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REVIEW Open Access

The heat shock response in neurons and
astroglia and its role in neurodegenerative
diseases
Rebecca San Gil, Lezanne Ooi, Justin J. Yerbury and Heath Ecroyd*

Abstract

Protein inclusions are a predominant molecular pathology found in numerous neurodegenerative diseases,
including amyotrophic lateral sclerosis and Huntington’s disease. Protein inclusions form in discrete areas of the
brain characteristic to the type of neurodegenerative disease, and coincide with the death of neurons in that
region (e.g. spinal cord motor neurons in amyotrophic lateral sclerosis). This suggests that the process of protein
misfolding leading to inclusion formation is neurotoxic, and that cell-autonomous and non-cell autonomous
mechanisms that maintain protein homeostasis (proteostasis) can, at times, be insufficient to prevent protein
inclusion formation in the central nervous system. The heat shock response is a pro-survival pathway induced
under conditions of cellular stress that acts to maintain proteostasis through the up-regulation of heat shock
proteins, a superfamily of molecular chaperones, other co-chaperones and mitotic regulators. The kinetics and
magnitude of the heat shock response varies in a stress- and cell-type dependent manner. It remains to be
determined if and/or how the heat shock response is activated in the different cell-types that comprise the
central nervous system (e.g. neurons and astroglia) in response to protein misfolding events that precede cellular
dysfunctions in neurodegenerative diseases. This is particularly relevant considering emerging evidence demonstrating
the non-cell autonomous nature of amyotrophic lateral sclerosis and Huntington’s disease (and other neurodegenerative
diseases) and the destructive role of astroglia in disease progression. This review highlights the complexity of heat shock
response activation and addresses whether neurons and glia sense and respond to protein misfolding and aggregation
associated with neurodegenerative diseases, in particular Huntington’s disease and amyotrophic lateral sclerosis, by
inducing a pro-survival heat shock response.

Keywords: Neurodegeneration, Amyotrophic lateral sclerosis, Huntington’s disease, Proteostasis, Heat shock response,
Heat shock factor 1, Motor neurons, Striatal neurons, Astroglia

Background
Neurodegenerative diseases (NDs), such as amyotrophic

lateral sclerosis (ALS) and Huntington’s disease (HD), are

thought to manifest through either a loss of function of the

wild-type (WT) protein or toxic gain-of-function as a result

of its oligomerization and aggregation [1]. The neuron-

specific degeneration observed in discrete regions of the

brain in NDs suggests that specific neuronal sub-types are

particularly vulnerable to protein misfolding and aggrega-

tion. This may be the result of: (i) a post-mitotic inability to

dilute toxic protein species through cell-division; (ii) an

age-related decline in the systems that maintain protein

homeostasis (proteostasis); (iii) a failure of the proteostasis

network to detect pathogenic protein aggregates; or (iv) a

combination of these factors [2–4].

Molecular chaperones are a central component of the

proteostasis network as they act to facilitate the correct

folding of nascent polypeptides, maintain partially-folded

protein intermediates in folding-competent states and

re-fold damaged proteins [5–8]. A recent comprehensive

analysis of the human “chaperome” identified 332

chaperone genes, 142 of which correspond to the heat

shock protein subfamilies (Hsp90, Hsp70, Hsp60, Hsp40

and sHsps) [4]. The Hsps are a family of evolutionarily
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conserved chaperones with diverse functions in proteos-

tasis. In addition to their well characterized molecular

chaperone functions, Hsps also stabilize the cytoskel-

eton, regulate stress responses, mitigate apoptotic signal-

ling and shuttle damaged proteins for degradation by the

ubiquitin proteasome system or by autophagy [9, 10].

There is a dramatic up-regulation of Hsp expression in

cells upon induction of the heat shock response (HSR).

The activation of this pathway is a primary defense

mechanism that protects cells from stress conditions

that promote protein misfolding, aggregation and cell

death. It has previously been shown that components of

the HSR may be neuroprotective due to their ability to

interact with the earliest misfolded proteins that trigger

pathogenic aggregation. Indeed, numerous studies have

shown that Hsps can prevent the aggregation of various

disease-associated proteins in vitro, for example, mutant

superoxide dismutase 1 (SOD1) in ALS [11–15]. Heat

shock proteins can also interact with pathogenic pro-

teins in vivo and have been found co-localized with pla-

ques and inclusions in transgenic mouse models of NDs

and patient post-mortem tissues [16–19]. For example,

Hsc70 was co-localized with inclusion bodies in spinal

cord sections of SOD1G93A, SOD1G85R, and SOD1G37R

transgenic mice, and human sporadic ALS cases [17].

The co-localization of Hsps with inclusions suggests that

Hsps are diverted into inclusions and therefore unavail-

able to perform normal “housekeeping” functions.

Little is known about how and/or if the HSR is induced

in neuronal and glial cells by pathogenic protein aggrega-

tion. Elucidating whether the HSR is triggered by protein

aggregation and, if so, the mechanism(s) by which this oc-

curs, is important for future work aimed at developing

proteostasis-modulating therapeutics to ameliorate ND

pathologies. The objectives of this review are to summarize

what is currently known about the activation of the HSR in

different tissues and cell-types during cellular stress, and

explore evidence regarding the involvement of the HSR in

rescuing neurons and astroglia from pathological stress as-

sociated with NDs. Due to the diversity in how different

NDs manifest in the CNS (i.e. dysfunction of different neur-

onal and non-neuronal cell types across different brain re-

gions), this review seeks to provide a comprehensive

summary of the literature surrounding the HSR in cells as-

sociated with HD and ALS. We conclude by drawing corre-

lations between our core findings in the HD and ALS

literature with NDs in general. In doing so, progress in this

field of research is evaluated, gaps in our knowledge are

highlighted and possible solutions are discussed.

The HSR
Proteotoxic cellular insults have a common effect of

damaging proteins and inducing the accumulation of

partially-folded protein intermediates. This in turn can

activate transcription factors and induce the HSR. The

human genome encodes four heat shock transcription

factors (HSF), HSF1 – HSF4, which have unique and

overlapping functions [20]. Heat shock transcription fac-

tor 1 is the prime integrator of transcriptional responses

during stress and is responsible for the induction of the

HSR. The role of HSF1 in the activation and attenuation

of the HSR in cells under conditions of cellular stress is

discussed briefly below.

Heat shock transcription factor 1

Heat shock transcription factor 1 is constitutively expressed

in most tissues and cell types and, apart from its role in the

HSR, is involved in a wide range of processes including or-

ganismal development, insulin signaling and cancer metas-

tasis (for recent comprehensive reviews see [21, 22]). Post-

translational modifications are critical in modulating the ac-

tivity of HSF1 [23]: it can be acetylated [24, 25], SUMOy-

lated [26] and extensively phosphorylated [27] (Fig. 1). The

type and site of each post-translational modification have

been predominantly identified by proteomic mass spec-

trometry and site-directed mutagenesis experiments [22,

23, 28]. Whilst the activation of HSF1 is complex and only

partially understood, previous studies highlight the import-

ance post-translational modifications play in stabilising, ac-

tivating and inhibiting the transcriptional activity of HSF1

[28]. For example, conversion of HSF1 into a transcription-

ally active trimer occurs concurrently with extensive post-

translational modifications including stress-inducible hyper-

phosphorylation of S230, S326 and T142 [29–31], such that

hyperphosphorylated HSF1 is used as a marker of HSF1 ac-

tivation [32–35]. Aside from (extensive) phosphorylation,

acetylation and SUMOylation of HSF1 also play important

roles in regulating the strength and duration of the HSR

(for comprehensive reviews see [21, 36]).

HSR activation and attenuation

Under conditions of cellular stress, HSF1 monomers

form activated homo-trimers and translocate into the

nucleus. Trimerization is mediated through the forma-

tion of leucine zippers on adjacent HSF1 oligomerization

domains (Fig. 2) [37, 38]. Activated HSF1 trimers bind

to cis-regulatory elements on DNA composed of nGAAn

pentamers (where n is any base), collectively called heat

shock elements [39–42]. The extent and duration of

HSF1-mediated transcription is influenced by the num-

ber of heat shock elements, the exact sequence of

nGAAn pentamers in the promoter regions of HSF1 tar-

get genes, and post-translational modifications on HSF1

itself [21]. In addition to the rapid up-regulation of Hsp

expression in response to cellular stress, HSF1 also coor-

dinates the expression of many transcriptional and

translational regulators, co-chaperones, ubiquitin, signal-

ing molecules and mitotic regulators [21, 43, 44].
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Heat shock factor 1-mediated transcription is attenuated

by an auto-regulatory mechanism, whereby HSF1-induced

Hsps competitively inhibit HSF1 trimer activity [22, 28].

