
Int. J. Appl. Math. Comput. Sci., 2009, Vol. 18, No. 3, 1–15
DOI:

THE HEKATE METHODOLOGY.
HYBRID ENGINEERING OF INTELLIGENT SYSTEMS

GRZEGORZ J. NALEPA, ANTONI LIGĘZA

Institute of Automatics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Kraków, Poland

This paper describes a new approach, the HeKatE methodology, for design and development of complex rule-based systems
for control and decision support. The main paradigm for rule representation, namely the eXtended Tabular Trees (XTT),
ensures high density and transparency of visual knowledge representation. Contrary to traditional, flat rule-based systems,
the XTT approach is focused on groups of similar rules rather than single rules. Such groups form decision tables which
are connected into a network for inference. Efficient inference is assured thanks to firing only rules necessary for achieving
the goal, identified by context of inference and partial order among tables. In the paper the new version of the language –
XTT2 – is presented. It is based on the ALSV(FD) logic, also described in the paper. Another distinctive feature of the
presented approach is a top-down design methodology based on successive refinement of the project. It starts with Attribute
Relationship Diagram (ARD) development. Such a diagram represents relationships among system variables. Based on
the ARD scheme, XTT tables and links between them are generated. The tables are filled with expert-provided constraints
on values of the attributes. The code for rules representation is generated in a human-readable representation called HMR,
and interpreted with provided inference engine called HeaRT. A set of software tools supporting the visual design and
development stages is described in brief.

Keywords: rule-based expert systems, intelligent control, system design

1. Introduction

Rule-based systems constitute one of the most pow-
erful and most popular knowledge representation for-
malisms (Liebowitz, 1998; van Harmelen, Lifschitz and
Porter, 2007). They offer a relatively easy way of
knowledge encoding and interpretation. Formalization of
knowledge within a rule-based system can be based on
mathematical logic (e.g. propositional, attributive, first-
order, or even higher order ones) or performed on the basis
of engineering intuition. Rule-based systems have found
numerous applications in various domains of engineering,
science, medicine, law, computer science and application
software (Laffey and et al., 1988; Liebowitz, 1998).

The never-ending story of rule-based systems started
with the very first attempts to formally codify rules of hu-
man behavior. Perhaps one of the best known set of such
rules, the Ten Commandments, have been with us since
the times of Moses (see (Ligęza, 2006) for a more detailed
historical review).

Rules are omnipresent in our everyday life, profes-
sional work, leisure and sport activities. They are result of
physical (and mathematical) laws, formed by men, tradi-

tion, culture, civilization. The most precise rules are the
ones found in technical and technological systems, how-
ever many rule-based expert systems addressed the issues
of medical diagnosis or business decision support as well.

In engineering, the first examples of rule-based sys-
tems are the ones concerning feedback control with a two-
position or three-position rely; in fact, such systems can be
considered a simple, hard-wired rule-based systems. Fur-
ther examples come from the domain of digital circuits. In
fact, any combinatorial circuit can be regarded as a propo-
sitional logic rule-based system.

In computer science rule-based systems appeared
just after symbolic programming languages had been de-
veloped. First such systems were termed production sys-
tems or production rules (Brownston, Farrell, Kant and
Martin, 1985; Liebowitz, 1998). The golden age for rules
came in the late seventies and eighties with developments
and practical applications of expert systems. They were
dedicated to solving specific problems in narrow, well-
formalized domains. A typical construction of such a sys-
tem was based on two components: a declarative rule-
base encoding domain-specific knowledge and an infer-
ence engine of general purpose, the so-called expert sys-



2 G. J. Nalepa and A. Ligęza

tem shell (Liebowitz, 1998; Giarratano and Riley, 2005).
Modern shells for development of rule-based sys-

tems, such as CLIPS, Jess, Drools, Aion, Ilog Rules, G2
of Gensym, follow this classical paradigm. Rules are de-
veloped using some predefined knowledge representation
framework (often close to attributive logic). The current
rule-based systems and tools for their development have
reached a certain level of maturity. Specialized editors
that enforce correct structure and are capable of check-
ing the syntax of rules are in use and provide tools for
computer-aided development of final applications. On the
other hand, they have inherited a number of traditional
features of early rule-based systems, which nowadays can
be considered as drawbacks.

In this paper we mainly address the following issues,
which seem worth investigation and improvement:

sparse representation – single rules constitute items
of low knowledge processing capabilities, while for
practical applications a higher level of abstraction is
desirable,

blind inference – inference engines, especially forward-
chaining ones, are highly inefficient with respect to
the focus on the goal to be achieved,

lack of methodology – no practical methodology for
consecutive top-down design and development of
rule-based systems, acceptable by engineers and en-
suring quality of rules is available.

This paper presents a new approach to design and
development of rule-based systems. More precisely, we
present the state-of-the-art of the HeKatE methodology1,
for design and development of complex rule-based sys-
tems for control and decision support. This methodology
is supported with visual tools for development of knowl-
edge bases and novel inference engine.

The main paradigm for rule representation, namely
the eXtended Tabular Trees (XTT) (Nalepa, 2004; Nalepa
and Ligęza, 2005a), ensures high density and transparency
of visual knowledge representation. Contrary to tradi-
tional, flat rule-based systems, the XTT approach is fo-
cused on groups of similar rules rather than single rules.
In this way we address the first issue of low processing
capabilities of single rules. Such groups form decision ta-
bles which are connected into a network for inference.

Efficient inference is assured thanks to firing only
rules necessary for achieving the goal. It is achieved by
selecting the desired output tables and identifying the ta-
bles necessary to be fired first. The links representing
the partial order assure that when passing from a table to
another one, the latter can be fired since the former one
prepares an appropriate context knowledge. Hence, only

1An acronym for Hybrid Knowledge Engineering, see http://
hekate.ia.agh.edu.pl

rules working in the current context of inference are ex-
plored. The partial order between tables allows to avoid
examining rules which should be fired later.

Another distinctive feature is the design methodol-
ogy allowing for formal verification of rules. A top-down
design methodology based on successive refinement of the
project is introduced. It starts with development of an At-
tribute Relationship Diagram (ARD) which describes re-
lationships among process variables. Based on the ARD
model, a scheme of particular tables and links between
them are generated. The tables are filled with expert-
provided definitions of constraints over the values of at-
tributes; these are in fact the rule preconditions. The code
for rules representation is generated and interpreted with
provided inference engine. A set of tools supporting the
design and development stages is described in brief.

The rest of the paper is organized as follows. In
Sec. 2 the perspective on the rule-based systems applica-
tions for intelligent control is given. For intuition, a sim-
ple example concerning the rely-type controller is used to
identify some of the most important issues tackled in this
paper. This gives a background for the motivation for the
research, as discussed in Sec. 3, and the HeKatE project,
which aims at providing solutions for the problems of
sparse representation, blind inference, lack of methodol-
ogy. identified in this section. One of the main goals of
the project is to provide a new rule-based inference engine
solution assuring flexible and efficient control during the
inference process. In Sec. 4, the dynamic systems state
representation discussion is given in order to be able to
develop a formalization for rules. Rules in HeKatE are
formalized with the use of attributive logic, introduced in
Sec. 5 and then discussed in an extended version in Sec. 6.
Inference rules for the attributive logic formulae are pre-
sented in Sec. 7. They allow for firing XTT rules grouped
into tables. The table level inference is discussed in Sec. 8.
The practical design of the XTT knowledge bases is sup-
ported by visual editors, and other tools is shortly pre-
sented in Sec. 9. A concise comparison to the related so-
lutions is given in Sec. 10. Finally the future challenges
for the methodology are given in Sec. 11.

2. Rule-Based Intelligent Control

This section is addressed to the automatic control audi-
ence. It briefly shows how rules can be used to provide
declarative means for building controllers in a wide sense
of the word control. In fact, the past, current, and prospec-
tive applications are allocated in numerous, diversified ar-
eas of applications, ranging from direct (digital) control,
meta-level control, decision support, business rules appli-
cations and various forms of expert systems (Laffey and
et al., 1988; Liebowitz, 1998).

http://hekate.ia.agh.edu.pl
http://hekate.ia.agh.edu.pl


The HeKatE Methodology. Hybrid Engineering of Intelligent Systems 3

2.1. Explaining the Ideas of Rules in Control. Con-
sider a simple case of a direct use of rules for control.
Rules can be used to specify rely-type controller of many
levels (not just two-level or three-level classical control
rely). In fact, an arbitrary approximation of any nonlinear
characteristic of the controller can easily be specified.

i- - - -

6

b b

a ≤ ε < b −→ u = u1

b ≤ ε < c −→ u = u2

...
y ≤ ε ≤ z −→ u = uk

wz ε u w

w

r

a b c y z
u1
u2

uk

O

Fig. 1. A simple application of a rule-based system as a direct
controller

This type of application is illustrated in Fig. 1. In the
picture, u is the input of the object under control and w
is its output signal. The current value of the control error,
ε is calculated as ε = wz − w, where wz is the required
set point. Depending on the value of ε the rule-based con-
troller determines the level of the u signal, according to
the characteristics shown in Fig. 1.

Obviously, applying a rule-based system as a direct
controller is not the only way to make use of the rule-
based systems technology. In fact, a rule-based approach
can be applied to decision making, optimization (selec-
tion of optimal settings or trajectories), adaptation (adjust-
ing the algorithms or parameters to new conditions), and
even determining structural changes of the control system.
These ideas are illustrated in Fig. 2.

2.2. Rule-Based Control and Decision Support. Per-
haps one of the first successful applications of the rule-
based methodology applied to real-time control was the
Ventilator Manager (VM) (Fagan, Kunz and Feigenbaum,
1979; Fagan, 1980). This system was applied to read and
interpret online physiological data in an intensive care
unit. On-line monitoring of 30 physiological measure-
ments was performed at 2 or 10 minutes time intervals,
constituting the input of the system. As the output, the
system produced suggestions to clinicians and periodic re-
port summaries.

Adaptation

Optimization

h- Controller Object

?

- -
6

-

6

r

Rule-Based System�

�

?

Fig. 2. Application of rule-based systems at various level of
multi-level control: direct control, optimization, and
adaptation.

