
BULL. AUSTRAL. MATH. SOC. 43A30, 43A80, 22E25

VOL. 55 (1997) [405-424]

THE HELGASON FOURIER TRANSFORM ON A
CLASS OF NONSYMMETRIC HARMONIC SPACES

FRANCESCA ASTENGO, ROBERTO CAMPORESI AND BIANCA DI BLASIO

Given a group N of Heisenberg type, we consider a one-dimensional solvable exten-
sion NA of TV, equipped with the natural left-invariant Riemannian metric, which
makes NA a harmonic (not necessarily symmetric) manifold. We define a Fourier
transform for compactly supported smooth functions on NA, which, when NA is
a symmetric space of rank one, reduces to the Helgason Fourier transform. The
corresponding inversion formula and Plancherel Theorem are obtained. For radial
functions, the Fourier transform reduces to the spherical transform considered by
E. Damek and F. Ricci.

1. INTRODUCTION

Heisenberg type (or H-type) groups were introduced by Kaplan in [9]. Given a
group TV of Heisenberg type, one can construct a one-dimensional solvable extension
NA of N, where A = R + acts on N by anisotropic dilations. When NA is equipped
with the appropriate left-invariant Riemannian structure, NA becomes a harmonic
manifold [4]. This class of harmonic spaces includes all rank-one symmetric spaces of
the noncompact type G/K as particular cases [2]. In this case N is the H-type group
that appears in the Iwasawa decomposition G = NAK of a connected noncompact
semisimple Lie group G with finite centre and real rank one. On the other hand, there
are many H-type groups N that do not appear in Iwasawa decompositions, see [9]; the
corresponding NA manifolds are harmonic but nonsymmetric [5].

The analysis of radial functions on harmonic NA spaces (that is, functions that
depend only on the geodesic distance from the identity), has been discussed in [1, 4,
11]. An important role is played by the spherical functions $ , that is, the radial
eigenfunctions of the Laplace-Beltrami operator C, normalised by <£(e) = 1- The
spherical transform for radial functions on NA and the corresponding inversion and
Plancherel formulas were studied by F. Ricci in [11].
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406 F. Astengo, R. Camporesi and B. Di Blasio [2]

In this paper we consider the analysis of arbitrary (smooth, compactly supported)
functions on NA, not necessarily radial. If / is such a function, we define its Fourier
transform to be the function / on C x N given by the rule

/ ( A , n ) = f f{x) Vx{x, n) dx, A € C, n e N,

where the kernel V\ : NA x N -y C is an appropriate complex power of the Poisson
kernel V(x,n) on NA, namely

If / is a radial function on NA, the Fourier transform reduces to the spherical trans-
form. If NA is a rank-one symmetric space the Fourier transform coincides with the
well-known Helgason Fourier transform [8].

In order to obtain the corresponding inversion formula, we generalise to the present
case a formula for translated spherical functions, which in the symmetric case is referred
to as "the symmetry of the spherical functions". In the symmetric case this formula is
proved by changing variables in Harish-Chandra's representation of spherical functions
as integrals over K [8, p.224].

In the general case this is not so easy, as there is no group K acting transitively
on the distance spheres in NA. In order to generalise the symmetry of the spheri-
cal functions, we shall use a formula which expresses the spherical functions as matrix
coefficients of suitable representations of NA on L2(N). This formula has been demon-
strated in [1, 7].

The organisation of this paper is as follows. In section 2 we recall briefly the main
definitions and the known results of spherical analysis on harmonic NA groups [1, 4,
11]. In section 3 we introduce the Fourier transform and establish its relation with the
spherical transform. In section 4 we obtain the inversion formula. Specialising to radial
functions, we verify that one re-obtains the spherical inversion formula. We also prove
that the Fourier transform of a smooth function with compact support is a holomorphic
function of uniform exponential type. Finally we show that, in the symmetric case, our
results coincide with the known ones. In section 5 we prove the Plancherel Theorem.