This negative feedback loop provides an important mech-

anism by which cells can regulate the activation and at-

tenuation of an HSR via the presence and concentration

of Hsps in the cell. The trimerisation of HSF1 is sup-

pressed by interaction of the monomer with a multi-

chaperone complex composed of Hsp90, co-chaperone

p23 and immunophilin FK506-binding protein 5 [45, 46].

In addition, the chaperonin TRiC/CCT can also interact

with HSF1 to inhibit its activation [47]. Active HSF1 tri-

mers in the nucleus can be inhibited by the binding of

Hsp70 and its co-chaperone Hsp40, possibly through re-

cruitment of the Hsp70-interacting transcriptional co-

repressor, CoREST [48, 49]. Further characterization of

the mechanisms that modulate HSF1 activity (and there-

fore, the HSR) may help elucidate additional targets for

therapies that could be used to boost the HSR in the con-

text of disease such as NDs.

The HSR in the mammalian CNS
In mammals, the HSR varies both in terms of kinetics

(i.e. how fast stress-induced transcripts are generated)

and magnitude (i.e. the fold increase in Hsp levels) be-

tween tissues and even between cells in the same tissue

[50–52]. Analysis of the human “chaperome” shows that

the constitutive expression of housekeeping chaperones

and co-chaperones varies between tissues [52]. For ex-

ample, sHsps are overrepresented in skeletal and cardiac

muscle compared to the brain [52]. With regard to indu-

cing the HSR, whole organism hyperthermia results in

an HSR that varies substantially across tissues types [50].

For example, in heat-stressed rats, the kinetics of the re-

sponse and magnitude of induction where found to vary

between the brain, liver and skin when assessed over

time by northern blot of Hsp70 and Hsp27 stress-

induced mRNA [50]. Moreover, cells in the same tissue

can display different capacities to induce the HSR. For

example, cultured astrocytes elicit faster and higher

levels of Hsp70 expression after heat shock (45 °C for

30 min) compared to cultured cortical neurons [51].

These studies strongly suggest that the capacity of a cell

to sense stress and elicit an HSR differs in a cell-type

dependent manner.

An attenuated HSR may be an intrinsic characteristic

of neurons [35, 53–55]. Indeed, this hypothesis is sup-

ported by several animal studies that have challenged

Fig. 1 Post-translational modifications of HSF1 in relation to the functional domains in the protein. The HSF1 protein consists of a DNA-binding
domain (DBD), four leucine zipper domains (LZD), a regulatory domain (RD) and a transactivating domain (TAD). The proposed sites of serine/
threonine phosphorylation (P), lysine acetylation (A) and phosphorylation-dependent lysine SUMOylation (S) are marked on the HSF1 amino acid
chain. These post-translational modifications are mediated by numerous kinases, acetylases and SUMOylases and act to modulate the stabilization
and activity of HSF1 and thus the strength and duration of the HSR
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rodents with hyperthermia or ischemic injury and shown

that neurons do not induce Hsp70 expression after ex-

posure to these stressors, whereas surrounding astroglial

cells do [35, 51, 54–59]. These seminal studies show that

under conditions of acute cellular stress, neurons are in-

herently poor activators of the HSR, whereas astroglia

readily activate the HSR. This prompts the question of

whether neuronal and astroglial cells respond to chronic

ND-relevant stressors (such as protein aggregation) and,

if so, whether there is a difference in the response of

neuronal and astroglial cells to this stress. In an attempt

to address these questions, the remainder of this review

deals with what is known about HSR activation in the

context of two NDs, HD and ALS.

Huntington’s Disease

Huntington’s disease is characterized by the formation of

intracellular inclusions composed primarily of the ubiqui-

tous protein huntingtin (Htt) and by the subsequent death

of striatal medium spiny neurons and cortical pyramidal

neurons [60, 61]. The genetic basis for the pathogenesis of

HD is a CAG codon repeat expansion in the Huntingtin

(HTT) gene, which leads to a mutant protein that contains

an expanded poly-glutamine (polyQ) sequence [62]. Ex-

pansions of the polyQ tract beyond 36 glutamines result

in an aggregation-prone Htt protein; the length of the

polyQ-expansion correlates with the age of disease onset

and severity (i.e. the longer the polyQ tract, the earlier the

onset of disease and the more rapid the disease progres-

sion) [63]. Well-characterized cell and transgenic mouse

models of HD have been used in investigations into the

impact of the HSR on the pathogenicity of polyQ-

expansions.

PolyQ-expanded Htt may interact differently with the

proteostasis network compared to other disease-

associated proteins. Evidence for this comes from stud-

ies that have shown that polyQ-expanded Htt103Q (i.e.

Htt with a polyQ stretch of 103 glutamines) partitions

Fig. 2 The activation of HSF1 and its binding to DNA is regulated by a multi-step pathway that involves nuclear accumulation, intramolecular and
intermolecular protein interactions, and post-translational modifications. (1) In the absence of stress, HSF1 is maintained in a monomeric state through
the regulatory actions of several post-translational modifications, intramolecular contacts, and interactions with Hsps in inhibitory complexes. Cellular
stress results in the accumulation of misfolded and damaged proteins, which compete with HSF1 for binding to Hsps. (2) HSF1 monomers are released
and undergo a conformational change conducive to trimerization. (3) Concurrent nuclear accumulation, HSE-binding and hyperphosphorylation of
trimeric HSF1 occur. (4) This process releases RNA PolII from a paused to an active state to initiate the transcription of stress-induced genes. (5)
SUMOylation at K298 and binding of Hsp40/Hsp70 represses the transcriptional activity of HSF1 trimers. (6) Acetylation at K80 disrupts HSF1 binding to
DNA and HSF1 trimers dissociate and re-join the monomeric pool in the cytosol. Stress-inducible Hsps participate in a negative-feedback loop to
inhibit further HSF1 activation
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exclusively into perivacuolar inclusion bodies (IPODs:

Insoluble PrOtein Deposits) that store terminally aggre-

gated proteins [64]. Fluorescence recovery after photo-

bleaching experiments showed that Htt103Q proteins

sequestered into IPODs are immobile [65] indicating

that sequestration into IPODs prevents possible inter-

actions of the aggregated protein with components of

the proteostasis network, exacerbating the formation of

inclusions in cells [64, 66]. Recent evidence also sug-

gests that Htt inclusion body formation deactivates

apoptosis and results in slow necrotic cell death [67]. This

contrasts with quality control partitioning of other

aggregation-prone disease-associated proteins, such as

SOD1, which accumulate in juxtanuclear compartments

(JUNQ: JUxtaNuclear Quality control) for presentation to

molecular chaperones for re-folding and/or the ubiquitin

proteasome system for degradation [64, 66, 68, 69]. There-

fore, findings pertaining to the HSR in the context of HD

may uniquely apply to this ND due to the propensity of

polyQ-expanded Htt to misfold directly into terminal ag-

gregates and become stored in IPODs (as opposed to the

JUNQ).

The HSR in striatal neurons

The expression and cellular accumulation of pathogenic

polyQ-expanded Htt is not sufficient to induce an HSR

in cell and animal models of HD. The expression of

Htt91Q does not induce an HSR (as assessed by an

Hsp70 promoter driven EGFP expression construct)

[70]. Notably, the expression of Htt111Q in striatal cells

was not sufficient to up-regulate Hsp expression nor ac-

tivate HSF1 [32]. Likewise, primary cultures of rat cor-

tical and striatal neurons expressing Htt111Q showed low

levels of Hsp70 mRNA transcripts and protein compared

to cerebellar granule cells, which have high levels of

Hsp70 and are resistant to degeneration [71]. Studies

using transgenic mouse models of HD have demon-

strated that there is a reduction in Hsp70 (and other

molecular chaperones) in the brain as the disease pro-

gresses (Table 1) [72]. Taken together, these results show

that cells expressing polyQ-expanded Htt do not sense

or respond to this aggregation-prone protein by indu-

cing an HSR.

The expression of polyQ-expanded Htt sensitizes

neurons to heat stress [32, 73]. Heat shock (42 °C for

6 h) of primary murine striatal neurons expressing

pathogenic Htt111Q resulted in a 6-fold increase in cas-

pase activity compared to heat shocked cells expressing

non-pathogenic Htt7Q [32]. Furthermore, cells express-

ing Htt111Q had a reduced capacity to express Hsp70,

Hsp25 (the mouse orthologue of Hsp27) and Hsp90

after heat shock compared to those expressing Htt7Q

[32]. These findings suggest that expression of polyQ-

expanded Htt attenuates the capacity of striatal neurons

to up-regulate the expression of Hsps after heat shock,

which is normally a very strong activator of the HSR.

