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Abstract Mounted on the sides of two widely separated spacecraft, the two Heliospheric

Imager (HI) instruments onboard NASA’s STEREO mission view, for the first time, the

space between the Sun and Earth. These instruments are wide-angle visible-light imagers

that incorporate sufficient baffling to eliminate scattered light to the extent that the passage

of solar coronal mass ejections (CMEs) through the heliosphere can be detected. Each HI in-

strument comprises two cameras, HI-1 and HI-2, which have 20° and 70° fields of view and

are off-pointed from the Sun direction by 14.0° and 53.7°, respectively, with their optical

axes aligned in the ecliptic plane. This arrangement provides coverage over solar elongation

angles from 4.0° to 88.7° at the viewpoints of the two spacecraft, thereby allowing the ob-

servation of Earth-directed CMEs along the Sun – Earth line to the vicinity of the Earth and

beyond. Given the two separated platforms, this also presents the first opportunity to view

the structure and evolution of CMEs in three dimensions. The STEREO spacecraft were

launched from Cape Canaveral Air Force Base in late October 2006, and the HI instruments

have been performing scientific observations since early 2007. The design, development,

manufacture, and calibration of these unique instruments are reviewed in this paper. Mis-

sion operations, including the initial commissioning phase and the science operations phase,
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are described. Data processing and analysis procedures are briefly discussed, and ground-

test results and in-orbit observations are used to demonstrate that the performance of the

instruments meets the original scientific requirements.

1. Introduction

Coronal Mass Ejections (CMEs) are among the most energetic and dramatic transient events

in the solar system, releasing some 1012 – 1013 kg of matter from the Sun at speeds of typi-

cally 300 – 400 km s−1, but occasionally up to over 2500 km s−1, in discrete eruptions. Such

eruptions, which are a major component of coronal evolution, clearly cause severe distur-

bances in the heliosphere and can impact near-Earth space sufficiently to affect a wide range

of human activities. Understanding the CME phenomenon, from launch to arrival at Earth,

is clearly a major goal in solar and heliospheric physics. There are currently a number of op-

erational spacecraft making solar and heliospheric observations, including the ESA/NASA

Solar and Heliospheric Observatory (SOHO), the Coriolis spacecraft with the U.S. Air

Force Solar Mass Ejection Imager (SMEI) onboard, and the NASA Transition Region and

Coronal Explorer (TRACE), together with the more recently launched NASA Solar Terres-

trial Relations Observatory (STEREO) mission and the Japanese Hinode satellite. Given

this fleet of spacecraft, there is the opportunity for a major multi-instrument attack on many

aspects of CME physics and this field is developing rapidly (see recent reviews in, e.g.,

Gopalswamy, Mewaldt, and Torsti, 2006).

CMEs have conventionally been detected by using coronagraphs; these are instruments

that occult the Sun’s disc to detect the faint outer corona and its eruptions. An exam-

ple of a traditional coronagraph observation of a CME, using the LASCO instrument on

the SOHO spacecraft, is shown in Figure 1. This technique introduces two basic obser-

vational challenges. Firstly, the instruments that detect the CMEs do not observe the so-

lar disc, which means that CME onset studies invariably involve back-projection of data

to relate CMEs to surface structures and events identified using other instrumentation.

This observational disconnection leads to major difficulties in investigating the CME onset

process (see Harrison, 2006, and references therein). Secondly, any Earth-directed CMEs

are not well viewed by near-Earth spacecraft. The nature of the Thomson scattering process

that illuminates CME material means that they are poorly viewed out of the plane of

the sky, and any Earth-directed CMEs will be seen as “halo” events coming from be-

hind the occulting disc of the coronagraph. Such events were first identified by Howard

et al. (1982) and have been identified routinely in recent years (e.g., Kim et al., 2005;

Lara et al., 2006). Determining the speed of Earth-directed events is clearly very difficult and

the observational restrictions would suggest that we do not actually detect all Earth-directed

CMEs. Indeed, we may only detect a small fraction in this way.

Thus, one “holy grail” for solar physics has been to observe CMEs in interplanetary

space, along the Sun – Earth line, and that is the underlying goal of the Heliospheric Imager

instruments (Socker et al., 2000; Defise et al., 2003; Harrison, Davis, and Eyles, 2005;

Eyles et al., 2007) aboard the NASA STEREO mission.

Occupying solar orbits at approximately 1 AU, with one spacecraft leading and the other

lagging the Earth, and with each spacecraft separating from the Earth by 22.5° per year, the

two STEREO spacecraft provide vantage points from which one can view the Sun – Earth

line. The spacecraft are designated STEREO-A for the leading, or “ahead”, spacecraft and

STEREO-B for the trailing, or “behind”, spacecraft.

The STEREO multi-instrument remote sensing package, known as SECCHI (Sun-Earth

Connection Coronal and Heliospheric Investigation; see Howard, Moses, and Socker, 2000;
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Figure 1 An image taken on

4 January 2002 by the LASCO

C3 coronagraph aboard SOHO

showing a CME off the solar

northeast limb. The image also

shows stars, Mercury, and

streamers. The image of Mercury

is saturated, causing blooming

along the columns of the CCD

detector.

Howard et al., 2008) includes a Heliospheric Imager (HI) on each spacecraft. The same

designation is used for the HI instruments on the two spacecraft (i.e., HI-A and HI-B).

The other major component of SECCHI is the Sun Centred Instrument Package (SCIP),

comprising an Extreme Ultra-Violet Imager (EUVI), which images the chromosphere and

lower corona out to 1.7R⊙ (solar radii) in four emission lines between 17.1 and 30.4 nm,

and a pair of traditional white-light Lyot coronagraphs (COR-1 and COR-2), which cover

the coronal regions 1.4R⊙ – 4R⊙ and 2.5R⊙ – 15R⊙ in the plane of the sky, respectively,

with bandpass from 650 to 750 nm. SCIP also includes a Guide Telescope (GT) whose

output error signals are fed into the control loop of the spacecraft attitude control system to

maintain the SCIP instruments accurately pointing at Sun centre.

The HI consists of two visible-light cameras (HI-1 and HI-2) mounted on the side of each

STEREO spacecraft (see Figure 2), which view space, sheltered from the glare of the Sun

by a system of baffles. This system provides us with several important new opportunities

for CME research including, for the first time, the ability to pursue the following STEREO

primary science objectives:

– to observe geoeffective CMEs along the Sun – Earth line in interplanetary space,

– to detect CMEs in a field of view that includes the Earth, and

– to obtain stereographic views of CMEs in interplanetary space and hence to investigate

their structure, evolution, and propagation in the heliosphere.

In addition to the primary objectives summarised here, the instrumentation provides

unique opportunities to pursue a number of additional scientific goals, including:

– direct imaging from two different locations of corotating interaction regions (CIRs), re-

gions of plasma compression formed where fast solar wind streams catch up with slow

solar wind,

– stellar variability studies, including the search for exoplanets; the HI cameras are able to

continuously monitor the light-curves of stars down to 12th magnitude from a very stable

environment, for periods up to 20 and 70 days for HI-1 and HI-2, respectively,
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Figure 2 (a) The Heliospheric Imager instrument mounted on the side of one of the STEREO spacecraft.

The diagram also shows a number of other instruments and spacecraft subsystems. (b) A close-up of the

spacecraft body showing the HI telescopes, together with the SECCHI Sun Centred Instrument Package.

(Adapted from diagrams by the Johns Hopkins University Applied Physics Laboratory.)

– observations of comets, including the potential for three-dimensional imaging of

cometary tails, and

– observations of asteroids.

The basic instrumental approach is through occultation and a baffle system, with wide-

angle views of the heliosphere, achieving light rejection levels sufficient to view diffuse

density enhancements revealed by Thomson-scattered photospheric light from free electrons

in the solar wind plasma.
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The heritage for the HI instrument comes from the SMEI instrument (Eyles et al., 2003;

Jackson et al., 2004), operating aboard the Coriolis spacecraft, launched in 2003. The SMEI

instrument is also a wide-angle heliospheric imaging system, with three 60° × 3° field-of-

view baffled camera systems. The spacecraft is in a Sun-synchronous polar orbit, with its

attitude stabilised with respect to the local vertical. The cameras sweep around the sky as

the spacecraft orbits the Earth and consequently almost the entire sky is mapped each orbit.

The basic concept of the SMEI instrument is similar to HI in that a baffle technique

is used to enable imaging of faint, diffuse structures in the heliosphere. However, there

are significant differences. There are two HI instruments and each is mounted aboard a

three-axis stabilised spacecraft, with a fixed field of view looking towards the Sun – Earth

line. Thus, the HI instruments allow a continuous view of the heliosphere between the Sun

and Earth, from two increasingly separated locations (see Figure 4). This allows a unique

capability for the study of Earth-directed CMEs and their three-dimensional structure. The

SMEI instrument operates from Earth orbit and consequently does not view the Sun – Earth

line.

2. Scientific Requirements and the Instrument Concept

The basic design concept for the HI can be seen in Figure 3. The instrument is essentially a

box shape, of major dimension about 800 mm. A door was utilised to protect the optical and

baffle systems during ground operations, launch, and the initial cruise phase activities. The

door is a one-shot system – it is opened once during instrument commissioning and remains

open thereafter. The two telescope/camera systems, HI-1 and HI-2, are housed deep within

a baffle system as shown in Figure 3. The direction to the Sun is indicated – the Sun remains

below the vanes of the forward baffle system. The detectors are charge-coupled detectors

(CCDs), which are passively cooled by radiators facing space in the antisunward direction.

The performance specifications for HI are listed in Table 1. The HI-1 and HI-2 telescope

boresights are directed at angles of 13.65° and 53.35° from the principal axis of the instru-

ment, which in turn is tilted upwards by approximately 20 arc-min to ensure that the Sun is

sufficiently below the baffle horizon. Thus, the two optical axes are nominally set to 14.0°

and 53.7° from the Sun, in the ecliptic plane, with fields of view of 20° and 70°, respec-

tively. This provides an overlap in solar elongation angle of about 5° between the two fields

of view, with complete coverage along the Sun – Earth line from 4.0° to 88.7° elongation.

Both telescopes are designed to image visible light. In the case of HI-2, the camera is

designed to have as wide a spectral response as possible to maximise the weak coronal signal

at large solar elongations. The bandpass of HI-1 is chosen to approximately match that of

COR-2, the outermost of the SCIP Sun-pointing coronagraphs in the SECCHI instrument

suite.