2. PRELIMINARIES ON NA GROUPS

Let n be a two-step real nilpotent Lie algebra endowed with an inner product ( , ) .

Write n as an orthogonal sum n = v © z, where z = [n, n] is the centre of n.

For each Z in z, define the map Jz • v —> v by

{JZX,Y) =
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[3] The Helgason Fourier transform 407

DEFINITION: [9] The Lie algebra n is called an H-type algebra if, for every Z in

J2
Z = -\Z\2IV,

where 7V is the identity on v. A connected and simply connected Lie group N is called
an H-type group if its Lie algebra is an H-type algebra.

Note that for every unit Z in z, Jz is a complex structure on v, so that v has
even dimension 2m.

Since n is a nilpotent Lie algebra, the exponential map is surjective. We can then
parametrise the elements of N — exp n by (X, Z), for X in v and Z in z. By the
Campbell-Hausdorff formula it follows that the product law in N is

(X, Z) (X1, Z')=

Let NA be the semidirect product of the Lie groups N and A = R + with respect to
the action of A on N given by the dilations (X, Z) i—> {p}/2X, aZ). As customary
we write (X, Z, a) for the element na = exp (X + Z) a. It can easily be checked that
the product in NA is

(X, Z, a) (X1, Z', a') = (x + a}'2X', Z + aZ' + \al/2[X, X'}, aa"\ .

We denote by k the dimension of the centre z, and by Q = m + k the homogeneous
dimension of N.

The left Haar measure on NA, unique up to a multiplicative constant, is given by

dx = a~Q-1 dXdZda = a-
Q-xdnda,

where dX, dZ and da are the Lebesgue measures respectively on v, z and R + . Note
that the right Haar measure is a"1 dXdZda, hence the group NA is not unimodular,
with modular function 8 given by the rule 6(X, Z, a) = a~Q.

We endow NA with the left-invariant Riemannian structure induced by the fol-
lowing inner product on the Lie algebra n © R of NA:

{(X, Z, a), (X1, Z', a')) = (X, X') + {Z, Z') + aa',

where a = loga (a € ^4). As a Riemannian manifold, NA is a harmonic space [4].
This class of harmonic spaces includes all rank-one symmetric spaces of the noncompact
type NA ~ G/K — NAK/K. In general NA is not symmetric, that is, the geodesic
symmetry around the origin is not an isometry [2].

https://doi.org/10.1017/S0004972700034079 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034079


408 F. Astengo, R. Camporesi and B. Di Blasio [4]

DEFINITION: A function / : NA —> C is said to be radial if, for all x in NA,

f(x) depends only on the geodesic distance d(x,e) of x from the identity e of NA.

We denote by V(NA) the space of C°° functions on NA with compact support.
If (p and xjj are functions in D(NA) we use the notation

(<p, I/J)= tp(x)il>(x) dx,
JNA

(<p * ip) (x) = / y{y)tl)(y-lx) dy.
JNA

Let R : V(NA) —> V(NA) be the linear operator defined by

(2.1) W)(x)= [ f(y)d<rp(y), p = d(x,e),
JsP

where dap is the surface measure induced by the left-invariant Riemannian metric on

the geodesic sphere Sp = {y 6 NA : d(y,e) = p), normalised by fs dap(y) — 1. Let

T>''I(NA) denote the subspace of radial functions in V(NA). Then R is a projection from

V(NA) onto Tfi{NA). Damek and Ricci proved that the operator R is an averaging

projector on NA according to the definition introduced in [4]. The following properties

of R will be needed later:

(2.2) (Rip, V>> = (V, Jty), VVl V € V(NA),

(2.3) Rtp(e) = <p(e), V<p € V{NA).