Based on these findings, it is pertinent to question

whether the observed inability of striatal neurons to in-

duce an HSR in the context of HD is the result of insuf-

ficient levels of HSF1, a failure to activate HSF1, a lack

of HSF1 binding to DNA, or a combination of these de-

ficiencies (Fig. 3). Quantification of total HSF1 protein

by immunoblot demonstrated that primary striatal neu-

rons expressing Htt111Q, and the striata and cerebella of

HD mouse models, have lower total HSF1 levels com-

pared to controls [32]. New evidence implicates CK2α’

Table 1 List of Hsps and whether their expression is up-regulated (↑), down-regulated (↓), or not changed (No ∆) across rodent
models of HD compared to transgenic WT or non-transgenic mouse controls

Hsps Transgenic disease models Tissue or cell type Reference

HSF1 STHdh(Q111) knock-in mice IB: 80% ↓striatal and cerebellar tissue homogenates [32, 74]

αB-c (HSPB5) R6/2 IB: No Δ whole brain homogenates [72]

Htt-N171-82Q IB: No Δ spinal cord homogenates [79]

Hsp25 (HSPB1) R6/2 IB: No Δ whole brain homogenates [72]

Htt-N171-82Q IB: No Δ spinal cord homogenates [79]

Hsp40 R6/2 IB: 60% ↓Hdj1 whole brain homogenates
IB: 25% ↓Hdj2 whole brain homogenates

[72]

Hsp60 R6/2 LC-MS: 4-fold ↓ in protein abundance in the cortex
LC-MS: 4-fold ↑ in protein abundance in the striatum

[80]

Hsp70 STHdh(Q111) knock-in mice IB: 80% ↓striatal and cerebellar tissue homogenates [32]

R6/2 IB: ↓ whole brain homogenates
IB: No Δ Hsc70 whole brain homogenates

[72]

Hsp90 R6/2 IB: No Δ Hsp90 whole brain homogenates
IB: No Δ Hsp84 whole brain homogenates

[72]

Hsp105 – – –

These results are from immunoblot (IB), or liquid chromatography coupled with quantitative mass spectrometry (LC-MS) of affected CNS regions
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kinase and Fbxw7 Fbox protein (an E3 ubiquitin ligase)

in the enhanced degradation of HSF1 in cells expressing

polyQ-expanded Htt [74]. The proposed model suggests

that polyQ-expanded Htt up-regulates CK2α’ kinase ex-

pression and increases the phosphorylation of HSF1 at

S303 and S307. This in turn recruits Fbxw7, which ubi-

quitinylates phospho-HSF1 targeting it for degradation

by the ubiquitin proteasome system [74]. Enhanced deg-

radation of HSF1 by the proteasome has also been impli-

cated in a mouse model and human post-mortem tissues

of α-synucleinopathies, whereby elevated levels of the

ubiquitin ligase, NEDD4, ubiquitinates HSF1 for degrad-

ation [25]. Whilst expression of Htt111Q is not sufficient

to induce HSF1 activation in cerebellar granule cells,

heat shock does result in activated (hyperphosphory-

lated) HSF1 trimers accumulating in the cell nucleus

[32, 71]. Similarly, HSF1 dissociation from Hsp90, hyper-

phosphorylation, and nuclear translocation are not im-

paired in HD mice upon treatment with the Hsp90

inhibitor NVP-HSP990, which is able to penetrate into

the brain [71]. Therefore, there is a reduction in total

HSF1 levels in the striatum; however, HSF1 can become

hyperphosphorylated and translocate into the nucleus in

HD models.

With regard to the DNA binding capacity of HSF1 in

HD models, evidence suggests that the expression of

polyQ-expanded Htt attenuates HSF1 binding to DNA

in striatal cells [73]. Genome-wide chromatin immuno-

precipitation (ChIP) experiments demonstrated that in

primary striatal neurons expressing Htt111Q, HSF1 is

only capable of binding 39% of its target genes after heat

shock (1159 bound genes) compared to cells expressing

Htt7Q (2943 bound genes) [73]. Microarray data show

that the reduced HSF1 binding to DNA in heat shocked

cells expressing Htt111Q corresponds with a decline in the

transcription of several Hsps (Dndjb5, Dnajb12 and

Hspb6). Furthermore, mRNA levels of Hsp70, Hsp40 and

Hsp25 were reduced in the cerebral cortices of HD mouse

Fig. 3 Proposed summary of changes in the HSR and its components in polyQ-expanded Htt over-expression models of HD. Huntington’s disease
onset and progression into late stage is dependent on the molecular pathologies developed in striatal neurons (e.g. formation of polyQ-
expanded Htt aggregates or IPODs) and astroglia (e.g. decline in GLAST/GLT-1 expression and the secretion of unidentified toxic “factors”). The
susceptibility of striatal neurons to degeneration from HD-associated stresses could be the result of a polyQ-expanded Htt-mediated attenuation
of the HSR. Over-expression of polyQ-expanded Htt in CNS tissues results in a (1) reduction in HSF1 levels. (2) Histone H4 acetylation has been
shown to be a strong promoter of HSF1 binding to DNA of target genes. However, hypoacetylation of histone H4 at HSF1 targets (e.g. Hspa1b,
Hspb1, and Dnajb1) with disease progression can explain (3) the decrease in HSF1 binding to DNA observed in polyQ-expanded Htt expressing
striatal neurons. (4) HD disease progression is also associated with a decline in Hsp70 and Hsp40 family members and (5) a striatal-specific
increase in Hsp60. (6) There have been few investigations regarding HSF1 activation and DNA-binding in astroglia. Therefore, the capacity of
polyQ-expanded Htt over-expressing astroglia to activate HSF1 and induce an HSR is currently unknown
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models compared to controls following treatment with

NVP-HSP990 [75]. Therefore, since HSF1 activation ap-

pears to be unimpaired, low levels of HSF1 and its com-

promised ability to bind DNA could account for the

observed inability of cells expressing polyQ-expanded Htt

to elicit an HSR. This dysregulation of chaperone gene

expression likely plays a key role in the pathology of HD.

Altered chromatin architecture in HD may explain the

reduced capacity of HSF1 to bind to target genes in

striatal neurons under stress [75–78]. Quantitative PCR

coupled with ChIP analysis after NVP-HSP990 (Hsp90

inhibitor) treatment demonstrated significant hypoacety-

lation of histone H4 at Hspa1b, Hspb1, Dnajb1 genes in

Htt111Q expressing primary striatal neurons compared to

Htt7Q [75]. Hypoacetylation of these Hsp genes may

change the chromatin landscape sufficiently to interfere

with HSF1 binding to DNA (Fig. 3). Stress-inducible

binding of HSF1 to DNA is associated with histone

acetylation, H3K4 trimethylation, RNA polymerase II

and other co-activators [77]. Furthermore, tetra-acetyl

histone H4 has previously been suggested to be a strong

modulator of HSF1 binding to DNA [77]. Therefore, it

follows that histone H4 hypoacetylation in HD models

may reduce chromatin accessibility of HSF1 at heat

shock genes, consequently impairing the HSR.

At the tissue level, there are several studies that have

investigated Hsp expression, and therefore HSR activation,

in affected and non-affected tissues in mouse models of

HD (Table 1). Immunoblot analysis of whole brain or

spinal cord homogenates from HD mice have shown that

overall there is no change in the total protein levels of the

sHsps Hsp25 or αB-crystallin (αB-c, HSPB5) or Hsp90

family members compared to mice expressing non-

pathogenic Htt [72, 79]. Whole tissue homogenates from

HD mice showed a reduction in HSF1, Hsp70, and two

Hsp40 family members (Hdj1 and Hdj2; Fig. 3) [32, 72].

Conversely, striatal homogenates from HD mice were

found to have a 4-fold increase in Hsp60 levels compared

to control mice [80]. A lack of immunohistochemistry in

these studies makes it impossible to determine (i) where

changes occur at the cellular level and (ii), whether small

cell populations or specific cell-types induce an HSR,

which is undetectable in bulk cell analyses. Employing im-

munohistochemistry in parallel to this work, or more

powerful omics-based single-cell analyses, such as the

proteomics approach undertaken by Sharma et al. [81],

has the potential to resolve cell-type and brain-region

specific differences in the presence or absence of disease.

In this way, cell-type specific differences in the ability to

induce a pro-survival HSR will be identified.