The HI detectors are CCDs with 2048 × 2048 pixels, where each pixel has a size of

13.5 × 13.5 µm. These are usually binned onboard to 1024 × 1024 bins, resulting in image

bin angular sizes of 70 arc-sec and 4 arc-min, for HI-1 and HI-2, respectively. As discussed

later, to obtain sufficient statistical accuracy, long-duration exposures are required. However,

the rate of cosmic-ray hits would compromise such images if they were taken as single expo-

sures. Thus, short exposures are taken and cleaned of cosmic rays onboard, and a number of

such exposures are then summed to produce an image to be down-linked (see Section 5.3).

For each telescope, Table 1 lists the nominal exposure time and number of exposures

per summed image sequence. With a CCD line transfer rate of rather more than 2 ms per

line and an image clear sequence of 124 µs per line, the readout time of each exposure is
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Figure 3 (a) The Heliospheric Imager design concept. (b) A cross-sectional view through the instrument,

showing the fields of view of the two telescopes.

approximately 4.8 seconds, including overheads. Mainly because of mechanical accommo-

dation constraints, the cameras do not have shutters, so the fact that the readout time is not

insignificant compared with the exposure time results in the images being smeared during

the readout process. However, as discussed in Section 10.1.2, this image smearing resulting
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Table 1 Performance specifications of the HI instruments.

HI-1 HI-2

Direction of centre of field of view from Sun centre 14.0° 53.7°

Angular field of view 20° 70°

Angular range 4° – 24° 18.7° – 88.7°

(15R⊙ – 90R⊙)a (70R⊙ – 330R⊙)a

CCD pixel size 35 arc-sec 2 arc-min

Image array (2 × 2 binning) 1024 × 1024 1024 × 1024

Image bin size 70 arc-sec 4 arc-min

Spectral bandpass 630 – 730 nm 400 – 1000 nm

Exposure timeb 40 seconds 50 seconds

Exposures per summed image sequenceb 30 99

Summed image cadenceb 40 minutes 2 hours

Brightness sensitivity (B⊙ = solar disc) 3 × 10−15B⊙ 3 × 10−16B⊙

Stray-light rejection (outer edge of field) 3 × 10−13B⊙ 10−14B⊙

aMeasured in the plane of the sky relative to the viewing location.

bThese are actual values optimised during mission operations rather than original specifications (see Sec-

tion 9.3).

from the shutterless operation of the cameras is correctable during subsequent data process-

ing.

The geometrical layout of the fields of view of the HI telescopes, together with the COR-

2A and B fields, is shown in Figure 4(a). The HI-A telescopes have their optical axes pointed

nominally in the ecliptic plane, at elongation angles to the east of the Sun, whilst HI-B axes

are pointed to the west. The HI-1 and HI-2 fields provide an opening angle from the solar

ecliptic of about 45°, chosen to match the typical size of a CME. There is significant overlap

between the HI-1 and HI-2 fields of view, permitting photometric cross-calibration of the

instruments. There is also continuous coverage from the COR-2 fields into the HI-1 fields,

at least close to the ecliptic plane.

Although the optical designs are optimised for the circular fields of view of diameter 20°

and 70°, the square format of the CCD detectors results in some response in the regions

indicated by dotted lines in Figure 4(a), although there is significant optical vignetting in

these corners and, in the case of HI-2, the two corners on the side closest to the Sun are

blocked by the internal baffles (see Figure 3).

The diagram serves to illustrate the scale of the imaging coverage of the mission, pro-

viding a view of the Sun – Earth line from the SECCHI coronagraph fields to the Earth and

beyond. The Earth, as viewed from the different spacecraft, appears to move along the eclip-

tic plane during the mission, and during the second and subsequent years of science mission

operations it will be in the fields of both HI-2A and HI-2B.

Although the configuration is shown in Figure 4(a) as a simple 2D diagram, it must be

emphasised that the HI-A and HI-B viewpoints are from two widely separated spacecraft at

similar planetary angles (Earth – Sun – spacecraft), thereby providing a stereographic view.

Consequently, once the spacecraft are well separated, the HI-A and HI-B fields will cover

common areas of the heliosphere. This is illustrated in Figure 4(b), which shows a projection

onto the ecliptic plane of the overall fields of view of the HI instruments from the two

spacecraft, on 1 October 2008. The region of overlap of the fields is indicated.
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(a)

(b)

Figure 4 (a) The fields of view of the HI telescopes and the COR-2 Sun-centred coronagraphs. The dotted

lines correspond to the square format of the CCD detectors, although the response in these corners is limited

by optical vignetting. The Sun-centred coronagraphs view all solar latitudes, whilst the HI fields of view

are limited to a maximum of ±35° perpendicular to the ecliptic. (b) A projection onto the ecliptic plane of

the overall HI fields of view on 1 October 2008. The positions of the Sun, Earth, and Mercury are shown,

together with the orbit of Venus (although Venus itself was not in the region plotted at this time). The space-

craft – Sun – Earth separation angles were 36° and 39.8° for STEREO-A and STEREO-B, respectively, giving

a total separation angle of 76.3°. The coordinates are heliocentric Earth ecliptic Cartesian coordinates in units

of 1 AU.

The positions of the two spacecraft as shown in Figure 4(b) are at distances from the Sun

of 0.96 and 1.08 AU for STEREO-A and STEREO-B, respectively. During the course of

the science mission the orbit of STEREO-A varies over the range of approximately 0.95 –

0.97 AU with a period of about 1 year, whereas that of STEREO-B varies over the much

larger range of 1.00 – 1.09 AU.

Figure 5, adapted from Socker et al. (2000), also shows the geometry of the HI fields

of view but in addition shows the expected total intensity of the K- plus F-coronae as a



The Heliospheric Imagers Onboard the STEREO Mission 395

Figure 5 The field-of-view

geometry of the HI telescopes

and the anticipated intensities of

the corona and typical CMEs,

adapted from Socker et al.

(2000).

function of elongation angle, based on the calculations of Koutchmy and Lamy (1985),

together with the typical CME intensity, both in units of B⊙, the solar disc intensity. It is

immediately evident that the total coronal intensity is about two orders of magnitude brighter

than the anticipated CME signal and this defines the basic operational requirements for the

instrument. As a consequence, one must accumulate for long durations so that the CME

signal is larger than the statistical accuracy to which the background corona is measured, to

extract the weak CME signal.

In order that the instrument stray-light level does not contribute significantly to the sta-

tistical error in measuring the coronal signal, it must be at least an order of magnitude lower,

which can be seen from Figure 5 to require levels of better than ∼10−13B⊙ for HI-1 and

∼10−14B⊙ for HI-2.

The brightness sensitivity requirements stated in Table 1 are based on the need to extract

the CME signal from the other signal sources, which demands the detection of CME inten-

sities down to 3 × 10−15B⊙ and 3 × 10−16B⊙, for the two telescopes. The complexity of

the extraction of the CME signal from the raw data deserves further description, and this is

addressed in detail in Section 10.

The principal hardware development for HI was centred at Birmingham University, UK,

with camera design and development work and some thermal work provided by the Sci-

ence and Technologies Research Council Rutherford Appleton Laboratory (RAL), UK. The

Centre Spatial de Liège (CSL), Belgium, provided design of the optical and baffle systems,

stray-light analysis and tests, and instrument calibration and qualification. Various aspects

of the assembly, integration and test work, and the overall SECCHI management have been

performed by the U.S. Naval Research Laboratory. The HI concept was developed by Den-

nis Socker of the Naval Research Laboratory. The operational and scientific lead for the HI

instruments is provided through RAL.
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Figure 6 (a) HI-B undergoing final cleanliness inspection prior to delivery. (b) HI-A mounted on

STEREO-A spacecraft at Astrotech Inc., Florida.

Figure 6 shows the HI-B instrument undergoing a final cleanliness inspection prior to

delivery and the HI-A instrument after integration onto the STEREO-A spacecraft.

The HI instruments are operating successfully in orbit and Figure 7 shows an image ob-

tained using the HI-1A camera with an example of a CME passing through the heliosphere.

The subsequent sections of this paper describe the precise details of the HI instruments and

their performance, and some more early results are given at the end.
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Figure 7 An image of a CME

obtained using the HI-1

instrument aboard STEREO-A

on 5 November 2007. The frame

is 20° across and the Sun is 4° off

the right-hand edge. The Milky

Way is clearly visible in the

lower left part of the image, with

Jupiter in the centre of the image,

close to the left-hand edge. The

bright object in the southern

extremity of the CME is Antares.

Stars down to at least 12th

magnitude are visible.

3. Stray Light and Optical Design

3.1. Baffle Design

The baffle design is the key to the HI concept. As shown in Figure 3, the baffle subsystems

consist of a forward baffle, a perimeter baffle (side and rear baffles), and the internal baffle

assembly.

The forward and perimeter baffles have been designed by theoretical modelling of dif-

fraction systems (Defise et al., 2001), and the internal baffle by ray-tracing analysis, taking

into account the various stray-light sources that HI will encounter, which include

– the Sun,

– the Earth, which appears at various positions in the fields of view of the telescopes dur-

ing the mission (typically from 60° to 90° elongation direction during the main science

phase),

– the bright planets and stars (e.g., Venus, Sirius, etc.),

– the zodiacal light or F-corona, according to the model of Koutchmy and Lamy (1985),

– one of the three SWAVES antennae, a component of another instrument aboard STEREO

that is outside the HI-2 field of view in the antisunward direction but could conceivably

scatter stray light into the HI instrument (see Figure 2 and Section 3.1.3), and

– any other spacecraft components that could potentially scatter stray light into the instru-

ment.

Table 2 gives the order of magnitude of the intensity of these sources in units of B⊙.

The basic function of the forward baffle is to reject the solar disc intensity, reducing solar

stray light to the required levels. The perimeter baffle is primarily designed to reject stray

light from the spacecraft, and the internal baffle system is designed to reject light from the

Earth, planets, stars, F-corona, and the SWAVES antenna.
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Table 2 Stray-light source

intensities (incident on HI

instrument).

Source Intensity (B/B⊙)

Sun 1

Earth 10−6 to 10−9

Planets (Venus) 10−6 to 10−9

Stars 10−9 to 10−11

Zodiacal light 10−9 to 10−12

SWAVES antenna 10−5

Figure 8 The concept of the cascade knife-edge diffraction system of the forward baffle, showing the typical

locations of the entrance apertures of the HI-1 and HI-2 optics and the characteristic form of the expected

rejection function.

3.1.1. The Forward Baffle

The forward baffle protects the HI-1 and HI-2 optical systems from direct solar light by

means of a knife-edge cascade system. The concept of the baffle system is shown in Figure 8.