It is proved in [4] that T>^(NA) is a commutative convolution algebra. Let
denote the algebra of all left-invariant differential operators D on NA which commute
with R, that is, R(Df) = D(Rf), for all / in V(NA). By [4, Lemma 2.1, Theorem
5.2] the algebra D^(NA) is commutative and is generated by the Laplace-Beltrami
operator £ in the given Riemannian structure.

A spherical function $ on NA is a radial eigenfunction of the Laplace-Beltrami
operator normalised so that 3>(e) = 1. For A in C, we denote by $A the spherical
function with eigenvalue - (A2 + Q2/4).

The spherical Fourier transform of a function / in V^ (NA) is given by

(2.4) f(X)= f f{x)*x{x)dx, A€C.
JNA

Ricci, in [11], determined the inversion formula for the spherical Fourier transform (the
correct constant is given in [1]): if / is in T>^(NA), then

(2.5) f(x) = ^ y ^ /(A) **(*) |c(A)|-2 d\,
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where

Cm'k =
 7r(2rn+fc+l)/2

and

+ l \

(2.7) c(A)=

The function c(A) generalises Harish-Chandra's c-function. As in the symmetric case,
c(A) is determined by the asymptotic form of $ A in A, according to

c(A)= lim aiX-Q/2 $x(a) = lim a~
iX+Q/2 $A(a), ImA < 0.

a-»0+ o->+oo

3. THE FOURIER TRANSFORM

In this section we define the Fourier transform and state its main properties. Since
the definition involves the Poisson kernel, we recall briefly the basic facts regarding this
kernel.

Damek [3] proved that if / is a bounded harmonic function on NA, then / can
be represented as

f(x) = f T(x, n)F(n) dn, x e NA,
JN

where F(n) — l im^o f(na) and V is the Poisson kernel on NA. The expression of V
is given by the formula

V(na,ri) = Pa^n'), na € NA, n' € N,

where, for any a > 0, Pa{n) is the function on N defined by the rule

Pa(n) - Pa(X,Z) - Q(( l ^ ) 2 A

Notice the following properties of Pa(n):

(3-1) Pa(n) = Pa{n-x),

(3.2) P o (n )=a -«P i (a - l na ) ,

https://doi.org/10.1017/S0004972700034079 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034079


410 F. Astengo, R. Camporesi and B. Di Blasio [6]

where a~1na € N since A normalises N. Moreover we have Pi (0,0) = cmifc, and

f Pa(n)dn= 1, Va>0.
JN

We denote by V\ (x, n) the function on NA x TV given by the rule

that is, explicitly

DEFINITION: The Fourier transform of the function / in V(NA) is the function
/ on C x N defined by the rule

/(A, n) = / f(x) Px{x, n) dx, A e C, n 6 TV.
JNA

In the next proposition we compare the Fourier transform with the spherical Fourier
transform for radial functions (2.4).

PROPOSITION 3 . 1 . Let f be a radiaJ function in V{NA). Then

/ (A ,n)=7> A (e ,n ) / (A) , Vn e N, V A e C ,

P R O O F : Since / is radial and by (2.2), we have

= (Rf,Vx(-,n))

= (f>RVx(;n)).

Since /(A) = (/, <&A), we shall obtain the result by proving that

For the sake of brevity, let us introduce the following notation. For every function
g in V(NA) and x in NA we define the function TX g on NA by the rule

Moreover we denote by ^x the function on NA defined by

) = [Pa(n))1/2-iX/Q = Vx(a,n).
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Using formula (3.1), one can easily check that, for x in NA and n in iV, we have

(3.3) Vx(x,n) = tfAfn-1*) = ( r n # A ) (z).

One can prove that (see [1, 3])

Since £ is left-invariant, we also have

Therefore, since RC = CR, the spherical function $ A and i?(rn\l>A), for n in JV, are
two radial eigenfunctions of the Laplace-Beltrami operator with the same eigenvalue.
By [4, Lemma 2.2] it follows that R^n^x) equals $ A up to a multiplicative constant,
depending on n :

(3.4) R (rntf A) = c{n) $ A , Vn € N.

