Apr 29 weak convection
10 May 2 high aerosol load, cumulus
11 May 4 clear

12 May 5 PBL clouds

13 May 18 scattered clouds

14 May 19 scattered clouds

15 May 24 PBL convection in cold air mass
16 May 25 convective clouds, warm front, and precipitation in the evening
17 May 27 scattered clouds

18 May 28 scattered clouds, complex scenario

Table 4. Summary of intensive observation periods during HOPE-Melpitz. On these days a total of 15 h of observations with ACTOS were
performed. Cu: cumulus; Sc: stratocumulus. Bold typeface denotes “golden days”.

IOP no. Date Sky situation Flight times (UTC)

19 Sep 13 Cu clouds 08:43–12:40
20 Sep 14 polluted air, clear skies, Cu 08:10–10:20; 11:56–14:10

21 Sep 17 clean air, Cu 08:22–10:38
22 Sep 21 Cu convection, drizzling Sc 11:07–13:11

decoupled from PBL
23 Sep 22 Sc decoupled from PBL 08:46–10:53

24 Sep 27 Cu convection, very low PBL 08:00–10:00

since January 2017 (https://icdc.cen.uni-hamburg.de/index.
php?id=samd; re3data.org, 2017).

3 Results

3.1 Near-surface wind field and energy budget

One central goal of HOPE was the characterization of the
turbulent structure of the ABL. To capture this feature, both
the surface energy budget components and the wind fields
near the surface and in the lower boundary layer are re-
quired. The set of instruments available during HOPE-Jülich
provided a unique opportunity to compare and to correlate
vertical-velocity variances from different locations. Maurer
et al. (2016) made use of a triangular set-up of three KITcube
Doppler lidar systems deployed approximately 3 km apart
from each other. This distance was assumed to be sufficient
to ensure that the lidars do not monitor the same convective
cells at the same time. Nevertheless, they found persistent
similar statistical properties of velocity variances measured

along the wind direction in contrast to measurements across
the wind direction. This indicates that local organized struc-
tures of turbulence can dominate turbulence characteristics
and that single turbulence measurements may not be repre-
sentative for a larger domain.

In a similar approach Träumner et al. (2015) investigated
correlation patterns of near-surface wind fields from a dual-
Doppler lidar set-up scanning at low elevation angles to-
gether with available in situ wind vectors from ground-based
stations. As a measure for anisotropy, integral length scales
were defined for the along-stream and the cross-stream wind
components. Integral scales provide a measure of the spa-
tial or temporal dimension of turbulent eddies (Wyngaard,
2004). The authors confirmed previous findings of streak-like
structures elongated and aligned in the wind direction. Also
periodic behaviour in the horizontal wind fields has been
identified occasionally. Interestingly, the mean structural pat-
tern could be related to the background wind speed and the
atmospheric stability. Still, individual wind fields can vary
strongly for the same external forcing. Thus, a characteriza-
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tion of coherence patterns in the otherwise turbulent bound-
ary layer requires extensive spatiotemporal averaging.

Eder et al. (2015) investigated the complete surface energy
budget and tested the hypothesis of whether so-called tur-
bulent organized structures (TOS), low-frequency structures
that fill the entire ABL, are a major cause for the frequently
unclosed surface energy balances as they contribute to the
vertical energy fluxes. In fact, by means of data from horizon-
tally and vertically scanning Doppler lidars the authors could
show that TOS with timescales larger than 30 min extend
deep into the surface layer. This finding implies that future
turbulent energy exchange studies require the full 3-D field
of humidity, temperature, and velocity in high spatiotempo-
ral resolution, which was also pointed out and elaborated in
Wulfmeyer et al. (2016).

Based on the autonomous pyranometer network described
in Madhavan et al. (2016), the representativeness of a sin-
gle station measurement for spatially extended domains with
different area sizes has been investigated (Madhavan et al.,
2017). This is an important aspect for the evaluation of
model results with observations, where point measurements
are mostly compared to grid-box means and are thus im-
plicitly assumed to have similar statistical properties. Spa-
tial and temporal smoothing has been quantified, which lim-
its the representativeness of a point measurement for its sur-
rounding domain size and period. Spatial averaging acts as
a low-pass filter and reduces or even completely removes
high-frequency spatiotemporal variations. This is illustrated
in Fig. 5a, which shows a wavelet-based power spectrum ob-
tained from 99 pyranometer stations and corresponding es-
timates of the power spectra for three areas ranging from
1 × 1 km2 to 10 × 10 km2 in size under broken-cloud con-
ditions. Figure 5b shows the explained variance (square of
Pearson correlation coefficient) of temporal fluctuations of a
point measurement and a spatial domain as a function of fre-
quency. It demonstrates the second effect, which describes
that the correlation of temporal fluctuations decreases with
increasing frequency. The combination of both effects adds
up to the total deviation of a point measurement from the
spatial mean of an extended domain, which is presented in
Fig. 5c. The magnitude of this deviation depends on the
domain size, the averaging period, and the synoptic con-
ditions. Broken clouds cause the largest deviations in the
10 × 10 km2 domain, reaching about 30 W m−2 for 3-hourly
and 80 W m−2 for 1-second-resolution observations.

Also based on the horizontally high-resolved measure-
ments of the irradiance from the PYR performed by TRO-
POS, Lohmann et al. (2016) analysed the statistics of spa-
tiotemporal irradiance fluctuations with a strong application-
oriented focus on photovoltaic power systems. They specif-
ically calculated single-point statistics and two-point corre-
lation coefficients for clear, overcast, and mixed skies. The
statistics for clear and overcast skies show similar behaviour
as in previously published work; see Lohmann et al. (2016)
for references. In order to account for conditions for a dis-

tributed PV system, they defined so-called irradiance incre-
ments as changes in transmissivities over specified intervals
of time and showed that the magnitude of increments is more
strongly reduced by spatial averaging than that of the fluctu-
ations. By conditioning the sky type – which can easily be
done from the irradiance measurements themselves – they
demonstrated that the probability for strong irradiance incre-
ments is twice as high compared to increment statistics com-
puted without distinguishing between different sky types.

As clouds impose the largest short-term variability in solar
irradiance at the surface, the analysis of cloud advection and
subsequent extrapolation represents a reasonable approach
for short-term irradiance forecasts. Schmidt et al. (2016)
made use of time series of hemispheric sky images to pre-
dict the surface irradiance by means of mapping the cloud
position, which in turn is translated into shadow maps at the
surface. The temporal evolution of such shadow maps is cal-
culated from cloud motion vectors that were calculated from
subsequent sky images. Irradiance forecasts of up to 25 min
have been produced and were validated against the network
of pyranometers described in Madhavan et al. (2016). Al-
though these sky-imager-based forecasts do not outperform
a simple persistence forecast on average, improved forecast
skill was found for convective cloud conditions with high
cloud and irradiance variability. This finding may provide
useful application in photovoltaic electricity production.

