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1. Introduction. In this paper we deal with the following question:
which surfaces in the Euclidean space Es admit a mean-curvature-
preserving isometry which is not an isometry of the whole space?

This question has been studied by a series of mathematicians beginning
with Bonnet [1] and including Car tan [2] and Chern [3]. These surfaces
are special and have been classified into three types:

1. The surfaces of constant mean curvature other than the plane
and the sphere;
2. Certain surfaces of nonconstant mean curvature that admit a
one-parameter family of geometrically distinct nontrivial isometries;
3. Certain surfaces of nonconstant mean curvature that admit a single
nontrivial isometry unique up to an isometry of the whole space.

A surface that belongs to one of the above types is called a Bonnet
surface.

By a nontrivial isometry of a surface we mean an isometry of the
surface to another surface or to itself which does not extend to an
isometry of the whole space. Two isometries are said to be geometrical-
ly distinct if one is not the composition of the other followed by a space-
isometry.

A kelicoidal surface in Ez is the locus of an appropriately chosen
curve under a helίcoίdal motion with pitch in the interval (0, oo). Such
a motion is described by a one-parameter group of isometries in E3. The
orbits of this motion (helices) through the initial curve foliate the
helicoidal surface. More details can be found in various places in the
literature—for instance in [4].

The main result of this work states:

THEOREM. The helίcoίdal surfaces are necessarily Bonnet surfaces
and they represent all three types.

REMARKS. 1. The helicoidal surfaces of the third type provide a
negative answer to the following conjecture, posed by Lawson and Tribuzy
[5]:

We consider a Riemannian surface Σ and a smooth function H: Σ -> R.
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If a nontrivial family of isometric immersions with mean curvature
H does not exist, then there are at most two noncongruent ones.
Then the conjecture states: "In the absence of a nontrivial family
the immersion must be unique." (see Final comment 2 in [5].)
2. By the main result in [5] the Bonnet surfaces of the second type

cannot be compact.
3. It seems that not all Bonnet surfaces of the third type are

helicoidal surfaces, since a helicoidal surface is determined by one real-
valued function of one variable, while the Bonnet surfaces of the third
type depend on four functions of one variable ([2]) and therefore have
a greater degree of generality.

4. The helicoidal surfaces of the first type have been thoroughly
examined in [4] along with their isometric deformation under preservation
of the constant mean curvature. Our arguments here lead to the follow-
ing new interesting geometric characterization of them: A helicoidal
surface has constant mean curvature if and only if its principal directions
make an angle constant with the orbits.

At this point I wish to express my gratitude to my academic advisor
Professor William Pohl for his valuable guidance.

2. The Equations of Codazzi. We consider a surface M2 in Ez,
orientable and sufficiently smooth. We consider a well-defined field of
orthonormal frames (x, e[, e[, e3) over M2, such that x e M2 and e[, e'2 com-
prise an orthonormal basis of the tangent space of M2 at x. Then we
have

Via = -VH f ( s o Vu = 0) ,

3

ji = Σ Va Λ ηs (first structural equation) ,

dVij = Σ Vik Λ yjko (second structural equation) ,
fc=l

where 1 ^ i , j ^ 3 .

ηz = 0 on M2, so we have ηiz f\y]x + f]^ Λ % — 0 Thus, by Cartan's
lemma we get

. V» = aVi + bη2,

V» = bVi + &J*

Then the mean and Gaussian curvatures of M2 are
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2 V ' M

K = ac - b2 (Gauss Equation) (GE) .

We also have

dVta = Vn Λ %3 = —bdv2 + cdvΛ
\ (Codazzi Equations) (CE) .

dy2s — V21 Λ )?i3 = αα^2 — bdη1 )

A given Riemannian surface can be realized in Es if the CE and GE are
satisfied.

We now let

e1 = (cos σ)e[ + (sin σ)e2 ,

e2 = — (sin σ)e[ + (cos cr)e2

be the principal frame of M2. For this frame the function b defined by
(1) is zero and α, c are the principal curvatures.

