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Abstract
Little efforts were done on the heat and mass transfer characteristics of superheated steam (SHS) flow in the horizontal 
wellbores. In this paper, a novel numerical model is presented to analyze the heat and mass transfer characteristics of SHS 
in horizontal wellbores with toe-point injection technique. Firstly, with consideration of heat exchange between inner tubing 
(IT) and annuli, a pipe flow model of SHS flow in IT and annuli is developed with energy and momentum balance equations. 
Secondly, coupled with the transient heat transfer model in oil layer, a comprehensive mathematical model for predicting 
distributions of pressure and temperature of SHS in IT and annuli is established. Then, type curves are obtained with numeri-
cal methods and iteration technique, and sensitivity analysis is conducted. The results show that (1). The decrease in SHS 
temperature in annuli caused by heat and mass transfer to oil layer is offset by heat absorbtion from SHS in IT. (2). SHS 
temperature in both IT and annuli increases with the increase in injection pressure. (3). IT heat loss rate decreases with the 
increases in injection pressure. (4). Increasing pressure can improve development effect.

Keywords  Superheated steam injection · Toe-point injection technique · Horizontal wellbores · Distributions of pressure 
and temperature · Heavy oil recovery

List of symbols
Ad	� The oil drainage area of the discrete horizontal 

segment (m2)
Bo	� The volume coefficient of oil (m3/m3)
Bw	� The volume coefficient of water (m3/m3)
fperf	� The friction factor of perforation roughness 

(dimensionless)
g	� Gravity acceleration (m/s2)
hIT	� SHS enthalpy in IT (J/kg)
han	� SHS enthalpy in annuli (J/kg)

hfITi	� Forced convection heat transfer coefficient on 
inside wall of the IT (W/m2 K)

hfITo	� Forced convection heat transfer coefficient on out-
side wall of the IT (W/m2 K)

Ian	� Volume flow velocity of SHS from annuli to oil 
layer (m3/s)

Ir	� The injection production ratio (dimensionless)
Jan	� The production index (m3/s Pa)
Kh	� The horizontal permeability of the reservoir (D)
Kv	� The vertical permeability of the reservoir (D)
Kro	� The relative permeability of oil (dimensionless)
Krw	� The relative permeability of water (dimensionless)
L	� Distance to the heel point (m)
NRe	� The Reynolds number (dimensionless)
pIT	� SHS pressure in IT (Pa)
pan	� SHS pressure in annuli (Pa)
pr	� The reservoir pressure (Pa)
QIT	� The heat exchange rate between IT and annuli (W)
Qan	� Heat loss rate from annuli to oil layer (W)
rITi	� The inner radius of IT (m)
rITo	� The outer radius of IT (m)
rwi	� Inner radius of the wellbore (m)
S	� The skin factor (dimensionless)
TIT	� SHS temperature in IT (K)
Tan	� SHS temperature in annuli (K)
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Tei	� Reservoir temperature (K)
UITo	� Comprehensive heat transfer coefficient between 

IT and annuli (W/m2 K)
vIT	� The flow velocity of SHS in IT (m/s)
vr	� Radial injection rate (m/s)
vIT	� The flow velocity of SHS in annuli (m/s)
wIT	� Mass flow rate in IT (kg/s)
wan	� Mass flow rate in annuli (kg/s)

Greek letters
�	� The unit conversion factor (dimensionless)
�IT	� SHS density in IT (kg/m3)
�an	� SHS density in annuli (kg/m3)
�	� Well angle from horizontal (rad)
�f	� Shear stress in IT (N)
�IT	� Thermal conductivity of IT (W/m K)
�e	� The reservoir thermal conductivity (W/m K)
�o	� Oil viscosity (Pa s)
�w	� Water viscosity (Pa s)
�IT,an	� SHS viscosity in IT and annuli (Pa s)
Δ	� The relative roughness (dimensionless)

Introduction

Steam injection is one of the most effective methods for 
heavy oil recovery (Sun et al. 2017a, b, c). When steam is 
injected from ground to oil layer, one of the foremost tasks 
for engineers is to predict the distributions of pressure and 
temperature along the wellbores (Sun et al. 2017d, e). How-
ever, the predicting task is never easy due to the complexity 
of the non-isothermal flow characteristics of thermal fluid 
in wellbores (Sun et al. 2017f, g).

Willhite (1967) developed an important model for calcu-
lating overall heat transfer coefficient during the steam injec-
tion process. Ejiogu and Fiori (1987) and Tortike and Farouq 
Ali (1989) presented empirical formulas for calculating steam 
thermophysical properties. Sagar et al. (1991) proposed a 
simplified model for predicting temperature distribution of 
saturated steam along the vertical wellbores based on the 
Coulter–Bardon equation, and Alves et al. (1992) developed a 
new model describing the relationships between enthalpy and 
pressure in wellbores. Bahonar et al. (2010, 2011) took vertical 
heat transfer into consideration and proposed their numerical 
model which was later compared with previous models.