3.2 The turbulence structure of the boundary layer

and clouds

The goal of the HD(CP)2 project was to realize and to eval-
uate a model run spanning the area of whole Germany at the
horizontal resolution of 100 m. At such a small scale, certain
parameterizations for organized turbulent motions, such as
those that define the ABL, and areas of shallow convection
are supposed to be not required anymore. Hence, the set-up
of the envisioned model is comparable to the one of a LES,
wherein the sub-grid parameterizations are simpler and have
less impact on the model performance (Bryan et al., 2003;
Deardorff, 1970).

The increased model resolution puts new requirements on
evaluation techniques. The HOPE campaigns provided an
optimum test bed for novel applications to derive boundary
layer fluxes and turbulence characteristics. Observations of
the turbulent fluxes of thermodynamic properties in the plan-
etary boundary layer (PBL), such as of temperature and water
vapour, provide detailed information on the minimum reso-
lution required by a model to capture the turbulence spec-
trum down to the inertial sub-range and consequently to re-
solve the major part of the turbulent fluctuations. This value
is here introduced as the integral scale. During HOPE-Jülich,
based on TRRL observations it was possible to derive the
statistics of turbulent temperature fluctuations and thus of
the integral scale of this parameter in the PBL (Behrendt et
al., 2015). In addition to commercially available Doppler li-
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Figure 5. Spatiotemporal characteristics derived from the pyranometer network under broken-cloud conditions during HOPE-Jülich. This
figure illustrates the origin of deviations between a point measurement (labelled as var(TD) in the legend) and a domain-averaged value
(representativeness error) for broadband solar atmospheric transmittance and irradiance for different domain sizes. (a) Power spectra of
transmittance for a point measurement and domains with different sizes; (b) explained variance of temporal fluctuations in a point mea-
surement and a domain average as function of period; (c) total expected deviation between a point measurement and a domain average for
transmittance and irradiance as a function of averaging, assuming a value of 680 W m−2 for the incoming solar irradiance at the top of
atmosphere. The time period of fluctuations (inverse of their frequency) is shown logarithmically on the x axis. Adapted from Madhavan et
al. (2017).

dar systems, which provide turbulent wind fluctuations, three
water vapour research lidars were deployed during HOPE-
Jülich, which provide turbulent humidity fluctuations that
were documented by Di Girolamo et al. (2017) and Muppa
et al. (2016). As the authors of the above-mentioned stud-
ies note, HOPE-Jülich provided for the first time data to ob-
serve the turbulence characteristics of the PBL, more specif-
ically the CBL, up to the fourth statistical moment, i.e. the
mean, standard deviation, variance, skewness, and kurtosis
of the spatiotemporal water vapour and temperature. Exam-
ples of the relationship between the integral scales (intro-
duced in Sect. 3.1) of humidity and temperature fluctuation
and height above ground within the CBL for the 20 April
2013 (IOP 5), 11:30–13:30 UTC (only temperature fluctu-
ations; see Di Girolamo et al., 2017), and 24 April 2013
(IOP 6), 11:00–12:00 UTC (temperature and humidity fluc-
tuation; see Behrendt et al., 2015 and Muppa et al., 2016),
respectively, are depicted in Fig. 6. A decrease in the integral
length scale of the water vapour mixing ratio with height in
the upper part of the CBL was found at the HAM site similar
to previous observations (Couvreux et al., 2005; Wulfmeyer
et al., 2010). A similar decrease was found for temperature
at the same site. The temperature observations from JUE site
show a more complex structure. The reasons for this are still
under investigation. The decrease of the integral length scale
toward the top of the CBL can be explained by the decrease
in the size of the turbulent eddies with height resulting from
the entrainment of dry free-tropospheric air at the CBL top
(Couvreux et al., 2005), which is also characterized by an
increase in the variance of the temperature or water vapour
toward CBL top. Converting the observed timescales shown
in Fig. 6 to spatial scales assuming horizontal and vertical
wind velocities of 5 and 1 m s−1, respectively, results in hor-
izontal and vertical integral length scales of 100–1000 and
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Figure 6. Integral scales of the temperature fluctuations (black) and
humidity fluctuations (red) in the convective boundary layer derived
from high-resolved observations obtained between 11:30 and 13:30
on 20 April 2013 (IOP 5) and 11:00 and 12:00 UTC on 24 April
2013 (IOP 6) during HOPE-Jülich. Heights are normalized with re-
spect to the height of the convective boundary layer zi . Adapted
from Behrendt et al. (2015), Muppa et al. (2016), and Di Girolamo
et al. (2017).

20–200 m, respectively. Thus, in order to capture the full tur-
bulence spectrum in the CBL, a numerical model simulation
should also be run at temporal and spatial resolutions that are
better resolved than the observed values.

Detailed CBL turbulence characteristics from HOPE and
further field campaigns (Wulfmeyer et al., 2016) showed that
the combination of active temperature, humidity and wind
profiling applied during HOPE-Jülich sufficiently resolves
the turbulence structure of the CBL and lays the groundwork
for new boundary layer turbulence parameterizations.
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In addition to turbulent fluxes in the cloud-free planetary
boundary layer, the turbulence characteristics of a stratocu-
mulus layer were investigated simultaneously with ACTOS
and the Doppler WiLi of the LACROS site on 22 Septem-
ber 2013 during HOPE Melpitz. The intercomparison shown
in Fig. 7 presents a histogram of the vertical velocities ob-
served with ACTOS (red) and WiLi (blue); further insights
into the microphysical properties of the cloud layer are given
in Sect. 3.4 and Fig. 12. The variability of the vertical ve-
locities (with the mean adjusted to 0 m s−1 and corrected
for large-scale trends) during the cloud observation time of
16 min was found to be similar at the stratocumulus cloud
base (observed with the Doppler lidar) and top (observed
with ACTOS), with standard deviations of 0.23 m s−1 for
ACTOS and 0.21 m s−1 for WiLi. This is an important fact
for Doppler lidar studies of stratocumulus clouds because it
implies that Doppler lidars are suitable to characterize the
turbulence characteristics of entire stratocumulus cloud lay-
ers. From the vertical-velocity observations of WiLi and AC-
TOS integral length scales were also derived, which were in
the range from 38 m (ACTOS) to 45 m (WiLi). The obser-
vations will be further discussed in an upcoming publication
(Seifert et al., 2017).

Furthermore, a combination of lidar and microwave ra-
diometer data has been used to infer the height of the sta-
ble nocturnal boundary layer from aerosol-induced lidar
backscatter variance and microwave-radiometer-derived po-
tential temperature profiles (Saeed et al., 2016).

3.3 Thermodynamic properties of the atmosphere

Besides wind vectors, profiles of atmospheric temperature
and humidity are the main drivers of numerical weather
forecast models and key for the verification of climate and
Earth system models. An overview of their importance and
the requirements set to observing systems is presented in
Wulfmeyer et al. (2015). For models explicitly resolving tur-
bulent processes (such as the HD(CP)2 model), it is impor-
tant to capture small-scale water vapour and thermodynamic
stability fluctuations, which can trigger convection. Evalua-
tion and data assimilation procedures for these models re-
quire advancements in measurement accuracy as well as in
spatial and temporal resolution.

