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Data Note

DATA NOTE
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and their reliabilities across scan conditions

and sessions

David O’Connor1,2, Natan Vega Potler1, Meagan Kovacs1, Ting Xu1, Lei Ai1,

John Pellman1,2, Tamara Vanderwal3, Lucas C. Parra4, Samantha Cohen5,

Satrajit Ghosh6, Jasmine Escalera1, Natalie Grant-Villegas1, Yael Osman1,

Anastasia Bui1, R. Cameron Craddock1,2 and Michael P. Milham1,2,∗

1Center for the Developing Brain, Child Mind Institute, New York, NY, 2Center for Biomedical Imaging and

Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, 3Yale University,

New Haven, CT, 4City College of New York, New York, NY, 5The Graduate Center of the City University

of New York, New York, NY and 6Massachusetts Institute of Technology, Cambridge, MA

∗Correspondence: Michael.Milham@childmind.org

Abstract

Background: Although typically measured during the resting state, a growing literature is illustrating the ability to map

intrinsic connectivity with functional MRI during task and naturalistic viewing conditions. These paradigms are drawing

excitement due to their greater tolerability in clinical and developing populations and because they enable a wider range of

analyses (e.g., inter-subject correlations). To be clinically useful, the test-retest reliability of connectivity measured during

these paradigms needs to be established. This resource provides data for evaluating test-retest reliability for full-brain

connectivity patterns detected during each of four scan conditions that differ with respect to level of engagement

(rest, abstract animations, movie clips, flanker task). Data are provided for 13 participants, each scanned in 12 sessions

with 10 minutes for each scan of the four conditions. Diffusion kurtosis imaging data was also obtained at each session.

Findings: Technical validation and demonstrative reliability analyses were carried out at the connection-level using the

Intraclass Correlation Coefficient and at network-level representations of the data using the Image Intraclass Correlation

Coefficient. Variation in intrinsic functional connectivity across sessions was generally found to be greater than that

attributable to scan condition. Between-condition reliability was generally high, particularly for the frontoparietal and

default networks. Between-session reliabilities obtained separately for the different scan conditions were comparable,

though notably lower than between-condition reliabilities.
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2 O’Connor et al.

Conclusions: This resource provides a test-bed for quantifying the reliability of connectivity indices across subjects,

conditions and time. The resource can be used to compare and optimize different frameworks for measuring connectivity

and data collection parameters such as scan length. Additionally, investigators can explore the unique perspectives of the

brain’s functional architecture offered by each of the scan conditions.

Keywords: fMRI; Data sharing; Reliability

Data description

An extensive literature has documented the utility of func-

tional MRI (fMRI) for mapping the brain’s functional interac-

tions through the detection of temporally correlated patterns of

spontaneous activity between spatially distinct brain areas [1–7].

Commonly referred to as intrinsic functional connectivity (iFC),

these patterns are commonly studied during the “resting state,”

which involves the participant quietly lying awake and not per-

forming an externally driven task. Resting state fMRI (R-fMRI)

has gained popularity in clinical neuroimaging due to its mini-

mal task and participant compliance demands. R-fMRI has also

demonstrated good test-retest reliability for commonly used

measures [8–12], and utility in detecting brain differences as-

sociated with neuropsychiatric disorders [13,14]. Despite these

successes, a growing body of work is questioning the advantages

of resting state, given reports of higher head motion, decreased

tolerance of the scan environment (e.g., boredom, rumination),

and increased likelihood of falling asleep compared to more en-

gaging task-based fMRI paradigms [15–18]. This is particularly

relevant for studies of pediatric, geriatric, and clinical popula-

tions, all of which are characterized by lower tolerance of the

scanner environment.

A number of less challenging scan conditions have been pro-

posed as alternatives for estimating iFC. Particularly intrigu-

ing are “naturalistic viewing” paradigms [15,19,20]. It has been

shown that the mental state (i.e., emotional state, performing

a task, etc.) of the participant during scanning can affect iFC

patterns; recent work suggests that low engagement states (e.g.,

computer animations with limited cognitive content) may come

close to mimicking rest from a neural perspective [21]. Several

studies have illustrated the ability to relate trait phenotypic vari-

ables to inter-individual differences in iFC across conditions,

even if extrinsically driven signals (i.e., task stimulus functions)

are not removed [21–27]. However, comprehensive comparisons

of the relative impact of scan condition on detection of inter-

individual differences in iFC, and the test-retest reliability of

these differences, are needed before these paradigms can fully

supplant R-fMRI.