Another important step in development of the rule-
based system applications in control was the design of the
Rete algorithm (Forgy, 1982). The algorithm is based on
two observations: (i) at each cycle, only few facts of the
fact base change (this is referred to as temporal redun-
dancy), and (ii) preconditions of rules often contain sim-
ilar patterns or groups of such patterns (this is referred
to as structural similarity) (Giarratano and Riley, 2005).
Hence, instead of repeated checking of preconditions of
all the rules at each cycle, the Rete algorithm employs
a specialized network for fast indexing of changes in the
fact-base and their influence on satisfaction of the rule pre-
conditions. Thanks to the application of Rete, sets of rules
which can be fired can be determined in an efficient way.
Such sets are called conflict sets, since only one of the
rules can be fired.

Rete-type identification of rules that can be fired is
memory consuming, since the Rete network can be quite
large. On the other hand, if efficiency is of primary im-
portance, application of Rete forward-chaining inference
engine seems reasonable (especially in real-time control
applications). Nevertheless, such forward checking pro-
cedure does not identify which rules should be fired so
as to achieve the goal. As many unnecessary rules can be
fired, we shall refer to the inference scheme as a blind one.

The next important step was the development of
CLIPS (Giarratano and Riley, 2005) (an acronym for C
Language Integrated Production System), a descendant
of the OPS5 (Brownston et al., 1985), a rule-based pro-
duction system written in Lisp. CLIPS was developed
by NASA and – despite being developed in C – it fol-
lows the Lisp-like style of knowledge specification (a bit
clumsy; full of parentheses and hardly readable for en-



4 G. J. Nalepa and A. Ligęza

gineers). It has become perhaps one of the most popu-
lar rule-based engines, since it is relatively fast (employ-
ing the Rete algorithm (Forgy, 1982)), simple, and free
(now in the public domain). A more recent reincarnation
of CLIPS is Jess (Java Expert System Shell) (Friedman-
Hill, 2003), developed in Java, but still employing the
a bit ancient Lisp-like style of rules encoding. Another
example is Drools (Browne, 2009), also referred to as a
Business Rules Management System. All the systems are
in principle blind, forward-checking ones, employing ad-
vanced implementations of the Rete-based inference en-
gines.

Wider application of the technology of rule-based
systems in the domain of automatic control started in
the eighties, as soon as the technology itself has reached
some maturity. A good survey from that times is pro-
vided in (Laffey and et al., 1988). The Authors report nu-
merous successful applications in domains ranging from
aerospace, through communications, process control, and
robotics, to medicine.

Some overview of current developments with respect
to theory, knowledge representation, tools and application
areas is provide in (Liebowitz, 1998). A list of current
tools is enclosed at the back of (Ligęza, 2006). A very
recent book (Giurca, Gasevic and Taveter, 2009) gives a
good overview of some emerging technologies and tools
in the area of rule-based solutions.

2.3. Rule-Based Control and Decision Support. His-
torical Perspective of the Research towards the XTT
Approach. Authors’ research in the domain of rule-
based systems for control started in 1986 (Ligęza, 1986).
The aim was to develop specialized form of rules taking
into account the specific requirements of the control do-
main. This resulted in development of some universal rule
scheme incorporating dynamic modification of the knowl-
edge base (through retract and assert operations)2 and el-
ements of control (the concept of declaring the next, and
else rules). The rules were designed to work only within
a certain context, status and mode which focused the in-
ference on the subset of rules necessary for current stage
of inference (Tzafestas and Ligęza, 1988; Tzafestas and
Ligęza, 1989).

On the other hand, application of rules for decision
support in business processes was addressed in (Ligęza,
1988). It was pointed out that there are different kinds of
rules for different purposes (pure deduction, dealing with
numerical values, domain-independent properties, meta
rules for control).

In order to ensure reliability, safety and quality of
rule-based systems, additional work on verification of the-
oretical properties was carried out (Ligęza, 1993). A new

2These names follow the Prolog (Bratko, 2000) language notation,
and corresponds to removing and adding facts to the fact base.

inference rule, the so-called backward dual resolution (or
dual resolution, for short) was invented for logical veri-
fication of completeness of rule-based systems. A taxon-
omy of abnormalities and approaches to deal with them
was discussed in (Ligęza, 1999).

A comprehensive report on trends and directions of
research was presented in (et. al, 2000). Some break-
through ideas were introduced in (Logical Support for De-
sign of Rule-Based Systems. Reliability and Quality Is-
sues, 1996), namely a proposal to incorporate the verifi-
cation in the design stage, so that it is performed on-line
and not only after the system is developed. Another idea
was to group similar rules together (to form tabular com-
ponents covering several rules instead of one) and to per-
form verification of such tables of similar rules rather than
a flat set of all the rules (Ligęza, 1998).

An initial concept of organization of tabular system
into a hierarchical structure was first proposed in (Ligęza,
2001), and developed as a practical test-bed implementa-
tion under the name of Tab-Trees (Ligęza, Wojnicki and
Nalepa, 2001). The first conceptual statement, some ba-
sic formalism and initial working implementation of the
XTT were developed as a Ph.D. project and presented in
(Nalepa, 2004). They were later described in (Nalepa and
Ligęza, 2005a) on the conceptual level. The Mirella tools
supporting the visual XTT design have been introduced
in (Nalepa and Ligęza, 2005c). To support the logical
XTT design, the ARD method has been introduced later
on in (Nalepa and Ligęza, 2005b). A survey in the form
of a textbook presenting logical foundations and devel-
opments in the area of attribute logic, its application in
XTT and elements of design and verification methodology
were the objectives of (Ligęza, 2005) and (Ligęza, 2006).
A Prolog implementation for XTT has been discussed
in (Nalepa and Ligęza, 2006). The presented above devel-
opments and experience gained during the research form
the foundations that led to the HeKatE methodology being
the focus of this paper.

3. HeKatE Approach
3.1. Motivation. Certain persistent limitations of the
existing approaches to the design of rule-based intelligent
control systems exist. They are especially visible in the
case of designing complex systems. They often make the
high quality design as well as the refinement of such sys-
tems very difficult. These limitations are related to the
following aspects of rule design:

• knowledge representation – where rules are infor-
mally described and lack clear semantics,

• transparent structure and efficient inference in the
rulebase – where the focus on the design of single
rules, with no structure explicitly identified by the



The HeKatE Methodology. Hybrid Engineering of Intelligent Systems 5

user, makes the hierarchization of the model very dif-
ficult; moreover the classic massive inference mech-
anisms such as the Rete algorithm do not address the
contextual nature of the rulebase,

• well founded systematic and complete design pro-
cess – that preserves the quality aspects of the rule
model, and allows for gradual system design and au-
tomated implementation of rules.

These issues are discussed in more detail in the following
subsections.

The majority of rule-based systems work according
to the classical principles of forward chaining. They in-
corporate a relatively simple, blind inference engine. In
order to speed-up the interpretation of rules they often em-
ploy some indexing of changes that occur in the fact base,
and the way they influence the rule preconditions satisfac-
tion, e.g. the Rete network.

With respect to the knowledge representation lan-
guage being used the following issues may be raised:

• lack of formal relation of the knowledge representa-
tion language to classical logic, consequently

• difficulties with understanding the expressive power
of the language,

• lack of standards for knowledge representation, and,
as a consequence

• lack of knowledge portability.

With respect to the internal structure and inference
mechanism the criticism may be even stronger:

• typically, the set of rules is flat – it has no internal
structure, so hundreds of different rules are consid-
ered equally important, and equally unrelated,

• the inference engine (at least potentially) tries to ex-
amine all rules in turn for firing within every cycle,

• it is unclear if the Rete network can be efficiently
used in case of knowledge representation formalism
of higher expressive power3,

• there is no definite way to select which rules from the
conflict set should be fired,

• irrelevant rules can be fired even if they do not con-
tribute to the problem solution.

With respect to the development methodology it
should be pointed out that most of the rule-based tools
are just shells providing a rule interpreter and sometimes
an editor. Hence:

3For example, in case of First Order Logic one cannot avoid using a
complete unification algorithm, which itself is based on a tree matching
procedure. The Authors are unaware of any research on application of
Rete for speeding-up term unification.

• the knowledge acquisition task constitutes a bottle-
neck and is arguably the weakest point in the design
and development process,

• typical rule shells are not equipped with consistent
methodology and tools for efficient development of
the rule base; on the other hand, general methodolo-
gies such as KADS or Common-KADS (van Harme-
len, 1996) are too complex for practical engineering
or business applications,

• verification of the knowledge is rarely supported,
and, if supported

• verification is performed only after the rule design
(so knowledge refinement can introduce new errors).

3.2. Main principles. Three main principles follow-
ing from the above analysis define the foundations of the
approach advocated in this paper:

1. Formal Language Definition — we insist on a pre-
cise definition of a formal language, its formal prop-
erties and inference rules. This is crucial for deter-
mining the expressive power, definition of inference
mechanism and solving verification issues;

2. Internal Knowledge Structure — we introduce in-
ternal structure of the rule base. Similar rules, aimed
at working within a specific context, are grouped to-
gether and form the XTT tables. These tables are
linked together forming a partially ordered graph
structure (possibly with cycles); which encodes the
flow of inference;

3. Systematic Design Procedure — we argue for a
complete, well-founded design process that covers
all of the main phases of the system life-cycle, from
the initial conceptual design, through the logical for-
mulation, all the way to the physical implementation.
We emphasize the need for a constant on-line verifi-
cation of the system model w.r.t. critical formal prop-
erties, such as determinism and completeness.

These principles served as guidelines for the HeKatE ap-
proach we introduce in the next section.

3.3. Goals and Perspectives. The goals of the Hy-
brid Knowledge Engineering (HeKatE) methodology cor-
respond to the principles described previously in Sec. 3.2.
The rule-based knowledge is decomposed into multiple
modules represented by attributive decision tables (the
so-called object-attribute-value tables, see (Ligęza, 1996;
Ligęza et al., 2001)) The controller is designed using the
HeKatE methodology. So the main goals are to provide:
an expressive formal logical calculus for rules, allowing
for formalized inference and analysis, a structured visual



6 G. J. Nalepa and A. Ligęza

rule representation method with formally described syn-
tax and semantics, based on decision tables, and a com-
plete hierarchical design process based on the above, with
an effective on-line verification methods as well as, auto-
mated implementation facilities.