From the multi-sensor observations available for the
HOPE-Jülich experiment, Steinke et al. (2015) investigated
the comparability and range of applicability of various sen-
sors for the determination of the integrated water vapour
(IWV). As can be seen in Fig. 8, in general a good agree-
ment was found between the IWV observations from Global
Positioning System (GPS) stations (Gendt et al., 2001), mi-
crowave radiometer, sun photometer, and radiosonde. The
systematic difference and standard deviation were derived to
be approximately 0.4 and 1 kg m−2, respectively, but the per-
formance and availability of each technique vary by means of
meteorological conditions and time of the day. Spaceborne

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

P
D
F

Vertical velocity [m s  -1]

ACTOS

LACROS

σ
w

=0.34 m s-1

σ
w

=0.32 m s-1

Figure 7. Simultaneous observation of the vertical-velocity vari-
ations in a stratocumulus layer performed in-cloud with ACTOS
(red) and at cloud base with Doppler wind lidar WiLi of LACROS
(blue) on 22 September 2013 during HOPE-Melpitz. The mean ver-
tical velocity of both observations was set to zero to correct for
large-scale vertical motions. Adapted from Seifert et al. (2017).

observations of the IWV from MODIS generally showed a
bias toward lower values, which most probably results from
difficulties in the discrimination of clear and cloudy scenes
from the satellite data. IWV observations are compared to
ICON simulations with 156-metre horizontal resolution. A
case study reveals that the diurnal cycle of IWV variability
of the model matches well with the high-temporal-resolution
microwave radiometer measurements, given a slight bias to-
ward lower values in the model simulations, and that the spa-
tial covariances for distances on the kilometre scale are com-
parable in observations and model.

A technique that is considered to provide accurate, contin-
uous, height-resolved observations of the water vapour mix-
ing ratio is the Raman lidar. Nevertheless, the stability of the
system calibration is still the subject of research and may
depend on the design of specific systems. Based on observa-
tions with the Raman polarization lidar PollyXT at supersite
KRA and of BASIL at supersite JUE, Foth et al. (2015) pre-
sented a calibration technique that uses the integrated water
vapour of a co-located microwave radiometer to provide cal-
ibration data for the lidar observations. The result is an au-
tomatically generated time–height cross section of the water
vapour mixing ratio, as it is shown in Fig. 9 for KRA for the
April 2013 during HOPE-Jülich. As can be seen, lidar ob-
servations are only available at night-time and only from the
ground to the base of optically thick clouds. In a sophisti-
cated approach, these data gaps will in future be filled with
values obtained from an optimal-estimation scheme that con-
siders the spatiotemporal evolution of both the integrated wa-
ter vapour from the microwave radiometer and the vertical
profiles of water vapour mixing ratio from the lidar (Foth
et al., 2016). A similar methodology was also applied to

www.atmos-chem-phys.net/17/4887/2017/ Atmos. Chem. Phys., 17, 4887–4914, 2017



4900 A. Macke et al.: The HD(CP)2 Observational Prototype Experiment (HOPE)

COSMO-DE MWR
GPS

Sun photometer
Radiosonde

MODIS-IR
MODIS-NIR

Occurence 
frequency [%]
0 10

10

20

20

IW
V

 [
kg

 m
-2

]

5

15

25

30

35

0
40
80

120

P
re

ci
p

.
[m

m
]

1 Apr 1 May 11 May 21 May 31 May11 Apr 21 Apr

Day of 2013

Figure 8. Observation of the integrated water vapour (IWV) during HOPE-Jülich for a large suite of different instruments. Right panel
shows the frequency distribution of the IWV values recorded with the different techniques. Bottom panel shows the accumulated amount of
precipitation. Adapted from Steinke et al. (2015).

02 07 12 17 22 27

0

1

2

3

4

5

6

H
e

ig
h

t 
[k

m
]

 

0

2

4

6

8

10

M
ixing ratio (g kg

) -1

Day of April 2013

IOP
1

IOP
2

IOP
3

IOP
4

IOP
5

IOP
6

IOP
7

IOP
8

IOP
9

Figure 9. Calibrated night-time observations at KRA of the water vapour mixing ratio for April 2013 during HOPE-Jülich obtained from
PollyXT that were calibrated automatically with the integrated water vapour provided by a co-located microwave radiometer. Adapted from
Foth et al. (2015).

the JUE BASIL and microwave radiometer data by Barrera-
Verdejo et al. (2016), who showed the benefits of sensor syn-
ergy in terms of an increase in information content in the
regions where lidar data are not available. Barrera-Verdejo
et al. (2016) similarly showed the positive impact of com-
bining rotational Raman lidar measurements of BASIL with
microwave radiometer observations for improving the tem-
perature profile above the boundary layer.

Based on scanning measurements with the water vapour
DIAL of IPM made during HOPE-Jülich, Späth et al. (2016)
(see Sect. 2.1.1) presented a detailed study of the 3-D struc-
ture of the water vapour field between the supersites HAM,
KRA, and JUE with a range resolution of 30–300 m and a
temporal resolution in the range of 10 s for each profile. Full
conical scans (360◦ in azimuth) around the site to character-
ize the water vapour field at a defined elevation angle took
15 min. Such observations provide valuable information for
improving our understanding of land–atmosphere exchange

processes as different types of land cover results in different
evapotranspiration and thus moisture in the CBL.

3.4 Microphysical properties of aerosols and clouds

The retrieval and evaluation of microphysical properties
of aerosols, clouds, and precipitation from ground-based
remote-sensing observations is a crucial task. In situ observa-
tions do provide much higher accuracy but for the long-term
evaluation of the performance of operational weather fore-
cast models and the microphysical parameterizations therein
continuous datasets are required. In particular the HOPE-
Melpitz campaign provided the opportunity to relate in situ
observations of warm-cloud microphysical properties and of
aerosol properties from ACTOS to the respective parameters
observed with ground-based observations of the LACROS
facility. Case studies are presented in the following that doc-
ument the simultaneous ground-based remote sensing and in
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Figure 10. Aerosol target classification for the HOPE-Jülich period from 24 to 26 April 2013 (IOPs 6–8) based on continuous observations
of the multi-wavelength polarization lidar PollyXT. The methodology is described in Baars et al. (2017).

situ observations of a stratocumulus layer and of the aerosol
properties in the lower troposphere, respectively.

Aerosol particles act as nuclei for cloud droplets and ice
crystals and are thus a prerequisite for the formation of
clouds. Lidar is a promising tool to provide estimates of the
concentration of CCN and ice nucleating particles (Mamouri
and Ansmann, 2016). During HOPE-Jülich and HOPE-
Melpitz the Raman polarization lidar PollyXT was continu-
ously operated to provide information on the vertical aerosol
structure in the planetary boundary layer and the troposphere.
HOPE-Jülich was the first time a Raman polarization lidar
provided a continuous dataset of the calibrated attenuated
backscatter coefficient at three wavelengths. Amongst other
parameters, the dominating type of aerosol particles present
in each observed volume was derived by a newly developed
target classification, as is explained by Baars et al. (2017).
Figure 10 shows an example of the aerosol target classifica-
tion for 3 consecutive days from 24 to 26 April 2013 (IOPs 6–
8) during HOPE-Jülich. Frequently large, non-spherical par-
ticles, probably dust or pollen particles that were emitted in
the vicinity of the site, have been monitored. The occurrence
of these aerosol types is correlated with the development of
the planetary boundary layer and they first appear close to
the ground and are slowly dispersed into the boundary layer
in the course of the day, as can be seen for 24 and 25 April in
Fig. 10. Baars et al. (2017) in addition present a case study
that shows visual evidence of the dispersion of dust from
the nearby open-pit coal mine of Inden, west of the KRA
site. With increasing distance from ground, the particles fre-
quently grow by hygroscopic growth, leading to the presence
of large, spherical particles, as it was the case on 25 and 26
April. The mask also helps to identify whether a cloud layer
was within or detached from the planetary boundary layer
aerosol. Overall, the classification of cloud particles solely
on the lidar observations is difficult. This will be overcome in

a future step by merging the multi-wavelength aerosol clas-
sification with the Cloudnet target classification presented in
Illingworth et al. (2007).