The role of glial cells in HD

There is evidence that the onset and progression of HD

is both cell-autonomous and non-cell autonomous. One

study showed that a transgenic mouse with pan-

neuronal expression of Htt103Q developed pathologies

associated with end-stage disease, including astrogliosis,

motor deficits and neurodegeneration [82, 83]. However,

when Htt103Q expression was restricted to either stri-

atal neurons or cortical pyramidal neurons, patholo-

gies associated with end-stage disease did not develop

despite these cells having nuclear polyQ-expanded Htt

aggregates and alterations in NMDA receptor func-

tion [82, 83]. These studies showed for the first time

that HD pathogenesis and propagation depends on in-

teractions between neuronal subtypes. Neuron-

astroglia interactions have also been implicated in the

non-cell autonomous progression of HD. A study that

investigated transgenic mice that expressed Htt98Q in

both neurons and astroglia observed that these mice

displayed more severe neurological symptoms and

earlier death compared to mice in which Htt98Q ex-

pression was restricted to either neurons or astroglia

alone [84]. Therefore, it seems likely that both

neuron-neuron and neuron-astroglia interactions are

responsible for the onset and progression of HD.

The combination of molecular pathologies that de-

velop in neurons and astroglia work in tandem to

progress HD (Fig. 3). However, the mechanisms that

underlie astroglial-mediated toxicity in HD are only

partially understood. Astroglia expressing polyQ-

expanded Htt secrete neurotoxic factors and decrease

the expression of the glutamate transporters, GLAST

and GLT-1 [85–87]. Indeed, polyQ-expanded Htt-

expressing astroglia have been shown to increase the

vulnerability of striatal and cortical neurons in co-

culture to excitotoxic stresses [88]. Conversely, in co-

culture experiments, astrocytes expressing non-

pathogenic Htt23Q protected 78% of the Htt130Q-ex-

pressing cortical neurons from glutamate toxicity [88].

Furthermore, conditioned medium derived from WT

astroglial cultures protects Htt111Q-expressing striatal

neuronal progenitor cells from neurotoxic insults (e.g.

H2O2, glutamate, 3-nitropropionic acid) [89].

With respect to neurotoxic factors secreted by

astroglia, an elegant study by Liddelow et al. [86],

demonstrated that pro-inflammatory microglia can ac-

tivate a neurotoxic phenotype in astroglia (defined in

the work as A1 astroglia). They showed that A1

astrocyte formation is a pathological response of the

CNS in mice treated with systemic injections of lipo-

polysaccharide and acute CNS injury, and in patients

with NDs [86]. The proportion of neurotoxic (A1)

astroglia in the caudate nucleus of HD patients was

significantly greater than in controls (60% in HD tis-

sue compared to 25% in the control) [86]. Further-

more, qPCR of A1 astroglia-associated transcripts

showed a 60-fold increase in the caudate nucleus of
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HD patients compared to controls [86]. Thus, cell-cell

interactions and dysfunctions of striatal or cortical

pyramidal neurons and astroglia are likely to work

synergistically to progress HD into late-stages. There-

fore, it is important to maintain astrocytes in the stri-

atum in a healthy and neurotrophic condition to

minimize neurodegeneration in the striatum. The

focus of research investigating pro-survival mecha-

nisms and the proteostasis network in HD has thus

far been predominantly focused on striatal neurons.

However, considering accumulating evidence that im-

plicates astroglia in the pathogenesis of HD, it is rele-

vant to also investigate these pathways in astroglia.

The HSR in striatal astrocytes

Studies investigating HSR-inducing compounds have

provided valuable insights into the capacity of different

cell populations to induce an HSR in the absence of the

expression of polyQ-expanded Htt. Primary striatal as-

trocytes derived from WT mice showed a stronger in-

duction of the HSR compared to striatal projection

neurons after treatment with the Hsp90 inhibitor, NVP-

HSP990: treated striatal astroglia showed an 18-fold in-

crease in Hsp70 and 4-fold increase in Hsp25 mRNA

levels [90]. In contrast, NVP-HSP990 treated striatal

projection neurons only showed an 8-fold increase in

Hsp70, 3-fold increase in Hsp40, and no change in

Hsp25 mRNA levels [90]. In the vehicle treated mice,

there were no significant differences compared to non-

treated mice in the synthesis of any of the Hsp mRNAs

investigated (Hsp70, Hsp40, Hsp90 or HSF1), with the

exception of Hsp25, which showed a 7-fold increase in

astroglia compared to striatal projection neurons [90].

Together these findings suggest that, in the absence of

polyQ-expanded Htt expression, striatal astroglia are

“pre-loaded” with greater levels of Hsp25 mRNA and

can induce a stronger HSR compared to striatal projec-

tion neurons.

The size and frequency of formation of polyQ-expanded

Htt inclusions varies across different cell-types in the CNS.

Striatal and frontal cortex glial fibrillary acidic protein

(GFAP)-positive astroglia demonstrated a significant reduc-

tion in the size and the proportion of cells with Htt210Q in-

clusions compared to neurons in these CNS regions in a

mouse model of HD [91]. This difference was attributed to

a possible increase in proteostasis network components (in-

cluding heat shock proteins) in reactive astroglia. However,

there is insufficient evidence from models of HD, with

regards to the Hsp content of striatal astroglia, to draw rela-

tionships between inclusion size and number and proteos-

tasis capacity of striatal astroglia (Fig. 3).

Determining mechanisms that maintain astroglia in a

healthy and neurotrophic state should be a priority in

future HD research, given that polyQ-expanded Htt

expression decreases the levels of glutamate transporters

and induces a neurotoxic phenotype of astroglia. Indeed,

a recent study demonstrated that the over-expression of

the sHsp, αB-c, in astroglia ameliorates the pathologies

associated with HD in transgenic mice that express full-

length Htt97Q [92]. Over-expression of αB-c in astroglia

significantly reduced the number of large (> 1 μm)

Htt97Q inclusions in the striatum and cortex, and re-

sulted in a 14% increase in the number of NeuN-positive

neurons in the striatum [92]. This provides an elegant

example of how increasing Hsps in astroglia can ameli-

orate HD neuropathologies in a non-cell autonomous

manner and provides support for increased investigation

into the HSR in astroglia in the context of HD.

Summary of the HSR in HD

It has been demonstrated using a range of cell and ani-

mal models of HD that striatal neurons do not sense or

respond to polyQ-expanded Htt expression by up-

regulating Hsps. Moreover, striatal neurons expressing

polyQ-expanded Htt have an attenuated capacity to in-

duce an HSR after heat shock. This could be due to de-

creased levels of HSF1 in striatal tissue observed in HD

models. In addition, the altered chromatin landscape

caused by histone H4 hypoacetylation at Hsp genes ob-

served in a HD mouse model, may also lead to de-

creased binding of HSF1 to DNA, and down-regulation

of Hsp70 and Hsp40. In the absence of polyQ-expanded

Htt expression, striatal astroglia, compared to striatal

projection neurons, have greater levels of Hsp25 mRNA

and can induce a stronger HSR. However, the effect of

polyQ-expanded Htt on HSR induction in astroglia re-

mains to be elucidated.

Previous research has demonstrated that a variety of

Hsps can inhibit polyQ-expanded Htt protein aggrega-

tion. However, the affected neurons in HD appear not to

sense the initial stages of pathogenic protein misfolding

as a cellular stress and therefore do not activate an HSR.

As the neurons and surrounding astroglia in the CNS

appear to be incapable of activating an HSR in the con-

text of HD, therapeutics that can induce Hsp expression

in early stages of disease may prove beneficial.

Amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis is characterized by a loss

of motor neurons in the primary motor cortex, corti-

cospinal tracts, brainstem and spinal cord. Only 5–10%

of ALS cases are familial (fALS) and some of these arise

from mutations in one of 13 (or more) genes leading to

the expression of aberrant aggregation-prone proteins.

Mutations in SOD1 (copper/zinc ion-binding superoxide

dismutase), FUS (fused in sarcoma), TDP-43 (TAR DNA

binding protein), CCNF (cyclin F) [93], OPTN (opti-

neurin), ANG (angiogenin, ribonuclease, RNase A family,
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5), UBQLN2 (ubiquitin-like ubiquilin2), and others, as

well as repeat expansions in C9ORF72 (chromosome 9

open reading frame 72), are all associated with fALS (re-

cently reviewed by [94, 95]). The remaining 90–95% of

ALS cases are idiopathic and sporadic. In ALS, motor

neurons are selectively susceptible to degeneration as a

consequence of mutant ALS-associated protein expres-

sion, despite the ubiquitous presence of these same mu-

tant forms in neuronal and non-neuronal cells [96].