Satter et al. (1965) presented a mathematical model for 
predicting steam quality. However, they ignored the kinetic 
energy change in their energy balance equation. Pacheco et al. 
(1972) developed an improved model with consideration of 
friction losses. Farouq Ali (1981) presented a model that can 
be used to predict steam pressure and temperature for both 
downward and upward flow in the vertical wellbores. Durrant 
and Thambynayagam (1986) proposed another method for 

calculating transient thermal conductivity with superposition 
method. Based on previous works, Livescu et al. (2010a, b) 
proposed a semi-analytical model for predicting multiphase 
flow pressure and temperature. Hasan (1995), Hasan and 
Kabir (1991, 1992, 1994, 2007, 2009, 2010, 2012) and Hasan 
et al. (2007a, b) did a series of works on the steady-state 
heat conduction rate and transient heat conduction rate in the 
formation. Cheng et al. (2011, 2012, 2013, 2014) presented 
several models for predicting heat loss rate in the formation. 
All of these great works laid a solid foundation for later study. 
However, they were focused on saturated steam, which is not 
applicable for superheated conditions.

In recent years, Zhou et al. (2010), Xu et al. (2013a, b), 
Fan et al. (2016) and Sun et al. (2017h, i) developed dif-
ferent models to predict the distributions of pressure and 
temperature of SHS in the vertical wellbores. However, it 
is a constant mass flow process in the vertical wellbores. 
Dong et al. (2014, 2016) proposed a numerical model for 
predicting steam pressure in the horizontal wellbores. 
However, it is conventional heel-point steam injection 
technique, and they focused on the flow characteristics 
of multi-component thermal fluid. Gu et al. (2015) pro-
posed a numerical model for predicting superheated steam 
pressure along the horizontal wellbores. Besides, it is also 
focused on the heel-point steam injection technique.

It is proved by field practices that conventional heel-
point steam injection technique may lead to serious fin-
gering phenomenon (Sun et al. 2018a; Wu et al. 2012). 
Consequently, the alternative steam injection technique 
was proposed to overcome these shortcomings (Sun et al. 
2018a). However, the mass and flow transfer characteris-
tics of SNG in IT and annuli of the horizontal wellbores 
are quite complex (Sun et al. 2018a).

This paper has mainly three contributions to the exist-
ing body of the literature: (1). A novel model is developed 
to predict SHS pressure and temperature along the hori-
zontal wellbores with toe-point SHS injection technique. 
(2). Effect of SHS flow in IT on the profiles of SHS pres-
sure and temperature in annuli is taken into consideration. 
(3). Influence of injection pressure on the distributions of 
SHS pressure and temperature is discussed in detail.

Model description

General assumptions

A schematic of SHS flow in toe-point SHS injection wellbores 
is shown in Fig. 1. In order to establish the model, some basic 
assumptions are listed below.

	(1).	 Injection parameters of SHS at the heel point of IT are 
constant.
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	(2).	 Heat flow from SHS in annuli to the outside wall of 
casing is steady state (Sun et al. 2017j).

	(3).	 Heat flow in oil layer is transient state.
	(4).	 Heat conduction in the horizontal direction is ignored.

Modeling of SHS flow in IT

It is a constant mass flow process of SHS flow from the heel 
point to the toe point in IT. The mass balance equation can be 
expressed as (Sun et al. 2018a):

There exists heat exchange between SHS in the IT and 
annuli (Sun et al. 2018a). The energy balance equation of SHS 
flow in IT can be given as :

The impulse of external force equals the change of SHS 
momentum (Sun et al. 2018a). The momentum conservation 
equation can be given as :

Modeling of SHS flow in annuli

It is a variable mass flow process of SHS flow from toe 
point to heel point in annuli (Sun et al. 2018a). The mass 
balance equation can be given as:

(1)�wIT
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(
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= 0
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The sum of heat loss from annuli to oil layer and heat 
conduction from IT to annuli is equal to the total energy 
change of SHS in annuli (Sun et al. 2018a). The energy 
balance equation in annuli can be given as:

The momentum balance equation of SHS flow in annuli 
can be given as:

Solving method of the mathematical model

The mathematical model is solved with numerical method. 
Firstly, Eqs. (2, 3, 5, 6) are converted into different equa-
tions, as shown below.

Then, the pressure and temperature of SHS in IT and 
annuli at the outlet of mth segment are obtained by itera-
tion technique. Finally, these outlet results are input as 
inlet values of the (m + 1)th segment, and the distributions 
of pressure and temperature in IT and annuli are obtained 
from toe point to heel point.
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Fig. 1   A schematic of SHS flow in horizontal wellbores with toe-
point SHS injection technique
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Results and discussion

Type curve analysis

In this section, type curves of SHS flow in IT and annuli are 
obtained and discussed in detail (Huang et al. 2017, 2018a, 
2018b; Feng et al. 2018; Sun et al. 2017k,  2017l, 2018b; 
Zhang et al. 2017a, 2017b; Chen et al. 2015, 2016, 2017). 
The injection pressure, temperature and mass flow rate at the 
heel point are 4.231 MPa, 566.6 K and 3 kg/s, respectively. 
The predicted results are shown in Figs. 2, 3, 4, 5 and 6.    