Evaluating both sides of the previous formula at the identity and using property (2.3)

of the averaging projector R, we find

(3-5) =V\(e,n).

Putting together formulas (3.3), (3.4) and (3.5), we obtain RVx(-,n) = R(TnVx) =

V\(e,n)$\, as claimed. D

We remark that, if we define a normalised Fourier transform % on NA by the rule

(3-6) ?if(\,n) = l{^n\, A € C, n G N,

then, for radial / , Hf(X,n) = /(A) (the spherical transform) for every n in N, that
is, "Hf does not depend on n.

Note that the convolution in V(NA) is not commutative (unlike in V\NA)).
Therefore the Fourier transform cannot convert it into multiplication. This holds, how-
ever, if the second factor is radial.
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PROPOSITION 3 . 2 . If f is in V{NA) and tp is in V^{NA), then

( / * <PTXK n) = /(A> n) <fiW, VA G C, Vn € N.

PROOF: AS in Proposition 3.1, we denote by ^x the function on NA defined by

For every A in C and n in iV, we have

( / * <PYX\ n ) = f {f* <p)(x) Vx{x, n ) dx
J NA

= f f f{y)<p(y-1x)dyVx(x,n)dx
JNA JNA

= / f(v) / <p(x)V\(yx,n)dxdy
JNA JNA

= [ f{y) f <p{x)(T-inVx)(x)dxdy
JNA JNA

= f f{y){v,Ty-in^\)dy
JNA

= f f(v)(<P,R(Ty-in9x))dy,
JNA

where we have used (3.3).

By the same arguments as in Proposition 3.1, r y - i n ^ A is an eigenfunction of the

Laplace-Beltrami operator with eigenvalue — (A2 + Q 2 /4 ) . It follows that

W ( X ) = c(y, n

where

c(t/,n) = .R (Ty-intfA) (e) = T W - I B * A (e) = Px(y,n)

Therefore

(/ * <pr\\, n)= f f(y) Vx(y, n) (tp, *A) dy = /(A, n
JNA

as claimed.
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4. T H E INVERSION FORMULA

In order to obtain the inversion formula, we first generalise [8, Theorem 1.1, p.224]
to the present case. We recall the following fact (see [1, 7]).

For A in C , let n\ denote the representation of NA on L2(N) given by

[7rA(Tia)< ]̂ ( H I ) = a ' (p\a n nicxj.

Note that the representation ir\ is unitary for real A, with respect to the usual inner
product on L2(N):

{<p, ip) = / y (ft) /̂"(ft) dn.
JN

PROPOSITION 4 . 1 . [1, 7] The spherical function <&A can be expressed in the
form

\X)rY i "\ I > *" € *--,

where P^(n) = [Pain)]", for a in C .

The key ingredient to our inversion formula is the following property of the spherical
functions.

PROPOSITION 4 . 2 . Let A be in C . The spherical function $ A satisfies the
identity

Qxix^y) = I Vx(x,n)V-.x(y,n)dn, Vx,y e NA.
JN

P R O O F : Let x = na and y = n i a i . By Proposition 4.1 and the equality TT\(X)* =

Tr^x"1) we have

- («x( maO Pl'2+iXIQ , itf na) P

N

x (a-*-Q/2Pll2+a'Q{a-in-in2a)) dn2

^ ^ ) } 1 ^ ^ dn2

= f [Pai(n^n2))
1/2+iX/Q[Pa(n^n2)}

l/2-iX/Qdn2
JN
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= / V-x(y,n2)Vx(x,n2)dn2>
JN

where we have used (3.2). This proves the proposition. D

LEMMA 4 . 3 . If f is in V(NA) and A is in C then

(/ * *A)(x) = / 7>_A(z, n) /(A, n) dn, Vx e NA.
JN

PROOF: By Proposition 4.2 we get

(/*$*)(*)= f f(y)$x(y-lx)dy
JNA

= [ f(y) f Vx(y,n)V-x(x,n)dndy
JNA JN

= / V-x(x,n)([ f(y)Vx(y,n)dy) dn
JN \JNA /

= / V-x(x,n)f(X,n)dn,
JN

thus proving the lemma. D

We are now ready to prove our main result, that is, the inversion formula for the
Fourier transform.