In the sequel, we consider M2 with no umbilic points. We may then
assume for the principal curvatures a and c that a > c and we put

Working in a manner similar to the one in [3], after putting φ = 2σ and
using the above, we can show that the CE are equivalent to

( 2 ) dH = Hflx + H2η2 (thus defining Hlf H2) ,

(3) dφ= -(sin Φ)(^Vi - ψv) + (cos Φ)(-ψvi + ^

- *d log J - 2η12 ,

where * is the Hodge operator whose action on the 1-forms is described

by

*3?i = 72> *V*= -Vi ( * 2 = = ""I )

3. Some facts about helicoidal surfaces. Every helicoidal surface
can be parametrized by (s, t), where

t: time along orbits from a fixed t = t0,
s: arc-length of curves orthogonal to orbits.

Then the curves t = constant are carried along the orbits by the heli-
coidal motion. They remain orthogonal to the orbits and foliate the
surface. So an orthonormal frame {e[, e2} is determined along these co-
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ordinate curves. The corresponding coframe may be written as

Vi = ds ,

V2 = q(s)dt (q depends only on s) .

Thus,

Vn =

Hence the ^-curves are geodesies and the %-curves (orbits) have geodesic
curvature equal to

Along each orbit α, c, μ, φ are constant, hence they depend on s only.
So, in this case we get H2 = 0. Also if we put dJ = J1Ύ]1 + J2^2, we get
J2 = 0 and d log J = (JJJ)7jt. Hence (3) becomes

cẐ  = -(sin 0)(^7i) + (cos Φ)(ψvl) - y ^ -

Since d^ = (dφ/ds)ds, this implies

( 4 )

Finally, by direct computation or by well known facts about curves on
surfaces and depending on which vector (e[ or e'2) is the major principal
axis, we get:

The space curvature of orbits is either

(6 ) {μ2 + (α(cos2 σ) + c (sin2 <τ))2}1/2 or {μ2 + (α(sin2 σ) + c (cos2 <τ))2}1/2,

and the space torsion of orbits is ±(α — c)(smσ)(cosσ).

4. Proof of the Theorem. The Theorem follows from the next two
propositions. We consider a helicoidal surface parametrized by the pa-
rameters (s, t) of Section 3. We have:

PROPOSITION 1. For a helicoidal surface the mapping (s, t)-+(s, —t)
is a nontrivial isometry which preserves the mean curvature.

PROOF. By what is exhibited in Section 3, this mapping is an
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isometry which preserves the mean curvature. An isometry is trivial,
in general, if and only if it preserves the mean curvatures and the
principal directions. Thus, in this case, the above mapping is trivial if
and only if σ is a multiple of π/2. Then by (6) we get that the orbits
are plane curves, which is impossible for a helicoidal surface. q.e.d.

PROPOSITION 2. A helicoidal surface is a Bonnet surface of the second
type if and only if the following relation is satisfied:

ldH\ IdHV dH

A i t - i l (cosφ(s)) + d±dlog(\q(s)\) = Q
ds\ J I \ J / J ds

with H = H(s) nonconstant.

Since this relation may be viewed as an ordinary differential equation
for the real-valued function which determines the helicoidal surface under
the helicoidal motion, the existence of such a surface is guaranteed by
the local existence theorem for solutions of an ordinary differential
equation.

REFEREE'S REMARK. The equation in Proposition 2 is equivalent to:

J-ifiψ)-(Bin φ(8))-q(8) = constant
\ ds '

with H = H(s) nonconstant.

Using (4), the equation can be integrated.

PROOF. We consider σ — σ(s) as in Section 2 and the principal
coframe

ω1 = (cos σ(s))ds + (sin σ(s))q(s)dt,

ω2 = — (sin σ(s))ds + (cos σ(s))q(s)dt.

We define H19 H2 by putting dH — H1ωι + H2ω2. We set

a, = (HJJ)ω, - (HJJ)ω2, a2 = (HJJ)ω1 + (HJJ)ω2.

Chern has shown in [3] that the criterion for the existence of the
Bonnet surfaces of the second type is:

dax = 0 and da2 = ax A a2.

Substituting the formulas for ω19 ω2 into those of alf a2, and using (4)
in Section 3, it is a matter of direct computation to verify that: daλ — 0
and da2 = αx Λ a2 simultaneously if and only if the relation claimed is
satisfied. q.e.d.
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We conclude this work with the following geometric characterization
of the helicoidal surfaces of the first type:

PROPOSITION 3. A helicoidal surface has constant mean curvature
if and only if its principal directions make an angle constant with the
orbits.

PROOF. Immediate consequence of (4) and (6) in Section 3. q.e.d.
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