The emphasis of the methodology is its possible ap-
plication to a wide range of intelligent controllers. In this
context two main areas have been identified in the project:

• control systems, in the field of intelligent con-
trol (Laffey and et al., 1988; Cheng, 2002),

• business rules (von Halle, 2001; Ross, 2003) and
business intelligence systems (Morgan, 2002).

Taking into account the first domain of application, the
meaning of the term “controller” is straightforward, and
falls into the area discussed in this paper as intelligent con-
trol in as a kind of automatic control.

In case of the second domain the term denotes a
well isolated software component implementing the so-
called application logic, or logical model. In business
software this component is commonly integrated using a
dedicated architectural pattern, such as the Model-View-
Controller (Burbeck, 1992; Gamma, Helm, Johnson and
Vlissides, 1995). In this pattern the components of the
system are divided intro three main groups:

• Model – that provides the main control logic,

• View – which roughly corresponds to system inter-
faces, in a broad sense, and the

• Controller – which connects these two in a flexible
way (in this case, the term “controller” is used in a
purely technical meaning).

In fact, in real life applications, number of Views (possi-
bly with different Controllers) are provided for the same
logical Model, to allow the reuse of the same control logic
in number of applications.

Let us now present the first perspective using an ex-
ample.

3.4. Intuitive Example. In order to explain the ideas
underlying the presented approach, let us refer to the clas-
sical scheme of feedback control, as widely known in the
domain of control theory. It is assumed that there is given
a certain (dynamic) system under control and another sys-
tem – in our case the XTT System playing the role of an
intelligent controller. A general scheme is presented in
Fig. 3.

The system under control has some input and some
observable output. Both the input and the output can be
encoded in some symbolic form (meaningful numbers,
symbols, facts, logical formulae, etc.). Hence, both in-
put and output streams can be of numerical and symbolic

System 

[Internal State]

XTT System

[XTT Tables]

[Internal Memory]

Input data Output data

System output System input

Fig. 3. The scheme of closed-loop feedback control

form. The system possesses memory, therefore one can
speak about some internal state describing the cumulated
results of former input and allowing to model its future
behavior.

As input data the XTT system receives the output
from the system under control. With use of the internal
knowledge (a kind of a rule-base), the XTT system works
out some output data (decisions, control) and sends it as
the input to the system under control.

The system under control can be, in general, almost
any complex system providing observable (measurable)
and meaningful output. It can be a complex technological
installation, computer hardware or software, a database,
a knowledge-base, or a natural or artificial system with
manual formation of the XTT input. The task performed
by the XTT system can range from direct, closed-loop
control, to monitoring, decision making or knowledge
processing.

The main focus of this paper is on the XTT system,
its components (tables of rules), internal structure, knowl-
edge representation language and inference, as well as in-
ference control and design issues. The XTT system is
composed of some number of attributive decision tables
extended with regard to simple decision tables known in
literature (Pawlak, 1991). To provide some intuitions of
how such a system is built and how it works look at Fig. 4.

The system from Fig. 4 is devoted to inferring the
price per minute for telephone calls, depending on the
time of a day and size of the client company. There are
three decision tables. The first one allows to determine the
period of a day; the output attribute aPeriod takes one
of three possible values: business hours (bh), afternoon
hours (ah), or night hours (nh). The input attribute here
is the time (aTime), e.g. as read from the system clock.
The second decision table defines the qualitative size of
the company and takes the following values: small (be-
tween 1 and 10 lines), medium (between 11 and 30 lines)



The HeKatE Methodology. Hybrid Engineering of Intelligent Systems 7

aTime

[08:00−16:00]

[16:00−20:00]

[20:00−08:00]

aPeriod

bh

ah

nh

[1−10]

[11−30]

[31−99]

aSizeaLineNumber

small

medium

large

aPeriod aSize

bh small

bh medium

bh large

ah small

ah medium

large[ah,nh]

nh

aPrice

87

77

66

58

56

33

37

Start: aLine=n) Outpup=(aPrice=p)Context=(aTime=’hh:mm’ and 

ANY

Fig. 4. A simple intuitive example of an XTT system

and large (between 31 and 99 lines). After having de-
termined the period and the size, the values of attributes
aPeriod and aSize are used to infer the prices; vari-
ous combinations of period and size and the correspond-
ing price are defined in the third table.

The system can start its work given the values of
aTime and aLineNumber attributes as its input; in
other words, the values of these attributes – when de-
fined – determine the context of the work of the XTT sys-
tem. The appropriate rules are activated when control is
passed to a specific table. Contrary to classical solutions
rules are fired when necessary, not when only the precon-
ditions are satisfied. The links among tables define a par-
tial order of inference. Within a table a single rule or a
set of rules can be fired. As shown with this simple ex-
ample, some tables can be interpreted in parallel (in our
example the first two tables), while the third one must be
interpreted after producing output of both of them.

3.5. Review of the Methods. In the HeKatE project
a formalized language for an extended rule representa-
tion is introduced. Instead of simple propositional for-
mulae, the language uses expressions in the so-called at-
tributive logic (Ligęza, 2006). This calculus has higher
expressive power than the propositional logic, while pro-
viding tractable inference procedures for extended deci-
sion tables (Ligęza and Nalepa, 2007; Ligęza and Nalepa,
2008). The current version of the rule language is called
XTT2 (Nalepa and Ligęza, 2008). The logical formal-
ism, adopted for the XTT2 language, is called ALSV(FD)
(Attributive Logic with Set Values over Finite Domains).
The details of this solution are discussed in extent in Sec-
tions 5, and 6.

Based on the attributive logic the XTT rule language
is provided (Nalepa, 2004; Nalepa and Ligęza, 2005a;
Nalepa and Ligęza, 2008). XTT stands for eXtended Tab-
ular Trees, since the language is focused not only on pro-
viding an extended syntax for single rules, but also allows
for an explicit structurization of the rule base. This so-
lution allows for identifying system contexts during the
rule base design. XTT introduces explicit inference con-
trol solutions, allowing for a fine-grained and more op-

timized rule inference than in the classic Rete-like solu-
tions. XTT has been introduced with the visual design
support in mind. The representation has a compact and
transparent representation suitable for visual editors.

The HeKatE project also provides a complete hi-
erarchical design process for the creation of the XTT-
based rules. The process is based on the ideas origi-
nally introduced in (Nalepa, 2004). The main phase of the
XTT rule design is called the logical design. This phase
is supported by a CASE tool called HQed (Kaczor and
Nalepa, 2008; Kaczor, 2008).

The logical rule design process may be supported
by a preceding conceptual design phase. In this phase
the rule prototypes are built with use of the so-called At-
tribute Relationship Diagrams. The ARD method has
been introduced in (Nalepa and Ligęza, 2005b), and later
refined in (Ligęza, 2006). The principal idea is to build
a graph, modelling functional dependencies between at-
tributes on which the XTT rules are built. The version
used in HeKatE is called ARD+. The ARD+ design is
supported by two visual tools, VARDA and HJed.

The practical implementation on the XTT rule base
is performed in the physical design phase. In this stage
the visual model built with HQed is transformed into an
algebraic presentation syntax. A custom inference engine
then can run the XTT model. All of these design tools are
described in more detail in Sec. 9.

4. State Representation
When processing information, the current values of at-
tributes form the state of the inference process. The values
of attributes can, in general, be modified in the following
three ways:

• by an independent, external system,

• by the inference process itself, and

• as some time-dependent functions.

The first case concerns attributes representing some
process variables, which are to be taken into account in
the inference process, but depend only on the environment
and external systems. As such, the variables cannot be di-
rectly influenced by the XTT system. Examples of such
variables may be the external temperature, the age of a
client or the set of foreign languages known by a candi-
date. Values of those variables are obtained as a result
of some measurement or observation process, and are as-
sumed to be put into the inference system via a blackboard
communication method; in fact they are written directly
into the internal memory whenever their values are ob-
tained or changed.

A special group of such externally provided values of
attributes are the so-called askable attributes. A question
is posed to the user and an answer (from a limited set of



8 G. J. Nalepa and A. Ligęza

possibilities) is provided. Extension of this ideas consist
in gathering such values in an external database accessed
by the rule-based system.

The second case concerns the values of attributes ob-
tained at certain stage of reasoning as the result of the
operations performed in decision part (the so-called right
hand side, RHS) of XTT. The new attribute values can be:

• asserted to global memory (hence stored and made
available for other components of the system), or

• kept as values of internal process variables.

The first solution is offered mostly for permanent changes
of global values; before asserting new values typically an
appropriate retract operation is to be performed so as to
keep a consistent state. In this way also the history (tra-
jectory) of the system can be stored, provided that each
value of an attribute is stored with a temporal index. The
second (potential) solution may offer another method for
value passing and calculations which do not require per-
manent storage. For example, if a calculated value is to
be passed to another XTT component and it is no longer
used afterwards, it is not necessary to store it in the global
memory. The second possibility is not implemented in the
current version of the XTT system.

4.1. Requirements for the State Representation.
The current state of the system is considered as a complete
set of values of all the attributes in use at a certain instant
of time. The concept of the state is similar to the one
in dynamic systems and state-machines. The state repre-
sentation should satisfy important requirements. It should
be: (i) internally consistent, (ii) externally consistent, (iii)
complete, (iv) deterministic, and (v) concise.

The first postulate says that the specification itself
cannot be inconsistent at the syntactic level. For example,
a simple attribute (one taking a single value) cannot take
two different values at the same time. In general, assum-
ing independence of the attributes and no use of explicit
negation, each value of an attribute should be specified
exactly once.

A generalized attribute is one taking a set value (see
Sec. 6). In case of such attributes their values are repre-
sented by sets (e.g. with use of lists) and undergo the same
restrictions.

The second postulate says that only true knowledge
(with respect to the external system) can be specified in
state. In other words, facts that are syntactically correct
but false cannot occur in the state formula.

The third postulate says, that all the knowledge that
is true at a certain instant of time should be represented
within the state. This also means that the size (w.r.t. the
number of attributes) of the state representation can vary
over time, since at certain time instants the values of cer-
tain attributes can remain undefined.

The fourth postulate says that there can be no dis-
junctive or conditional knowledge specification.