The heights and separations of the five vanes are optimised to form an arc such that the

(n + 1)th vane lies below the shadow line of the (n − 1)th and nth vanes. Figure 8 also

shows typical locations of the entrance apertures of the HI-1 and HI-2 optics, both of which

lie in the shadow region of the fifth vane. This five-vane system allows the required rejection

to be achieved, as computed using Fresnel’s second-order approximation of the Fresnel –

Kirchhoff diffraction integral for a semi-infinite half-screen (Defise et al., 2001).

Figure 9 shows the calculated rejection factor (B/B⊙), where B⊙ is the solar brightness,

plotted against distance below the horizontal shadow line cast by the first vane. The contri-

butions of the successive vanes to the overall rejection curve are shown, and it can be seen

that the rejection factors at the entrance apertures of HI-1 and HI-2 optics are 5 × 10−11 to

8 × 10−10 and 2 × 10−12 to 3 × 10−12, respectively. Since the baffle edges and the stray light

diffracted from them are outside the fields of view of the optical systems, a further atten-

uation factor of at least 10−3 can be expected from the optics so that the overall predicted

rejection of the direct solar flux easily meets the requirements for the outer edges of the

fields of view given in Table 1. The experimental verification of the rejection factors using

a prototype of the forward baffle system is described in Section 8.2.
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Figure 9 The calculated

rejection factor of the forward

baffles as a function of distance

below the horizontal shadow line

cast by the first vane, at nominal

spacecraft attitude. The

approximate locations of the

entrance apertures of HI-1 and

HI-2 optics are also shown.

3.1.2. The Internal Baffle

The internal baffle system consists of a set of five principal vanes, complemented by a set of

two small linear vanes located between the HI-1 and HI-2 entrance apertures, a set of three

small linear vanes located under the HI-2 aperture, and a linear vane located just behind

the forward baffles. The principal vanes have oval-shaped cutouts so that their edges lie just

outside (nominally by 1° – 2°) the conical field of view of the HI-2 optics (see Figure 3). The

performance of this baffle system is determined by the location of the tip of each vane and the

angles of the vanes relative to the optics field-of-view direction. The system attenuates the

intensity of unwanted light (from stars, planets, the Earth, zodiacal light, and the SWAVES

antenna) entering the HI-1 and HI-2 optical systems, by means of multiple reflections in the

baffles. Although some of these objects may potentially be within the HI fields of view, the

baffles limit the uniform background scattered into the optical systems from them.

The performance of the internal baffles was computed by using the Advanced Systems

Analysis Package (ASAP) stray-light analysis software from Breault Research Organisation.

Figure 10 shows a representation of the finite-element model used. The results indicated a

rejection factor better than 104 for every incident direction, with efficiency optimised for

light sources coming from the rear of the instrument (in particular the SWAVES antenna).

3.1.3. The Perimeter Baffle

The perimeter baffle (side and rear baffles) is a three-sided rectangular system composed of

two edges, similar to the forward baffle, that protects the HI optical systems from reflection

of photospheric light by spacecraft components lying below the horizon plane defined by

the baffles, including the low-gain antenna and the HI door mechanism.

It should be noted that one spacecraft component does rise above the plane of the perime-

ter baffles, namely one of the 6-m-long monopole antennae of the SWAVES instrument, al-

though it is not within the field of view of either telescope (see Figure 2). As discussed pre-

viously, calculations show that scattered light from the monopole will be adequately trapped

by the internal baffle system.
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Figure 10 Ray-tracing model of

the internal baffle.

3.1.4. Overall Baffle Rejection Factors

Figure 11 shows the computed resultant diffuse background (in units of B⊙) of the stray-

light sources at the HI-1 and HI-2 detectors, including attenuation by the forward and inter-

nal baffles, and the out-of-field rejection of the optics (assumed to be 10−3). These values

do not include the contributions from the stray-light sources located in the optical fields of

view (e.g., zodiacal light, Earth, and stars), which are directly imaged on the detectors but

represent the contributions to the diffuse background from the various sources, which may

be within or outside the field of view.

3.2. Detailed Optics Design

Figure 3 shows the locations of the HI-1 and HI-2 optics assemblies within the instrument.

The optical configurations of the two assemblies are shown in Figure 12, which also indi-

cates the Schott glass types selected for the various lens elements. (Glass types that have

known radiation tolerance were selected, in particular for the space-facing elements.) The

HI-1 lens system has a nominal focal length of 78 mm and aperture of 16 mm, whilst the

HI-2 system has a nominal 22-mm focal length and a 7-mm aperture. It should be noted

that for multielement lenses such as these, the focal length does not correspond to the dis-

tance between the first element and the focal plane which is shown in Figure 12. In both

cases the design is not diffraction limited and is thus optimised to minimise the rms (root

mean square) spot diameter over an assumed operational temperature range of −20°C to

+30°C. The detector system at the focus in each case is a 2048 × 2048 pixel CCD with

13.5 × 13.5 µm square pixels.

The design of the HI-1 optics was mainly driven by the mechanical accommodation

constraints on the first lens – the lens aperture itself must lie at the appropriate location in the

shadow pattern of the forward baffle, as shown in Figures 8 and 9, whilst the lens barrel and

the housing for the focal plane assembly of the camera must lie below the shadow line cast

by the first baffle edge, so that direct sunlight cannot reach these components and thereby

cause unacceptable back-scattering into the various baffle systems. The required spectral
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Figure 11 Diffuse background

at (a) the HI-1 and (b) the HI-2

detectors, for the various

stray-light contributions (in

B/B⊙ units).

response of HI-1 (630 – 730 nm) is achieved by means of multilayer bandpass coatings on

the two internal lens surfaces that have the minimum angles of incidence.

The HI-2 optics were designed to give the required large field of view (70°), together

with wide spectral range and minimum contribution from image ghosts. These requirements

made the design particularly challenging.

The lens systems are potential contributors to stray-light contamination, as a result of

ghosts produced by multiple reflections from the optical surfaces and also reflections from

the internal surfaces of the lens barrels. To minimise the intensities of the ghosts and also

to maximise the throughput of the optics, standard antireflection (AR) coatings are used

where possible on all lens surfaces in both assembles. The first surface, exposed to space,

is coated with SiO2 to give good radiation tolerance as well as relatively robust handing

characteristics. MgF2 coatings are generally used on the internal surfaces.

In the case of HI-2, the effectiveness of the AR coatings is limited by the large spectral

range and the wide range of incidence angles. Consequently, the optics design was specifi-

cally optimised to spread the ghosts into larger regions at the focal plane. By doing so, the

ghosting effects from bright objects within the field of view contribute to the overall diffuse

background, rather than generating multiple images with spacing dependent on position in

the field of view.

To reduce reflections and scattering, the design of the inner geometry of the lens barrels

was optimised by ray-tracing analysis, and some cavities were added to act as light traps.

The internal surfaces of the lens barrels and other mounting components were treated with
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Figure 12 Optical configurations of (a) HI-1 and (b) HI-2 lens assemblies. The Schott glass types selected

for the various elements are indicated beside each element.

either black copper oxide or black chromium coatings. These coatings provide additional

absorption of those incident rays out of the field of view that are only partially suppressed

by the aperture stop. A general attenuation factor of at least 10−3 was targeted for all the

light outside the field of view and not suppressed by the aperture stop.

The design specifications and key performance parameters of the optical systems are

summarised in Table 3. The results of performance tests on the optics units are described in

Section 8.3.

4. The Telescope Assemblies

Each HI telescope assembly comprises the following major components:

– the lens assembly,

– the focal plane assembly (FPA), which contains the CCD detector, and

– the thermal radiator.

The HI-1 telescope assembly is shown in Figure 13. To show the internal construction,

the protective covers and light seals over the lens barrel housing and FPA housing are not

fitted.
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Table 3 HI-1 and HI-2 optical design parameters.

HI-1 HI-2

Field-of-view diameter 20° 70°

Focal length (nominal) 78.46 mm 21.67 mm

Optical axis length 88.4 mm 46.4 mm

F -number F/4.93 F/3.08

Entrance pupil diameter 15.9 mm 7.0 mm

Spectral range 630 – 730 nm 400 – 1000 nm

Focal plane detector 2048 × 2048 pixel CCD 2048 × 2048 pixel CCD

13.5 µm pixel pitch 13.5 µm pixel pitch

rms spot sizea 14.9 µm at 0° 40.6 µm at 0°

(against off-axis angle) 16.5 µm at 5° 46.0 µm at 17.5°

20.2 µm at 10° 50.0 µm at 35°

Distortionb <2% <8%

aThese are the ideal design values and do not include manufacturing or alignment errors.

bDefined as the deviation from a linear projection at the edge of the (circular) field of view.

Figure 13 The HI-1 telescope assembly with the overall protective covers and light seals removed. The

thermal radiator is not fitted.
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4.1. The Lens Assembly

The lens elements are mounted within a titanium lens barrel. Titanium was chosen to pro-

vide a good match to the coefficient of thermal expansion of the glass types used, thereby

allowing a simple mounting arrangement using threaded rings to clamp the elements against

shoulders on the barrel, without the need for compliant mounts. This mounting arrange-

ment has been demonstrated to be acceptable over a survival temperature range of −60°C to

+60°C. The lens barrels were plated with a black copper oxide coating to reduce scattered

light from out-of-field sources.

The lens barrels are fitted with heaters and thermistors to maintain the optics at appropri-

ate temperatures in survival and operating cases. As shown in Figure 13, thermal isolation is

provided between the warmer lens assembly and the cooler FPA and CCD detector assembly

by means of cutouts in the titanium support structure and a glass reinforced plastic (GRP)

spacer, which also allows the focus of the camera to be set.

A thin moulded carbon-fibre reinforced plastic (CFRP) cover is fitted over the lens barrel

and FPA housings. This cover acts as a light seal and also as a thermal barrier to reduce

thermal radiation from the warm lens assembly to space.

4.2. The Focal Plane Assembly and Thermal Radiator

The CCD detectors are mounted within the FPAs. Figure 14 shows a cutout view of the

HI-1 FPA, with the lens assembly and the thermal radiator attached. The HI-2 FPA design is

similar except that a two-piece construction with a clamped joint is used for the cold finger

to satisfy the accommodation constraints within the instrument (see Figure 3(b)).

The main design drivers for the FPA assembly are to cool the CCD to the designed op-

erating temperature whilst providing mechanical support. The location of the CCD relative

to the focal plane of the optics must be accurately maintained over an operating temperature

range extending from ambient down to the in-orbit operating temperature, and these align-

ments must still be maintained after the mission launch phase, with its associated vibration

and quasistatic loads.