Retrievals of microphysical aerosol properties, such as
CCN concentration, from lidar observations as well as re-
trievals of the ambient scattering properties of an aerosol
population measured in situ are still subject to large uncer-
tainties. In situ observations of aerosol properties are usu-
ally performed under dry conditions and inlets are limited
by a maximum cut-off size of an aerosol distribution. During
HOPE-Melpitz, both in situ aerosol observations and lidar
observations of PollyXT were available. Figure 11 presents
the relationship of the backscatter coefficient observed with
PollyXT and the respective extinction coefficient obtained
from the in situ aerosol observations of ACTOS as derived
by Düsing et al. (2017). Based on the low-humidity (dry-
state) in situ aerosol measurements of ACTOS, the ambient
extinction coefficient was obtained at wavelengths of 355,
532, and 1064 nm using a Mie model and a hygroscopic-
growth correction. Thirteen data points derived for different
altitudes and conditions on 14 and 17 September 2013 (IOPs
20 and 21; see Table 4) are included in Fig. 11. Each in situ
data point is based on all (and at least one) 120 s aerosol
particle number size distributions recorded during a period
of flight at a constant height. Averaging times for the lidar
observations varied between 30 and 60 min. A linear rela-
tionship with significant R2 values was derived between the
modelled in situ and remote-sensing extinction coefficients.
For 355 nm 54 % of all cases agree within the uncertainties
and for 532 nm 55 % of the cases. On average, the model un-
derestimates the measured extinction coefficients for 355 nm
by 3.5 % and overestimates the measurements by 7.9 % at a
wavelength of 532 nm. Correlation coefficients are 0.944 and
0.947, respectively. This shows that the ambient aerosol ex-
tinction coefficient can be derived well from in situ measure-
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ments given the extensive instrumentation for microphysical
and chemical aerosol characterization that is available at the
Melpitz field site.

During HOPE-Jülich the availability of CCN was inves-
tigated using an aerosol model. The approach presented by
Hande et al. (2016) used the COSMO-MUSCAT model to
simulate the generation and transportation of aerosols over
Germany during the campaign. From the simulation results,
a parameterization of the CCN concentration was derived
which can be applied also to other climatological regions
and different aerosol regimes. Even though the simulated
aerosol properties were evaluated against in situ observations
of aerosol particle size distributions at Melpitz, no evaluation
of the CCN parameterization against measurements was per-
formed. This emphasizes the need to improve remote-sensing
techniques for the retrieval of CCN profiles as the one of
Mamouri and Ansmann (2016).

At the beginning of the first phase of HD(CP)2 no op-
erational microphysical retrieval of the effective radius of
cloud droplets from ground-based remote-sensing observa-
tions was available within the project. As a first step to-
wards an evaluation dataset for numerical weather forecasts,
it was decided to apply the retrieval technique of Frisch
et al. (2002) to the LACROS observations by implement-
ing it into the processing framework of Cloudnet. The tech-
nique is based on vertically pointing measurements from
a millimetre-wavelength cloud radar and a microwave ra-

diometer and produces height-resolved estimates of cloud
particle effective radius and liquid water content. In addi-
tion, liquid water content profiles are produced operationally
within Cloudnet (Illingworth et al., 2007), assuming either
adiabatic profiles of liquid water content (LWC) between the
lidar-derived cloud base and the radar-derived cloud-top or
scaled-adiabatic profiles for which the adiabatic liquid water
content is scaled to fit the liquid water path observed with the
microwave radiometer (Merk et al., 2016).

The implemented Frisch-2002 (Frisch et al., 2002) re-
trieval of cloud droplet effective radius and the Cloudnet
retrieval of the adiabatically scaled LWC were evaluated
against in situ observations of ACTOS for a stratocumu-
lus deck observed simultaneously by ACTOS and LACROS
during the HOPE-Melpitz campaign on 22 September 2013
(IOP 22) from 09:59 to 10:16 UTC, as is shown in Fig. 12.
During the time period, ACTOS constantly flew horizontal
legs of 2 km length in cross-wind direction in a distance
of about 500 m upwind of the LACROS site. Time–height
cross sections from the continuous LACROS observations
as shown in Fig. 12a and b will be available in the SAMD
database (Sect. 2.2.3) for all of HOPE-Jülich and HOPE-
Melpitz. The comparisons of the average vertical profiles of
LWC and cloud droplet effective radius observed with AC-
TOS and retrieved with LACROS are shown in Fig. 12. It can
be seen that ACTOS probed mainly the mid-upper part of the
cloud layer. Both the observations of the LWC of the cloud
droplet effective radius of ACTOS and LACROS (Fig. 12a)
are within the range of one standard deviation, as is shown
by the horizontal error bars. Beside the found absolute dif-
ferences, the profiles of LWC and effective radius retrieved
from the LACROS observations deviate more strongly from
those of ACTOS toward cloud top. A possible explanation
for the observed discrepancies is the temporal variability of
the LWC and effective radius in the cloud-top region as is
shown in Fig. 12a and b. Also, ACTOS was not flying di-
rectly above the LACROS site. Considering the applied re-
trieval of Eq. (5) in Frisch et al. (2002), the assumption of a
certain shape of the size distribution and of a cloud droplet
number concentration can introduce biases. The application
of the co-located observations of ACTOS and LACROS for
the evaluation of ground-based retrievals will be discussed in
an upcoming publication (Seifert et al., 2017).