Here we describe a dataset that was generated as part of a

pilot testing effort for the Child Mind Institute Healthy Brain

Network, a large-scale data collection effort focused on the gen-

eration of an open resource for studying child and adolescent

mental health. The primary goal of the data collection was to

assess and compare test-retest reliability of full-brain connec-

tivity patterns detected for each of four scan conditions that dif-

feredwith respect to level of engagement. Specifically, 13 partici-

pants were scanned during each of the following four conditions

on 12 different occasions: 1) rest, 2) free viewing of computer-

generated abstract shapes with music designed to have mini-

mal cognitive or emotional content (i.e., “Inscapes”, [15]), 3) free

viewing of highly engaging movies [19], and 4) performance of

an active task (i.e., an Eriksen flanker task [28], with no-Go tri-

als included). For each of the non-rest conditions, three dif-

ferent stimuli were used, with each being repeated four times

across the 12 sessions to enable the evaluation of repetition ef-

fects. Given the focus on naturalistic viewing, an additional scan

session containing a full viewing of “Raiders of the Lost Ark”

(Lucasfilm Ltd., 1981) was included to facilitate interested par-

ties in the exploration and evaluation of hyper alignment ap-

proaches, which offer increasingly popular and unique solutions

to overcoming anatomical variability when attempting tomatch

functional systems across individuals [29].

Although not a primary focus of the data collection, addi-

tional structural imaging data was collected, which are being

shared as well: 1) MPRAGE [30], 2) diffusion kurtosis imaging

[31,32], 3) quantitative T1/T2 anatomical imaging (single ses-

sion) [33], and 4) magnetization transfer (single session) [34] (see

Table 1).

Methods

Participants and procedures

Thirteen adults (ages 18–45 years; mean age: 30.3; 38.4% male)

recruited from the community participated in the Healthy Brain

Network’s Serial Scanning Initiative. Each participant attended

14 sessions over a period of 1–2 months; see Table 1 for the

breakdown of data acquired across sessions. All imaging data

were collected using a 1.5T Siemens Avanto equipped with a 32-

channel head coil in amobile trailer (Medical Coaches, Oneonta,

NY). The scanner was selected as part of a pilot initiative being

carried out to evaluate the capabilities of a 1.5T mobile scanner

when equipped with a state-of-the-art head coil and imaging

sequences. All research performed was approved by the Chesa-

peake Institutional Review Board, Columbia, MD [35].

Experimental design

As outlined in Table 1, each participant attended a total of

14 separate imaging session; these included: 1) a baseline

characterization session containing a variety of quantitative

anatomical scans; 2) 12 serial scanning sessions, each using the

same imaging protocol consisting of four fMRI scan conditions

(10 min per condition), diffusion kurtosis imaging, and a refer-

ence MPRAGE anatomical scan; and 3) a Raiders of the Lost Ark

movie viewing session.

Functional MRI scan conditions included in serial scanning

The following four functional scan conditions were selected to

sample a range of levels of engagement, presented in ascending

order of level of engagement (see Fig. 1):

Rest

The participant was presented a white fixation cross in the cen-

ter of a black screen and instructed to rest with eyes open. Spe-

cific instructions were as follows: “Please lie quietly with your

eyes open, and direct your gaze towards the plus symbol. During

this scan let your mind wander. If you notice yourself focusing

on a particular stream of thoughts, let your mind wander away.”
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Serial Scanning Initiative 3

Table 1. HBN-SSI experimental design.