The CCD is cooled to around −80°C by passive radiation from a thermal radiator that

views deep space. The CCD is mounted in close thermal contact with the cold finger, which

is manufactured from a high-conductivity aluminium alloy. Indium foil ensures good ther-

mal contact between the cold finger and the radiator. The outer (i.e., space-facing) surface

of the radiator is painted with a matte black paint, whilst the side that faces the back of the

instrument structure is covered with low-emissivity thermal tape to reduce parasitic loads

on the cooling system from radiative coupling with the warmer HI structure.

The FPA is supported within the HI structure by means of two mounting interfaces on

each side (see Figures 13 and 14); these are also designed to enable the alignment of the tele-

scopes relative to the structure. The main structural integrity of the FPA assembly is primar-

ily provided by the FPA housing and the inner and outer support tubes. These components

are manufactured from Ti6Al4V titanium alloy (an alloy containing approximately 90% ti-

tanium, 6% aluminium, and 4% vanadium). The use of this material, which has a thermal

conductivity of only 7.2 W m−1 K−1, provides thermal isolation for the radiator/cold fin-

ger/CCD assembly. The external surfaces of the structural components are also gold-plated

to reduce parasitic thermal loads from radiative coupling. In addition to its excellent thermal

isolation properties, this titanium alloy has excellent mechanical properties (e.g., strength

and stiffness), making it highly suitable for these structural components.

A black-anodised aluminium mask is located just in front of the CCD, with a cutout

region matching the sensitive area of the CCD. The function of this mask is to reduce the
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Figure 14 The HI-1 focal plane assembly with the lens assembly and thermal radiator attached.

possibility of stray light from the images of bright objects just outside the field of view from

reaching the detector as a result of scattering off internal components within the FPA.

A heater mounted under the CCD chip carrier provides the capability of heating the CCD

to at least +30°C to drive off contaminants or to “anneal” the CCD after radiation damage.

A cold cup (or decontamination cup), at a temperature slightly lower than the CCD, provides

a contamination shield and a barrier against radiated heat loads. The internal surfaces of the

cold cup are also black-anodised to inhibit the scattering of stray light.

The design satisfies the requirements to position the CCD at the focal plane of the tele-

scope with the required accuracies perpendicular to and aligned with the optical axis. It

also ensures that these alignments are maintained over a wide temperature range (+20°C to

−80°C) and through the launch vibration environment.

4.3. The CCD Detector

All five telescopes within SECCHI use the same CCD architecture. The CCDs are e2v tech-

nologies (formerly Marconi Applied Technologies, also EEV) type CCD42-40 units, which

are full-frame sensors with 2048 × 2048 pixels, each pixel being 13.5 µm square (see Fig-

ure 15).

The CCDs are thinned, back-illuminated, and operate in a noninverted mode to ensure a

full well capacity of more than 200 000 electrons. The HI CCDs are coated with a standard

AR coating optimised for the 450 – 750 nm spectral range (with the effectiveness of the

coating degrading somewhat near the edges of the overall 400 – 1000 nm spectral range of

HI-2). The quantum efficiency reaches 93% at around 550 nm, but it drops to 23% and 30%
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Figure 15 The SECCHI EUVI

CCD in its carrier, with the

flexible printed circuit harness

attached. The overall size of the

CCD chip is about

28.1 × 30.3 mm. The CCDs used

in the HI instruments differ only

in the presence of an AR coating.

Figure 16 The quantum

efficiency of the HI CCDs as a

function of photon wavelength.

The filled points on the graph are

typical experimental results

obtained by e2v.

at 300 and 900 nm, respectively (see Figure 16). The charge transfer efficiency is typically

99.9995% and the dark current at the –80oC operating temperature is essentially negligible

at ∼0.002 e− pixel−1 s−1 (see Section 9.1.1).

The CCD architecture has a single serial readout register with an output node at each end,

although only one output node is used in the flight configuration to reduce the electronics

complexity and mass. The register has 50 nonimaging or dummy locations at each end.

These do not correspond to pixels in the CCD imaging region and must be shifted out before

reaching the image data. They provide a measurement of the electronics offset or bias.

5. Electronic Design and Instrument Data Handling

5.1. The Camera Electronics Box

The CCDs in the HI cameras are read out by a camera electronics box (CEB). A similar CEB

is used to read out the CCDs in the COR1, COR2, and EUVI instruments in the SECCHI

suite. A more detailed description of the SECCHI CEB design is given in Waltham and

Eyles (2007).
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Figure 17 Block diagram of the HI CEB.

The HI CEB is accommodated within a housing of dimensions 195 × 126 × 70 mm. The

aluminium wall thickness is 2.0 mm, and the mass is 1.45 kg.

The design of the CEB is tailored to the requirements of the CCD42-40 and includes a

requirement for a pixel readout rate of 1 Mpixel s−1. Very challenging low mass and power

budgets dictated the use of application-specific integrated circuit (ASIC) and surface-mount

packaging technologies to minimise the size, mass, and power requirements.

A block diagram of the HI CEB is shown in Figure 17. It comprises the following:

– two CCD driver and video processing cards, one dedicated to each of the HI CCD cam-

eras,

– a camera interface card that provides a common interface between the two CCD driver

cards and the SECCHI electronics box (SEB),

– a DC to DC power converter mounted in a separate internal screened housing in the base

of the enclosure, and

– a backplane interface for interconnection of the daughter printed circuit boards.

Each CCD is controlled by a dedicated purpose-designed waveform generator and se-

quencer (WGS) ASIC (French et al., 1998). The logic-level clocks are then translated into

high current-drive waveforms of appropriate shape and amplitude to drive the parallel and

serial register electrodes of the CCD. The video output signal from the CCD is buffered

through JFET transistors located within the FPA and passed to the CEB through a harness

approximately 0.6 m in length. The video processing chain consists of a differential pream-

plifier, a correlated double sampler (CDS), and a 14-bit analogue-to-digital converter (ADC),
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all implemented within a second purpose-designed and radiation-tolerant ASIC (Waltham

and Eyles, 2007). In addition, each CCD driver card contains low-noise DC bias supply

generators for the CCD.

The CEB communicates with the SEB via an IEEE1355 SpaceWire link, enabling cam-

era waveform programming, camera commanding, collection of telemetry housekeeping

data, and the transmission of digitised CCD video data. The data transmission rate is

100 Mbits s−1.

Exposure timing for each CCD is controlled directly from the SEB. Appropriate pro-

gramming of the WGS ASIC enables the CCD clock waveform patterns and tables to be set

up or updated. Commands are then sent to the ASIC to initiate the various camera modes,

specifically i) clearing of residual charge, ii) image exposure, and iii) full-frame, windowed,

or continuous readout. On-chip image binning can be implemented by means of appropriate

clock waveforms. The programmable video gain and DC offset level can be set up by means

of commands sent to the CDS/ADC ASIC.

Housekeeping telemetry from the camera electronics enables the CEB secondary power

supply voltage rails and the internal temperature to be monitored. The CCD temperatures

are monitored directly from the SEB and not through the CEB. Similarly, the control of the

decontamination heater power to the CCD is via the SEB.

The CEB contains a DC to DC power converter that converts the incoming 28-V space-

craft primary power to the required +5-, +15-, +30-, and +36-V secondary supplies. The

primary converter is an International Rectifier ART2815T, configured to provide +5, +15,

and +30 V. An additional PWM (pulse width modulator) circuit boosts the +30-V sec-

ondary supply to the +36 V required for the output transistor bias supply circuitry of the

CCD42-40. The ART2815T is synchronised to a 150-kHz clock derived from the 30-MHz

CEB master clock, thus satisfying a spacecraft requirement that the converter is synchro-

nised to some multiple of 50 kHz.

The 28-V power supply input is in-rush current limited and current-trip protected. Elec-

tromagnetic compatibility filtering is provided by an International Rectifier ARF461 filter

module and additional prefilter circuitry. The converter’s output supply rails are also filtered

to minimise any noise or current-switching transitions on the supply rails to the CCD drive

circuitry. The complete power converter system is screened from the CCD drive electronics

within a separate shielded compartment in the base of the CEB mechanical housing.

The CEB has the following operating modes:

– Clear: Clearing of residual charge from the CCD takes advantage of the CCD’s “dump-

drain” running adjacent to the serial output register. Appropriate programming of the

WGS ASIC allows the entire array to be cleared any number of times prior to integration.

– Integration: During integration, the CCD parallel register clocks are held at the static volt-

age levels required to set up the potential wells that define the pixels. The serial register

clocks are also held static since the CCD is not being read out (or cleared) during this

time.

– Readout: Appropriate programming of the WGS ASIC allows various readout modes,

including:

◦ full-frame readout of n lines, each of m pixels,

◦ windowed readout of at least two windows on the CCD,

◦ full-frame or windowed readout with on-chip pixel binning, and

◦ continuous clocking.

In the case of HI, the normal CCD readout format is to read out 2048 lines, each of 2176

pixels. Each line comprises 50 nonimaging or underscan pixels, 2048 imaging pixels, fol-

lowed by 78 overscan pixels. The underscan pixels are useful for determining the DC offset
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Figure 18 Electrical interfaces among the SECCHI electronic box, the spacecraft, and the HI instrument.

of the images. The overscan pixels ensure that the charge is completely cleared before the

next line is transferred into the serial readout register.

Occasionally, other readout modes are used, including a 2176 × 2112 pixel readout,

which provides 64 rows of vertical overscan.

Each pixel is read out as a 14-bit digital value. The overall system gain is approximately

15 e− per ADU (analogue to digital unit) and the readout noise is typically 15 e− rms.

5.2. Instrument Control and Monitoring

The HI instrument does not have its own dedicated command and data handling system but

instead is controlled by the SEB in common with all the other SECCHI instruments. The

SEB is based around a RAD750 processor (from BAE Systems) and provides the instru-

ment’s main interfaces with the spacecraft via a MIL-STD-1553B bus, together with power

interfaces. The SEB comprises four printed circuit boards – the RAD750 processor board,

the MIL-STD-1553B interface board, the SpaceWire interface board, and the housekeep-

ing board – together with power control and monitoring circuitry. Figure 18 shows a block

diagram of the interfaces among HI, the SEB, and the spacecraft.

As described in Section 5.1, the SEB controls the CEB via an IEEE1355 SpaceWire link,

including commanding of the camera exposures and reading out of the images. The onboard

image processing is described in Section 5.3.

The SEB provides a total of six switched primary power rails to HI (nominally 28 V;

typically 32 V) as follows:

– a survival heater bus to power survival heaters on the CEB and the lens barrels,

– an operational power bus for the CEB,

– operational power for the HI-1 and HI-2 lens barrel operational heaters, and

– a decontamination heater bus to power decontamination heaters mounted close to the

CCDs in the HI-1 and HI-2 FPA assemblies.
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There are a total of nine SEB temperature monitors allocated to HI, which are either

YSI44901 thermistors or PT100 platinum resistance thermometers (PRTs) depending on the

required temperature range, in the following locations:

– PRTs mounted on the HI-1 and HI-2 CCDs,

– thermistors mounted on the HI-1 and HI-2 lens barrels, and

– five representative structure temperatures, including the CEB housing.