THEOREM 4 . 4 . Every function f in V(NA) can be written as

f(x) = S2£ / / V-x(x,n)f(X,n) |c(A)f2 dXdn, x € NA,
4TT J_OO JN

where c(A) is given by (2.7) and cmtk is the constant given by (2.6).

PROOF: For every function / in V(NA) and every x in NA we define the function
fx on NA by the rule

fx(y) = [R{Tx-lf)](y), VyeNA,

where R is the averaging projector (2.1).
Since fx is a radial function on NA, we can apply the inversion formula for the

spherical Fourier transform, obtaining

f fy) = n ^
' — o o
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By equation (2.2) and by the equalities

we obtain

/ f{xy)$\(y)dy
JNA

= (
JNNA

= (/ * *A) (*)•

By the property (2.3) of the averaging projector R, we find

= [R(TX-I /)] (e)

= f*(e)

= c^k f+°° JX(X) \c(X)\-2

Cmk f+°°
4TT y_oo

C t r+oo r ^

4TT J_OO JN

where we have used Lemma 4.3. D

When the function / in V{NA) is radial, we expect that our inversion formula for
the Fourier transform reduces to the inversion formula for the spherical Fourier trans-
form (2.4). Indeed, by Proposition 3.1 and by Proposition 4.2, our inversion formula in
the case of a radial function / gives

^ Cm,k Z*4

4?r y_c
|c(A)f

which is the known inversion formula (2.5).
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As in the symmetric case, the Fourier transform of a function in T>(NA) is a
holomorphic function of uniform exponential type, according to the following definition.

DEFINITION: Let p > 0 and denote by 7ip(C x N) the space of C°° functions %l>

on C x N holomorphic in the first variable and such that for each j in N

SUp [Pl(n)]-U2-(l
(A,n)6CxJV

Moreover let H(C x N) be the space of all functions \p in (J HP(C x N) satisfying
p>0

the condition

(4.1) [ V-x(x,n)rt>(\,n)dn= I Vx(x,n)il>(-\,n)dn, Vx e NA.
JN JN

THEOREM 4 . 5 . If f is in V(NA), then J belongs to H(C x N). Moreover if

supp / is in {x € NA : d(x, e) ^ p), then J is in V.P{C x N).

PROOF: Let / be in V(NA); condition (4.1), with / = ip, follows by Lemma

4.3 and by the equality $\ = <3>_A • Applying the Morera Theorem one can see that

f : C x N —> C is holomorphic in the first variable. Suppose that the function / is

supported in the geodesic ball Bp = {x G NA : d(x, e) ^ p}. By the inequality (see

[1, 6])
|logo| ^ d(na, e), Vna € NA,

we get, for na in Bp,

\ai\\ _ I eiA log a I e|ImA||loga|

As already noted in Proposition 3.1, for every n in N, V\(-,n) is an eigenfunction of

the Laplace-Beltrami operator with eigenvalue — (A2 + Q2/4). Hence for every positive

integer £ we have

(£V)TVn) = [-(A2 +Q2/4)}t f(X,n).

Therefore

f C'f (na) [Patn^no)}1'2-^ a"*3"1 dnda
JNA

f Clf (na) [Px ( a ^ n ^ n o a ) ] 1 / 2 - ^ a"*3/2^-1 aiA dn da
JNA

JlmAlp f Clf ( n a ) a-(3/2)Q-l[Pl(a-ln-lnoa)]l/2+(ImA/Q)dnda)

JNA
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so we shall get the result by proving the next lemma. D

LEMMA 4 . 6 . For any p > 0 there exist two constants c and d, depending only

on p, such that

c[Pi{n0)] ^ [Pifa^n^noai)] ^ c' [Pi(no)], Vn0 € N, Vmoi € Bp.