Shared imaging data

Session # Session type Description

1 Baseline characterization � Multiecho MPRAGE
� DKI
� Quantitative T1/T2 mapping
� Magnetization transfer ratio
� FLAIR
� fMRI: rest (10 min)

2-7, 9-14 Repeat scanning � Multiecho MPRAGE
� DKI
� fMRI: rest (10 min)
� fMRI: naturalistic viewing: inscapes (10 min)
� fMRI: naturalistic viewing: movie clips (10 min)
� fMRI: flanker task (10 min)

8 Full feature movie � fMRI: Raiders of the Lost Ark (20 min × 6)

Figure 1. Shown here are sample stimuli from each of the four scan conditions included in the present work. These included: 1) resting state, (far left); 2) inscapes

(middle left); 3) movie clips (e.g., the Matrix; middle right); and 4) flanker task (with no-go trials; far right).

Inscapes

Inscape is a computer-generated animation comprised of ab-

stract, non-social, technological-looking 3D forms that transi-

tion in a slow, continuous fashion without scene cuts. Visual

stimulation is accompanied by a piano composition based on

the pentatonic scale with a slow tempo (48 bpm), which was in-

tended to be calming and to harmonize with the noise gener-

ated by EPI sequences [15]. Three unique 10-min sequenceswere

created using the original 7-min Inscapes, and were presented

across the 12 repeat scanning sessions. These clips are available

for download from the HBN-SSI web page [36].

Movie

Three unique 10-min movie clips were presented across the

12 repeat scanning sessions. To ensure a high level of engage-

ment, three Hollywood movie clips (American versions) were

selected, each representing a different movie genre and con-

taining a narrative arc that fit into the 10-min clip. The specific

clips selected were: Wall-E (Walt Disney Productions, 2008, time

codes 00:02:03:13 to 00:12:11:05), The Matrix (Warner Bros., 1999,

00:25:23:10 to 00:35:19:20), and A Few Good Men (Columbia Pic-

tures,1992, 01:58:13:01 to 02:08:11:18). Due to copyright issues,

these clips could not be shared.

Flanker

The Eriksen Flanker task consisted of presenting a series of im-

ages containing five arrows. For each image, the participant was

asked to focus on the center arrow and indicate if it is point-

ing left or right by pushing a button with their left or right

index finger. The flanking arrows could be pointing the same

way (congruent) or the opposite way (incongruent). Also built

into the task were a neutral stimulus and a go/no-go aspect.

The neutral task contained diamonds instead of flanking ar-

rows, making the central arrow direction more obvious. The no-

go stimuli contained x’s instead of flanking arrows, indicating

that the subject should not push either button. See Fig. 1 for

a visualization of the stimuli. The stimuli and timing of their

presentation are available for download from the HBN-SSI web

page [36].

Counter-balancing

Order effects are an obvious concernwhen comparing four func-

tional scan conditions. To minimize these effects, we ensured

that for each participant; 1) each scan type occurred an equal

number of times in each of the four scan slots across the 12 ses-

sions, and that 2) each scan type had an equal frequency of being

preceded by each of the other three scan types. We made use

of three exemplars of each non-rest stimuli to enable the ex-

amination of repetition effects. For movies, this involved having

three 10-minute clips, each from a different movie; for Inscapes,

this involved three different animation sequences and for the

flanker task, three different stimulus orderings were used. We

guaranteed that across the 12 scan sessions, each exemplar oc-

curred one time across every three scan sessions. Specific or-

dering of exemplars was varied across odd and even numbered
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participants. For each participant, individual-specific ordering

information is provided in the release.

Imaging protocols (See Table 2 for scan protocol details)

� fMRI (sessions 1–14): For all fMRI scans, themultiband EPI se-

quence provided by CMRR [37] was employed to provide high

spatial and temporal resolutions (multiband factor 3, voxel

size: 2.46 × 2.46 × 2.5mm; TR: 1.46 seconds).
� MEMPRAGE (sessions 1–7, 9–14): Across all sessions (except

the full-movie session), we obtained a multi-echo MPRAGE

sequence for the purposes of anatomical registration [38].

Within a given scan, four echoes are collected per excitation

and combined using root mean square average. This enables

the images to be acquired with a higher bandwidth to re-

duce distortion,while recovering SNR through averaging. The

added T2∗ weighting from the later echoes also helps differ-

entiate dura from brain matter.
� Diffusional Kurtosis Imaging (DKI): Leveraging the capabili-

ties of the CMRR multiband imaging sequence, we were able

to acquire 64 directions at 2 b-values (1000 and 2000 s/mm2).