The thermistors on the lens barrels are used to control the duty cycle of the corresponding

lens barrel operational heater, by means of a proportional-integral-differential control algo-

rithm implemented in the SEB software. A control accuracy of better than 1°C is achieved.

The status of the HI door is monitored by two microswitches. One indicates that the door

latch mechanism has been released and the other indicates that the door has reached the fully

open position.

The SEB also operates calibration LEDs that provide an optical stimulus for the CCDs.

The LEDs are mounted in the FPA assemblies so that light is scattered via indirect paths onto

the CCD and they are pulsed with a programmable number of 20-µs pulses. Although the

intensity at the CCD is not very uniform (varying by factors ∼3 and ∼10 for HI-1 and HI-2,

respectively) the LEDs are nevertheless useful for functionality testing, linearity checks, and

determining small-scale (pixel-to-pixel) response variability.

The direct electrical interfaces between the HI and the spacecraft are:

– four PRT temperature monitors to provide an indication of the thermal status of the in-

strument even when the SEB is powered off and

– switched power (nominally 28 V) from the spacecraft pyro bus to operate the wax actuator

and release the HI door; two redundant circuits are provided.

5.3. Onboard Data Handling and Image Processing

To obtain the required signal-to-noise ratio, the HI images require much longer exposure

times than the other SECCHI instruments, typically 20 minutes for HI-1 and more than

1 hour for HI-2. However, to avoid buildup of cosmic-ray hits (typically 45 pixels s−1 for

each CCD) and also saturation of the brighter regions of the image scene owing to the finite

dynamic range of the CCD, the total exposure time is made up by summing many much

shorter exposures.

The SEB onboard software performs a number of image-processing operations on the

individual exposures before sending the data to the spacecraft solid state recorder for storage

and subsequent telemetry down-link. For normal science observations these are as follows:

– The individual exposures are scrubbed to remove cosmic-ray events. The algorithm used

compares each new image with the previous image on a pixel-by-pixel basis – if the signal

in a given pixel exceeds that in the previous image by more than a defined threshold,

then the value for that pixel is replaced by the previous value. The threshold normally

used is 5σ , where σ is the predicted noise standard deviation based on the number of

photoelectrons detected.

– A column of the underscan region of the readout is used to determine the DC offset of the

image, which is then subtracted from all pixels.

– The image underscan and overscan regions are trimmed off and the resultant 2048×2048

image pixels are 2 × 2 binned.

– The resultant 1024 × 1024 binned 16-bit images are then summed over a number of ex-

posures. To prevent integer overflow, the summed image is stored as a “low word” and a
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“high word” image, both 16 bits although only a few bits are significant in the high word

image.

– For diagnostic purposes, including monitoring the rate of cosmic-ray hits, the values in

the final bins of the last row of the summed image (in the direction of CCD readout) are

overwritten with the numbers of pixels replaced by the cosmic-ray scrubbing algorithm

in each individual exposure.

– The two-part images are then separately compressed by using a Rice lossless compres-

sion algorithm before down-link to ground. An overall compression factor of about 1.5 is

achieved.

– The two-part images are reconstructed into 1024 × 1024 32-bit images on the ground.

Occasional telemetry errors (e.g., missing blocks) may affect either part of the down-

linked image.

The details of the exposure sequences (e.g., individual exposure times, exposure cadences,

and number of exposures summed) were refined during the instrument commissioning phase

early in the mission and are described in Section 9.3. A total of 36 summed images for HI-1

and 12 for HI-2 are taken every 24 hours.

In addition to this image processing for HI science operations, the SEB software also

permits other types of images to be down-linked for calibration and engineering purposes,

including i) single full-resolution CCD exposures with 2048 × 2048 pixels, ii) single 2 × 2

binned exposures, and iii) exposures that still include the underscan and overscan regions.

The SEB also produces more highly compressed and binned versions of the summed images;

these are down-linked in real time via the STEREO Space Weather Beacon (see Section 9.4).

6. Mechanical Design and Manufacture

6.1. The Main Structure

The challenging mass allocation available to HI, together with the stringent requirements to

maintain stable relative alignments of various critical components, such as the forward baf-

fles and the FPAs, over the very large temperature excursions experienced by the instrument

between the ambient case and operational conditions in orbit, dictated the extensive use of

CFRP and composites in the construction of the instrument. All the CRFP composites used

were manufactured and assembled in the space-qualified composites fabrication facility at

Birmingham University.

The main structure is a five-sided box, with internal stiffening bulkheads, shown concep-

tually in Figure 19. The structure was manufactured from CFRP composite panels, consist-

ing of CFRP skins bonded onto both sides of 8-mm-thick aluminium honeycomb panel. The

CRFP skins were manufactured from M55 unidirectional carbon fabric impregnated with

RS3 cyanate ester resin (YLA Inc.). The M55/RS3 system has been used extensively in the

aerospace industry on account of its impressive stiffness-to-mass ratios, together with its

excellent dimensional stability and acceptably low outgassing properties.

The CFRP skins were fabricated by using a balanced “quasi-isotropic” layup with fibre

orientations of 0°, +60°, and −60° for the different fabric layers. After laying up the fab-

ric, the impregnated RS3 adhesive was cured under high temperature and pressure in an

autoclave to produce the finished skin. A pair of such skins were then placed either side

of a honeycomb panel, with film adhesive between the skins and the panel, and the whole

assembly was again cured in the autoclave to form the composite panel. This type of con-

struction has high strength and stiffness, together with low mass, and is very stable over a

wide temperature range with a typical coefficient of thermal expansion ≈0.5 × 10−6°C−1.
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Figure 19 The concept of the HI main structure. Regions where the structure was reinforced by bonding

extra thicknesses of CFRP skin material on the outside of the panels are indicated in red.

The CFRP panels were then machined to the dimensions required for the various com-

ponent parts of the structure. The major load-bearing components (i.e., the base panel, the

longitudinal bulkheads, and the four outer side, front, and back panels) were joined together

by screwing through clearance holes into threaded inserts in solid CFRP blocks that had

been bonded into the edges of the panels. In addition, all panels were bonded together with

strips of L-shaped CFRP at all right-angle junctions. As indicated in Figure 19, load-bearing

regions of the structure were reinforced locally by bonding an additional thickness of the

CFRP skin material to the outer skin of the panel in the regions of high stress.

Considerable care was taken to ensure the cleanliness of the finished CFRP structure,

both in terms of particulate and volatile contaminants. All materials, and in particular adhe-

sives, used in the construction were selected for low outgassing properties (generally <0.1%

total mass loss and <0.01% collected volatile condensable material). The exposed edges of

all machined panels were capped, either by bonding a strip of U-shaped CFRP between

the skins or by covering the exposed edges with black kapton tape. Venting to space was

provided by regular patterns of small holes on the external faces of the outer panels. The

aluminium honeycomb itself was perforated with small holes to permit venting from the

internal panels into the outer panels and hence to space. Finally the entire assemblies were

subjected to thermal vacuum bakeouts, monitored by temperature-controlled quartz crystal

monitors (TQCMs), both at the level of the completed structure prior to installing the various

subsystems and also during instrument-level assembly and testing.

The main structure is attached to the spacecraft by three titanium alloy (Ti6Al4V) mount-

ing legs, each of which is designed to have some flexibility about one degree of rotational

freedom. They are arranged so that together they form an approximation to a semikinematic

mount, thereby minimising the loads that can be transmitted between the structure and the

spacecraft as a result of differential thermal expansion (see Figure 20). The low thermal

conductivity of the titanium alloy used also provides the required thermal isolation between

the instrument and the spacecraft.

The major subsystems supported by the structure are the following:
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Figure 20 The underside of the qualification model of the HI main structure showing the configuration of

the titanium mounting legs.

– the forward and perimeter baffles support panel,

– the internal baffle assembly,

– the focal plane assemblies,

– the door, including the latch mechanism, and

– the CEB, mounted on the underside of the base panel.

The entire HI main structure, baffles assemblies, and FPA housing covers were all painted

with matte black paint (Aeroglaze Z307) to attenuate scattered light and achieve the required

overall stray-light rejection.

The final mass of the HI instrument, with all components and subsystems installed but

excluding the thermal blankets, was 15.05 kg (16.3 kg including thermal blankets). The

overall external dimensions, with the door closed, were approximately 840×550×260 mm.

6.2. The Forward and Perimeter Baffles Assembly

The forward and perimeter baffles support panel is a single CFRP composite panel with

a large central cutout (see Figure 21), mounted to the base of the main structure by four

aluminium mounting legs, again designed to provide an approximation to a semikinematic

mount.

The baffle vanes were manufactured by bonding together a number of CFRP sheets, each

having a quasi-isotropic layup, to build up a total thickness of about 1 mm. The resultant

solid CFRP material, which also has a very low coefficient of thermal expansion, was then

cut to the required shapes and sizes.

It is worth noting that the diffractive rejection of stray light by the forward and perimeter

baffles does not require the upper edge to be a perfect knife-edge – indeed sharp knife-edges

would be problematic in terms of i) vulnerability to handling damage and ii) difficulty of

ensuring adhesion of the paint film at the edges when the baffles are painted. A blunt knife-

edge profile on each vane was produced by first machining the top edge at an angle of 45°
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Figure 21 The forward and

perimeter baffles support panel

with the baffles installed.

Figure 22 The profile of the

forward and perimeter baffle

vanes.

to the plane of the baffle vane, and then machining from above to give a 0.1 – 0.2 mm wide

flat (see Figure 22).

The dimensions of the forward baffles are particularly critical – the height of each vane

must be controlled to better than 65 µm relative to its neighbours to maintain the required

geometry for stray-light rejection by the five cascaded baffles. A maximum error budget of

20 µm was allocated for manufacturing, to leave a good margin for long-term dimensional

changes and thermally induced distortions in orbit (see Section 6.6). To achieve this accu-

racy, the final machining of the baffle edges was done with the baffle assembly mounted

in the structure, by using an iterative precision machining procedure that involved the use

of a computer numerical controlled milling machine, together with a coordinate measuring

machine (CMM) accurate to 2 – 3 µm.