The accurate representation of the ice phase in numerical
models is a crucial task since cold rain is the main driver
of precipitation formation at midlatitudes (Mülmenstädt et
al., 2015). The continuous observations of the LACROS su-
persite during HOPE-Jülich enabled us to obtain statisti-
cal information about the primary ice production in strati-
form midlevel mixed-phase cloud layers. Figure 13 shows
an overview about the ice water content (IWC) and ice-
to-total mass ratio of all mixed-phase cloud layers that
were identified from the HOPE-Jülich observations. In these
plots the method for measurement of ice formation effi-
ciency of Bühl et al. (2016) is used, which selects super-
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ACTOS (red) and retrieved from LACROS (black) for the time pe-
riod shown in (a) and (b). Scaled-adiabatic method is based on Merk
et al. (2016); Frisch-2002 method is based on Eq. (5) of Frisch et
al. (2002).

cooled thin stratiform cloud layers with a turbulent mixed-
phase (liquid-dominated) cloud top of a vertical extent of
less than 380 m. In this way, non-linear ice formation ef-
fects like ice multiplication or splintering are avoided and,
thus, do not affect the statistics. IWC is measured 60 m
below the base of the mixed-phase layer, where an obser-
vation of the falling ice particles is possible without in-
fluence of water droplets or turbulent motions. LWCs are
mean values of the scaled-adiabatic approach (Merk et al.,
2016) averaged over the complete height of the shallow
mixed-phase top layer of the cloud where liquid water is
present. As shown in Fig. 13, the IWC of clouds with
top temperatures above −10 ◦C was in general lower than
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Figure 13. Relationship between mean ice water content (IWC) and
ice-to-liquid mass ratio as a function of cloud-top temperature of
all thin supercooled stratiform clouds detected during HOPE-Jülich.
The colours represent the different radar linear depolarization ratios.

10−4 g m−3. At temperatures below −15 ◦C, values of the
IWC vary around 10−3 g m−3. The ice-to-liquid mass ra-
tio decreases from 10−2 to 10−5 for temperatures increas-
ing from −40 to 0 ◦C. The plots thus quantify how ice for-
mation becomes more efficient with decreasing temperature.
The colour-coded data points in Fig. 13 provide in addi-
tion the radar-observed linear depolarization ratio of the ob-
served ice particles, which is a proxy for the particle shape.
Values of around −20 dBZ (−10 ◦C < T < −5 ◦C), −30 dBZ
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(−20 ◦C < T < −10 ◦C), and −25 dBZ (T < −20 ◦C) indicate
columnar, dendritic, and bullet-rosette-like shapes, respec-
tively (Bühl et al., 2016; Myagkov et al., 2016). Knowing
about the relationship between ice water content, liquid water
content, temperature, and shape of freshly formed ice crys-
tals is an important step towards new approaches for the eval-
uation of ice formation schemes in numerical weather fore-
cast models. This will also be a task of the second phase of
HD(CP)2.

3.5 Macrophysical cloud and precipitation properties

The combination of scanning polarimetric X-band Doppler
rain radars, vertically pointing micro rain radars, and a
ground-based network of disdrometers and rain gauges pro-
vided an excellent opportunity to validate the Doppler rain
radar’s ability to infer the spatial variability of quantitative
precipitation properties from polarimetric radar reflectivities.
Xie et al. (2016) performed a detailed analysis of all precip-
itation observations under different synoptic conditions. As
an example, Fig. 14 shows a time series of the surface precip-
itation rates estimated from measurements of three Doppler
rain radar compared to the in situ observations from seven
disdrometers (partly from TR32 and TERENO projects), av-
eraged over the disdrometer locations. The authors note that
rainfall accumulations at the daily and even hourly scale were
surprisingly consistent between the different observations of
rain gauges, disdrometers, and X-band radar, at least for the
low-intensity rainfall events (of 0.5–20 mm day−1) prevalent
during HOPE-Jülich. The correlation was found to be bet-
ter than 0.93. The two nearby radars (KiXPol and JuXPol)
showed slightly better agreement than the 50-kilometre re-
mote radar BoXPol, which is explained by its correspond-
ingly larger field of view and associated beam-filling errors.
Xie et al. (2016) also managed to associate distinct micro-
physical processes for rain formation like coalescence, size-
sorting, and riming/aggregation with the measured polari-
metric properties of the hydrometeors. These polarimetric
fingerprints serve as very useful information for process un-
derstanding of rain formation and model validation (Trömel
and Simmer, 2012)

Ground-based cloud photography provides the most de-
tailed qualitative information on cloud patterns at high spatial
and temporal resolution. Consequently, up to six sky imagers
were operated in the SKY network during HOPE-Jülich. The
combination of several imagers allows also for a quantitative
retrieval of the spatial cloud structure. Beekmans et al. (2016)
presented an approach for a spatial cloud reconstruction by
using two hemispheric sky imagers in a stereoscopic set-up.
They combined a dense stereo correspondence technique and
a large-scale stereo set-up to derive 3-D cloud geometries.
Obviously, such a stereoscopic cloud reconstruction is best
suited for convective clouds that exhibit strong 3-D spatial
features. Important aspects of such a technique include an ac-
curate camera calibration (internal projection and camera ori-
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Figure 14. Time series of rain rates derived from observations of
seven disdrometers (including those from the TR32 programme)
and the three polarimetric radars on 29 May 2013. The shaded grey
area indicates the range of rain rates observed by the disdrometers
with 1 min temporal resolution in the HOPE area, while the rain rate
from the three polarimetric radar observations is calculated at the
radar gates that are coincident with disdrometer locations and also
averaged over the disdrometer locations. From Xie et al. (2016).

entation in space), precise synchronization, similar radiomet-
ric properties, and successful stereo matching on the rather
fuzzy (diffuse) cloud images. As an example, Fig. 15 shows
the determination of a cross section (panel d) from a recon-
struction from a cumulus cloud (panel a). It was found that
the near-zenith cloud base height is very well reproduced in
comparison to lidar observations, yielding errors between 5
to 10 % for low- to mid-altitude cumuliform clouds. In gen-
eral, Beekmans et al. (2016) provided a complete approach
including geometric and radiometric corrections to obtain the
spatial cloud envelope geometry for the cloud sides facing
the sky imagers. Together with 3-D cloud information from
scanning active systems such data will be very valuable for
cloud reconstruction and radiation closure studies.

4 Application of HOPE observations in modelling

activities

In the previous section, results of the HOPE observations
were presented by means of a summary of the differ-
ent studies covering a large range of meteorological pro-
cesses from land-surface–atmospheric boundary layer ex-
change and cloud and precipitation processes to the sub-grid
variability and microphysical properties of clouds and pre-
cipitation. Within this section the application of these re-
sults for the evaluation of the newly developed ICON model
in LES mode as well as other LES and small-scale GCMs
will be summarized. A detailed overview about the set-up of
the different models can be found in Heinze et al. (2017).
In general, ICON was run in LES mode on a daily basis.
Thus, usually the model was initialized at 00:00 UTC and
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Figure 15. Three-dimensional reconstruction of a cumulus tower from a stereographic photograph from 24 July 2014, 11:32:00 UTC. Shown
are (a) a subsection of the image obtained from the reference camera, (b) the reconstruction as an untextured triangulated surface mesh,
(c) the colour-coded height of the reconstruction with contour lines, and (d) the reconstructed distance of the cloud edges from the reference
camera obtained along the cross section (dashed line) shown in (a), (b), and (c) as well as a comparison of the cloud base with the one
observed with lidar ceilometer (blue line). Adapted from Beekmans et al. (2016).

calculations were performed for a period of 24 h. The lat-
eral boundaries for the ICON runs were provided by the
COSMO-DE model (Baldauf et al., 2011), which is one of
the operational models of the DWD. Within the boundaries
of COSMO-DE, covering full Germany and the Netherlands
as well as parts of the other neighbouring countries, three
ICON domains, only slightly smaller than the COSMO-DE
domain (47.6–54.6◦ N, 4.5–14.5◦ E), are nested, having hori-
zontal resolutions of 625, 312, and 156 m, respectively, and a
vertical resolution of 150 layers within 21 km of height above
ground. The simulation of 1 day takes approximately 12 days
when run on 7200 computing cores and creates 50 TB of
output data. LES runs of other models at spatial resolutions
in the range of 50 m were reduced to smaller areas around
the HOPE-Jülich region and periodic boundary conditions
were applied to these models. Those were the models ICON-
SI (ICON semi-idealized), PALM (PArallelized Large-eddy
simulation Model 4.0; Maronga et al., 2015), and DALES
(Dutch Atmospheric LES; Heus et al., 2010).