PROOF: If n ia i belongs to Bp, then ai belongs to a closed interval I of (0, +oo).
It is easy to see that

Pi ( a ^ n a i ) x P^n), Vrc e N, V<n 6 / .

We write a x /? if there exist constants c and d such that c a < / 3 ^ da..
Observe that there exists a positive number p\ such that, for every n\a\ in Bp,

the element ni belongs to BPl, so it is enough to prove that

(4.2) Piin^no) x Pi(n0), Vn0 e JV, Vnx € BPl.

The geodesic distance of x = (X, Z, a) from the identity is (see [2, 4])

p(x) = d(x,e) = logj±^,

where r(x) is in (0,1) and is given by

/ 2̂ 4a

Note that

r(x) = tanh ^ and 1 - r(x)2 = (cosh ^ ]

Since Pi(X, Z) = c^* ((l + \X\2 /4)2 + |Z|2)~ , it is easy to check that

P i (n )x ( l - r ( n ) 2 ) Q , Vn € JV.

Thus, since 1 - r(n)2 = (cosh (p(n)/2))~2 x e-p(n), we get (as already observed in [1])

(4.3) P^n) x e-Qf>(n\ Vn G JV.
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Let ni be in BPl. By the triangle inequality, we have, for every no in TV,

p{n0) - px s% p(n0) - p(ni) ^ p(n1lnQ) ^ p(m) + p{n0) ^ p(nQ) + pi.

Thus
e-Pl e-p(n0) ^ e-p(n^no) ^ e P l e-p(n0)

Relation (4.2) follows by (4.3). D

Finally, we show that when NA is a rank-one symmetric space, our results repro-
duce the theory of Helgason [8].

Let G be a connected noncompact semisimple Lie group with finite centre and
real rank one, K a maximal compact subgroup thereof, and X — G/K the associated
rank-one symmetric space. Fix an Iwasawa decomposition G = NAK — KAN, and
for g in G write g — k(g) exp[H(g)] n(g), where k(g) € K, H(g) € a (the Lie algebra
of A), and n(g) 6 N. Let {a, 2a} or {a} be the set of positive restricted roots, with
multiplicities ma = 2m and rri2a = k. Let go , g2Q be the corresponding root spaces;
then n = gQ © g2Q is a nilpotent H-type subalgebra of g (the Lie algebra of G), with
centre z = g2Q and inner product given by

where B is the Killing form and 8 is the Cartan involution (see Koranyi [10]). The

solvable subgroup NA of G is diffeomorphic to X under the identification X = G/K ~

NAK/K ~ NA. Therefore our results can be applied to the NA model of X.

In Helgason's theory one has the boundary B = K/M of G/K, where M is the

centraliser of A in K. The Poisson kernel on G/K is

Q(x, b) - e
2p(A(x'b», x € G/K, b€B,

where p is half the sum of the positive restricted roots and A(x, b) is the function on

G/K x B defined by A(gK, kM) = -H(g~1k) (see [8, p.118 and p.122]). Notice that

Q is normalised so that Q{eK, 6) = 1 for every b in B.