6.3. The Internal Baffle Assembly

The dimensional tolerance requirements for the internal baffle assembly are much less strin-

gent (typically 0.5 – 1 mm) although a complex geometry is required, so a different manufac-

turing technique was used. The individual component parts of the baffle were formed from

CFRP by laying up woven preimpregnated carbon fabric (T300) over aluminium moulds and

then curing in the autoclave. These parts were then assembled by screwing and bonding them
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Figure 23 The internal baffle

assembly before black painting

of the outer surfaces.

together to form a single, strong, and lightweight “monocoque” structure (see Figure 23).

The thickness of the baffle vanes was typically 0.2 – 0.3 mm and there was no requirement

to profile their edges.

The internal baffle is mounted directly to the sides of the main structure with small brack-

ets. A system of shims (spacers whose thicknesses were iteratively adjusted by machining)

and dowel pins passing through match-drilled holes was used to set up and maintain the

alignment of the assembly relative to the structure.

6.4. The Focal Plane Assembly Mounting Interfaces

The two FPAs are mounted onto titanium right-angled strips attached to the load-bearing

longitudinal bulkheads (see Figure 19). Small rectangular blocks are clamped to the strips,

and these blocks in turn clamp cylindrical spigots that interface with the FPA housings (see

Figures 13 and 14). On one bulkhead the spigots are free to move axially within the blocks,

whilst on the other bulkhead they are constrained in all degrees of freedom – this is so that

differential thermal expansion between the FPA housing and the surrounding structure does

not cause excessive stresses to be imposed on the structure.

Again, a system of shims and dowel pins passing through match-drilled holes was used

to set up and maintain the alignment. This arrangement permitted the telescope pointing

direction to be aligned in all three axes of rotation, in addition to setting the location of the

entrance aperture of the optics relative to the various baffle subsystems.

6.5. The Door and Latch Mechanism

The instrument was protected against ingress of contamination and handling damage during

ground operations, launch, and the initial commissioning phase of the mission by a door

(see Figure 3).

The door was fabricated from a CFRP panel with solid CFRP side pieces and is attached

to the main structure by means of hinges that have redundant bearing surfaces. The door was

held in the closed position by means of a latch mechanism that uses a StarSys Inc EP-5025

paraffin wax actuator. In orbit, the door operated as a one-shot system being released once

only after the initial outgassing phase of the mission and with no capability to relatch.
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6.6. Mechanical Design Analysis and Verification

A finite-element model was used to verify the mechanical design of the instrument against

the spacecraft requirements, namely,

– lowest resonant frequency above 50 Hz and

– quasistatic loads of 25 g applied separately in three orthogonal axes, with resultant factors

of safety of

◦ ≥2.0 for composite materials and

◦ ≥1.3 yield (and ≥1.4 ultimate) for other materials.

In addition to the use of the model to verify the design against these mechanical require-

ments (i.e., modal, static, and dynamic analyses), it was also used to predict the magnitude

of thermal distortions caused by the large temperature changes between ambient and in-orbit

operating conditions and the large temperature gradients across the instrument structure in-

orbit, by using predictions from the thermal modelling (see Section 7).

As a result of these studies, a number of modifications were made to the detailed design

of the forward baffle assembly to ensure that changes of the relative baffle heights induced by

thermal distortion under worst-case operating conditions are less than 20 µm. As discussed

previously, 20 µm of the overall 65 µm budget for the relative heights of the forward baffle

edges was allocated to manufacturing tolerances, so that 25 µm remains for any long-term

changes in the dimensions of the baffles.

6.7. Instrument Alignment and Metrology

During the assembly of the flight instruments, extensive metrology was performed to set up

and align the various critical subsystems and components. The CMM used was the Mitutoyu

model CRT-A910, which provides a measurement accuracy of 2 – 3 µm over relatively short

distances, degrading to 4 – 5 µm over distances in excess of 0.5 m.

To perform these measurements, the instrument was mounted on a substantial aluminium

tooling plate (approximately 1 m × 0.6 m × 50 mm thick), which simulated the spacecraft

mechanical interface, in addition to providing a reference datum for the measurements. Pro-

cedures were developed for measuring the following:

– directions of the HI-1 and HI-2 optical axes (and rotations about these axes) relative to

the simulated spacecraft coordinate system,

– relative locations of the critical subsystems (forward baffles, side and rear baffles, internal

baffles, and FPA housings), and

– relative locations of the various baffle edges within each baffle subsystem.

As discussed previously, the most critical dimensional requirements are the relative

heights of the forward baffle vanes. The relative heights of the perimeter baffles are specified

to 0.1 mm, whilst the positions of the internal baffle vanes must be controlled to typically

0.5 – 1 mm. Similar requirements apply to the relative positioning of the different baffle

subassemblies and the optics entrance apertures.

It should be noted that setting up the alignments of the optical axes was performed by me-

chanical metrology using various reference points on the FPA housings and the lens barrels.

Given the precision to which the various components of these subsystems were manufac-

tured, this provided sufficient accuracy to ensure that overall instrument requirements are

satisfied. The precise alignments were confirmed by optical measurements during instru-

ment calibrations at CSL and subsequently refined in orbit by using background stars in the

field of view (Brown, Bewsher, and Eyles, 2009).
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Table 4 Summary of

temperature requirements (°C). Subsystem Operational Operational Survival

door closed door open

Min. Max. Min. Max. Min. Max.

Structure −120 100 −120 100 −120 100

CCDs −120 100 −100 −70 −120 100

Lens barrels −20 60 −40 30 −52 60

CEB −35 50 −35 50 −50 60

Wax actuator −50 40 −120 80 −120 80

During all postdelivery ground operations (i.e., calibrations and instrument-level qualifi-

cation testing at CSL, integration onto the spacecraft, spacecraft-level qualification testing,

and launch preparations) a subset of the metrology was repeated at key intervals using a

FARO portable CMM. Although this did not have the same accuracy as the machine used

during instrument assembly, the 25-µm accuracy of the portable CMM still provided a valu-

able confirmation that no major changes had occurred.

7. Thermal Design

The operational orbits for the two spacecraft are heliocentric, with STEREO-A being some-

what inside the Earth’s orbit (at 0.95 – 0.97 AU) and STEREO-B somewhat outside (at 1.00 –

1.09 AU). The HI instruments are Sun-pointed during normal operations with the solar load,

ranging from 1152 to 1654 W m−2, incident directly on their +X (Sun-facing) faces. In op-

erational mode there is electrical dissipation of approximately 10 W, primarily in the CEB.

The instrument temperature requirements are summarised in Table 4.

A thermal design using multilayer insulation, heaters, and passive radiators was devel-

oped. This design and the related computer models were validated by using data from ther-

mal testing of the instrument. The instrument is thermally isolated from the spacecraft by

the low thermal conductance titanium (Ti6Al4V) mounts. With the exception of the two ra-

diators on the antisunward side of the instrument, the outer surface is insulated by thermal

blankets having a black kapton outer layer. Once the door has opened, the black-coated baf-

fles and cameras are exposed to deep space. The black-painted radiators are used for cooling

the CCDs. As described in Section 4.2, each radiator is connected to the CCD by a cold

finger, which is also connected to a cold cup. The cold cup is designed to remain colder

than the CCD, which it partly surrounds, protecting it from contamination and radiated heat

loads.

Survival heaters, designed to provide thermal protection in nonoperational modes, are

fitted to the CEB and the camera lens barrels. The heater at the CEB is thermostatically

controlled, whilst those at the cameras are a fixed power that is dependent on the bus voltage.

The lens barrel survival heater circuit incorporates a thermostat that closes as a result of

lower structure temperatures when the instrument door has opened. This thermostatic switch

enables a greater heater power when the door is open (and heat losses are greater) and a lower

heater power when the door is closed (thus preventing overheating). In addition, operational

heaters are fitted to the lens barrels to control their temperatures in operational modes. The

survival heaters may be used in operational mode and this provides further margin on heater

power at the lens barrels. Decontamination or bakeout heaters are fitted near the CCDs.

As described in Section 5.2, a number of temperature sensors are fitted to the instrument,
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Table 5 Summary of cold and

hot operational thermal analysis

cases (door open).

aCold bounding case is for HI

instrument on STEREO-B and

hot bounding case is for

instrument on STEREO-A.

bBOL and EOL are

beginning-of-life and end-of-life

properties, respectively.

Description of thermal case Cold Hot

Applicable instrumenta HI-B HI-A

Bus voltage [V] 26.5 35

Spacecraft interface temperature [°C] −13 45

Sun distance [AU] 1.089 0.909

Solar flux [W m−2] 1152 1654

Radiative propertiesb BOL EOL

Table 6 Summary of thermal

model predictions (door open).

aOperational requirements apply

to all items shown, with the

exception of the wax actuator.

bHeaters are used to control lens

barrel temperatures.

Subsystema Cold case [°C] Hot case [°C]

Structure −69 to −53 −56 to −33

HI-1 CCD −84 −81

HI-2 CCD −83 −80

HI-1 lens barrelb −28 −28

HI-2 lens barrelb −28 −28

CEB internal −18 −6

Wax actuator −74 −61

including thermistors on the lens barrels to provide the feedback mechanism for controlling

the heaters.

Thermal design cases were derived by taking the extremes of the cold and hot parameters

that the instruments may experience during the mission. The cold and hot thermal design

cases for operational modes are summarised in Table 5.

Table 6 summarises the predictions for these two cases. It can be seen that the HI instru-

ment has a rather unconventional thermal design and implementation in that the majority

of the instrument runs very cold, with local heaters being used to raise the temperatures of

individual subsystems to their operational requirements. To use heaters to raise the temper-

ature of the entire instrument to more “normal” operating values would have required an

unreasonable amount of heater power.

It can be seen that all predicted temperatures had adequate margin with respect to the

applicable requirements. The lens barrel heaters are used to warm the optics to a temperature

above the minimum requirements. It is noted that both survival and operational heaters were

predicted to be required under certain conditions, but a margin was shown between predicted

and available heater power in all required thermal cases.

8. Instrument Development, Calibration, and Qualification Testing

8.1. Model Philosophy

The HI instruments were developed following essentially a proto-flight model approach.

However, to reduce risk, prototypes or engineering qualification models (EQMs) of critical

subsystems were manufactured and subjected to appropriate testing at the subsystem level:

– A prototype forward baffle assembly was built and subjected to stray-light tests to verify

the diffractive rejection performance of the concept (see Section 8.2).
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Figure 24 The prototype

forward baffle assembly.

– An EQM of the main structure, including the mounting legs, door, hinges, and latch mech-

anism, was manufactured. This was partly to develop fabrication and assembly techniques

for the CFRP structure. The structure was then fitted with EQMs of the lens assemblies,

the CEB, and the HI-2 FPA mechanical components, together with mass dummies to

simulate the mechanical properties of other subsystems. This assembly was subjected to

mechanical qualification testing (vibration and shock tests). Door deployment tests under

thermal vacuum were also performed.