Given the requirements on computational time and storage
space the simulation days were chosen according to the ap-
propriateness of the present weather conditions for the eval-
uation goals. A list of the HOPE days for which ICON runs
are already available is provided in Table 5. It should be
noted that the number of modelled HOPE days is subject
to change in the future and that ICON runs for dates not
covered by HOPE were also already performed but are not
shown in here. The HOPE days selected for ICON runs cover
a wide range of meteorological conditions, from clear-sky
days for the evaluation of convective processes in the plan-
etary boundary layer to days on which frontal passages ac-
companied by large-scale precipitation occurred. Most eval-
uation efforts were so far performed in a study of Heinze et
al. (2017), but also others already made use of the extensive
observational dataset. The studies available so far are dis-
cussed below.

4.1 Examples of model–observation intercomparisons

The observational studies presented in Sect. 3 demonstrate
well that large efforts are being taken to make observations
suitable for the initialization and the evaluation of numeri-
cal weather prediction (NWP) models and to provide process
studies that are essential for their improvement. The high
temporal resolution of the HOPE dataset allows an analy-
sis beyond the mean, which offers new opportunities to im-
prove the simulation of boundary layer dynamics. Vertical
profiles of higher-order moments (variances and turbulent
fluxes) can be derived (Behrendt et al., 2015; Van Weverberg
et al., 2016), which are essential to advance higher-order clo-
sure parameterizations of turbulent transport schemes in nu-
merical models. Recent LES studies analysed the underlying
sources and sinks of such prognostic higher-order moment
equations for the cloud-topped boundary layer (Heinze et al.,
2015) and precipitating shallow cumulus regime (Schemann
and Seifert, 2017). While these studies underline the impor-
tance, more robust conclusions are achieved by combining
synoptically realistic model simulations with accompanying
observational studies.

Nevertheless, operating a forecast model at scales that are
small enough to resolve the different supersites of the HOPE-
Jülich campaign puts certain requirements on the capabilities
of the model. When the model resolution is between LESs
(with resolved energy-containing turbulence) and mesoscale
simulations (no turbulence resolved), the model is operating
in the so-called “grey zone” where more-sophisticated phys-
ical parameterizations (e.g. for boundary layer turbulence or
cloud microphysics) might be needed. To what extent the pa-
rameterization of turbulence and shallow convection is still
necessary has been one of the key subjects of HD(CP)2.
Based on HOPE-Jülich observations, the grey zone was in-
vestigated in a study of Barthlott and Hoose (2015), who
performed simulations with the COSMO model at horizontal
resolutions ranging between 250 m and 2.8 km for six HOPE
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Table 5. Days of HOPE for which runs of the ICON model are available.

Date IOP Weather conditions

Apr 20 IOP 5 Clear sky with only some cirrus clouds in the morning and late
afternoon

Apr 24 IOP 6 Clear-sky day with only few cirrus clouds in the morning and
afternoon

Apr 25 IOP 7 Cloudy morning (up to 4/8) until 10:00 UTC; only a few
clouds during noon; afterwards again increasing cumulus hu-
milis cloudiness

Apr 26 IOP 8 Rapidly increasing cloudiness up to complete overcast situation
until noon; several rain showers and light to medium rain; de-
creasing cloudiness in the late afternoon

May 2 IOP 10 Broken cumulus mediocris cloudiness; decreasing cloud cover
during afternoon

May 5 IOP 12 Clear-sky conditions until 09:00 UTC; afterwards slightly in-
creasing cumulus humilis cloudiness up to 2/8

May 11 – High cloud cover until noon with several rain showers; after-
wards broken cloudiness

May 28 IOP 18 Clear-sky conditions until midday (10:00 UTC) with only very
few cirrus clouds, followed by low cumulus humilis clouds until
17:00 UTC; afterwards rapidly increasing cloudiness with rain
starting in the evening

IOPs and one additional summertime case of the same year
of 2013. From the kinetic energy spectra derived from the
model output, it was found that the effective resolution (the
minimum size of resolvable eddies) lies between 6 and 7
times the nominal resolution. Finer resolutions improved the
representation of boundary layer thermals, low-level conver-
gence zones, and gravity waves, but the effect on the tempo-
ral evolution of mean precipitation was rather weak. How-
ever, due to sensitivities of the rain intensities to model reso-
lution, differences in the total rain amount of up to +48 %
occurred. Whereas the location of rain was rather similar
at all model resolutions for the springtime cases of HOPE
with moderate to strong synoptic forcing, the summertime
case with air mass convection showed strong differences be-
tween the different resolutions with better agreement to the
observed precipitation amount at the highest resolution of
250 m.

A major goal of HD(CP)2 has been to use high-resolution
modelling to derive parameterizations for climate models and
general circulation models. In this respect the vertical cloud
overlap parameterization is of high interest as it strongly in-
fluences the distribution of energy. In the past, such param-
eterizations have only been tested against observations on a
global scale or for deep convective clouds. For the first time,
Corbetta et al. (2015) investigated cumuliform-cloud overlap
for several boundary layer cloud cases including HOPE and
compared it with the results from LES runs of the DALES
model. Gridded time–height data from Cloudnet were used
to derive cloud fraction masks at various temporal and ver-
tical resolutions. The authors investigated the overlap ratio,

i.e. the ratio of the cloud fraction by volume to the vertically
averaged cloud fraction by area of a grid box, as a function
of the vertical resolution of the grid box. Cumuliform-cloud
overlap ratios were found considerably underestimated by
the LES model. For model-layer depths of less than 100 m,
the modelled cloud overlap deviated by less than 7 % from
the observed one. The difference gradually increases to 15 %
for layer depths of 500 m and approached 20 % for larger
layer depths. Stratiform clouds were found to be better re-
produced by the model, compared to cumuliform clouds. In-
terestingly, the simulated and observed decorrelation lengths
found for this type of clouds are smaller (∼ 300 m) than pre-
viously reported (> 1 km). The authors conclude that the in-
efficient overlap found at large vertical scales has the poten-
tial of significantly affecting the vertical transfer of radiation
in large-scale GCMs, because usually volume and area cloud
fractions are assumed to be identical. The study can thus help
to improve corresponding sub-grid parameterizations.