Motor neurons have functional and morphological char-

acteristics that may make them particularly vulnerable to

toxic protein misfolding and aggregation, neuroinflam-

mation, excitotoxic insults, oxidative damage and subse-

quent degeneration in ALS [96]. For example, motor

neurons have a high metabolic load, high energy de-

mands, long axons, and rely on rapid signaling of neuro-

transmitters to other neurons and muscle tissue by

axonal transport. Malfunction of each of these character-

istics of motor neurons have been associated with ALS

pathology (for reviews see [97–99]). In addition, recent

findings have shown that multiple housekeeping and

stress-response pathways involved in maintaining pro-

teostasis (e.g. the ubiquitin proteasome system and

endoplasmic reticulum unfolded protein response) are

dysregulated in ALS-affected motor neurons, which

would further exacerbate their degeneration [96, 100–

105]. However, it remains to be established whether af-

fected cell-types in the CNS can induce an HSR as a re-

sult of pathogenic protein aggregation associated with

ALS as a protective response to this chronic proteotoxic

stress.

The HSR in motor neurons

Motor neurons may have a relatively high threshold for

HSR induction compared to surrounding non-neuronal

cells. Batulan et al. [53] investigated the endogenous ex-

pression of HSF1 in motor neurons and their capacity to

activate the HSR. In these studies, immunohistochemis-

try of motor neurons in spinal cord cultures demon-

strated the presence of HSF1, but not Hsp70, in these

cells. The capacity of motor neurons to induce an HSR

was assessed following heat shock (42 °C for 1 h) by

monitoring the stress-inducible expression of an Hsp70

promoter driven EGFP construct. The lack of EGFP

fluorescence in motor neurons after heat shock sug-

gested that HSF1 was not activated and thus did not

bind to the HSE used in this reporter construct [53].

Other studies have also shown that spinal cord motor

neurons in situ fail to transcribe and express Hsp70 fol-

lowing heat shock [58, 106]. However, it is not clear

from this work whether HSF1 was (i) not activated and

therefore not capable of binding DNA and/or (ii) not

present at sufficient levels in these cells to induce an

HSR.

To determine which of these possibilities was responsible

for these observations, WT HSF1 (HSF1WT) and a consti-

tutively active mutant of HSF1 (HSF1+) were over-

expressed in primary murine motor neurons [53]. Simply

increasing the level of HSF1WT in cells was not sufficient to

enhance their capacity to express Hsp70 [53]. Conversely,

over-expression of HSF1+ resulted in an up-regulation of

Hsp70, Hsp40, and Hsp25 levels in 96.1 ± 3.4%, 100 ± 0%,

and 14.6 ± 7.3% in motor neurons, respectively [53, 107].

Furthermore, expression of HSF1+ in motor neurons ex-

pressing pathogenic SOD1G93A significantly reduced the

formation of inclusions and conferred cytoprotection, com-

pared to HSF1WT [107]. Together, these findings suggest

that the attenuated capacity of motor neurons to induce an

HSR in the context of heat shock is due to their inability to

activate HSF1, not insufficient levels of HSF1 in these cells

(Fig. 4).

The over expression and aggregation of mutant SOD1

(mSOD1) in mouse models may not be sufficient to in-

duce an HSR in motor neurons. Primary murine motor

neurons expressing mSOD1 demonstrate no change in

expression levels of Hsp70, Hsp105, Hsp90, Hsp60, or

Hsp40 compared to those expressing SOD1WT and non-

transgenic control motor neurons (Table 2). Further-

more, a reduction in Hsp105 levels was observed in

spinal cord tissue homogenates of SOD1G93A mice [108].

Hsp105 is a chaperone expressed in neurons and glia- in

the CNS and can inhibit the aggregation of mSOD1 in

cell-based models [108]. Therefore, the decline in

Hsp105 expression, combined with the inability of ro-

dent motor neurons to up-regulate Hsp70, Hsp90,

Hsp60, or Hsp40, suggests that the HSR is either unable

to be activated or is impaired in these models of ALS

(Fig. 4).

In the absence of disease, the endogenous and consti-

tutive expression of Hsp27 in motor neurons of the

spinal cord plays an important role in the housekeeping

of proteostasis. Hsp27 is a well characterized molecular

chaperone that also has potent anti-apoptotic functions

[109]. Hsp27 can inhibit the release of mitochondrial

cytochrome c and associate with Daxx, thereby inhibit-

ing a motor neuron-specific apoptosis pathway mediated

by Fas-Ask1-p38 [109–112]. However, in transgenic

mouse models Hsp25 levels become dysregulated and

decline in motor neurons during ALS progression (Table

2). Studies have shown that pre-symptomatic mSOD1

mice have Hsp25 levels comparable to age-matched con-

trols [113, 114]. However, immediately prior to the onset

of disease symptoms, Hsp25 levels decline in spinal cord

motor neurons as demonstrated by immunohistochemis-

try of spinal cord sections [113, 114]. In contrast, by the

late stages of the disease, both Hsp25 and αB-c are up-

regulated in spinal cord astroglia, a finding consistent in

numerous studies [79, 113–116]. Future research could
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address whether this decline in Hsp25 in mSOD1 ex-

pressing motor neurons correlates with an increase in

Hsp25 sequestered in insoluble protein deposits. This

could be achieved by immunoblot analysis of soluble

and insoluble protein fractions and immunohistochemis-

try. The decrease in Hsp25 in motor neurons during the

later stages of ALS in these transgenic mouse models

may increase their susceptibility to neurodegeneration as

a consequence of toxic protein accumulation and other

ALS-related stresses (Fig. 4).

With regards to ALS in humans, immunohistochemis-

try of human motor neurons in cervical spinal cord sec-

tions obtained at autopsy showed no change in Hsp70 or

Hsp27 levels compared to age-matched controls [53].

The combined evidence suggests that the toxicity of

mSOD1 in spinal cord motor neurons is not sufficient to

elicit the stress-inducible expression of Hsps in rodents

or humans. In contrast, Hsp70 (but not Hsp27) immu-

noreactivity was occasionally observed to be higher in

neighboring glial cells in fALS or sporadic ALS patients

[53]. This suggests that astroglia in humans and rodents

are capable of up-regulating certain Hsps in response to

stresses associated with ALS. This further supports the

hypothesis that motor neurons intrinsically have a high

threshold for induction of the HSR and suggests that

misfolded mSOD1 can go undetected by this inducible

arm of the proteostasis network in these cells.

There is a lack of diversity in the models that have been

used in work investigating the HSR in association with

ALS. Data regarding neuronal and glial Hsp expression in

ALS is derived primarily from mSOD1 rodent models,

with the exception of one study that used the TDP-

43WT×Q331K transgenic mouse model of ALS [117]. There-

fore, it remains to be determined whether these findings

Fig. 4 Proposed mechanism of the HSR and its components in motor neurons and astroglia of mSOD1 over-expressing models of ALS. Motor neuron
disease initiation and progression is dependent on the molecular pathologies developed in motor neurons (e.g. formation of mSOD1 aggregates or JUNQ)
and astroglia (e.g. secretion of unidentified toxic “factors”). The susceptibility of motor neurons to degeneration is likely due to an inability of motor neurons
and astroglia to induce a cytoprotective HSR in response to increasing quantities of misfolded proteins (e.g. mSOD1). (1 and 2) HSF1 in motor neurons has a
relatively high threshold for activation and the over-expression of mSOD1 and subsequent molecular pathologies do not activate HSF1
nor induce HSF1 binding to DNA. (3) There is no detectable basal expression or up-regulation of Hsps in mSOD1 over-expressing motor
neurons, with the exception of (4) Hsp27, which gradually declines with disease progression. (5) Astroglia in mSOD1 over-expressing mice
have increased amounts of Hsp27 and αB-c with disease progression; however, the levels of other Hsps are not changed. (6) There have
been few investigations regarding HSF1 activation and DNA-binding in astroglia in the context of ALS. Therefore, the capacity of mSOD1
over-expressing astroglia to activate HSF1 and induce an HSR remains unknown. (7) There is increasing evidence that extracellular vesicles
containing Hsps are secreted by astroglia, and these vesicles are endocytosed by motor neurons and facilitate transfer of Hsps
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also apply to other fALS-associated mutations (e.g. FUS).

This is of particular relevance if each aggregation-prone

protein engages a specific set of Hsps, as has been previ-

ously proposed [118]. Therefore, additional research is re-

quired in other rodent models of ALS to advance our

understanding of the HSR in this disease.