– Lens assembly EQMs were subjected to thermal vacuum qualification at the unit level, in

addition to the mechanical qualification when mounted in the EQM structure. The optical

performance was verified at CSL before and after the testing.

– An EQM comprising the HI-2 FPA mechanical components was subjected to thermal vac-

uum qualification at the unit level, in addition to the mechanical qualification. A thermal

balance test was then performed, primarily to verify the integrity of the two-part cold

finger, with its clamped joint.

The development of the CEB followed a conventional full model philosophy, with prototyp-

ing, development model, EQM, and flight models (FMs), and with appropriate functional

and qualification testing performed on the different models.

8.2. Measurement of Stray-Light Rejection of the Prototype Forward Baffle

The rejection of direct solar light by the forward baffle is key to the overall stray-light per-

formance of the instrument, so at an early stage in the hardware development a prototype

forward baffle assembly was built and tested to confirm the theoretical predictions for the

diffractive rejection.

Figure 24 shows the prototype forward baffle. The baffle vanes were of the same di-

mensions (vane heights and separations) and were manufactured in exactly the same way

as the flight baffles (see Section 6.2 and Figure 22). However, they were supported on an

aluminium base plate, which was also provided with reference mirrors for setting up and

alignment. The entire assembly (excluding the mirror faces) was painted with the same

matte black paint as used on the flight models.

The test configuration used for the measurements at CSL is shown in Figure 25. The

baffle prototype was mounted within a black enclosure, which in turn was within a vacuum

chamber. An intense light source was provided by a laser diode with an optical fibre feed.

The detector, which could be remotely rotated through a range of angles relative to the
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Figure 25 The test configuration for the prototype forward baffle diffracted light measurements.

incoming beam, was a Hamamatsu photomultiplier tube, cooled to −40°C. To measure the

very low levels of diffracted light, rigorous precautions were taken to prevent light scattered

within the chamber from reaching the detector – a light trap was used to absorb the direct

beam from the source that passed over the top of the baffles, and particular attention was

paid to the blackening of those walls of the enclosure that were in the field of view of the

detector and to suppress light scattered off the front face of the first baffle vane.

The results obtained are shown in Figure 26. Measurements were made initially at am-

bient pressure and then under vacuum, to eliminate the possibility of scattering by airborne

dust particles. The rejection over the angular offset range corresponding to the HI-1 entrance

aperture is 10−9 to 10−11B/B⊙, whilst for HI-2 it is ≈3 × 10−12. The results generally lie

fairly close to the theoretical curve, and the improvement resulting from making the mea-

surements under vacuum is clearly evident at rejection levels below 10−11. The agreement

with the theoretical curve at angles larger than 4° is impressive, and the ability to make

stray-light rejection measurements down to these levels is a remarkable achievement.

8.3. Performance Testing of the FM Lens Assemblies

Prior to their installation into the telescope assemblies, the FM lenses were subjected to a

number of acceptance and performance tests at CSL. These included the following:

– measurement of the wave-front error using an interferometer,

– determination of the focal plane position with respect to the lens barrel mounting inter-

faces, on the basis of minimising the wave-front error (which, together with metrology on

the FPAs, enabled the spacers that set the focus of the telescopes to be adjusted),

– measurement of the absolute transmission as a function of wavelength, and

– measurement of the stray-light rejection of out-of-field objects by the lens barrels.

Results for these last two items are presented in the subsequent sections.

8.3.1. Measurement of Absolute Transmission of the FM Lens Assemblies

Figure 27 shows the measured absolute transmission of the four FM lens assemblies. The

agreement between the HI-1 measured curves and the manufacturer’s predicted curve from
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Figure 26 The measured stray-light rejection of the prototype forward baffle assembly as a function of offset

angle relative to the incoming beam, together with the theoretical prediction.

the filter coatings design is very good. The agreement for HI-2 is not so good, with the

measurements systematically lower than predicted and the peak transmission at a some-

what higher wavelength. The reason for these discrepancies is not known; however, it is not

regarded as serious in that the overall photometric response of the HI telescopes is being

calibrated in orbit by using the response to “standard” stars.

8.3.2. Measurement of Stray-Light Rejection by the FM Lens Assemblies

A measurement was made of the out-of-field stray-light rejection of the lens assemblies

prior to integrating them with the FPAs in the telescope assemblies. The measurement was

performed by mounting a 1 × 1 cm square photodiode detector (Newport 818-SL) at the

focal plane and moving a light source over a range of angles both within and outside the

field of view. Since this detector is considerably smaller than the HI CCD detector, the

effective field of view is also much smaller. This was useful in that it enabled the stray-light

contribution by scattering within the optics to be quantified for the outer regions of the HI

camera fields of view, as well as outside the fields.

The results are shown in Figure 28. It can be seen that at the angles corresponding to the

edges of the field of view (10° and 35°) the stray-light contribution levels are (1 – 2) × 10−3

and <10−4 for HI-1 and HI-2, respectively. These values, together with the measured rejec-

tion of the prototype forward baffles (see Section 8.2 and Figure 26), provided an extremely

important verification that the overall stray-light rejection requirements of the instrument,

given in Table 1, would be satisfied with substantial margins.

8.4. Instrument Qualification Testing and Optical Calibrations

The optical calibrations and the majority of the qualification testing of the FM instruments

were carried out at CSL. The test campaigns included the following stages:

– initial alignment and metrology checks,
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Figure 27 The measured

absolute transmission efficiencies

as a function of wavelength for

(a) HI-1 lens assemblies and

(b) HI-2 lens assemblies,

compared with the

manufacturer’s predicted curves.

– vibration test (at proto-flight levels of 10.4grms perpendicular to instrument mounting

plane and 7.4grms in plane of instrument),

– repeat of alignment and metrology checks,

– door deployment test in flight configuration with thermal blankets fitted and under thermal

vacuum conditions to simulate in-orbit deployment,

– thermal balance test (HI-B only),

– thermal vacuum testing including hot and cold survival soaks and a number of operational

cycles,

– optical calibration,

– solar stray-light rejection measurements (HI-B only),

– final thermal vacuum bakeout, and

– repeat of alignment and metrology checks.

The thermal qualification tests and the optical calibrations were carried out in the same vac-

uum chamber. During all these tests the CCDs were conductively cooled to around −110°C

by connecting thermal links from a liquid nitrogen dewar to the cold fingers, so that the

cameras could be read out with a very low noise level. During the thermal qualification
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Figure 28 The measured

out-of-field stray-light rejection

for (a) HI-1 lens assemblies and

(b) HI-2 lens assemblies, using a

1 × 1 cm square detector, rather

than the 27.6 × 27.6 mm HI

CCD.

tests, automatic image readout was performed at a cadence similar to that used in flight

operations, in addition to functional testing at appropriate intervals.

Figure 29 shows HI-A installed in the vacuum chamber. The instrument was mounted on

a remotely controlled rotary platform so that it could be rotated about a vertical axis. This

allowed a horizontal light beam from a collimator to be scanned across the centreline of the

HI-1 and HI-2 fields of view. The collimator, which was located in a separate cylindrical

chamber connected to the main chamber via a port, was 300 mm in diameter and F/10,

providing a collimated beam with 30 arc-sec divergence when fed from a light source via

a 400-µm core optical fibre placed at the collimator focus. The light source was either an

Ocean Optics HL-2000-HP halogen source or a 2-W output (continuous) laser diode with a

wavelength of 670 nm, depending on the test being performed.

The optical calibrations performed can be summarised as follows:

– Alignment measurements:

◦ Measurement of HI-1 and HI-2 boresight directions relative to the instrument mounting

interface, and measurement of the relative offset between the HI-1 and HI-2 boresights.

– Scans of the collimated light source (i.e., the image spot) along the centreline of the HI-1

and HI-2 fields of view:
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Figure 29 The HI-A instrument installed in a vacuum chamber at CSL for thermal vacuum qualification

testing and optical calibration.

◦ Measurement of the centroid position of the image of the calibration source on the

CCD versus the angle of the rotary platform, enabling the plate scales, focal lengths.

and distortion parameters of the cameras to be determined.

◦ Characterisation of the point-source response function (PSF) of the cameras, including

measurement of the half-energy width, as a function of position in the field of view in

each camera.

◦ Measurement of the flux within the image spot as a function of the angle of the rotary

platform, enabling the variation of response across the field of view (the large-scale flat

field) to be determined.

– Characterisation of the ghosts associated with bright objects both within and outside the

field of view.

– An end-to-end test of the rejection of solar stray light (HI-B only).

Table 7 summarises the main results of the optical calibrations. The results for the fo-

cal length and distortion parameters, the large-scale flat field, and the stray-light rejection

measurements are discussed in more detail in the subsequent sections.

8.4.1. Measurements of Focal Length and Distortion Parameters

Traditionally, almost all solar imaging instruments, including coronagraphs, have used the

gnomonic or tan projection. In this projection, an object at an angle α to the instrument

optical axis, or boresight, is projected onto the image plane at a radial distance R from the

boresight position given by

R = F tan(α),

where F is the focal length of the optical system and angular symmetry about the optical

axis is assumed. The position of an object in the image plane is then given in terms of an

appropriate rotation angle β by

x = F tan(α) cos(β),

y = F tan(α) sin(β).
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Table 7 HI-1 and HI-2 optical systems main characteristics.

Design values FM-A FM-B

HI-1

Optical axis – pitcha −13.65° −13.64° −13.67°

yaw 0° −0.15° −0.49°

roll 0° 0.90° 1.02°

Focal length (paraxial) 78.46 mm 77.54 mm 77.65 mm

Pixel size (paraxial) 35.50 arc-sec 35.92 arc-sec 35.87 arc-sec

Distortion parameter (µ) − 0.1668 0.1000

Distortionb <1% 0.83% 0.91%

HEW – on axis 45.2 µm 38.8 µm 37.9 µm

edge of fieldb 67.6 µm 54.3 µm 49.8 µm

Response at edge of fieldc 98.5% − d 95.8%

HI-2

Optical axis – pitcha −53.35° −53.13° −53.31°

yaw 0° −0.02° −0.61°

roll 0° −0.02° 0.22°

Focal length (paraxial) 21.67 mm 21.46 mm 21.52 mm

Pixel size (paraxial) 128.51 arc-sec 129.77 arc-sec 129.41 arc-sec

Distortion parameter (µ) − 0.8333 0.6506

Distortionb <8% 4.3% 5.5%

HEW – on axis 105.3 µm 31.5 µm 68.6 µm

edge of fieldb 145 µm 78.1 µm 164.8 µm

Response at edge of fieldc 81.9% − d 82.0%

aValues for the pitch angle of the optical axis relative to the mounting interface of the instrument. To allow

a margin for possible misalignments within the spacecraft structure, a further offset of 20 arc-min was intro-

duced when mounting the instrument onto the spacecraft, resulting in overall offsets of 14.0° and 53.7° from

Sun centre.
bValues at edge of the circular field of view.

cResponse at edge of the circular field of view relative to value on axis. The design values are based on the

geometrical projected area of the entrance apertures only.

dOwing to limitations of the test configuration, in particular the absence of a shutter at the light source,

reliable results were not obtained for HI-A in these cases.