In our model the boundary is seen as the group N and the Poisson kernel is

normalised so that fN V(a,n)dn = 1 for any a in A. One can easily check that

Q{aK, k(6n)M) = V<f ^ a £ A, n e N
r \€, Tl)

(see [8, p.180]). More generally one can show that the kernel on G/K x B given by
Qx(x,b) = e(-i*+pUA(*,b)) i s related to the kernel Vx by

Qx(9xK, k(en)M) = ^ ( x ' n ) , Vx G NA.
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It can easily be checked that the normalised transform %f{X, n), defined in for-

mula (3.6), equals the Helgason Fourier transform of the function foO, evaluated at

(X,k(0n)M).
Finally, the inversion formula of Theorem 4.4 on NA can be rewritten as

p+OO p

/(x) = 2pi* / / Q_x(0xK,k(en)M)nf(X,n)P1(n)dn\c{\)\-2dX,
4TT J_OO JN

and is equivalent to Helgason's inversion formula in the rank-one case [8, Theorem 1.3,
p.225] for the function foO evaluated at Ox. Indeed, the integral over B in Helgason's
inversion formula can be shifted to an integral over ON ~ N and the invariant measure
db on B satisfies db = P\ (n) dn.

5. THE PLANCHEREL THEOREM

The purpose of this section is to prove the following theorem.

THEOREM 5 . 1 . The Fourier transform extends to an isometry from L2(NA)

onto the space L2(R+ X N, % ^ |c(A)|~2 dXdn) .

The proof of Theorem 5.1 is divided in two steps. First we prove the Plancherel
formula for the Fourier transform, which follows from Theorem 4.4 by a standard ar-
gument; then we prove that the Fourier transform is onto.

Let fi and /2 be in V(NA); using the invariance property (4.1) for tjj = f\, we
have

p+OO p

^ / / /i(A,n)/2(A,n)|c(A)|-2dndA
™ Jo JN2TT

r+oo
= IT* / / /i(A'") / f2(x)V.x(x,n)dx |c(A)f2 dndXZn Jo JN JNA

= STA / JW) fi(\n)V-x(x,n)dndx\c(X)\-2dX
47T J_00 JNA JN

= f f̂ f* I*" f fi(Kn)V-x(x,n)\c(X)\-2 dndx] J&jdx
JNA L 47r J-oo JN i

= f fi{x)Jtfx)dx,
JNA

which is the desired formula.
Note that if / i and /2 are both in Vii(NA), the Plancherel formula for the Fourier

transform reduces to the spherical Plancherel formula [11]. Indeed, using Proposition
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3.1 and observing that Vx(e,n)V-\(e,n) = Pi(n) , we get

Vx(e,n)V.x(e,n)dn] A(A)X(A) |c(A)|
T J

|-2

To prove that the Fourier transform is surjective, we need one more definition and
a couple of lemmas. Let £(N) be the space of bounded smooth functions on the group
N.

DEFINITION: We say that a complex number A is simple if the map

£(N) —> C(NA)

Vx(-,n)F{n)dn[
N

is injective.

LEMMA 5 . 2 . Suppose A is a real number. Then A is simple.

PROOF: By contradiction, suppose that A is not simple, that is, there exists F in
£(N), F ^ 0 , such that

/ Vx(x,n) F(n)dn = 0, Vi6 NA.
JN

Notice that we may assume . F ( 0 , 0 ) ^ 0 . In particular, for any a in A, we have the
equation

N

which, by property (3.2), we can also write as

IN

Therefore for any a in R + we have

that is

r P i / 2 - i A / Q ( a _ l n a ) i r ( n ) d n = 0

JN

f Pl'2-ix^ (a1'2*, aZ) F(X, Z) dX dZ = 0,

/ ( a + m 2 / 4 ) + \Z\*\ F(X,Z)dXdZ = O.
7JV Lv y
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By differentiating under the integral sign with respect to a, we obtain

\2 -iiA-Q/2-l

a +\X\2/4) +|Z|2J (a+\X\2/4)F(X,Z)dXdZ = 0;

since, for any a > 0, the integral in the previous equation is absolutely convergent, the
interchange between the integral sign and the differentiation is justified.

Now we change variables, putting X' = (a~1^2/2)X and Z' = a-1Z, so that

f ( ' 2 ) ^ ^ ) d X ' d Z ' = Q.

