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1 Introduction

The difticulties associated with the probability density for photons were recognized
by l.andau and Peierls as carly as 1930 [1]. However, density obtained by them
was 1ol positive definite and, thus, had no physical meaning. Later, Zeldovich [2]
obtained the following bilinear representation for a number of photons:

1 [ B@ED+ BSI@
N= 167r3hc/ Iz — 712

Here £ and H arc electromaguetic field strengths. The relation of photon nonlocaliz-
ability to other fundamental problems of modern physics has been discussed recently
m ref. [3] which, in fact, initiated this investigation. For the static magnetic field
there is a topological invariant called helicity which is defined as [4-6]

§= /A‘-Hdv (1.2)

drdy (1.1)

Here A is the usual magnetic vector potential (ﬁ = curlﬁ). The main advantage
of § is that it is invariant under the gauge transformation A — A + grad f under
the condition that either ff decreases sufficiently fast at infinity or the normal
component of I{ vamshes at some boundary inside which H and A are confined. For
the static magnetic field S characterizes to what extent magnetic lines are coupled
with each other. It has meaning even for the single magnetic line. In this case it
estimates the screwness of this line. The relativistic generalization of helicity was
mtroduced in ref. 7). It s defined as an integral over the zeroth component of the
vector

= Fov, A, o — %gmuﬁpaﬂ, }"aﬁ = BaAﬂ - aﬂAa (].3)

where ¢*#7° is a completly antisymmetric fourth rank tensor with €% = 1. The
components of the 4-current density

P*=A-H 7= ®+AxE (1.4)

satisfy the equation

dg*=-25-H (1.5)

It follows from this that j, is conserved only if /- B = 0. This means that in a
relativistic case helicity (1.2) has physical meaning only for the very special elec-
tromagnetic fields. Another approach adopted in refs. [8,9] was grounded on ihe
observation made by Stratton {10} that for the free electromagnetic field the stan-
dard representation of field strengths

—

E = —gradd - /.i‘/c, H =curiA (1.6)

coexists with the following one

.

E=—curlV, H=—grad¥— V/c (1.7)



Obviously, E and A may be united into the 2-nd rank tensor

F*=—H, F=cy By Fo=08V, -8V, V,=(¥,-V)
The foliowing 4-current can be constructed from F** and V*
3# =F* .V,
Or, explicitly,
P=EV, j=EVv-HxV

It is easy to check that (')‘J“ = ——2E- [I. it follows thai 4-current J* = 7# — J# is
conserved: 9,J* = 0. The explicit components of J* are

=0 A-EV, J=H ¢6+ExA-E- v+HxV (1.8)

Some words should be added concerning the alternative representation of the electro-
magnetic strengths (1.7). In ref. [11] the nontrivial configurations of electric dipoles
were found which are described adequately by the electric vector potential rather
than electric scalar one. Further, a quite different functional form of the Fourier
transforms of A and V (sec Eq.(2.2)) suggest that they describe different degrees of
freedom of the electromagnetic field.

2 Relativistic helicity and its physical meaning

The conservation of J* suggesis that the integral
s:/m‘x_nv)mz (2.1)

does not depend on tine. 1t is the relativistic generalization of helicity for an arbi-
trary free electromagnetic field. For this field only transversal components of E and
H have physical meaning (however, sometimes (see, e.g., [12,13]) the physical sense
is ascribed to the longitudinal component of electromagnetic field). The longitudinal
component is most easily eliminated if the Coulomb gauge is used

Y=&d=0divA=divV =0

To clarify the physical meaning of S, we perform the Fourner expansion of field
strengths and potentials according to the following rule

G(F) = / G(k)explik - £)d’k
The requirement of E, H, A, V 10 be real leads to the following representation of the
Fourier components [14]

C
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E(R) = Y (flky + ff(=ky), H(E)= Ex (f(F) - f*(=k))
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AR = =7 - PR, V) = s Ex B+ AR 22)

Here w = o[£ The function f{k) being the photon wave function in the momentum
space satisties the cquations

W f=wf, £ =0

(in fact, ;7 = copt—wr) - 5y where fy does not depend on time). Using (2.2) we
evaluate the enerey of the electromagnetic field:

Efxv s, A o
E = /—+ i L= /w»,’.'i}c)‘ (k)d:k
ol 4

1t follows from this that o(£) = f*(k) (1\)/)’1 18 the photons density in the momentum
space. The total number of photons s given by

N = /mEbd"k 12.3)