The role of glial cells in ALS

There is strong evidence that ALS can be characterized as

a non-cell autonomous disease [99, 119]. As such, ALS

initiation and progression depends on both the molecular

pathologies developed within motor neurons, and the

subsequent reactivity of surrounding non-neuronal cell

populations such as astroglia and microglia. For example,

transgenic mice expressing SOD1G37R specifically in

motor neurons in the ventral horn of spinal cords

remained healthy for up to 1.5 years of age compared to

mice that ubiquitously express this mSOD1 isoform,

which die at 4 months of age [120, 121]. Moreover, knock

out of SOD1G37R expression in motor and dorsal root

ganglion neuron progenitors of transgenic mice results in

an 18 day delay to disease onset and 31 day delay to early

disease progression compared to controls [122]. Together,

these findings demonstrate that mSOD1 expression in

motor neurons plays a role in early disease initiation and

mSOD1 expression in other cells is required for disease

progression. In support of this, selective deletion of

SOD1G37R expression from GFAP-positive spinal cord

astroglia or cluster of differentiation molecule 11B

(CD11b)-positive microglia did not slow disease onset or

early disease progression, but significantly delayed late

disease progression resulting in an overall extension of

survival by 60 and 99 days, respectively [122, 123]. These

two studies demonstrate that mSOD1 expression in astro-

glia and microglia plays a significant role in late disease

progression and overall survival. This work and the work

of many others emphasizes the importance of astroglia

and microglia in the pathogenic cascade associated with

ALS (for in-depth reviews examining the non-cell-

autonomous nature of ALS see [99, 119, 124]).

The non-cell-autonomous progression of ALS by glial

cells has also recently been demonstrated in a mutant

Table 2 List of Hsps and whether their expression is up-regulated (↑), down-regulated (↓), or not changed (No ∆) in rodent models
of motor neuron disease at the late-stage of disease compared to age-matched transgenic WT or non-transgenic mouse controls

Hsps Transgenic disease models Tissue or cell type Reference

HSF1 TDP-43WT×Q331K IB: ↓ spinal cord tissue homogenates [117]

SOD1G93A IB: ↓ spinal cord tissue homogenates [174]

αB-c (HSPB5) SOD1L126Z IHC: ↑ spinal cord astroglia
IHC: ↓ spinal cord oligodendrocytes

[115]

SOD1G93A IHC: ↑ spinal cord astroglia [116, 175]

SOD1G37R IHC: ↑ spinal cord astroglia [116]

Hsp22 (HSPB8) SOD1G93A IHC: ↑ spinal cord motor neurons [176, 177]

Hsp25 (HSPB1) SOD1G93A IHC: ↑ spinal cord astroglia
IHC: ↓ spinal cord oligodendrocytes

[53, 113, 114, 116]

SOD1G37R IHC: ↑ astroglia in the inferior colliculus, cerebellar
white matter, brain stem, spinal cord

[79]

SOD1L126Z IHC: ↓ spinal cord motor neurons [115]

SOD1G93A, SOD1G85R, SOD1G37R, SOD1H46R/H48Q IHC: ↑ spinal cord astroglia
IHC: ↑ spinal cord undefined neurons

[178]

Hsp40 SOD1G93A IHC: No ∆ spinal cord [79]

SOD1G93A, SOD1G85R, SOD1G37R, SOD1H46R/H48Q IB: No ∆ spinal cord tissue homogenates [178]

TDP-43WT×Q331K IB: No ∆ spinal cord tissue homogenates [117]

Hsp60 SOD1G93A IHC: No ∆ spinal cord [79]

SOD1G93A, SOD1G85R, SOD1G37R, SOD1H46R/H48Q IB: No ∆ spinal cord tissue homogenates [178]

Hsp70 SOD1G93A, SOD1G85R, SOD1G37R, SOD1H46R/H48Q IB: No ∆ spinal cord tissue homogenates [53, 79, 115, 178]

SOD1G93A IHC: ↑ “sick-appearing” spinal cord motor neurons [179]

SOD1G85R IB: ↑ spinal cord tissue homogenates [145]

Hsp90 SOD1G93A IHC: No ∆ spinal cord [79]

SOD1G93A, SOD1G85R, SOD1G37R, SOD1H46R/H48Q IB: No ∆ spinal cord tissue homogenates [178]

Hsp105 SOD1G93A IB: ↓ in spinal cord tissue homogenates [108]

These results are from immunoblot (IB) or immunohistochemical (IHC) staining and microscopy of different CNS regions
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TDP-43 model of ALS [125]. In a TDP-43Q331K express-

ing transgenic mouse model of ALS, cre recombinase

excision of the TDP-43Q331K transgene from motor neu-

rons completely rescued motor neuron death [125].

However, despite the increase in motor neuron survival,

there was no significant difference in the number of de-

generating axons and neuromuscular junctions or glial-

mediated neuroinflammation in end-stage disease mice

when the TDP-43Q331K transgene was excised in motor

neurons [125]. These findings are supported by re-

search that showed that astroglial-specific expression

of TDP-43M337V in rats results in the death of spinal

cord motor neurons and denervation of skeletal mus-

cles [126]. One proposed mechanism for the neuro-

toxicity of astroglia in mutant TDP-43 expressing

models is that neurotrophic genes are suppressed and

neurotoxic genes are up-regulated (e.g. LCN2 and

CHI3L1) [127]. Combined, these studies suggest that

the expression of mutant TDP-43 in astroglia is suffi-

cient to cause non-cell-autonomous death of motor

neurons. Furthermore, the non-cell-autonomous pro-

gression of ALS is not confined to mSOD1-expressing

mouse models, but may represent a generic mode of

ALS progression.

The ubiquitous expression of mutant ALS-associated

protein in the CNS may not alone facilitate the transi-

tion of astroglia from a neurotrophic to neurotoxic

phenotype in ALS. Co-culture with A1 astrocytes in-

duces the rapid death of a range of neurons, including

spinal cord α-motor neurons [86]. Interestingly, there

was a significant increase in the proportion of A1 astro-

glia in the motor cortex of patients with ALS (40% of

ALS astroglia were A1 compared to 15% in controls)

[86]. Likewise, there was a 60-fold increase in A1-related

transcripts in the motor cortex of ALS patients com-

pared to controls [86]. The mechanism by which these

A1 astrocytes induce toxicity was proposed to be

through the secretion of a ‘toxic factor’ [86]. Other stud-

ies have also suggested that mSOD1-expressing astro-

cytes release a soluble ‘toxic factor’, which significantly

reduces the viability of motor neurons in co-culture

[128–131]. The identity of this neurotoxic factor is cur-

rently unknown and additional research is required to

determine its mode of action. In any case, it is important

to consider cytoprotective mechanisms that maintain the

neurotrophic functions of glia in ALS, such as the HSR

leading to Hsp expression.

The HSR in astroglia

It is generally regarded that astroglia are capable of acti-

vating an HSR in response to stress, including whole

animal hyperthermia [51, 57–59]. In the context of ALS,

astroglia have higher levels of the sHsps, αB-c and

Hsp25, compared to WT controls at the end-stage of

disease, but not Hsp90, Hsp70, Hsp60 or Hsp40 (Table

2, Fig. 4). Interestingly, these findings suggest that the

over-expression of unstable and misfolded mSOD1

species in the CNS fails to activate the HSR. Moreover,

the expression of sHsps and other Hsp families may not

be under the same transcriptional and translational

controls.

In astroglia, there is a scarcity of published work

investigating HSF1-activation and HSR induction at the

molecular level using biochemical techniques (Fig. 4).

However, the discord between sHsps being up-regulated

and other Hsps not being affected in astroglia in the

context of ALS suggests that there are additional layers

of regulation of the HSR in these cells that are either

HSF1-mediated or post-translational. In recent work,

Zheng et al. [28] hypothesized that the phosphorylation

of HSF1 at serine and threonine residues serves to fine-

tune HSF1 transcription at promoter regions, rather

than acting solely as an on/off switch. Thus, HSF1 phos-

phorylation could serve to regulate the kinetics and

magnitude of the HSR in a cell-type dependent manner.

Additional unidentified mechanisms of HSF1 regulation,

including those that are cell-type specific, could explain

the complete absence of HSR induction in motor neu-

rons compared to astroglia in mSOD1-expressing trans-

genic mice. In fact, the HSF1-mediated HSR in the

different cell-types that comprise the CNS is likely to be

much more complex than our current models of HSR

induction and attenuation (Fig. 2), which are based pri-

marily on findings from Saccharomyces cerevisiae, Dros-

ophila melanogaster, cell-lines or studies using

recombinant human HSF1 in solution [38, 132–134].

Future research should elucidate mechanisms of HSR in-

duction in astroglia, particularly astroglia that are af-

fected in the spinal cord in ALS.