Finally, the fifth postulate says that no unnecessary,
dependent knowledge should be kept in the state. In
databases (Connolly, Begg and Strechan, 1999) and most
of the knowledge bases this has a practical dimension:
only true facts are represented explicitly. On the other
hand, note that we insist that all the known values of at-
tributes are present, i.e. the specification is complete. If
there are some functional dependencies among attributes,
the only way to represent them is to encode them with
the XTT components, and once the dependent value is de-
duced, it is placed in the state. This also means, that if
some of the values are changed, we can have a temporarily
inconsistent state (a transitional situation), until the new
values of the dependent attributes are inferred and they re-
place the old ones.

4.2. State Specification. The current values of
all attributes are specified within the contents of the
knowledge-base (including current sensor readings, mea-
surements, inputs examination, etc.). From logical point
of view the state is represented as a logical formula:

(A1 = S1) ∧ (A2 = S2) ∧ . . . ∧ (An = Sn) (1)

where Ai are the attributes and Si are their current values;
note that Si = di (di ∈ Di) for simple attributes and
Si = Vi, (Vi ⊆ Di) for complex ones, where Di is the
domain for attribute Ai, i = 1, 2, . . . , n. (see Sec. 6 for
the discussion of attribute types).

In order to cover realistic cases an explicit notation
for covering unspecified, unknown values is proposed; for
example to deal with the data containing the NULL val-
ues imported from a database. Consider a case when an
attribute may be applied to an object, but it takes no value.
This will be denoted as A = ∅. For example, the for-
mula Phone_Number=∅ means that the considered per-
son has no phone number. Finally, a formula of the form
A = NULL means that attribute A takes an unspecified
value.

States can be identified by a key, described with some
comments (key words, characteristics) and indexed with
time instant (or interval). Such states can be stored for
enabling access to past/historical values, monitoring the
trajectory of the system and changes of the fact base.
Recorded states are analogous to save points in databases
and can be used to repeat inference and retrieve current
state in case of system failure. More on that can be found
in the Sec. 8.

In the next sections the logic allowing for the state
representation and inference is introduced.

5. Attributive Logic



The HeKatE Methodology. Hybrid Engineering of Intelligent Systems 9

5.1. Basics of Attributive Languages. Using log-
ics based on attributes is one of the most popular ap-
proaches to define knowledge. Not only it is very intu-
itive, but it follows simple technical way of discussion
where the behavior of physical systems is formalized by
providing the values of system variables. This kind of
logic is omnipresent in various applications. It consti-
tutes the bases for construction of relational database ta-
bles (Connolly et al., 1999), attributive decision tables and
trees (Klösgen and Żytkow, 2002; Pawlak, 1991; Quin-
lan, 1986), attributive rule-based systems (Ligęza, 2006)
and is often applied to describe state of dynamic systems
and autonomous agents. Some most typical examples
include expert systems and decision support, rule-based
control and monitoring systems, and diagnostic systems.

However, it is symptomatic that while a number of
modern rule-based shells, such as Jess or Drools, provide
new high-level features in the area of current software
technologies, such as Java-integration, network services,
etc., the rule representation and inference methods do not
evolve. The rule languages found in these tools tend to
be logically trivial, and conceptually simple. They mostly
reuse very basic logic solutions, and combine them with
new programming language features, mainly borrowed
from Java, building on top of classic inference approaches,
such as the blind, forward-checking inference engines em-
ploying the Rete-style algorithm (Forgy, 1982).

While these systems integrate well with today busi-
ness application stacks, they provide little or no improve-
ment in the areas of formalized analysis, visual design,
gradual refinement or inference control. This gives mo-
tivation to approach these problems by introducing novel
knowledge representation and design tools.

It is symptomatic that although Propositional and
Predicate Logic (in the form of First-Order Predicate Cal-
culus) have well-elaborated syntax and semantics, pre-
sented in details in numerous books covering logic for
AI and knowledge engineering (Genesereth and Nils-
son, 1987; Jackson, 1999; Torsun, 1995), logic for com-
puter science or Artificial Intelligence (Ben-Ari, 2001;
Liebowitz, 1998), the discussion of syntax and semantics
of attribute-based logic is omitted in such positions.4

On the contrary, apparently it is often assumed, that
attributive logic is some kind of technical language equiv-
alent with respect to its expressive power to propositional
calculus, and as such it is not worth any more detailed dis-
cussion. Actually, it seems that some of the real reasons
for the omission of the presentation is that a more detailed
discussion might be not so straightforward, concise and
elegant as in the case of classical logics.

In fact, as it follows from some first attempts pre-
sented in (Ligęza, 2006) this issue requires a more detailed

4Note that even in the four-volume handbook of Logics for Artifi-
cial Intelligence edited by D.Gabbay et. al the Attribute Logic has not
deserved a few pages of formal presentation and analysis of properties.

study. The most typical way of thinking about attributive
logic for knowledge specification may be put as follows:

• first, one has to define facts, typically of the form

A = d

or
A(o) = d,

where A is a certain attribute, o an object of interest
and d is the attribute value.

• second, facts are perceived as propositional logic
atomic formulae,

• third, the syntax and semantics of propositional cal-
culus are freely used.

This basic approach is sometimes extended with use of
certain syntax modifications. For example, in (Klösgen
and Żytkow, 2002) the discussion is extended, so that the
rules take the form:

A1 ∈ V1 ∧A2 ∈ V2 ∧ . . . An ∈ Vn −→ An+1 = d.

Following this line of extended knowledge specification,
various relational symbols can be introduced, e.g. Ai > d
(for ordered sets; this can be considered as a shorthand for
Ai ∈ Vi \ Vd, where Vd is the set of all the values of Ai

less than or equal to d) or Ai 6= di (this can be considered
as a shorthand for Ai ∈ Vi \ {di}).

Note however, that extending the syntax in such a
way preserves the limitation that an attribute can only
take a single value at a time. Further, without provid-
ing a clearly defined semantics for the language and some
formal inference rules, it may lead to severe problems.
This follows from the fact that atoms do not appear to be
logically independent any longer (which is the basic, al-
though often implicit assumption of propositional logics
(Ligęza, 2006)). For example, having a rule such as

Temperature > 100 −→ WaterState = boiling

and a fact like Temperature > 123, we would not be
able to fire the rule using classical inference rules.5

6. Set Attributive Logic (SAL) Development
In a recent book (Ligęza, 2006) the discussion of attribu-
tive logic is much more thorough. The added value consist
in allowing that attributes can take set values and provid-
ing some formal framework of the Set Attributive Logic

5Well, some expert system shells, such as PC-SHELL (see http:
//aitech.pl/) are capable of performing the so-called intelligent
unification and hence succeed to carry on with this kind of inference;
this has however nothing to do with logic, it is just a hard-wired im-
plementation of a specialized match mechanism which works only for
predefined symbols.

http://aitech.pl/
http://aitech.pl/


10 G. J. Nalepa and A. Ligęza

(SAL) with respect to its syntax, semantics and selected
inference rules. The very basic idea for further discussion
is that attributes should be able to take not only atomic but
set values as well.

After (Ligęza, 2006) it is assumed that an attribute
Ai is a function (or partial function) of the form Ai : O →
Di. Here O is a set of objects and Di is the domain of
attribute Ai.

As we consider dynamic systems, the values of at-
tributes can change over time (or state of the system). We
consider both simple attributes of the form Ai : T → Di

(i.e. taking a single value at any instant of time) and gen-
eralized ones of the form Ai : T → 2Di (i.e. taking a set
of values at a time); here T denotes the time domain of
discourse.

The atomic formulae of SAL can have the following
four forms:

A(o) = d, (2)

A(o) = t, (3)

A(o) ∈ t (4)

and
A(o) ⊆ t (5)

where d ∈ D is an atomic value from the domain D of the
attribute and t ⊆ D, t = {d1, d2, . . . , dk}, is a (finite) set
of such values. If the object o is known (or unimportant)
its specification can be skipped; hence we write Ai = d,
Ai = t, Ai ∈ t or Ai ⊆ t, for simplicity.

The semantics of Ai = d is straightforward – the at-
tribute takes a single value. The semantics of Ai = t is
that the attribute takes all the values of t while the seman-
tics of Ai ∈ t is that it takes exactly one value from t and,
finally, Ai ⊆ t means that the attribute takes some of the
values of t (the so-called internal disjunction)6.

In the case of (3) and (5) A is the so-called general-
ized attribute (Ligęza, 2006). From now on, we will refer
to both types of attributes as just attributes.

As an example for the necessity of SAL
one can consider the specification of working
days (denoted with WDay) given as: WDay =
{Monday, Tuesday, Wednesday, Thursday, Friday},
Now one can construct an atomic formula
like DaysOfInterest ⊆ WDay , or a rule of
the form: DaysOfInterest ⊆ WDay −→
Status(OfficeOfInterest) = open .

The SAL as introduced in (Ligęza, 2006) seems to
be an important step towards the study and extension of
attributive logics towards practical applications. On the
other hand it still suffers from lack of expressive power
and the provided semantics of the atomic formulae is poor.

In this paper an improved and extended version of
SAL is presented in brief, namely Attributive Logic with

6For uniformity, single elements can be considered as single-element
sets; hence (4) can be replaced with (5) if it is not misleading.

Set Values over Finite Domains (ALSV(FD)), first intro-
duced in (Ligęza and Nalepa, 2007; Nalepa and Ligęza,
2008). For simplicity no objects are specified in an ex-
plicit way. The formalism is oriented towards Finite Do-
mains (FD) and its expressive power is increased through
introduction of new relational symbols. The semantics is
also clarified. The practical representation and inference
issues both at the logical level and implementation level
are tackled. The main extension consists of a proposal of
extended set of relational symbols enabling definitions of
atomic formulae. The values of attributes can take singu-
lar and set values over Finite Domains (FD).

6.1. ALSV(FD). The basic element of the language
of Attribute Logic with Set Values over Finite Domains
(ALSV(FD) for short) are attribute names and attribute
values. Let us consider:

A – a finite set of attribute names,

D – a set of possible attribute values (their domains).

Let A = {A1, A2, . . . , An} are all the attributes such that
their values define the state of the system under consider-
ation. It is assumed that the overall domain D is divided
into n sets (disjoint or not), D = D1∪D2∪. . .∪Dn, where
Di is the domain related to attribute Ai, i = 1, 2, . . . , n.
Any domain Di is assumed to be a finite (discrete) set.
The set can be ordered, partially ordered, or unordered.