The sanie expression is obtained if we substitute the Fourier expansions of Eand A
mto (1.1) and perform integration over the spatial vanables. To clarify the physical
meaning of 5 we change £, A,V in (2 1) by their Fourier expausions and get

Y P
S = _x,wm'/a;'(f'uf) x f{F)) (2.4)

w

Now we represent f in the form [14]
F =i+ 7 fy {2.5)

tlere 7 and 7, are the unit vectors for the nght and left circularly polarized photons
((“;}‘f’.‘[(:(?;"‘a‘: i, F:‘;{)((-“H:iﬁ.;“, r“;l)(f?[/'—“—“':(r;\', e :[(/I\)
Substitution of {2.5) into (2.4) gives

S = ¥re /u_,r’n;‘l — )k {2.6)

It 1 easy to check that the photon density in the momentum space is given by 4 0=
tlfnlz + {f, £2)/1.. This weauns that S/8xch coincides with the difference of the nght
and left circularly polarized photons. Uence, (| /512 — ]j? 2)/h and ( HA- EVY)Rxh
are the densities corrcspondm; to this difference in the ummentum and coordinate
space, resp. Now we express f(k) in Eq.(2.3) through its Fourier transform (k) =
D%yfflf)(‘Xp(—ii? £)d’r). Then, N = [ o{F)d*z, where p(F) = 1'/(_1‘)‘ Jh. Since
2{T) 1s positive definite it secms at first that o(F) may be viewed as a candidate for
the photon deusity. However, the observables of the electromagnetic tield are the



field strengths £ and . The vector function {7} is a hghly nonlocal function of
them. To vee this, we express f{k) through the Fourier components of £ and i

= 2r .-

R = Z=(B(R) + 7 x [(F))
It follows from this that the Fourier transform of f*( k), that is, £(7) depends on the
values of £ and /7 in the whole space, not at the point = only. This is generally
considered as a senous drawback [14].

For the free electromagnetic field Lipkin {15] has obtained the conserved 3-rd
rank tensor {the so-called zilch) comnposed of field strengths and its derivatives. [t
was iraceless and symmetric with respect to the first two indices. Later, Ragusa
has discovered [16! the antisymmetric counterpart of the zilch tensor. He explicitly
showed [17] that its components in the momentum space are reduced to the integral
over the difference of right and left arcularly polarized photons multiplied by the
first or second power of w. Because of this the physical meaning of the zilch-type
tensors is rather obscure. On the other hand, the helicity S given by (2.1) reduces to
the difference of right and left photons. It measures the screwness of the electromag-
netic field and may be considered as a mussing link in the list of the Lipkin-Ragusa
invanants. Obviously, the helicity S equals zero for the plane Linearly polarized clec-
tromagnetic wave. The following important theorem concermng massless particles
was formulated m ref. [15L.

Theorem 1. A theary that sllows the construction ~f a Lorentz-covariant con-
served four-current J, cannotl contain massless particles of spin J > 1/2 with non-
vanishing values of the conserved charge J S,

In our case, for the particles of the spin | {photons) there are the conserved
4-vector given by (1.5} and conserved charge given by (2.1). At first glance, this dis-
agrees with Theorem 1. However, the proof of this theorem given in [18] contains the
implicit assumption that the wave function of a massless particle with definite values
of 4-momentum and hzlicity is an cigenfunction of rotation {around 3-momentu) in
an arbitrary Lorentz reference frame (written in italics helicity means the projection
of the spin onto the direction of motion in contradistinction to helicity defined by
(2.1}). This in turn means that the wave function of a particle is uniquely (up to a
nonessential phase factor) defined by 1ts 4-momentum and helicity and, thus, is gauge
invariant. In quantum clectrodynanncs there is no complete agreement as to what
one means by the wave function of the photon. Some authors (seee.g., [19]) mean
by 1t the 4-potential A, while others tsec,e.g., {20}) prefer to deal with stress tensor
Fu . Even in different editions of the same hook {{14],21]) vanious definitions are
sometimes adopted. The gauge-invaniant definition of photon wave function adopted
m ref. [18] corresponds to the the second defimition, ie., to F,,. In this basis (ie.,
m £, ) all the matrix elements of the 4-vector {1.8) are equal to zero. This is not
the case for the basis associated with the 4-potential A,

We briefly summarize the content of this section: the quantity (2.1) is found which
generalizes helicity notion for the arbitrary free electromagnetic field. It coincides
with the difference of the right and left photons composing this field. The deunsity
corresponding to this gencralized helicity taken at some space pomnt T is expressed



through the values of electromagnetic strengths and potentials taken at the same
point.