This enables diffusion kurtosis-specific metrics to be calcu-

lated from the data, in addition to standard DTI metrics, and

can improve tractography [31].
� Quantitative Relaxometry MRI (Quantitative T1, T2, and My-

elin Water Fraction): DESPOT1 and DESPOT2 sequences

were used to characterize microstructural properties of

brain tissue. These innovative acquisition strategies enable

quantitation of T1 and T2 relaxation constants, which can

be combined to calculate myelin water fraction [39].
� Magnetization Transfer: High-resolution T1-weighted struc-

tural images were acquired with a FLASH sequence, with and

without a saturation RF pulse. Themagnetization transfer ra-

tio is calculated from the resulting images, which is purport-

edly a sensitive marker of myelination [34].

Limitations

A limitation of the described resource is that the data were col-

lected using a 1.5T scanner platform, rather than 3T.Whilewedo

not expect the overall results obtained with data from the 1.5T

and 3T platforms should be fundamentally different, there is

generally better SNR and temporal resolution with the 3T scan-

ner platform. To mitigate these differences, 1) the system was

upgraded to 32 receive channels to take advantage of the latest

head-coil technologies for increasing SNR, and 2) simultaneous

multi-slice imaging was used to improve the spatial and tempo-

ral resolution.

DATA records

Data privacy

The HBN-SSI data are being shared via the 1000 Functional

Connectomes Project and its International Neuroimaging Data-

sharing Initiative (FCP/INDI) [40]. Prior to sharing, all imag-

ing data were fully de-identified by removing all personally

identifying information (as defined by the Health Insurance

Portability and Accountability) from the data files, includ-

ing facial features. The removal of facial features was per-

formed using the “mri deface” software package developed by

Bischoff-Grethe et al. [41]. All data were visually inspected

before release to ensure that these procedures worked as

expected.

Distribution for use

Imaging data

All MRI data can be accessed through the Neuroimaging Infor-

matics Tools and Resources Clearinghouse [36] and FCP/INDI’s

AmazonWeb Services public Simple Storage Service (S3) bucket.

In both locations, the imaging data are stored in a series of tar

files that can be directly downloaded through a HTTP client (e.g.,

a web browser, Curl, or wget). The data are additionally avail-

able on S3 as individual NifTI files for each scan, which can be

downloaded using a HTTP client or S3 client software such as

Cyberduck [42].

All imaging data are released in the NIfTI file format; they

are organized and named according to the Brain Imaging Data

Structure (BIDS) format [43].

Phenotypic data

Partial phenotypic data will be publicly available without any re-

quirements for a data usage agreement. This includes age, sex,

handedness, the internal state questionnaire, and the New York

Cognition Questionnaire [43]. These data are located in a comma

separated value (.csv) file accessible via theHBN-SSIweb site and

are included with the brain imaging data structure-organized

imaging data as tab separate values files. The remainder of the

phenotypic data (see Table 3), including the PANAS [44] and

results from the ADHD Quotient system [45], will be made avail-

able to investigators following completion of the HBN Data Us-

age Agreement. The HBN Data Usage Agreement is modeled

after that of theNKI-Rockland Sample and is intended to prevent

against data re-identification; it does not place any constraints

on the range of analyses that can be carried out using the shared

data, or place requirements for co-authorship. Following sub-

mission and execution of the data usage agreement, users can

access the phenotypic data through the COINS Data Exchange

(an enhanced graphical query tool, which enables users to tar-

get and download files in accord with specific search criteria)

[46].

Technical validation

Quality assessment

Consistent with the established FCP/INDI policy, all completed

datasets contributed to HBN-SSI are made available to users re-

gardless of data quality. Justifications for this decision include

the lack of consensus within the imaging community on what

constitutes good or poor quality data, and the utility of “lower

quality” datasets for facilitating the development of artifact cor-

rection techniques. For HBN-SSI, the inclusion of datasets with

significant artifacts related to factors such as motion are partic-

ularly valuable, as it facilitates the evaluation of the impact of

such real-world confounds on reliability and reproducibility.