Let Ai be an attribute of A and Di the sub-domain
related to it. Let Vi denote an arbitrary subset of Di and
let d ∈ Di be a single element of the domain. The le-
gal atomic formulae of ALSV along with their semantics
are presented in Tab. 1, and Tab. 2 for simple and general
attributes.

In case Vi is an empty set (the attribute takes in fact
no value) we shall write Ai = ∅. In case the value of Ai

is unspecified we shall write Ai = NULL (a database con-
vention). If we do not care about the current value of the
attribute we shall write A = _ (a PROLOG convention).

More complex formulae can be constructed with con-
junction (∧) and disjunction (∨); both of these the sym-
bols have classical meaning and interpretation.

There is no explicit use of negation. The proposed set
of relations is selected for convenience and as such they
are not completely independent. For example, Ai = Vi

can perhaps be defined as Ai ⊆ Vi ∧ Ai ⊇ Vi; but it is
much more concise and natural to use just “=” directly.
Various conventions extending the basic notation can be
used. For example, in case of domains being ordered sets,
relational symbols such as >, >=, <, =< can be used
with the straightforward meaning.

The semantics of the proposed language is presented
below in an informal way. The semantics of A = V is
basically the same as the one of SAL (Ligęza, 2006). If
V = {d1, d2, . . . , dk} then A = V the attribute takes



The HeKatE Methodology. Hybrid Engineering of Intelligent Systems 11

Table 1. Simple attribute formulae syntax
Syntax Interpretation: true if. . . Relation
Ai = d the value is precisely defined eq
Ai ∈ Vi the current value of Ai belongs to

Vi

in

Ai 6= d shorthand for Ai ∈ Di \ {d}. neq
Ai 6∈ Vi is a shorthand for Ai ∈ Di \ Vi. notin

Table 2. Generalized attribute formulae syntax
Syntax Interpretation: true if. . . Relation
Ai = Vi equals to Vi (and nothing more) eq
Ai 6= Vi is different from Vi (at at least one

element)
neq

Ai ⊆ Vi is a subset of Vi subset
Ai ⊇ Vi is a superset of Vi supset
A ∼ V has a non-empty intersection with

Vi

sim

Ai 6∼ Vi has an empty intersection with Vi notsim

all the values specified with V (and nothing more). The
semantics of A ⊆ V , A ⊇ V and A ∼ V is defined as:

A ⊆ V ≡ A = U

for some U such that U ⊆ V , i.e. A takes some of the
values from V (and nothing out of V ),

A ⊇ V ≡ A = W,

for some W such that V ⊆ W , i.e. A takes all of the
values from V (and perhaps some more), and

A ∼ V ≡ A = X,

for some X such that V ∩ X 6= ∅, i.e. A takes some of
the values from V (and perhaps some more). As it can
be seen, the semantics of ALSV is defined by means of
relaxation of logic to simple set algebra.

6.2. XTT Rules in ALSV(FD). Consider a set of n
attributes A = {A1, A2, . . . , An}. Any XTT rule is as-
sumed to be of the form:

(A1 ∝1 V1) ∧ (A2 ∝2 V2) ∧ . . . (An ∝n Vn) −→ RHS

where ∝i is one of the admissible relational symbols
in ALSV(FD), and RHS is the right-hand side of the
rule (RHS) covering conclusions. In practise the con-
clusions are restricted to assigning new attribute values,
thus changing the system state. The values that are no
longer valid are removed from the state (for details see
(Ligęza, 2006)).

Knowledge representation with eXtended Tabular
Trees (XTT) incorporates extended attributive table for-
mat. Furthermore, similar rules are grouped within sepa-
rated tables, and the whole system is split into such tables

Table 3. A general scheme of an XTT table

Rule A1 A2 . . . An H

1 ∝11 t11 ∝12 t12 . . . ∝1n t1n h1

2 ∝21 t21 ∝22 t22 . . . ∝2n t2n h2

...
...

...
. . .

...
...

m ∝m1 tm1 ∝m2 tm2 . . . ∝mn tmn hm

linked by arrows representing the control strategy. Con-
sider a set of m rules incorporating the same attributes
A1, A2, . . . , An: the preconditions can be grouped to-
gether and form a regular matrix. After completing with
the conclusion part this can be expressed as in Table 3.

In Table 3 the symbol ∝ij∈ {=, 6=,∈, 6∈} for simple
attributes and ∝ij∈ {=, 6=,⊆,⊇,∼, 6∼} for the general-
ized ones. In practical applications, however, the most
frequent relations are =, ∈, and ⊆, i.e. the current val-
ues of attributes are restricted to belong to some specific
subsets of the domain. If this is the case, the relation sym-
bol can be omitted (i.e. it constitutes the default relation
which can be identified by type of the attribute and the
value).

The current values of all the attributes are specified
within the contents of the knowledge-base (including cur-
rent sensor readings, measurements, inputs examination,
etc.). From logical point of view, it is a formula of the
form previously introduced by the formula (1) in Sec. 4.2.
Having a table with defined rules, the execution mecha-
nism searches for ones with satisfied preconditions. In
short: the satisfaction of preconditions is verified in an
algebraic mode, using the dependencies specified in the
first row of Table 4 for simple attributes and the first row
of Table 5 for the complex ones (see Sec. 7 for more de-
tails). The rules having all the preconditions satisfied can
be fired. In general, rules can be fired in parallel or se-
quentially. For the following analysis we assume the clas-
sical, sequential model, i.e. the rules are examined in turn
in the top-down order and fired if the preconditions are
satisfied. The details of the inference with ALSV(FD)
needed to implement a complete XTT inference solution
are given in the following section.

7. Basic Inference Rules for ALSV(FD)

Since the presented language is an extension of the
SAL (Ligęza, 2006), its simple and intuitive semantics is
consistent with SAL and clears up some points of it. The
summary of the inference rules for atomic formulae with
simple attributes (where an atomic formula is the logical
consequence of another atomic formula) is presented in
Table 4. The table is to be read as follows: if an atomic
formula in the leftmost column holds, and a condition



12 G. J. Nalepa and A. Ligęza

Table 4. Inference for atomic formulae, simple attributes

|= A = dj A 6= dj A ∈ Vj A 6∈ Vj

A = di di = dj di 6= dj di ∈ Vj di 6∈ Vj

A 6= di _ di = dj Vj =
D\{di}

Vj = {di}

A ∈ Vi Vi =
{dj}

dj 6∈ Vi Vi ⊆ Vj Vi∩Vj = ∅

A 6∈ Vi D \ Vi =
{dj}

Vi =
{dj}

Vj =
D \ Vi

Vj ⊆ Vi

stated in the same row is true, then appropriate atomic for-
mula in the topmost row is also true. In other words, the
formula in the topmost row is a logical consequence of
the one from the leftmost column provided the condition
is fulfilled.

The summary of the inference rules for atomic for-
mulae with generalized attributes (where an atomic for-
mula is the logical consequence of another atomic for-
mula) is presented in Table 5. An example for reading
the first row: if A = V (see the leftmost column) and pro-
vided that V ⊆ W (the same row, the fourth column) we
can conclude that A ⊆ W (the topmost row).

In Table 4 and Table 5 the conditions are satisfactory
ones. However, it is important to note that in case of the
first rows of the tables (the cases of A = di and A = V ,
respectively) all the conditions are also necessary ones.
The rules of Table 4 and 5 can be used for checking if
preconditions of a formula hold or verifying subsumption
among rules.

For further analysis, e.g. of intersection (overlap-
ping) of rule preconditions one may be interested if two
atoms cannot simultaneously be true and if so – under
what conditions. For example formula A ⊆ V ∧ A ⊆ W
is inconsistent if V ∩W = ∅. Table 6 specifies the condi-
tions for inconsistency.

The interpretation of the Table 6 is straightforward: if
the condition specified at the intersection of some row and
column holds, then the atomic formulae labelling this row
and column cannot simultaneously hold. Note however,
that this is a satisfactory condition only.

Table 6 can be used for analysis of system determin-
ism, i.e. whether satisfaction of a rule precondition im-
plies that the other rules in the same table cannot be fired.

Having the inference on the rule level established, let
us now move to the discussion how the inference with
the XTT tables (see Table 3) grouping XTT rules (see
Sec. 6.2) operating in the same context is performed.

Table 6. Inconsistency conditions for atomic formulae pairs

6|= A = W A ⊆ W A ⊇ W A ∼ W

A = V W 6= V V 6⊆ W W 6⊆ V V ∩W 6=
∅

A ⊆ V W 6⊆ V V ∩W =
∅

W 6⊆ V W ∩ V =
∅

A ⊇ V V 6⊆ W V 6⊆ W _ _
A ∼ V V ∩W =

∅
V ∩W =
∅

_ _

8. Inference Strategies for XTT
Any XTT table can have one or more inputs. Let T denote
a table. By I(T ) we shall denote the number of input links
to table T . If there are k such input links, they will be
denoted as 1.T, 2.T, . . . , k.T .

Note that all the links are in fact considered as an
AND connection. In order to fire table T all the input
tables from which the input links come must be fired to
provide the necessary information to fire T .

A similar consideration corresponds to the output.
Any table can have one or more output links (from dif-
ferent rules which are placed at the rows of the table), and
such an output link can be directed to one or more tables.
If there are m such output links we shall denote them as
T.1, T.2, . . . , T.m.

If an output link T.j goes to n tables
T1, T2, . . . , Tn, then the links can be denoted as
T.j → T1, T.j → T2, . . . , T.j → Tn. In fact we
can have Σm

j=1dim(j), where dim(j) is the number of
addressed tables (here n).

The XTT tables to which no connections point are
referred to as input tables. The XTT tables with no con-
nections pointing to other tables are referred to as output
tables. All the other tables (ones having both input and
output links) are referred to as middle tables.

Now, consider a network of tables connected accord-
ing to the following principles:

• there is one or more input table,

• there is one or more output table,

• there is zero or more middle tables,

• all the tables are interconnected.

The problem is how to order the inference. The basic
principle is that before firing a table, all the immediately
preceding tables have already been fired. The structure
of the network imposes a partial order with respect to the
order of table firing. Below we describe three possible
algorithms for the inference control.