Knowledge of the precise mechanism by which HSF1

mediates the induction of specific Hsps in astroglia is

important as it may uncover new therapeutic targets for

the rescue of motor neurons from degeneration associ-

ated with ALS progression. This knowledge could be

harnessed to up-regulate specific sets of Hsps that have

been shown to interact with aggregating proteins associ-

ated with ALS [118]. For example, Hsp70 and HspB8

interact with TDP-43 and Hsc70, Hsp70, DNAJB1,

DNAJB2a/b, Hsp27, αB-c, and HspB8 interact with

SOD1 to prevent protein aggregation and decrease cyto-

toxicity [118]. It has been proposed that other Hsps are

also likely to prevent the aggregation of TDP-43 and

SOD1 since there are numerous ‘non-canonical’ mem-

bers of the Hsp families that have not been tested for

anti-aggregation or anti-apoptotic activities in these

assays [118]. Up-regulation of cytoprotective Hsps in

astroglia could maintain them in a healthy neurotrophic

state to support motor neuronal viability and prevent
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conversion of astroglia to a neurotoxic (A1) phenotype.

However, further research is needed to investigate mech-

anisms of HSF1-mediated HSR induction across differ-

ent CNS cell-types in the presence and absence of

disease-associated protein aggregation.

One mechanism by which astroglia may provide

cytoprotection to motor neurons is through the ex-

change of extracellular vesicles containing Hsps [135].

Extracellular vesicles derived from chick spinal cord

primary astroglial cultures following heat shock con-

tain Hsp70 and Hsc70 [136]. In another study investi-

gating glial-neuronal interactions, T98G glioma cells

were shown to secrete Hsp70 into the culture

medium and LA-N-5 neuroblastoma cells took up

this Hsp70 [137]. The Hsp70 uptake increased the

stress tolerance of the LA-N-5 cells to heat shock

and staurosporine-induced apoptosis [137]. It would

be interesting to extend on this work to investigate

whether extracellular vesicles from more physiologic-

ally relevant cell-models (e.g. primary murine astroglia

and motor neurons) also facilitate the trafficking of

Hsps. The mechanisms of astroglial exocytosis and

neuronal endocytosis used to traffic Hsps are also yet

to be elucidated. This non-cell-autonomous mecha-

nism(s) by which astroglia provide products of the

HSR to neurons could be exploited to increase Hsp

levels in motor neurons. This strategy could enhance

the stress tolerance of motor neurons and decrease

degeneration in the spinal cord in ALS (Fig. 4).

Summary of the HSR in ALS

Spinal cord motor neurons from primary cell or animal

models of ALS are unable to activate HSF1 and hence

lack a stress-induced up-regulation of Hsps. The levels

of Hsp27 in motor neurons decline with disease progres-

sion. Motor neurons have an inherently high threshold

for the activation of the HSR and the expression and ac-

cumulation of mSOD1 in the cell is not sufficient to ac-

tivate the HSR. In contrast, spinal cord astroglia have

elevated levels of αB-c and Hsp25 (rodent) or Hsp70

(human) at the end-stage of disease. However, the pre-

cise mechanisms by which these Hsps are up-regulated

are unknown. Overall, there is a distinct lack of research

into the HSR in spinal cord astroglia and its potential

role in ALS.

Due to the non-cell-autonomous nature of ALS, future

research should focus on maintaining affected spinal

cord astroglia in a neurotrophic state to support motor

neuron viability. Furthermore, investigation of Hsp70

(and other Hsp) transfer between astroglia and motor

neurons could represent an exciting new mechanism for

the development of therapeutics that target the proteos-

tasis network in ALS.

Studying the therapeutic effects of increasing HSR
components
The plaques and inclusions that are characteristic of

ALS, HD and other NDs all share common morpho-

logical and biochemical features and this points to the

highly related nature of these diseases [138, 139]. In

addition, plaques and inclusion bodies are co-localized

with various components of the proteostasis network,

which may represent an irreversible sequestration and

subsequent loss of function of these vital housekeeping

components [140]. The sequestration of these chaper-

ones, in conjunction with the possibility that toxic mis-

folded proteins are not sufficient to induce an HSR in

the CNS, are likely to be important molecular mecha-

nisms that lead to neurodegeneration in these diseases.

However, there appears to be mechanistic differences in

the way that these pathological proteins inhibit or evade

detection by the HSR. In the case of Htt, there is evi-

dence to suggest that the misfolded proteins themselves

may directly impair mechanisms of the proteostasis net-

work by changing the chromatin landscape (Fig. 3). The

absence of a stress-induced up-regulation of Hsps in

early disease allows the formation of toxic protein spe-

cies, which precede a cascade of cellular dysfunctions in

NDs. Therefore, in the absence of an HSR in affected

neurons and surrounding glia in the CNS, boosting the

HSR pharmacologically represents a promising thera-

peutic intervention for the treatment of these diseases at

an early stage.

A significant amount of work has investigated the ef-

fects of over-expressing individual Hsps or activating an

HSF1-mediated HSR in rodent models of NDs (for com-

prehensive reviews see [9, 36, 140–144]). Determining

which of the HSR components are the most efficacious

in preventing protein aggregation and subsequent neuro-

toxicity is an important step in elucidating targets for

the development of therapeutics that ameliorate NDs.

Over-expression of individual chaperones in mSOD1

mouse models of ALS has resulted in modest effects

with regards to a reduction in the amount of insoluble

protein and increased motor neuron survival (Table 3)

[145–150]. However, this does not correlate with an in-

crease in overall survival of the double transgenic ani-

mals (Table 3) [145–150]. Conversely, up-regulation of

the HSR by treatment with withaferin A, celastrol or ari-

moclomol results in an increase in the number of surviv-

ing motor neurons and the lifespan of mSOD1

expressing mice [151–154]. This same trend was ob-

served in mouse models of HD, whereby over-

expression of HSJ1a and Hsp70 has no effect on overall

survival but over-expression of an active mutant of

HSF1 extended survival by 15 days (Table 4) [155]. The

exceptions to this are DNAJB1, DNAJB6 and QBP-

Hsc70 binding motif which, when over-expressed, were
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capable of reducing insoluble Htt and extending survival

by 17, 21 and 32 days, respectively [156–159]. These

findings illustrate how specific sets of Hsps may be more

efficacious against aggregating proteins associated with

HD. Furthermore, molecules that activate HSF1 and up-

regulate the HSR (and therefore increase expression of a

broad range of stress-related proteins) appear to be

more capable of reducing protein aggregate load, pre-

venting neurodegeneration and increasing lifespan of

mouse models of NDs compared to up-regulation of in-

dividual chaperones.

Investigations into the therapeutic benefit of pharmaco-

logical activation of the HSR in the context of NDs are

currently in progress. There are two classes of therapeu-

tics under investigation, each target different aspects of

the HSR pathway. One class of therapeutics activate HSF1

and/or up-regulate downstream products of the HSR.

These include celastrol, arimoclomol, withaferin A, acetyl,

L-carnitine and pyrrolidine dithiocarbamate [160–164].

Thus far, arimoclomol is the most promising HSR-

mediating therapeutic. Administration of arimoclomol to

mouse models of ALS (10 mg/kg/day), spinal and bulbar

muscular atrophy (120 mg/kg/day) and inclusion body

myositis (120 mg/kg/day) ameliorated neuropathologies

associated with each disease, and arimoclomol successfully

passed phase I human clinical trials in 2008 [154, 165–

167]. However, there is currently limited information

regarding that status of phase II/III trials of arimoclomol

in ALS patients.

Another class of therapeutics targets the HSF1 inhibi-

tory complex composed of Hsp90, co-chaperone p23 and

immunophilin FK506-binding protein 5. Since, Hsp90

activities are ATP-dependent, this complex can be

targeted by small molecules that compete with ATP for

binding to Hsp90. Radicicol, NVP-HSP990, geldanamycin

and geldanamycin-derived 17-allylaminogeldanamycin are

Hsp90 inhibitors that act in this way and have been inves-

tigated for the treatment of NDs [72, 75, 168, 169]. In HD

mouse models, NVP-HSP990-induced induction of the

HSR in CNS tissues but this effect declined with increas-

ing age of mice and despite a 20% decline in inclusion

load, no extension of life was observed [75]. Furthermore,

Table 3 The effect of the over-expression of Hsps and up-regulation of the HSR on the molecular pathologies developed in rodent
models of MND

Transgenic model/
Therapeutic compound

MND
model

Increase in Hsp in Tg mouse Extended
lifespan

% ↑/↓ in surviving
motor neurons

% ↑/↓ in levels
of inclusions

References

Hsp27 Tg SOD1G93A 40-fold ↑spinal cord
25-fold ↑ cortex, cerebellum,
hippocampus
Expressed in MN + GFAP+ve

astroglia

No ∆ (prolonged 4.2 days) – No ∆ [146]

SOD1G93A – No ∆ (died 6 days sooner) 24% ↑ No ∆ [147]

HSJ1a Tg SOD1G93A 7-fold ↑ No ∆ 61% ↑ No ∆ [148]

Hsp70 Tg SOD1G93A 10-fold ↑ No ∆ (prolonged 1.4 days) – – [145]