Since A is real, by dominated convergence, letting a go to 0, we obtain the equation

/• r
F(0 ,0) / ( l

2 -iiA-Q/2-l

+\Z'\\ (l + l^'l2) dX'dZ' = 0.

Since we have supposed F(0,0) ^ 0, we shall prove the lemma by showing that the
last integral is nonzero for real A. Indeed, passing to polar coordinates (r, 6) in v and
(s, </?) in z and by the change of variables p = r2, a — s2, the last integral is a constant
multiple of

Now again change coordinates, letting a = (1 + p) r ; then the last integral equals

r+°° .. . r+°°r+oo r
I rk'2-l{l + r)iX-Q'2-ldr I

Jo Jo
r (fc/2) r (m/2 +1 - JX) r (m) r (i - 2i\)

r (Q/2 + 1 - iX) r (m + 1 - 2zA) '

which is different from 0 for all real A. D

LEMMA 5 . 3 . Suppose X is simple. Then the space of functions on N of the form
/(A, •), as / runs in V(NA), is dense in L2(N).

PROOF: Let F in L2(N) be such that

f /(A, n)F{n) dn = 0, V/ G V(NA).
JN

This means that

/ f(x) ( f Tx(x,n)F(n)dn) dx - 0, V/ e V(NA),
JNA \JN /
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hence for every x we have

f Vx(x,n)¥{njdn = 0.
JN

Therefore, for any smooth, compactly supported function G on N, we have

/ G(ni) / Vx{nia,n)F(n)dndni = 0,
JN JN

that is

/ G(ni) / V\(a,n^xn)F{n)dndnx = / V\(a,n2) I G(nn2
x)F{n)dndn2

JN JN JN JN

= f Vx(a,n2)(G*F){n2)dn2=0,
JN

where G(n) = G^n"1) . Since the function G * F is in £(N), by the simplicity of A,

we get G * F = 0.

Since G is arbitrary, we conclude that F — 0 almost everywhere. D

We are now ready to prove our result.

PROOF OF THEOREM 5.1: All we need to prove is that the Fourier transform is

surjective. Suppose that the function F in L2fR+ x N, (cm]fc/27r) |c(A)|~2 dXdn) is

orthogonal to the range, that is,

r+oo r ^

I I f{X,n)F(X,n) |c(A)|~2 d\dn = 0, Vf eV(NA).
Jo JN

By Proposition 3.2, for every (p in V^(NA), we can rewrite the previous equation as

|c(A)|-2 dX = 0.

By the Stone-Weierstrass Theorem, the algebra of functions of the form cp, as ip runs
through Tfi (NA), is dense in the space of even continuous functions on R vanishing at
infinity. Hence, for every / in V(NA), there exists a set Ef of measure zero in R +

such that

f /(A, n)F(X, n) dn = 0, VA G R + \ Ef,
JN

and we may suppose also that the function n •-> F(X,n) is in L2{N) for any such A.

For every j in N , let tpj be a smooth function with the following properties:

(1) <fij(x) = 1 for every x in the ball of radius j — (1/j) (centred at the
identity);

(2) the support of <pj is contained in the ball of radius j + (1/j);

(3) for every x in NA, we have 0 ^ <Pj(x) ^ 1.
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Now fix a global coordinate system on NA and let M be the set of all functions
g on NA of the form g — fjP, for some j , where p is a polynomial in the coordinates
with rational coefficients. Since the set M is countable, the set

g€M

has measure zero; moreover we have

g{\, n) F(X, n) dn = 0, VA 6 R + \ E, Vg 6 M.

Since any function / in V(NA) has compact support, there exists j such that f = f Vj

and we can uniformly approximate / with a sequence (ge) of functions in M.

Therefore we have

/(A, n) F(X, n) dn = 0, VA € R+ \ E, V/ € V(NA),
N

and, by Lemma 5.3, we deduce F = 0 almost everywhere. D
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