The HeKatE Methodology. Hybrid Engineering of Intelligent Systems 13

Table 5. Inference for atomic formulae, generalized attributes

|= A = W A 6= W A ⊆ W A ⊇ W A ∼ W A 6∼ W

A = V V = W V 6= W V ⊆ W V ⊇ W V ∩W 6= ∅ V ∩W = ∅
A 6= V _ V = W W = D _ W = D _
A ⊆ V _ V ⊂ W V ⊆ W _ W = D V ∩W = ∅
A ⊇ V _ W ⊂ V W = D V ⊇ W V ∩W 6= ∅ _
A ∼ V _ V ∩W = ∅ W = D _ V = W _
A 6∼ V _ V ∩W 6= ∅ W = D _ W = D V = W

8.1. Fixed-Order Approach. The simplest algorithm
consists of hard-coded order of inference, in such a way
that every table is assigned an integer number; all the num-
bers are different from one another. The tables are fired in
order from the lowest number to the highest one.

In order to ensure executability of the inference pro-
cess, the assignment of such numbers should fulfill the
following minimal requirement: for any table T the num-
bers assigned to tables being predecessors of T must all
be lower than the one assigned to T .

After starting the inference process the predefined or-
der of inference is followed. The inference stops after fir-
ing the last table. In case a table contains a complete set
of rules (w.r.t. possible outputs generated by preceding ta-
bles) the inference process should end with producing all
the output values defined by all the output tables.

8.2. Token-Transfer Approach. This approach is
based on monitoring the partial order of inference defined
by the network structure with tokens assigned to tables. A
table can be fired only when there is a token at each input.
Intuitively, a token at the input is a kind of a flag signalling
that the necessary data generated by the preceding table is
ready for use.

The tables ready to be fired (with all tokens at the
input) are placed in a FIFO queue. The outline of this
algorithm is as follows:

• since input tables have 0 inputs, they automatically
have all the tokens they need.

• all the input tables are placed in the FIFO queue (in
an arbitrary order),

• then the following procedure is repeated; the first ta-
ble form the queue is fired and removed from the
queue, the token is removed from its input and placed
at the active output link and passed to all following
tables. Simultaneously, if a token is passed to a table,
the table is immediately checked if it has tokens at all
the inputs; if so, it is put at the end of the queue,

• the process stops when the queue is empty (no further
tables to fire).

Note that this model of inference execution covers
the case of possible loops in the network. For example, if
there is a loop and a table should be fired several times in
turn, the token is passed from its output to its input, and it
is analyzed if can be fired; if so, it is placed in the queue.

8.3. Goal-Driven Approach. The presented models of
inference control can be considered as blind procedures
since they do not take into consideration the goal of in-
ference. Hence, it may happen that numerous tables are
fired without purpose – the results they produce are of
no interest. This, in fact, is a deficiency of most of the
forward-chaining rule-based inference control strategies.

A goal-driven approach works backwards with re-
spect to selecting the tables necessary for a specific task,
and then fires the tables forwards so as to achieve the goal.
The principles of backward search procedure are:

• one or more output tables are identified as the ones
that can generate the desired goal values: these are
the tables that must be fired,

• these tables are stored on a stack (LIFO queue) in an
arbitrary order,

• the following procedure is repeated: list of tables
from queue is examined and all the input tables for
it are found; they are placed on the stack, while the
analyzed table is marked as “needed” and removed
from queue,

• only unvisited tables are examined,

• for input tables no analysis is necessary; all the input
tables necessary to start the process are identified.

The execution is performed forwards using the token-
transfer approach. Tables which are not marked as
“needed” on the stack are not fired — they are not nec-
essary to achieve the goal.

Let us now move to practical issues concerning both
the design and the implementation of XTT-based systems.



14 G. J. Nalepa and A. Ligęza

9. XTT Rule Runtime and Design Tools
The XTT approach introduces a new knowledge represen-
tation and inference algorithms. This makes the use of
existing rule design and implementations impractical and
often impossible. The HeKatE project aims at developing
not just the conceptual methods but also practical com-
puter tools to support them. Within the project a number
of tools to support the design and implementation of the
XTT-based systems has been developed. These include:

• visual design tools for rule design (HQEd) and pro-
totyping (HJEd),

• rule runtime environment (HeaRT), and

• rule translation facilities (HaThoR).

All of these tools are build around the XTT knowledge
model.

The visual XTT model is represented by means of
a human readable, algebraic notation, also called the
XTT presentation syntax, or HeKatE Meta Representation
(HMR). An example excerpt of HMR is given below:

xschm th: [today,hour] ==> [operation].

xrule th/1:
[today eq workday,
hour gt 17]
==>
[operation set not_bizhours].

xrule th/4:
[today eq workday,
hour in [9 to 17]]
==>
[operation set bizhours].

The first line defines an XTT table scheme, or header,
defining all of the attributes used in the table. Its seman-
tics is as follows: “the XTT table th has two conditional
attributes: today and hour and one decision attribute: op-
eration”. This information is determined from the con-
ceptual design phase using the ARD method. Then two
examples of rules are given. The second rule can be read
as: “Rule with ID 4 in the XTT table called th: if value of
the attribute today equals (=) value workday and the value
of the attribute hour belongs to the range (∈) < 9, 17 >
then set the value of the attribute operation to the value
bizhours”. For a more complete and up-to-date descrip-
tion of HMR see the HeKatE wiki.7

The above representation can be directly run by the
HeKatE RunTime environment (HeaRT). HMR file is in
fact a legal Prolog code that can be interpreted directly
(number of custom operators are defined). Therefore
HeaRT prototype is implemented in Prolog (Bratko, 2000)
and provides the implementation for number of inference

7https://ai.ia.agh.edu.pl/wiki/hekate:hmr

Fig. 5. ARD diagram editing with HJEd

solutions including the three described before. The en-
gine can then be embedded into a complete application,
including the interfaces and the presentation layer, using
the MVC pattern (see Sec. 3). In this case HeaRT pro-
vides the logical Model. The control logic is built in a
declarative way, using the structured XTT representation.
The engine provides a flexible communication mechanism
using callbacks that can be run on the attribute values up-
dates. The callbacks can be implemented in any language,
using a Prolog interface, currently Java, Python and PHP
callback interfaces are available. 8

In order to design the XTT model visual editors in-
troduced in Sec. 3 are used. In the rule prototyping with
ARD phase currently two tools are available: VARDA and
HJEd. They support the visual design of the ARD dia-
grams, modelling functional dependencies between XTT
rule attributes. VARDA is a proof of concept prototype
tool written in Prolog. HJEd is a portable visual editor
implemented in Java. An example session with HJEd is
presented in Fig. 5. The output from this phase allows for
generating XTT table schemes.

One of the main features of the XTT method is the
compact visual representation. From the designer point
of view it needs to be supported by a CASE tool in or-
der to be effective. The HQed (Kaczor, 2008; Kaczor and
Nalepa, 2008) tool (Fig. 6) uses the rule prototypes gen-
erated in the conceptual design, and supports the actual
visual process of the logical design of XTT tables. It is a
cross-platform tool written in C++ and the Qt library.

One of the most important editor features is the sup-
port for XTT; it concerns rulebase quality assurance and
refers to several specific issues: condition specification
constraints, structured rulebase syntax, gradual model re-
finement, with partial simulation logical rule model qual-
ity. The first issue is tackled by providing a number of

8See https://ai.ia.agh.edu.pl/wiki/hekate:heart
for a more up-to-date description of HeaRT.

https://ai.ia.agh.edu.pl/wiki/hekate:hmr
https://ai.ia.agh.edu.pl/wiki/hekate:heart


The HeKatE Methodology. Hybrid Engineering of Intelligent Systems 15

Fig. 6. HQEd editing session, the XTT rulebase structure with anomalies detected

editing features enforcing strict user data verification. Ev-
ery attribute value entered into XTT cells (corresponding
to the ALSV(FD) formulae) is checked against the at-
tribute domain. On the other hand the user is hinted during
the editing process, with feasible attribute values.

The rulebase syntax may be checked against anoma-
lies, e.g. incomplete rule specification, malformed infer-
ence specification, including missing table links. The ed-
itor allows for gradual rules refinement, with an online
checking of attribute domains, as well as simple table
properties, such as inference related dead rules. In case
of simple tables it is possible to emulate and visualize the
inference process.

However, the main quality feature being developed
is a plugin framework, allowing for integrating Prolog-
based components for rule analysis (being part of the in-
ference engine) to check formal properties of the XTT
rule base, such as completeness, redundancy, or deter-
minism (Ligęza and Nalepa, 2005). Here analysis is per-
formed on the logical level, where the rows of the XTT
tables are interpreted and analyzed as ALSV(FD) formu-
lae.

Another important group of HeKatE tools are knowl-
edge translators (HaThoR). They use HMR serialization
to an XML-based format known as the HML (HeKatE
Markup Language). This format is used by the edit-
ing tools to store the model together with some techni-
cal information such as diagram location in the editor,
etc. The HML translators are implemented with the use
of XSLT (Clark, 1999), which provides an XML-based
syntax for defining XML translators. The HaThoR frame-
work aims at allowing exchange between the HeKatE

knowledge representation and other important rule for-
mats. These are mainly being developed by the Seman-
tic Web initiative9 and include: RIF10 that provides a
generic rule interchange format, and SWRL (A Semantic
Web Rule Language) (Horrocks, Patel-Schneider, Boley,
Tabet, Grosof and Dean, 2004) that builds on ontologies.

Considering the use of decision rules in the web ap-
plications, it is worth mentioning the EU FP6 REWERSE
Project (see http://rewerse.net). The REWERSE
I1 group proposed number of rule-related languages,
including URML (Lukichev and Wagner, 2005) for
UML-based rule authoring, and – more importantly –
R2ML (Wagner, A.Giurca and Lukichev, 2005; Wagner,
Giurca and Lukichev, 2006) for a flexible rule inter-
change with OCL (Object Management Group, 2006),
RuleML (Boley, Tabet and Wagner, 2001) and
SWRL (Horrocks et al., 2004). The project pro-
vides number of XML-based rule translators (see
http://oxygen.informatik.tu-cottbus.
de/rewerse-i1/?q=node/15). Considering the
Semantic Web applications, they also support Jena
Rules (Reynolds, 2005) (Jena is a RDF framework for the
Semantic Web http://jena.sourceforge.net).