To help users assess data quality, we calculated a variety

of quantitative quality metrics from the data using the Prepro-

cessed Connectome Project Quality Assurance Protocol (QAP)

[47]. The QAP includes a broad range of quantitativemetrics that

have been proposed in the imaging literature for assessing data

quality [48].

For the structural data, spatial measures include: signal-

to-noise ratio (SNR) [49], contrast-to-noise ratio (CNR) [49],

foreground-to-background energy ratio (FBER), percent artifact

voxels (QI1) [50], spatial smoothness (FWHM) [51], and entropy

focus criterion (EFC) [52]. These are shown for different partic-

ipants in Fig. 2. Spatial measures of fMRI data include (Fig. 3):

EFC, FBER, FWHM, as well as ghost-to-signal ratio (GSR) [53].
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6 O’Connor et al.

Table 3. Questionnaires and physical measures collected.

Questionnaires

Internal State

Questionnaire

(pre-scan, post-scan)

3-item self-report questionnaire assessing hunger and thirst. Participants respond on a visual analogue scale

ranging from “I am not hungry/thirsty/full at all” to “I have never been more hungry/thirsty/full”. Responses are

rated from 0 to 100. Participants complete this questionnaire before and after each scan.

New York Cognition

Questionnaire (NYC-Q)

(post-scan)

31-item self-report questionnaire that asks participants about the different thoughts and feelings that they may

have had while in the MRI scan. Participants are asked to indicate the extent to which their thinking or

experience corresponded to each item on a 9-point scale.

PANAS (post-scan) The PANAS-S is a self-administered, 20-item Likert scale assessment that measures degree of positive or

negative affect. Users are asked to rate 10 adjectives that measure positive feelings such as joy or pleasure, and

10 adjectives that measure negative feelings, such as anxiety or sadness, on a scale of how closely the adjective

describes them in the present moment or over the past week. Items are rated on a five-point scale.

Physical Measures

Vitals

Participant vitals (blood pressure, heart rate, blood glucose level, first day of last menstrual cycle) were collected

prior to each scan using standard measurement devices in a laboratory environment.

Voice data samples Audio samples of participant speech were recorded prior to scanning. Each sample consisted of 10 sentences

with 5 different implicit emotions (neutral, happy, sad, angry, fearful), 10 non-words, and 2 min of free speech.

For each sample different sentences were drawn from the same set of emotions; the non-words also differed in

each sample but had similar characteristics (ie number of syllables, chunks). Stimuli were presented on a laptop

computer screen. Completion of the sample took up to 15 min.

Quotient ADHD System Quotient is a computer based task designed to assess three core symptoms of ADHD: hyperactivity, attention,

and impulsivity. Participants respond to stimuli presented with random timing and random placement on a

screen. Completion of the task takes up to 30 min.

GeneActiv Actimetry

Device

Between scanning sessions, participants wore a non-invasive actimetry sensor that recorded heart rate and

indices of physical activity and sleep. The device was placed on participants’ non-dominant wrist and data was

collected at each scanning session.

Figure 2. Subset of QAP spatial anatomical measures for each participant (horizontal axis). Depicted are the following measures: CNR, SNR, EFC, FBER, spatial smooth-

ness (FWHM), and percent artifact voxels (QI1). Each point indicates themeasure calculated for an individual scan; for each participant, the data across scan conditions

and sessions are depicted using a single color.
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Serial Scanning Initiative 7

Figure 3. Subset of QAP spatial functional measures for each participant (horizontal axis). Depicted are the following measures: GSR, SNR, EFC, FBER, and spatial

smoothness (FWHM). Each point indicates the measure calculated for an individual scan; for each participant, the data across scan conditions and sessions are

depicted using a single color.

Temporal measures of fMRI data include (Fig. 4): mean frame-

wise displacement (mean FD) [54], median distance index (qual-

ity) [55], standardized DVARS (DVARS) [56], outliers detection

[55], and global correlation (GCOR) [57]. See Figs. 2–4 for a sub-

set of the metrics; the full set of measures are included on the

HBN-SSI website in .csv format for download. Review of the QAP

profiles led us to exclude three participants based on excessively

high mean FD from the illustrative analyses presented in the

next section. Although not a focus of the current work, visual

inspection of the figures points to the potential value of this

dataset for establishing the reliability of QAP measures. The im-

pact of scan condition on each of the functional QAP measures

was examined using a one-way ANOVA. No significant differ-

ences were found for any of the measures. In addition, the test-

retest reliability of each QAP measure, for each condition, was

assessed using the intra-class correlation coefficient (ICC). The

results are shown in Table 4.