SOD1G85R 10-fold ↑ spinal cord No ∆ – –

SOD1G37R 10-fold ↑ No ∆ – –

Hsp70 administered
exogenously

SOD1G93A rhHsp70 injected 3× weekly
(20μg)- detected in muscle
not CNS

9 days 12.5% ↑ – [149]

HSF1 Tg SOD1H46R/H48Q 3-fold ↑ No ∆ – 34% ↓ [151]

SIRT1 Tg SOD1G93A 3-fold ↑ 15 days – 40% ↓ [150]

Withaferin A SOD1G93A 2.6-fold ↑ Hsp25
2.2-fold ↑ Hsp70
Phosphorylated HSF1

8 days 30% ↑ 39% ↓ [152]

SOD1G37R – 18 days – –

Celastrol SOD1G93A – 16 days 30% ↑ – [153]

Arimoclomol SOD1G93A 3-fold ↑ Hsp70
2.5-fold ↑ Hsp90
Phosphorylated HSF1

28 days 74% ↑ – [154]

NXD30001 SOD1G93A No ↑ in Hsps in the CNS
↑ Hsp70 in skeletal muscle

– – – [170]

Double transgenic (Tg) mice were bred for the over-expression of an Hsp and a SOD1 mutant associated with ALS. Alternatively, mice that over-express mSOD1

were treated with a therapeutic compound for the activation of the HSR. The fold increase in Hsp levels (and, if reported, the tissue-type in which this occurs),

number of extended days of life, percent increase (↑) or decrease (↓) in spinal cord motor neurons, and percent ↑ or ↓ in the levels of inclusions is reported for

each study
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in ALS mouse models, NXD30001 failed to induce the

HSR in the CNS, despite the brain permeability of this

molecule [170]. In vivo assessments investigating the effi-

cacy of these compounds in the induction of the HSR has

led to the conclusion that Hsp90 inhibitors are cytotoxic

and not promising candidates to pursue for clinical trials.

A novel molecule identified in a yeast-based high-

throughput screen, HSF1A, activates HSF1 by interact-

ing with components of the inhibitory TRiC/CCT com-

plex [171]. Treatment of cells with HSF1A results in

HSF1 nuclear accumulation, trimerization, and en-

hanced binding to DNA [171]. Treatment of PC12 cells

expressing polyQ-expanded Htt with HSF1A resulted

in the reduction of inclusion bodies formed and pro-

tected cells against toxicity [171]. Furthermore, recent

evidence shows that treatment of Neuro-2a cells trans-

fected to express TDP-43-ΔNLS-K145Q with HSF1A

results in a ~ 60% reduction in the number of aggre-

gates formed compared to the vehicle control [172].

This indicates that the activation of endogenous HSF1

by HSF1A is sufficient to suppress mutant TDP-43 ex-

pression in this cell-based model [172]; however, it re-

mains to be established whether HSF1A provides

protection in vivo, in transgenic mouse models of NDs.

The therapeutic strategy of activating HSF1 in the

CNS in the context of NDs is a promising one. Over 3

decades of research has provided strong in vitro evi-

dence that activating HSF1 can reduce protein inclusion

formation and ameliorate other molecular pathologies

associated with a range of NDs [155, 172, 173]. However,

progress towards the development of therapeutic com-

pounds, that activate the HSR in affected tissues and

cell-types in NDs has been slow. This is the likely due to

the complexity of HSR induction in vivo, for example, in

CNS tissues, Hsps may be provided to neurons in a non-

cell autonomous manner that cannot be assessed in ini-

tial drug screens that are performed in vitro. Drug

screens need to move beyond simple cell-based models

and begin to incorporate more advanced tissue culture

approaches to consider the responses from the multiple

cell types present in tissues.

Conclusions
This review has highlighted the complexity of the HSF1-

mediated HSR and demonstrated that the generic model

for its induction and attenuation does not take into ac-

count additional layers of regulation that are stress- and

cell-type specific. This review highlights that regulation

Table 4 The effect of the over-expression of Hsps and up-regulation of the HSR on the molecular pathologies developed in rodent
models of HD

Transgenic model/Therapeutic
compound

HD
model

Increase in Hsp in Tg mouse Extended
lifespan

% ↑/↓ in
surviving neurons

% ↑/↓ in levels of
inclusions

References

αB-c Tg (astroglia only) BACHD – – 12.5% ↑ 50% ↓ [92]

Hsp27 Tg R6/2 12-fold ↑ – – No ∆ [180]

Hsp70 Tg R6/2 Rat Hsp70 – – No ∆ [72]

5–15-fold ↑ human Hsp70 No ∆ No ∆ No ∆ [181]

rAAV-QBP1-Hsc70
binding motif

R6/2 Injected into the striatum 32 days – 90.8% ↓ [158]

rAAV-DNAJB1 R6/2 Injected into the striatum 17 days – 39.2% ↓ [159]

DNAJB6 Tg R6/2 Brain-specific up-regulation
(nestin promoter)

21 days – 33% ↓ [157]

HSJa Tg R6/2 Brain specific up-regulation No ∆ No ∆ 35% ↓ [182]

Hsp104 N171-82Q
HD

“Strongly” expressed in the
brain, heart kidneys, testis

– – No ∆ [183]

HSF1Active Tg R6/2 Expressed in skeletal muscle,
heart and testes

15 days No ∆ 79% ↓ [155]

NVP-HSP990
treatment

R6/2 2.7-fold ↑ Hsp70
3.8-fold ↑ Hsp25
1.6-fold ↑ Hsp40

No ∆ – 20% ↓ [75]

HSF1 KO R6/2 – 105 day decrease
in lifespan

– 15% ↑ [184]

HSF2 KO R6/2 – 91 day decrease
in lifespan

– 20% ↑ [185]

Double transgenic (Tg) mice were bred for the over-expression of an Hsp and polyQ-expanded Htt associated with HD. Alternatively, HSF1 and HSF2 genes were

knocked-out (KO) of HD mouse models. Lentiviral vectors for the expression of QBP1-Hsc70 binding motif and DNAJB1 were injected directly into the striatum of

R6/2 mice. In one case, mice that over-express polyQ-expanded Htt were treated with NVP-HSP990, a therapeutic compound for the activation of the HSR. The fold

increase in Hsp levels (and, if reported, the tissue-type in which this occurs), number of extended days of life, percent increase (↑) or decrease (↓) in spinal cord

motor neurons, and percent ↑ or ↓ in the levels of inclusions is reported for each study
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in the induction of the HSR differs not only between cell

types (e.g. neurons and astroglia) but also between neur-

onal sub-types in different regions of the brain (e.g. stri-

atal neurons and motor neurons). It is these regulatory

aspects of the HSR that are of particular interest with

regards to the cells that comprise the CNS, where pro-

tein inclusion formation associated with NDs occurs.

We propose that the appearance of protein inclusions in

discrete neuronal populations in NDs may result from

low (or no) basal levels of Hsps and/or a high threshold

of HSR induction in these cells. Indeed, two recent find-

ings in an α-synucleinopathy and HD suggest a possible

generic underlying pathology in NDs, whereby HSF1 is

targeted for degradation by the proteasome through ele-

vated expression or activity of ubiquitinases [25, 74].

Furthermore, evidence from a range of models of

NDs indicates that the species formed during protein

misfolding and aggregation do not cause sufficient cellu-

lar stress to induce an HSR in affected neurons and

astroglia. This suggests that cell-autonomous and non-

cell-autonomous mechanisms that maintain protein

homeostasis are insufficient to prevent protein aggrega-

tion associated with NDs in the CNS and highlights that

the HSR is a promising pathway to target in the develop-

ment of novel therapeutics for these diseases.

Future research should investigate basal and stress-

inducible HSR proteins in neurons and astroglia, prefer-

ably using quantitative, high throughput and single-cell

analysis techniques, which circumvent contamination by

other cell types. This is particularly important due to the

growing body of evidence that implicates neuronal-

astroglial interactions in the progression of ALS and HD

into late- and end-stage disease (as is also the case for

other NDs). In addition, it is important to investigate the

mechanisms by which astroglia can be maintained in a

neurotrophic (rather than neurotoxic) phenotype in

NDs. In compiling this review, it highlighted to us that

there is a scarcity of research that has investigated the

HSR in astroglia in the context of ALS or HD (and in-

deed most NDs). Furthermore, the ability of astroglia to

provide non-cell-autonomous support to neurons by

trafficking Hsps and other neurotrophic factors in exo-

somes is currently understudied in physiologically rele-

vant models. Future research in this field should

investigate the HSR in NDs by adopting a more holistic

approach and focus on defining the cell-autonomous

and non-cell-autonomous HSR within different cells-

types of the CNS.
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