As can be seen from Fig. 2, SHS pressure decreases with 
the increase in distance from heel point. As shown in Fig. 3, 
SHS temperature in IT decreases with distance from heel 
point. However, while there exists heat loss from SHS in 
annuli to oil layer, SHS temperature in annuli increases 
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when SHS flows from toe point to heel point. This is because 
the wellbore heat losses are offset by energy absorbed from 
IT, as shown in Fig. 4. The heat flow rate from SHS in IT to 
annuli is obviously higher at the heel point than that at the 
toe point. Consequently, SHS temperature in annuli has an 
increase at the heel point. Figure 5 shows the distributions of 
superheat degree in IT and annuli. It is found that superheat 
degree decreases when SHS flows from heel point to toe 
point in annuli, while it increases when SHS flows from toe 
point to heel point in annuli. This is because the lower-tem-
perature SHS in annuli absorbs huge amount of energy from 
the higher-temperature SHS in IT. Figure 6 shows clearly 
that it is a constant mass flow process in IT and it is a vari-
able mass flow in annuli. This is because a certain amount 
of SHS in annuli is injected into oil layer due to the pressure 
difference between annuli and oil layer.

Effect of injection pressure

In order to study the effect of injection pressure on the pro-
files of thermophysical properties of SHS in wellbores, dif-
ferent injection pressure is tested (3.5, 4.0, 4.5 and 5.0 MPa) 
based on no change in values of injection rate or tempera-
ture. The predicted results under different injection pressure 
are shown in Figs. 7, 8, 9, 10 and 11.

As can be seen from Fig. 7, SHS pressure in both IT 
and annuli increases with the increase in injection pressure 
at heel point in IT. Figure 8 shows that SHS temperature 
in both IT and annuli increases with the increase in injec-
tion pressure. This is because the SHS density increases 
with the increase in injection pressure, which causes the 
decrease in flow velocity. And the friction losses decrease 
accordingly with the decrease in flow velocity, which 
causes the increase in SHS temperature in IT and annuli. 
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Besides, the temperature difference between IT and annuli 
decreases with the increases in injection pressure, which 
causes the decrease in heat exchange rate between IT and 
annuli, as shown in Fig. 9.

Figure 10 shows that superheat degree in IT decreases 
with the increase in injection pressure. However, super-
heat degree in annuli increases slightly with the increase 
in injection pressure. This means that the injection pres-
sure does little effect on superheat degree of SHS that is 
injected into oil layer. But the amount of SHS injected 
into oil layer increases significantly with the increase in 
injection pressure, as shown in Fig. 11.

Conclusions

In this paper, a novel numerical model is proposed to ana-
lyze the heat and mass transfer characteristics of SHS in 
horizontal wellbores with toe-point SHS injection tech-
nique. Some meaningful findings are listed below.

	(1).	 The decrease in SHS temperature in annuli caused 
by heat and mass transfer to oil layer is offset by heat 
absorbtion from SHS in IT.

	(2).	 SHS pressure in both IT and annuli increases with the 
increase in injection pressure at heel point in IT.

	(3).	 SHS temperature in both IT and annuli increases with 
the increase in injection pressure.

	(4).	 The temperature difference between IT and annuli 
decreases with the increase in injection pressure, 
which causes the decrease in heat exchange rate 
between IT and annuli.

	(5).	 In order to obtain a satisfactory oil recovery ratio, field 
engineers are suggested to increase the injection pres-
sure to a reasonable level.
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Appendix 1: Supplementary materials

SHS tables used for calculation in this paper can be seen 
online: http​://webb​ook.nist​.gov/chem​istr​y/flui​d/.

Appendix 2: Heat exchange rate between IT 
and annuli

Based upon previous studies (Sun et al. 2017a; Gu et al. 
2014), the heat exchange rate between IT and annuli can be 
expressed as:

where

Appendix 3: Volume injection velocity 
and transient heat transfer rate in oil layer

Based upon previous works (Dong et al. 2014; Gu et al. 
2015; Gu 2016; Chen et al. 2007; Liu 2013), the volume 
flow velocity can be given as:
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The heat transfer rate from annuli to oil layer can be 
expressed as (Liu 2013):

where �e denotes reservoir thermal conductivity, W/(m K); 
Tei denotes the initial reservoir temperature, K; and f (t) is 
the function of injection time (Cheng et al. 2012).

Appendix 4: Shear stress in IT and annuli

In this paper, shear stress is calculated according to Yuan 
(1982) where it is given as:

where
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