The evaluation of actual LES simulations of the HOPE-
Jülich area was done by Heinze et al. (2016) who performed
simulations with PALM and UCLA-LES (University of Cal-
ifornia Los Angeles Large-Eddy Simulation model; Stevens
et al., 2005) at up to 50 m horizontal resolution over the
HOPE domain for a 19-day time period in order to cap-
ture a variety of different atmospheric and especially bound-
ary layer conditions. The general weather pattern was repro-
duced in 80 % of the cases. Also cloud types usually agree
well with observations. Resulting turbulence characteristics
and boundary layer heights have been compared to observa-
tions from active remote sensing (Doppler lidar and aerosol
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Figure 16. Temporal evolution of the boundary layer depth zi for the period from 24 to 30 April 2013. zi is determined by means of the
bulk Richardson number criterion in all three models (PALM, UCLA-LES, and COSMO) and in the radiosonde data. A criterion based on
the vertical-velocity variance and detected aerosol layers is used for the wind lidar and aerosol lidar PollyXT, respectively. The data point
obtained from the temperature rotational Raman lidar (TRRL) is based on Behrendt et al. (2015). Radiosondes were launched at the KITcube
site, while the Doppler lidar and PollyXT took measurements at sites JUE and KRA, respectively. Grey and green shading denotes twice the
standard deviation of zi in PALM and UCLA-LES, respectively. Adopted from Heinze et al. (2016).

lidar) and from in situ radiosonde observations as proposed
by Schween et al. (2014). Figure 16 exemplarily shows the
temporal evolution of the boundary layer height as derived
from different model runs and from observations. The 2-hour
(12:00–14:00 UTC) mean boundary layer depth derived with
the PALM model agreed within 400 m to the different obser-
vation methods and to the COSMO-DE run at 2.8 km reso-
lution. The found differences point to problems in the rep-
resentation of ABL features in the LES and should be sub-
ject of further investigations. Please note that the criterion
of model-based ABL depth is also subject to uncertainties
which are explained further by Milovac et al. (2016), who
found similar deviations between measurements and obser-
vations as found by Heinze et al. (2016). Heinze et al. (2016)
further compared the observed turbulence characteristics of
the ABL with the LES model. Observed and modelled pro-
files of the vertical-velocity variance agreed in their shape
with the modelled values being in the range of uncertainty of
the observations and showing slightly higher values through-
out the boundary layer. Modelled profiles of potential tem-
perature variances were found to be lower than the TRRL ob-
servations. For humidity variance, agreement within the un-
certainty range was found in the lower and mid-CBL between
measurements and LES models. But the modelled variance
peaks at the CBL top showed an underestimation when com-
pared with observations. Significant differences with respect
to results from coarser-resolved COSMO simulations were
not reported. This might in part be due to the so-called semi-
idealized set-up with periodic boundary conditions and a ho-
mogeneous surface forcing. The authors also conclude that
the long-wave and short-wave surface fluxes simulated with
the LES model can be seen as representative in comparison
to respective observations at five different sites in the HOPE
area. The peak short-wave heat flux in the LES and COSMO-

DE tends to be overestimated compared to the weighted av-
erage, whereas the long-wave heat flux tends to be underes-
timated.

Furthermore, within the synthesis module of HD(CP)2 ,
high-resolution ICON runs with 625, 312, and 156 m reso-
lution were extensively evaluated against datasets collected
during HOPE-Jülich and from other sources (Heinze et al.,
2017). It was found that the highest-resolved ICON-LES
model matches much better the observed variability at small
to mesoscales than the coarser-resolved model runs or the
reference model COSMO-DE with its 2.8 km horizontal res-
olution. It was demonstrated that the simulated turbulence
profiles of the vertical velocity approach the observed ones
for an increase in the ICON horizontal resolution from 625 to
156 m. Differences between observed and modelled variance
profiles of potential temperature and specific humidity were
much larger, which was explained by the absence of surface
and soil moisture inhomogeneity in the model set-up. The
integrated water vapour of all models matched the range of
values from the observations, but the temporal variability at
short timescales as it was observed with microwave radiome-
ter on a 1-second basis was only reproduced by the 156-metre
resolution run of ICON. From direct comparisons between
modelled and continuous ground-based observations of the
cloud field during HOPE-Jülich it was, however, found that
CBL clouds are underrepresented in the model, even though
the evaluation of the cloud fields on a larger scale, i.e. in
comparison to satellite observations, showed that clouds are
well represented in the model. Heinze et al. (2017) concluded
that, despite the given potential for further improvement of
the ICON-LES model, it already fits well to the purpose of
using its output for parameterization development.

Regarding the application of HOPE observations for the
initialization of NWP models, a first attempt was recently re-
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ported by Adam et al. (2016) who concentrated on 24 April
2013 (IOP 6). In their study the authors assimilated lower-
tropospheric temperature profiles from the TRRL, reaching
from about 500 to 3000 m above ground, into the Weather
Research and Forecasting (WRF; Skamarock et al., 2008)
model using a 3-D-variational method (Barker et al., 2004).
The WRF model covered central Europe with 57 vertical lev-
els and 3 km horizontal resolution. The assimilation of the
temperature profiles from the TRRL and the assimilation of
conventional data including zenith total delay integrated wa-
ter vapour field from the Global Navigation Satellite System
and operational radiosonde data were found to improve the
agreement of measured boundary layer height and temper-
ature gradient to the modelled values. Nine hours after the
assimilation of TRRL data was initialized, an area of 100 km
in radius around the HOPE-Jülich area was already affected,
showing a temperature deviation from the conventional run
of up to 2.5 K at 2.5 km height above sea level. Similar im-
pacts can also be expected for the assimilation of profiles
of water vapour mixing ratio from continuous lidar observa-
tions, as found in an earlier study of Grzeschik et al. (2008).

5 Summary and conclusions

The HD(CP)2 Observational Prototype Experiment provided
an unprecedented dataset on the spatiotemporal structure of
surface and boundary layer energy fluxes, temperature, hu-
midity, aerosols, clouds, and precipitation fields along a va-
riety of weather situations. All data that have been measured
by the official HD(CP)2 partner institutes are stored in the
HD(CP)2 data archive centre SAMD and are publicly avail-
able. Currently, evaluation of the ICON model is performed
both on small spatiotemporal scales based on the HOPE data
and over the entire domain of Germany, exploiting supersite,
satellite, and radar data. The extensive database enables stud-
ies beyond pure model evaluation with a large potential for
process studies on boundary layer fluxes, the formation of
clouds and precipitation, cloud-aerosol interaction, and many
more aspects.