FMRI analyses

A broad range of analyses, including but not limited to eval-

uations of test-retest reliability, can be performed using the

present HBN-SSI dataset. Here, we provide a few illustrative

analyses to demonstrate the technical validity and utility of

these data; they are not intended to be exhaustive.

Data preprocessing

Prior to image processing, Freesurfer [58] was used to combine

the 12 available MPRAGE images into an MRI robust average im-

age for each individual participant. A non-rigid registration be-

tween MPRAGE images and a 2-mm MNI brain-only template

(FSL’s MNI152 T1 2mm brain.nii.gz, [59]) was calculated using

ANTs [60]. Further anatomical processing included skull strip-

ping using AFNI’s 3dSkullstrip [61] (to include any voxels in the

ventricles incorrectly removed by this utility, the brainmaskwas

augmented using a ventricle mask that was generated by re-

verse transforming the ventricles included in the MNI atlas into

native space for each participant). Next, data was processed us-

ing a development version of the open-source, Nipype-based [62]

Configurable Pipeline for the Analysis of Connectomes [1] (C-PAC

version 0.4.0 [63]). See here for image preprocessing configura-

tion file [64].

Following resampling of the fMRI data to RPI orientation, im-

age preprocessing in C-PAC consisted of the following steps: 1)

motion correction, 2) boundary-based registration [65], 3) nui-

sance variable regression (1st and 2nd order polynomial, 24-

regressor model of motion [66], mean WM mask signal, mean

CSF mask signal). We then extracted representative time series

for each ROI in the CC200 atlas [67] (by averaging within-ROI

voxel time series). All possible pairwise correlations were calcu-

lated amongst ROI time series to generate a ROI-to-ROI connec-

tivity matrix for each scan in each session for each subject. To

facilitate ease of presentation and interpretation of our findings,

the connections were sorted by intrinsic connectivity network

membership, as defined by Yeo et al. [68].

Fingerprinting

Prior work by Finn et al. [22] demonstrated the ability to “fin-

gerprint” individuals based on their functional connectivity

matrices. Specifically, they found that the level of correlation
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8 O’Connor et al.

Figure 4. Subset of QAP temporal functional measures for each participant (horizontal axis). Depicted are the following measures: Outliers detection (Outliers), GCOR,

Quality, mean frame-wise displacement (Mean FD), and DVARS. Each point indicates the measure calculated for an individual scan; for each participant, the data

across scan conditions and sessions are depicted using a single color.

Table 4. ICC values representing the test-retest reliability of QAP
measures, for each scan condition

Measure Rest Inscapes Movie Flanker

EFC 0.90 0.91 0.93 0.92

FBER 0.84 0.84 0.84 0.83

FWHM 0.58 0.60 0.74 0.76

GSR 0.56 0.56 0.61 0.62

SNR 0.92 0.91 0.93 0.92

Outliers 0.08 0.18 0.06 0.50

GCOR 0.11 0.09 0.16 0.04

Quality 0.94 0.94 0.93 0.95

Mean FD 0.30 0.39 0.40 0.68

DVARS 0.42 0.49 0.47 0.49

between connectivity matrices for data obtained from the same

participant on different occasions was markedly higher than

that observed for connectivity matrices obtained from different

participants; this was true regardless of whether functional con-

nectivity was based on resting state or task activation data. Con-

sistent with their work, we found a dramatically higher degree

of correlation, using Pearson’s R, between connectivity matrices

obtained from the same individual on differing sessions (mean:

0.599, SD: 0.083, 95%CI: 0.598–0.600), when compared to differing

individuals (mean: 0.445, SD: 0.065, 95% CI: 0.444–0.445) (Fig. 5).

Also consistent with their findings, we found this to be true re-

gardless of the scan condition employed.