3 Gauge-invariant representation for the energy
of weak gravitational field

In the mentioned above ref. [18] another theorem was proved as well.

Theorem 2. A thenry that allows the construction of a conserved Lorentz-covariant
energy-momentum 8 for which { @% d®z is the energy-momentum four-vector can-
not contatn massless particles of spin 7 > 1.

This means, in particular, that a gauge-invariant density of the field energy does
not exist for the Lorentz-covariant field of the spin 2. It was shown in ref. [22]
that Einsteinian gravitational equations in the weak field limit and in the absence of
masses coincide with the equations describing the massless spin 2 field. Then, the
above Theorem reflects the well-known difficulty with the energy density problem in
the General Relativity [23]. In this section, we find the gauge-invariant expression for
the energy of the weak gravitational field consisting of gravitational waves. However,
this expression reduces to a double integral similar to (1.1). Following ref. [22], we
introduce the gauge-invariant (in the sense defined below, see Eq.(3.7)) quantities

Eq = Rijh = %E_rkl(—tmanlmn) H:] = iﬂmn&jmu = %EimuRmuu (3-1)

Here R, is the Riemann tensor. According to {22], the symmetric traceless ten-
sors F,; and H,; in the weak field limit satisfy equations strongly resembling the
Maxwellian ones

1
ﬁ.klakE(_, + ZB,H., =0, a.‘Hij =0
(3.2)
1
el — ZaeEij =9, JE;=0

For the weak gravitational field (g, = Suv+huu, |hu| < 1) the standard equations
connecting the curvature tensor with Christoffel symbols have the form [24]

Ruvpe = 8,40 — 8,T

wep

Bere I',, = %(Bth, + 85l — 94hy,). Having taken into account (3.1) these Eqgs.
can be presented in the form similar to the electrodynamic ones (1.6) and (1.7):

1
HU = EimnamAnja Eij = __atA(j - aiAOj (33)

<
Eiy = —eumndnVes, By = —20,V, — 8, (3.4)

[+
Here
. 1 )

A:J = 1P4J|'y AO; = I‘i_yh Vlj = ~56.7'mnrm.m'» Voj = ';'f«mnrmM (35)



Using a gauge Ao, = 0, Vo, = 0 we find the following expressions for the Fourier
transforms of E., (%), H,,(Z), A,(Z), V,,(Z) strongly resembling eleciromagnetic
ones (2.2):

Fad VGLU3 - - - w - s —
Eij(k) = _’Q_ﬁ(fw(k) + fu"(—k))) Hu(k) = Tgfﬁfnmnkm(fuj(k) - fﬂ]‘(_k))

¢

5

{3.6)
e VGw - -, - p o .
Ay(k) = —Zm(ﬂ,(k%ﬂ,'(—k)), Vi (k) = —z‘W:‘/\/g;f.mkm(f",(k)+f,,,'(~k))

Here G is a Newtonian gravitational constant. Synumetric traceless tensors Jtk)
satisfy the equations

Sy, =why, kf, =90

The Hilbert condition 3,k — $8,hy = 0 usually imposed on f,, (24] leads to the
following equation on Ay,
Oh,, =0

The gauge transformation
Ay = by + vy, + Byuy,, Hoy =0 (3.7)

does not change the tensor R, .., conserves the Hilbert condition and does not
change the total energy and momentum of the weak gravitational field (as it adds
complete divergence to the energy-momentum pseudotensor). The gauge transfor-
mation (3.6) may be used to obtain h,, satisfying the following transversal gauge
conditions {25]

’[LH = 0» hvh = hl( = 0» /’M = 0) (‘)kh'lk =0
By taking into account of {3.6) this gets

1 1 ;
Az] = ‘E‘Edchzj) AO] = 0) Vu = §F|mn.dmhn,j) VO] =0

Using the standard definition of the energy-momentum pseudotensor [24], one casily
finds the following expression for the energy of the weak gravitational field
4

e (7Y + V(2 (3.8
£ WG/(_A.,(I) + V(&)= (3.5)

On the other hand, this energy may be presented as a double integral over the bilocal
gauge-invaniant density '
= ot ‘ E.,(E)E.,(Q-% [i.-J(f)H,,(ng3zd3y
647G il

Expressing in {3.8) and (3.9) A, V,,, Ei; and H,; through their Fourier transforms
and performing the integration over the spatial variables we arrive at