With the large number of in situ and Doppler wind lidar
instruments, coherent structures in the surface near-boundary
layer wind fields and characteristic integral scales have been
identified and have been related to the type of external forc-
ing. For the first time to our knowledge, TRRL demonstrated
its capability to resolve the temperature inversion layer at
the top of the ABL during daytime, which is key informa-
tion for future process studies. Similarly, vertical tempera-
ture fluctuations have been observed for the first time by
means of rotational Raman lidar measurements. It turned
out that a temporal resolution of 10 s was sufficient to re-
solve turbulence structures down to the inertial sub-range
from the mixed layer to the entrainment zone. Observed
statistics of vertically resolved temperature fluctuations up
to the forth-order moment provide important information on

boundary layer dynamics and thermodynamics. The combi-
nation of daytime temperature and humidity profiles from
Raman lidar and water vapour DIAL measurements with
Doppler lidar measurements was used to obtain turbulent
flux profiles in the convective boundary layer. In general,
the combination of vertically resolved (lidar) and vertically
integrated (microwave radiometer) and in situ (radiosondes)
measurements of the atmospheric humidity has produced a
unique 3-D field that together with wind and temperature
measurements will serve as a solid constraint for the eval-
uation of high-resolution models. These results confirm the
importance of high-resolution thermodynamic profiles for
weather and climate research as demonstrated in Wulfmeyer
et al. (2015). Surface solar and thermal radiation budget mea-
surements complement the energy budget observations. A
high-resolution pyranometer network produced statistics on
spatiotemporal solar irradiance correlations for different sky
conditions.

A comparison of turbulence measurements near cloud top
from aircraft in situ measurements and from cloud base by
lidar measurements revealed similar statistical properties,
which points to a vertically homogeneous turbulence struc-
ture inside stratocumulus clouds.

Continuous operation of most of the instruments for 2
months made it possible to identify atmospheric variabil-
ity from the micro- to the mesoscale. A long-term compar-
ison of integrated water vapour from radiosondes and from
ground-based and satellite remote sensing shows a gener-
ally good agreement but also revealed a bias of the space-
borne measurements towards lower values. Lidar observa-
tions of the aerosol profiles have been translated into the
dominant aerosol type within each measurement volume.
Such aerosol target classifications showed the hygroscopic
growth of spherical aerosol particles under humid conditions
as well as the presence of large non-spherical dust particles
that were emitted from nearby sources. It turned out that
the closure of in situ observations and remote sensing of
aerosol microphysical properties is feasible when an exten-
sive aerosol in situ characterization is available. A respective
closure of cloud microphysical properties remains challeng-
ing due to uncertainties stemming from required assumptions
on the particle size distribution and from spatiotemporal av-
eraging. Cloud liquid water content profiles derived in situ
and with remote sensing, however, were found to agree well.
Continuous observations of mixed-phase clouds from a com-
bination of active and passive remote sensing show that the
ratio of ice to liquid water increases with decreasing cloud-
top temperature, which serves as important information for
the evaluation of ice formation parameterizations in cloud
modelling.

Macrophysical cloud structures like cloud vertical dimen-
sion, cloud cover, cloud type, and precipitation fields have
been continuously observed with lidar, radar, and sky im-
agers. Large-scale precipitation patterns together with the
dominant process type for precipitation formation were ob-
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served with polarimetric Doppler precipitation radars. Three-
dimensional cloud morphology has been retrieved from sky
imagers in a stereoscopic set-up. Thus, a uniquely high-
resolved dataset on cloud structural properties has been
achieved during HOPE.

With the completion of the high-resolution ICON LES
model a vast number of model evaluation work is currently in
progress. First evaluation studies based on HOPE data have
shown general agreement between observed and modelled
boundary layer height, turbulence characteristics, and cloud
coverage, and they also point to significant differences that
deserve further investigations from both the observational
and the modelling perspective. Although the meteorological
conditions which were prevalent during HOPE-Jülich and
HOPE-Melpitz enabled the collection of a broad set of ob-
servations, it is obvious that the experimental coverage of
the ABL requires ongoing measurement efforts. In particu-
lar the continuous observations from the German supersites
will contribute to these efforts. The supersites JOYCE, KIT,
and LACROS that have been deployed during HOPE-Jülich
continue their long-term measurements at their base insti-
tutes and will contribute to further process and model evalua-
tion studies in conjunction with further national and interna-
tional supersites like Barbados (13.2◦ N, 59.4◦ W), Cabauw,
the Netherlands (51.9◦ N, 4.9 ◦ E), Lindenberg, Germany
(52.2◦ N, 14.1◦ E), Zugspitze mountain, Germany (47.4◦ N,
11◦ E), as well as mobile facilities from the US (ARM) and
Germany (mobile deployments of the KIT cube, LACROS)
under specific climatological and meteorological conditions.

Future work will take advantage of the synergy of the dif-
ferent active and passive remote-sensing measurements. For
instance, Doppler lidar and polarimetric radar measurements
may link dynamical forcing (up and downdrafts) with micro-
physical processes (riming, coagulation, ice formation). The
cloud radars of JOYCE, KITcube, and LACROS were oc-
casionally operating in a synchronized scan mode. Together
with vertically pointing and scanning microwave radiometer
data, three-dimensional distributions of cloud liquid water
may be constructed and may get even further refined from
cloud structure stereoscopy from synchronized sky imager
data. Radiation closure studies will be performed based on
observed and modelled spatial cloud structures and observed
surface radiation budget measurements. High-resolution irra-
diance data can be used to build stochastic irradiance simula-
tors for specific cloudy-sky conditions, which in turn can be
used to construct realistic cloud-induced solar radiation vari-
ability. Combined measurements of temperature, humidity,
and vertical wind fluctuations in the PBL under different me-
teorological conditions will provide important statistical in-
formation for improved turbulence parameterizations. HOPE
also demonstrated the future potential of the synergy of scan-
ning wind, temperature, and water vapour lidar systems for
3-D studies of land–atmosphere exchange and ABL entrain-
ment in heterogeneous terrain. HOPE data may also reveal to
what extent variations in aerosol concentrations and thus in

CCN and IN concentrations have an effect on cloud and ice
formation compared to dynamical forcing.

In future, HOPE data will continue to contribute to the de-
velopment, evaluation, and improvement of high-resolution
NWP and LES models because the data will be available
via the SAMD database, which fulfils the needs of model
experts. Focused on the ICON development and the col-
lection of observational data for model evaluation, phase 1
of HD(CP)2 set the starting point for an ongoing, synergis-
tic use of HOPE and other observational data by the mod-
elling community. In phase 2 of HD(CP)2, which started in
2016, HD(CP)2 participants have already been making use
of these observations. For instance, a project on boundary
layer clouds will confront ICON with HOPE data for dif-
ferent cloud regimes at different spatiotemporal scales. A
project addressing fast cloud adjustment to aerosols will ex-
ploit remote-sensing and in situ observations of aerosol and
cloud properties to evaluate the susceptibility of the model
performance to different representations of aerosol in the
model, e.g. to variations in the concentration of nuclei for
cloud droplets or ice crystals. A project on the effects of sur-
face heterogeneity uses the HOPE observations to challenge
the applicability of the Monin–Obukhov similarity theory
(MOST) and the reproduction of the vertical boundary layer
structure and turbulence on small scales. Other projects apply
the observations of the 3-D water vapour fields and the cloud
microphysical properties derived with Cloudnet for the de-
velopment of convection parameterizations, just to mention
a few.

Thanks to the valuable efforts of the community of ob-
servers during the HOPE campaigns and given its open-
access availability in the SAMD database (see Sect. 2.2.3),
the HOPE dataset can serve as excellent tool for the model
evaluation and initialization community.

Data availability. Data availability is discussed in Sect. 2.2.3.

The Supplement related to this article is available online

at doi:10.5194/acp-17-4887-2017-supplement.
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