Connection-wise reliability for the four states

A key question is how much variation among scan conditions

(i.e., between-condition reliability) impacts reliability as op-

posed to between-session reliability (i.e., test-retest reliability).

To address this question, we analyzed the 12 sessions obtained

for the 10 participants withminimal headmotion using a hierar-

chical linear mixed model (note: three subjects were missing the

flanker task from one session each; these were treated as miss-

ing values in our analyses). The hierarchical linear mixed model

allows for the estimation of reliability by providing estimates

of variance between participants, across the four conditions

(for the same participant) and between sessions within each

condition.

i F Ci jk (v) = μ000 (v) + γ jk (v) + δk (v) + εi jk (v) (1)

For a given functional connectivity measurement ν, iFCijk(ν)

is the modeled iFC for the i-th session, for the j-th condition of

the k-th participant, taking into account condition and session

effects. The equation is composed of an intercept μ000, a random

effect between sessions for the j-th condition of k-th participant

γ jk, a random effect for the k-th participant δk, and an error term

εi jk .γ jk, δk, and εi jk are assumed to be independent, and follow a

normal distribution with zero mean. The total variances of iFC

can be decomposed into three parts: 1) variance between partic-

ipants ( σ 2
3 = Var[δ]), 2) variance between conditions for the same

participant (σ 2
2 = Var[γ ]), and 3) variance of the residual, indicat-

ing variance between sessions (σ 2
0 = Var[ǫ]). The reliability of the
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Serial Scanning Initiative 9

Figure 5. Similarity of full-brain connectivity matrices across participants (green), sessions (blue), and scan conditions (yellow), as measured using Pearson correlation

coefficients (red). Also depicted in the bottom right are the distributions of correlation coefficients when comparing scans from the same subject (within subject), and

scans from different subjects (between subject). In the right column are the values for scans from the same subject, and in the left are scans from different subjects.

The median, first, and third quartiles are also depicted with horizontal lines.

Figure 6. ICCs quantifying between-condition reliabilities (left) and between-session reliabilities at the connection-level. ICC values were obtained using a hierarchical

linear mixed model. These connection-level values are grouped on the vertical and horizontal axes based membership of ICN. No overlap indicates that the voxel did

not spatially overlap with any ICN.
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10 O’Connor et al.

Figure 7. Connection-wise ICC values across all subjects, sessions, and scan conditions (top), as well as network-wise calculations of test-retest reliability carried out

using the I2C2, again across all subjects, sessions, and scan conditions (bottom).

Table 5. Displayed here are summary statistics of the distribution of ICC values from the test-retest reliability analysis of each scan condition.
Shown are the mean, standard deviation, and 95% CI of ICC values for within network and between network connections.

Within network Between network

Mean SD 95% CI Mean SD 95% CI

Rest 0.349 0.148 0.345 0.352 0.272 0.130 0.268 0.276

Inscapes 0.332 0.152 0.328 0.336 0.218 0.127 0.214 0.222

Movie 0.356 0.151 0.352 0.360 0.261 0.125 0.257 0.265

Flanker 0.366 0.178 0.362 0.371 0.277 0.148 0.272 0.282

iFC across conditions can be calculated as intra-class correlation

coefficients as follows (Fig. 6, left):

I CC (between− conditions) =
σ 2
3

σ 2
3 + σ 2

2

(2)

and across sessions as follows Fig. 6, right)):

I CC (between− sessions, conditions) =
σ 2
3 + σ 2

2

σ 2
3 + σ 2

2 + σ 2
0

(3)

Findings revealed an impressively high degree of between-

condition reliability for most connections (percentiles: 50th:

0.854, 75th: 0.955, 95th: 1), as opposed to between-session (i.e.,

test-retest) reliability, which was notably lower (percentiles:

50th: 0.270, 75th: 0.355, 95th: 0.507). Of interest, between-

condition reliability tended to be lowest in the visual and so-

matosensory networks, each of whichwould be expected to vary

in a systematic way across conditions due to differences in vi-

sual stimulation (movie > inscapes > flanker > rest) and motor

demands (flanker > all other conditions).