All of the tools are released as free software11 under
the terms of the GNU GPL licence from the project web-
site, see http://hekate.ia.agh.edu.pl.

9http://www.w3.org/2001/sw
10http://www.w3.org/2005/rules/wiki/RIF_

Working_Group
11http://www.gnu.org/philosophy/free-sw.html

http://rewerse.net
http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=node/15
http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=node/15
http://jena.sourceforge.net
http://hekate.ia.agh.edu.pl
http://www.w3.org/2001/sw
http://www.w3.org/2005/rules/wiki/RIF_Working_Group
http://www.w3.org/2005/rules/wiki/RIF_Working_Group
http://www.gnu.org/philosophy/free-sw.html


16 G. J. Nalepa and A. Ligęza

10. Related Tools

The primary idea behind the XTT as the knowledge
representation, and HeKatE as the design methodology,
was to overcome selected important limitations of well-
established approaches, see Sec. 3.1. Considering that
fact, it is important to briefly evaluate the results achieved.
Here, the focus is on two most important solutions, that
have become de facto standards and are openly available,
see Sec. 2. The first is CLIPS and its new Java-based in-
carnation – Jess. The other one is Drools, which inherits
some of the important CLIPS features, such as Rete-based
inference, while providing a number of high-level integra-
tion features on the Java Enterprise Edition platform.

Previously, in Sec. 3.1 three main problems areas
where identified, that is: 1) knowledge representation, 2)
transparent structure and efficient inference in the rule-
base, 3) well founded systematic and complete design pro-
cess.

As of the first issue, XTT provides an expressive, for-
mally defined language to describe rules. The language al-
lows for formally described inference, property analysis,
and code generation. Additional callbacks in rule decision
provide means to invoke external functions or methods in
any language. This feature is superior to those found in
both CLIPS/Jess and Drools. On the other hand, the main
limitation of the HeKatE approach is the state-base de-
scription of the system, where the state is understood as
the set of attribute values. This solution is well fit to a
number of well defined control or decision precess. How-
ever, it might prove insufficient in more general applica-
tions. In that case CLIPS/Jess offers several other pro-
gramming paradigms, including an object-oriented one.
Drools is integrated with the Java stack, opening means to
program almost anything. One should keep in mind, that
such heterogeneous multi-paradigm programs cannot be
considered plain “rule-base systems” anymore. It should
also be emphasized that in a general case, a formal analy-
sis of such systems is hardly possible.

The implicit rule base structure is another important
feature of XTT. Rules are grouped into decision tables
during the design, and the inference control is designed
during the conceptual design, and later on refined during
the logical design. Therefore the XTT representation is
highly optimized towards rulebase structurization. This is
different from all the Rete-based solutions, including all
three, that is CLIPS, Jess, and Drools. This feature makes
the visual design much more transparent and scalable. It
also greatly improves the inference process.

It is worth noting, that in fact all the Rete-based so-
lutions seek some kind of structurization. In the case of
CLIPS it is possible to modularize the rulebase (see chap-
ter 9 in (Giarratano and Riley, 2005)). It is possible to
group rules in modules operating in given contexts, and
then provide a context switching logic. Such a modular-

ized structure can correspond to phases of the decision
process. Another solution is the rule set hierarchization.
Drools 5 offers Drools Flow that allows to define rule set
and simple control structure determining their execution.
In fact this is similar to the XTT-based solution. How-
ever, it is a weaker mechanism that does not correspond
to table-based solution. In XTT rules having the same
attributes are grouped by design. This opens up possibil-
ities to inference optimization and strong formal analysis
on the table level. A group (subtree) of linked XTT tables
can also be defined to work in a given context.

The last issue concerning a complete design process
seems to be in practice the most important one. Both
CLIPS and Jess are classic expert system shells, provid-
ing rule languages, and runtimes. They are not directly
connected to any design methodology. The rule language
does not have any visual representation, so no complete
visual editors are available. In fact, the implementation
process for these systems can be supported by a number
of external environments, with Eclipse12 being the best ex-
ample. Jess 7 provides JessDE, and Eclipse plugins-based
environment. However, it is worth emphasizing, that these
tools do not visualize the knowledge contained in the rule
base. In fact, they simplify syntax checking, runtime de-
bugging (including the Rete network view) and rule man-
agement.

Drools 5 is decomposed into four main parts: Gu-
vnor, Expert, Flow, Fusion. It offers several support tools,
namely the Eclipse-based environment, similar but more
robust that one Jess provides. One of the “design support”
feature, is the ability to read Excel files containing simple
decision tables, with basic control structure. While this is
a valuable feature it does not provide any on-line syntax
checking.

In both cases it is crucial to emphasize, that there is a
fundamental difference between a graphical user interface
like the one provided by generic Eclipse-based solutions,
and visual design support and specification provided by
languages such as XTT for rules, in software engineering
by UML, or by Petri Nets for parallel systems.

11. Conclusions
The primary area of interest of this paper is the design
of rule-based intelligent control and decision support sys-
tems. In the paper a review of the state of the art in rule-
based systems is given. Based on it, some practical issues
in the design of rule-based controllers are discussed. Ma-
jor drawbacks in the existing solutions are identified, in-
cluding limitations in the formal language definition, in-
ternal knowledge structure, and systematic design proce-
dure.

This analysis provides guidelines for the HeKatE ap-
proach. It aims at solving these limitations by the in-

12http://www.eclipse.org

http://www.eclipse.org


The HeKatE Methodology. Hybrid Engineering of Intelligent Systems 17

troduction of a custom formalized rule language called
XTT (in fact, the version considered in this paper is called
XTT2). The formalization is based on the ALSV(FD)
logic. In the described approach a systematic design pro-
cess for rule-based systems is considered. It is practically
supported by a number of tools presented in the paper.

The original contribution of the presented approach
covers the following issues:

• clear definition of formal logical language with an
intuitive interpretation for knowledge representation,

• modular structure of the rule base and oriented to-
wards modular development methodology,

• goal-directed inference and flexible inference modes,

• formal verification of XTT knowledge modules,

• consistent top-down design methodology supported
by software tools.

Some future extensions of the presented formalism
are also considered, including fuzzy rules. However, these
are out of scope of this paper. For more details see (Ligęza
and Nalepa, 2008).

The up-to-date results of the project, as well all the
relevant papers are available at the project website see
http://hekate.ia.agh.edu.pl. A repository of
tools available for download is also open for the commu-
nity.

12. Acknowledgements
The paper is supported by the HeKatE Project funded
from 2007–2009 resources for science as a research
project.

The Authors wish to thank the anonymous review-
ers for their valuable comments and remarks that greatly
helped in improving the final version of the paper.

Special thanks are due Dr. Marcin Szpyrka, Dr. Sła-
womir Nowaczyk, Claudia Obermaier, and Weronika T.
Furmańska for reading the preliminary versions of the pa-
pers and providing us with valuable comments, remarks
and criticism that helped us to improve the paper, as well
as gain a broader perspective on our work.

We would like to kindly acknowledge an important
contribution form our master students Krzysztof Kaczor,
Michał Gawędzki, Szymon Bobek, and Szymon Książek
implementing tools mentioned in this paper.

References
Ben-Ari, M. (2001). Mathematical Logic for Computer Science,

Springer-Verlag, London.

Boley, H., Tabet, S. and Wagner, G. (2001). Design rationale
of ruleml: A markup language for semantic web rules,
SWWS’01, Stanford.

Bratko, I. (2000). Prolog Programming for Artificial Intelli-
gence, 3rd edn, Addison Wesley.

Browne, P. (2009). JBoss Drools Business Rules, Packt Publish-
ing.

Brownston, L., Farrell, R., Kant, E. and Martin, N. (1985). Pro-
gramming Expert Systems in OPS5, Addison-Wesley.

Burbeck, S. (1992). Applications programming in smalltalk-
80(tm): How to use model-view-controller (mvc), Tech-
nical report, Department of Computer Science, University
of Illinois, Urbana-Champaign.

Cheng, A. M. K. (2002). Real-Time Systems. Scheduling, Anal-
ysis and Verification, John Wiley & Sons, Inc., Hoboken,
New Yersey.

Clark, J. (1999). Xsl transformations (xslt) version 1.0 w3c rec-
ommendation 16 november 1999, Technical report, World
Wide Web Consortium (W3C).

Connolly, T., Begg, C. and Strechan, A. (1999). Database Sys-
tems, A Practical Approach to Design, Implementation,
and Management, 2nd edn, Addison-Wesley.

et. al, F. C. (2000). Validation and verification of knowledge-
based systems: report on eurovav99, The Knowledge Engi-
neering Review 15(2): 187–196.

Fagan, L., Kunz, J. and Feigenbaum, E. (1979). Representation
of dynamic clinical knowledge: Measurement interpreta-
tion in the intensive care unit, Proceedings of the Sixth Int.
Joint Conferences of Artificial Intelligence, Morgan Kauf-
mann, Los Altos, CA, pp. 260–262.

Fagan, L. M. (1980). VM: Representing Time Dependent Rela-
tions in a Medical Setting, PhD thesis, Dept. of Computer
Science, Stanford University.

Forgy, C. (1982). Rete: A fast algorithm for the many pat-
terns/many objects match problem, Artif. Intell. 19(1): 17–
37.

Friedman-Hill, E. (2003). Jess in Action, Rule Based Systems in
Java, Manning.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995). De-
sign Patterns, 1st edn, Addison-Wesley Pub Co.

Genesereth, M. R. and Nilsson, N. J. (1987). Logical Foun-
dations for Artificial Intelligence, Morgan Kaufmann Pub-
lishers, Inc., Los Altos, California.

Giarratano, J. C. and Riley, G. D. (2005). Expert Systems, Thom-
son.

Giurca, A., Gasevic, D. and Taveter, K. (Eds) (2009). Hand-
book of Research on Emerging Rule-Based Languages and
Technologies: Open Solutions and Approaches, Informa-
tion Science Reference.

Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof,
B. and Dean, M. (2004). Swrl: A semantic web rule lan-
guage combining owl and ruleml, w3c member submission
21 may 2004, Technical report, W3C.

Jackson, P. (1999). Introduction to Expert Systems, 3rd edn,
Addison–Wesley. ISBN 0-201-87686-8.