{3.9)

£= /[f.,(fé)\zwd"k (3.10)



A posteriori the distinction of |7 — 7] degrees in {1.1) and (3.9) may be realized by
the dimensional considerations. In {3.9) the fields L,, and H,; have dimensions (L]7?,
the integral has dimension [L] and with account of the factor standing in front of the
integral one obtains the dimension of energy. In (1.1) the electromagnetic strengths
E and H have dimensions ©l/ILT (e is a charge), the integral has dimension [e]’
and the whole expression (1.1) is dimensionless, as it should be. The following
fact remains unclear to us. In the case of a weak gravitational field there are two
equivalent. expressions for energy corresponding to the local (3.8) and bilocal (3.9)
densities. In the electromagnetic case, there is only bilocal density for the sum (1.1)
of nght and left photons aud local deusity for their difference (2.1).

4 Conclusion

We have proved that for the free clectromagnetic field the conserved gauge-noninva-
niant 4-pseudovector can be constructed. The integral over its zeroth component is
a gauge-imvariant, independent of time quantity that comncides with the difference
of the nght and left photons composing the field. This conserved integral is a
relativistic generalization of the helicity, well-known topological invariant widely
used for the description of the static magnetic field. The existence of such a
quantity does not contradict the well-known theorem prohibiting the existence of
the conserved gauge-invariant 4-current composed only of the electromagnetic field
strengths (likewise there is no gauge invariant density of the gravitational field
density). For the weak gravitational field reducing to the gravitational waves it is
possible to introduce the quantities strongly resembling the clectromagnetic
potentials. The energy density of weak gravitational field may be expressed
through quadratic combinations of these potentials. On the other hand, the encrgy
of the gravitational field may be represented as a double itegral over the bilinear
gauge-invanant density. The existence of these two representations does not
contradict the theorem mentioned above. To the end, we note the similarity of the
clectrodynamic Kqs. (1.6).( 1.7),(2.2) to the gravitational ones {3.2),(3.14),(3.6).
Probably, this will be a balm for those who belicves Lo the vector gravitational
theory ( its nice exposition may be found in the book 26]). Yet, this stmilarity is
limited by the weak gravitational fickds.
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Adpanackes ' H., C enanosckuit K. E2-95-413
CrmpaibiocTs ¢BOGOAHOIO 21EKTPOMAHHTHOIO HOJS
H ee PUIHYECKHH CMBICT

Npoanai3HpoBaNO HOHSTHE CHUPAILHOCTH 11t CBOBOIHOIO 31EKTPOMAIHHTHO-
ro nond. Beesena 00o6we s CHUPAIBHOCTD, SBISIOWANCH COXPANSIOLLEHCS Be -
UMHOH,PABHON PA3HOCTH YHCE! 1IPABBIX H NEBBIX DOTOHOB, COCTARMRIOLLIX 31EKTPO-
MarmnTioe noste. Haliaennas ciinpaisHOCTD SBASETCS €CTECTBEHHBIM HOHOMHEHHEM
K Habopy «UMIbX»-HHBAPHANTOR, NOCTPOCHHBIX JIHIIKHIbIM 1 Parysoii. [1ns aneprin
Cnaboro rpaBHTALHONHOIO MONH HAIIENHO KaTHOPOBOUHO-HHBAPHAHTHOE BHIPAXEHIHE,
HanoMuHaKLEe H3BECTIOE Gituneliinoe BBIPAXEHHE IR HOIHOTO 4icna POTOHOB
NEKTPOMATHHTHOIO HOJIN.

PaGora sbitionneita g JTaGoparopun Teoperiueckoii ¢uszuka um.H.H.Boronw6o-
Ba OUSAN.

Mpenpuut O6heIEHIOrD HRCTHTYTA SACPHBIX HCCICIOBAHMIL, lybua. 1995

Afanasiev G.N., Stepanovsky Yu.P. E2-95-413
The Helicity of the Free Electromagnetic Field and Its Physical Meaning

The notion of helicity for the free electromagnetic field is analyzed.
The generalized helicity is introduced which is a conserved quantity coinciding
with the difference of the right and left photons composing the electromagnetic field.
It seems that it completes the list of the zilch-type invariants found by Lipkin
and Ragusa. The gauge invariant expression for the energy of the free gravitational
field is obtained which strongly resembles the well-known bilinear expression
for the total number of photons composing the electromagnetic field.
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