Regarding test-retest reliability, follow-up analyses also

looked at connection-wise ICC for each of the stimulus/task con-

ditions separately using a linear mixed model (as implemented

in R) (see Fig. 7), finding similar ranges of ICC scores across con-

ditions, though with some notable differences (e.g., higher ICC

for visual network in movies and inscapes; higher frontopari-

etal ICCs in flanker task and rest). Table 5 gives a breakdown

of the summary statistics for each scan condition, within net-

work conditions, and between network connections. Addition-

ally, we used image-wise correlation coefficient (I2C2) [69] to

look at functional networks and their interactions from a mul-

tivariate perspective. As can be seen in Fig. 7, a high degree of

correspondence was noted between the strength of the reliabil-

ity for a given network (i.e., I2C2) and the strengths of the relia-

bilities for the individual edges in the network (i.e., ICC).
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Serial Scanning Initiative 11

Figure 8. Impact of scan duration on test-retest reliability at the connection level. We randomly sampled sessions, and concatenated the time series temporally to

create pseudosessions of 10, 20, and 30 min of data. For each of the pseudosession durations, we depict ICCs obtained for each scan condition. Note: across durations,

the number of pseduosessions was held constant at four.

Finally, to gain insights into the effects of scan duration on

test-retest reliabilities, we repeated ICC and I2C2 analyses using

10, 20, and 30 min of scan data across 4 pseudo-sessions (i.e.,

for 20 min, we combined data from 2 sessions; for 30 min, we

combined data from 3 sessions). Consistent with prior reports,

our analyses revealed notable improvement of ICC and I2C2 val-

ues with longer scans, particularly when increasing from 20 to

30 min (see Figs 8 and 9).

Concluding remarks

These illustrative analyses highlight the value of these data

for addressing questions regarding between-condition and

between-session reliability. Beyond quantifying reliabilities for

connectomic indices, the data available can also be used by in-

vestigators to answer questions regarding minimum data re-

quirements (e.g., number of timepoints) and optimal image pro-

cessing strategies. Finally, it is worth noting that the availability

of naturalistic viewing states (Inscapes, movie clips) in the re-

source will give resting state fMRI-focused investigators an op-

portunity to explore the added value of these states for calcu-

lating iFC andmore (e.g., exploration of inter-subject correlation

and inter-subject functional connectivity [23, 70]).

Software and availability

The Configurable Pipeline for the Analysis of Connectomes

(C-PAC) was employed to carry out the image processing for the

analyses included in the text and can be downloaded from the

C-PACweb page [63]. Additionally, the configuration file contain-

ing the settings for C-PAC is available for download [64]. C-PAC

is a python-based software, which can run on Unix-based plat-

forms. Windows is not supported. Note, not all of C-PAC’s de-

pendencies are python based. A list of the dependencies can be

found on the C-PAC web page under the installation section [71].

C-PAC operates under a BSD 3-Clause license. Snapshots of the

C-PAC code and other supporting metadata are openly available

in the GigaScience repository, GigaDB [72].

Availability of supporting data

The HBN-SSI is available online [36]. Further supporting meta-

data are openly available in the GigaScience repository, GigaDB

[72].
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AFNI, analysis of functional neuroimages; ANT, Advanced Nor-

malization Tool; CPAC, Configurable Pipeline for Analysis of Con-

nectomes; DKI, diffusion kurtosis imaging; EFC, entropy focus

criterion; FBER, foreground-to-background energy ratio; FSL, FM-
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global correlation; GSR, ghost-to-signal ratio; HBN, Healthy Brain

Network; I2C2, image intra-class correlation coefficient; ICC,

intra-class correlation coefficient; ICN, Intrinsic Connectivity
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MPRAGE, Magnetization Prepared Rapidly Acquired Gradient
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voxels; R-fMRI, resting state functional magnetic resonance

imaging; SNR, signal-to-noise ratio; SSI, Serial Scanning

Initiative.
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12 O’Connor et al.

Figure 9. Impact of scan duration on test-retest reliability at the network level. We randomly sampled sessions to create pseudosessions of 10, 20, and 30 min of data.

For each of the pseudosession durations, we depict I2C2 obtained for each scan condition. Note: across durations, the number of pseduosessions was held constant at

four.
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