Kaczor, K. (2008). Design and implementation of a unified rule
base editor, Master’s thesis, AGH Univerity of Science and
Technology. Supervisor: G. J. Nalepa.

http://hekate.ia.agh.edu.pl


18 G. J. Nalepa and A. Ligęza

Kaczor, K. and Nalepa, G. J. (2008). Design and implementation
of hqed, the visual editor for the xtt+ rule design method,
Technical Report CSLTR 02/2008, AGH University of Sci-
ence and Technology.

Klösgen, W. and Żytkow, J. M. (Eds) (2002). Handbook of
Data Mining and Knowledge Discovery, Oxford Univer-
sity Press, New York.

Laffey, T. and et al. (1988). Real-time knowledge-based sys-
tems, AI Magazine Spring: 27–45.

Liebowitz, J. (Ed.) (1998). The Handbook of Applied Expert
Systems, CRC Press, Boca Raton.

Ligęza, A. (1986). An expert systems approach to analysis and
control in certain complex systems, Preprints of the 4-th
IFAC/IFIP Symposium on Software for Computer Control
SOCOCO’86, Graz, pp. 147–152.

Ligęza, A. (1988). Expert systems approach to decision support,
European Journal of Operational Research 37(1): 100–
110.

Ligęza, A. (1993). Logical foundations for knowledge-based
control systems – knowledge representation, reasoning and
theoretical properties, Scientific Bulletins of AGH Auto-
matics 63(1529): 144 pp., Kraków.

Ligęza, A. (1996). Logical support for design of rule-based sys-
tems. reliability and quality issues, in M. Rousset (Ed.),
ECAI-96 Workshop on Validation, Verification and Refin-
ment of Knowledge-based Systems, Vol. W2, ECAI’96,
Budapest, pp. 28–34.

Ligęza, A. (1998). Towards logical analysis of tabular rule-based
systems, Proceedings of the Ninth European International
Workshop on Database and Expert Systems Applications,
Vienna, Austria pp. 30–35.

Ligęza, A. (1999). Validation and verification of knowledge
based systems : theory, tools and practice, Kluwer Aca-
demic PublishersKluwer Academic Publishers, Boston,
Dordrecht, London, chapter Intelligent data and knowledge
analysis and verification; towards a taxonomy of specific
problems, pp. 313–325.

Ligęza, A. (2001). Toward logical analysis of tabular rule-
based systems, International Journal of Intelligent Systems
16(3): 333–360. Special issue on Verification and Valida-
tion Issues in Databases, Knowledge-Based Systems, and
Ontologies.

Ligęza, A. (2005). Logical Foundations for Rule-Based Systems,
Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH w
Krakowie, Kraków.

Ligęza, A. (2006). Logical Foundations for Rule-Based Systems,
Springer-Verlag, Berlin, Heidelberg.

Ligęza, A. and Nalepa, G. J. (2005). Visual design and on-line
verification of tabular rule-based systems with xtt, in K. P.
Jantke, K.-P. Fähnrich and W. S. Wittig (Eds), Marktplatz
Internet: Von e-Learning bis e-Payment : 13. Leipziger
Informatik-Tage, LIT 2005, Lecture Notes in Informatics
(LNI), Gesellschaft fur Informatik, Bonn, pp. 303–312.

Ligęza, A. and Nalepa, G. J. (2007). Knowledge representation
with granular attributive logic for XTT-based expert sys-
tems, in D. C. Wilson, G. C. J. Sutcliffe and FLAIRS (Eds),

FLAIRS-20 : Proceedings of the 20th International Florida
Artificial Intelligence Research Society Conference : Key
West, Florida, May 7-9, 2007, Florida Artificial Intelli-
gence Research Society, AAAI Press, Menlo Park, Cali-
fornia, pp. 530–535.

Ligęza, A. and Nalepa, G. J. (2008). Granular logic with vari-
ables for implementation of extended tabular trees, in D. C.
Wilson and H. C. Lane (Eds), FLAIRS-21: Proceedings of
the twenty-first international Florida Artificial Intelligence
Research Society conference: 15–17 may 2008, Coconut
Grove, Florida, USA, AAAI Press, Menlo Park, Califor-
nia, pp. 341–346.

Ligęza, A., Wojnicki, I. and Nalepa, G. J. (2001). Tab-trees:
a case tool for design of extended tabular systems, in
H. M. et al. (Ed.), Database and Expert Systems Applica-
tions, Vol. 2113 of Lecture Notes in Computer Sciences,
Springer-Verlag, Berlin, pp. 422–431.

Logical Support for Design of Rule-Based Systems. Reliability
and Quality Issues (1996). Budapest. Also: LAAS Report,
No.: 96170.

Lukichev, S. and Wagner, G. (2005). Visual rules modeling,
Sixth International Andrei Ershov Memorial Conference
PERSPECTIVES OF SYSTEM INFORMATICS, Novosi-
birsk, Russia, June 2006, LNCS, Springer.

Object Management Group (2006). Object constraint language
version 2.0, Technical report, OMG.

Morgan, T. (2002). Business Rules and Information Systems.
Aligning IT with Business Goals, Addison Wesley, Boston,
MA.

Nalepa, G. J. (2004). Meta-Level Approach to Integrated Pro-
cess of Design and Implementation of Rule-Based Systems,
PhD thesis, AGH University of Science and Technology,
AGH Institute of Automatics, Cracow, Poland.

Nalepa, G. J. and Ligęza, A. (2005a). A graphical tabular model
for rule-based logic programming and verification, Systems
Science 31(2): 89–95.

Nalepa, G. J. and Ligęza, A. (2005b). Software engineering :
evolution and emerging technologies, Vol. 130 of Frontiers
in Artificial Intelligence and Applications, IOS Press, Am-
sterdam, chapter Conceptual modelling and automated im-
plementation of rule-based systems, pp. 330–340.

Nalepa, G. J. and Ligęza, A. (2005c). A visual edition tool
for design and verification of knowledge in rule-based sys-
tems, Systems Science 31(3): 103–109.

Nalepa, G. J. and Ligęza, A. (2006). Prolog-based analysis
of tabular rule-based systems with the "xtt" approach, in
G. C. J. Sutcliffe and R. G. Goebel (Eds), FLAIRS 2006
: proceedings of the nineteenth international Florida Ar-
tificial Intelligence Research Society conference : [Mel-
bourne Beach, Florida, May 11–13, 2006], Florida Artifi-
cial Intelligence Research Society, AAAI Press, FLAIRS.
- Menlo Park, pp. 426–431.

Nalepa, G. J. and Ligęza, A. (2008). Xtt+ rule design using the
alsv(fd), in A. Giurca, A. Analyti and G. Wagner (Eds),
ECAI 2008: 18th European Conference on Artificial In-
telligence: 2nd East European Workshop on Rule-based



The HeKatE Methodology. Hybrid Engineering of Intelligent Systems 19

applications, RuleApps2008: Patras, 22 July 2008, Uni-
versity of Patras, Patras, pp. 11–15.

Pawlak, Z. (1991). Rough Sets. Theoretical Aspects of Rea-
soning about Data, Kluwer Academic Publishers, Dor-
drecht/Boston/London.

Quinlan, J. R. (1986). Simplifying decision trees.

Reynolds, D. (2005). Jena Rules experiences and implications
for rule use cases, W3C Workshop on Rule Languages for
Interoperability. http://www.w3.org/2004/12/
rules-ws/slides/davereynolds.pdf.

Ross, R. G. (2003). Principles of the Business Rule Approach, 1
edn, Addison-Wesley Professional.

Torsun, I. S. (1995). Foundations of Intelligent Knowledge-
Based Systems, Academic Press, London, San Diego, New
York, Boston, Sydney, Tokyo, Toronto.

Tzafestas, S. and Ligęza, A. (1988). Expert control through
decision making, Foundations of Control Engineering
13(1): 43–51.

Tzafestas, S. and Ligęza, A. (1989). Expert control through de-
cision making, Journal of Intelligent and Robotic Systems
1(4): 407–425.

van Harmelen, F. (1996). Applying rule-based anomalies to
kads inference structures, ECAI’96 Workshop on Valida-
tion, Verification and Refinement of Knowledge-Based Sys-
tems pp. 41–46.

van Harmelen, F., Lifschitz, V. and Porter, B. (Eds) (2007).
Handbook of Knowledge Representation, Elsevier Science.

von Halle, B. (2001). Business Rules Applied: Building Better
Systems Using the Business Rules Approach, Wiley.

Wagner, G., A.Giurca and Lukichev, S. (2005). R2ml: A general
approach for marking up rules, in F. Bry, F. Fages, M. Mar-
chiori and H. Ohlbach (Eds), Principles and Practices of
Semantic Web Reasoning, Dagstuhl Seminar Proceedings
05371.

Wagner, G., Giurca, A. and Lukichev, S. (2006). A
usable interchange format for rich syntax rules
integrating ocl, ruleml and swrl, Proceedings
of Reasoning on the Web, Edinburgh, Scotland.
http://www.aifb.uni-karlsruhe.de/WBS/
phi/RoW06/procs/wagner.pdf.

Received: 30 January 2009
Revised: 30 April 2009
Re-revised: 30 July 2009

http://www.w3.org/2004/12/rules-ws/slides/davereynolds.pdf
http://www.w3.org/2004/12/rules-ws/slides/davereynolds.pdf
http://www.aifb.uni-karlsruhe.de/WBS/phi/RoW06/procs/wagner.pdf
http://www.aifb.uni-karlsruhe.de/WBS/phi/RoW06/procs/wagner.pdf

	Introduction
	Rule-Based Intelligent Control
	Explaining the Ideas of Rules in Control
	Rule-Based Control and Decision Support
	Rule-Based Control and Decision Support. Historical Perspective of the Research towards the XTT Approach

	HeKatE Approach
	Motivation
	Main principles
	Goals and Perspectives
	Intuitive Example
	Review of the Methods

	State Representation
	Requirements for the State Representation
	State Specification

	Attributive Logic
	Basics of Attributive Languages

	Set Attributive Logic (SAL) Development
	ALSV(FD)
	XTT Rules in ALSV(FD)

	Basic Inference Rules for ALSV(FD)
	Inference Strategies for XTT
	Fixed-Order Approach
	Token-Transfer Approach
	Goal-Driven Approach

	XTT Rule Runtime and Design Tools
	Related Tools
	Conclusions
	Acknowledgements