However, this representation is not adequate to describe the imaging properties of the HI

cameras because of their wide-angle optics and the resultant distortion at the edge of the

field of view, particularly in the case of HI-2.

Analysis of results from scans of the calibration source across the fields of view showed

that the image projection of both cameras can be accurately represented by the relationship

R = Fp

(µ + 1) sin(α)

µ + cos(α)
,

where F p is the paraxial focal length and µ is a distortion parameter. The value of F p may

be used to calculate the paraxial plate scale f p.

Inspection of this relationship shows that, for µ = 0, it reverts to the simpler tan pro-

jection. Again, angular symmetry about the optical axis is implicit. It should be noted that
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Figure 30 Results for fitting the

AZP distortion relationship to the

data from the calibration scans

for (a) HI-1B and (b) HI-2B. The

available data points for HI-2B

are limited by the presence of an

Earth occulter in front of the

CCD on the centreline of the field

of view.

the relationship characterises the azimuthal perspective (AZP) projection as derived by Cal-

abretta and Greisen (2002). However, there is no particular physical basis for applying this

projection to the HI cameras; the relationship is used simply because it is a suitable two-

parameter model that can accurately represent the behaviour of the optics, including the

distortion at the edges of the field of view.

Table 7 gives the values for paraxial focal length (together with the corresponding parax-

ial plate scale in arc-sec per pixel) and distortion parameters obtained by fitting the AZP

projection to the data from the calibration scans. Figure 30 shows the fits obtained for the

HI-B cameras. In these plots the vertical axis represents the distortion expressed as the an-

gular deviation from a linear plate scale.

8.4.2. Measurements of Large-Scale Flat Fields

The relative response across the camera fields of view was calibrated by measuring the total

flux in the calibration image spot on the CCD as a function of angular position. The test

configuration only permitted the calibration source to be scanned across the centreline of

the field of view, so no information was obtained about the response in the corners of the

fields.

The measured angular response was fitted to the function

I = I0

[

γ cos(α) + (1 − γ )
]

,

where I is the response at an angle α to the optical axis, and the best-fit values for the

parameter γ were 2.66 and 0.90 for HI-1B and HI-2B, respectively. Hence, the variation of

the response over the HI-2B (circular) field of view was very close to a simple geometrical

projection of the entrance aperture area, although for HI-1B it decreased significantly faster.

This is most likely due to the angular response of the various coatings on the optics.
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For the purposes of correcting images, it is more convenient to characterise the response

as a function of distance r from the centre of the CCD image. For both HI-1B and HI-2B, it

was found that the response I at a radial distance r could be accurately represented by the

polynomial

I = I0

(

1 + ar2
+ br4

)

,

where I0 is the response on axis (as defined by the CCD centre).

With r expressed in millimetres, the optimised values for a and b were −2.18 × 10−4

and 0.00 (actually <1012) for HI-1B and −6.24 × 10−4 and −1.65 × 10−6 for HI-2B.

8.4.3. Measurement of Stray-Light Rejection at the Instrument Level

Although considerable confidence was gained from the tests at subsystem level that HI

would meet the solar stray-light rejection requirements (see Sections 8.2 and 8.3.2), it was

nevertheless considered important to perform an end-to-end verification of the completed

instrument. Such a test was performed on HI-B as part of the optical verification and cali-

bration.

The light source used for the stray-light tests on the instrument was the 2-W laser diode.

In these tests an alternative F/3 refractive collimator was used, providing an output beam

of area 25 × 5 mm, with an intensity of 80 mW cm−2 and a divergence of 27.5 arc-min. The

divergence closely matched that of the solar flux, whilst the intensity was of similar magni-

tude (total solar flux ≈150 mW cm−2). The beam was set up to be incident on the central

region of the forward baffle – since the diffraction pattern is strongly forward-directed this

was entirely adequate for the rejection measurements. Indeed, to have used a beam with

larger dimensions would have compounded the challenges of trapping the unused flux and

preventing it from contributing to the background light in the chamber.

To suppress the background stray light in the chamber sufficiently to reach the stray-

light rejection capabilities of the instrument, a number of enhancements were made to the

test setup. For all the optical calibrations the instrument was enclosed within a five-sided

structure, which was painted with matte black paint (Aeroglaze Z307). To reduce stray light

further, a vacuum-compatible black velvet appliqué, VelBlack (manufactured by Energy

Science Laboratories Inc., San Diego), was selectively applied to various internal surfaces of

the five-sided enclosure. In particular, it was used to attenuate that part of the incident beam

that passed over the top of the forward baffles and was also used to provide “super black”

surfaces within the field of view of each camera. VelBlack has a bidirectional reflectance

distribution function (BRDF) of ≤0.05% at 630 nm, compared with ≈2% – 3% for the black

paint.

Figure 31 shows images obtained from the HI-1B and HI-2B cameras during the stray-

light tests. The direction of the laser light source is indicated, and in each case it is in the

nominal Sun direction (i.e., 3.65° and 18.35° from the edge of the field of view). The images

show the various features of the surroundings in the vacuum chamber as viewed by the cam-

eras and illuminated by the ambient background light level from scattering of the incoming

beam. For example, in the HI-1 image the front of the light source collimator is clearly vis-

ible, whereas in the HI-2 image the welded joints between the panels of the surrounding

black-painted enclosure can be seen.

It should be noted that the light levels are extremely low, the images being deep expo-

sures of 12-minute duration. The measured brightness as a function of the incident beam

intensity at various points in the field of view is indicated in Figure 31. This was calculated
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Figure 31 End-to-end stray-light evaluation images for (a) HI-1 and (b) HI-2 telescopes. The direction of the

laser light source beam is shown, corresponding to the nominal Sun direction. The images show the various

features of the surroundings in the vacuum chamber, illuminated by the background light. The rejection factor

relative to the incoming beam at various points in the field of view is indicated, including regions where the

stray-light rejection is at the requirements level.

from a knowledge of the incident beam intensity, together with estimates of the photometric

responses of the cameras.

Generally, the detected levels were limited by the brightness of the various background

features of the vacuum chamber and black enclosure in the fields of view of the cameras,

and they represent upper limits on stray-light levels of the instrument itself. The contrast

between the regions of the enclosure that were painted with the “black” paint and those
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where VelBlack was applied is striking. It can be seen that in regions where the background

scattered light was suppressed sufficiently (e.g., by the VelBlack panels), the stray-light

attenuation of the instrument is substantially in excess of the requirements.

In addition to this measurement of solar stray-light rejection, the response of the cameras

to bright objects within the field of view was also assessed. The ghost images associated

with such bright objects showed rejection factors better than 6 × 10−9 and 3 × 10−7 per

pixel for HI-1 and HI-2, respectively.

9. Launch, Instrument Commissioning, and Mission Operations

The HI instrument checkout, commissioning, and early mission operations are described in

detail in Eyles et al. (2007). The most important activities and results are described in the

subsequent sections.

9.1. Launch and Precommissioning Phase

The twin STEREO spacecraft were launched aboard a single Delta II rocket from Cape

Canaveral Air Force Base at 01:52 UT on 26 October 2007 (8:52 pm EDT on 25 October).

Each spacecraft subsequently performed several highly eccentric Earth orbits, followed by

a lunar swing-by to achieve heliocentric orbit insertion.

A few hours after launch, decontamination heaters were switched on to prevent volatile

outgassing materials from condensing on the CCDs and optics surfaces. These heaters re-

mained on for approximately one month following launch. During this period, functional

checks were performed on the cameras, albeit with warm CCDs (around 30°C).

After about one month, the decontamination heaters were switched off and the CCDs

were cooled by the passive radiators over a period of ∼12 hours, reaching final temperatures

around −60°C. (The HI doors were still closed at this stage, so the temperatures reached

were somewhat higher than the final operating values.)

During the CCD cool-down phase, images were taken at periodic intervals to characterise

the CCD dark current as a function of temperature, thereby allowing the accumulated dark

charge at the final CCD operating temperatures to be predicted. The results obtained are

given in Section 9.1.1.

After switching off the decontamination heaters, it became possible to assess camera

performance with cooled CCDs. During this period, priority was given to obtaining dark

calibration images, together with images using the calibration LEDs, prior to opening the

“one-shot” instrument doors.

9.1.1. CCD Cooling Curves and Dark Charge Measurements

Figure 32 shows the cooling curves for the HI-A CCDs when the decontamination heaters

were turned off, together with the variation of dark current with temperature for HI-1A. The

results for the other cameras were very similar.

The variation of dark current for a noninverted-mode CCD can be characterised by the

relationship

I dark = AT −3 exp(−6400/T ),

where T is the temperature in kelvins (http://www.e2v.com).

http://www.e2v.com
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Figure 32 (a) Cooling curves for HI-1A and HI-2A CCDs. (b) HI-1A CCD dark current versus temperature.

Table 8 Predicted CCD dark current values at −80°C.

CCD temperature Dark current (ADU pixel−1 s−1)

HI-1A HI-2A HI-1B HI-2B e2v valuea

+20°C 506 392 496 402 1300

−80°C 0.0018 0.0014 0.0017 0.0014 –

aCalculated from e2v technologies value of 20 000 e− pixel−1 s−1 using a CEB gain factor of 1 ADU =

15 e−.

This relationship was fitted to the measured dark current values and the resultant best

fit for HI-1A is shown in Figure 32(b). A good fit is achieved despite the wide range of

temperatures. Similar fits were obtained for the other cameras. The fitted values for the

normalisation constant A were then used to predict the expected dark current at the final

CCD operating temperatures of approximately −80°C.

The predicted values for dark current at −80°C are given in Table 8, together with mea-

sured values at +20°C. The nominal dark current at +20°C as quoted by the CCD manu-

facturer (e2v technologies) is also shown for comparison.

The predicted accumulated dark charge for a summed image at the final operating tem-

peratures of approximately −80°C can now be calculated, and it is found to be completely

negligible. For the HI-2 summed image exposure times given in Table 10, the total charge

is ≈30 DN per image bin. Even in the darkest regions of a summed HI-2 image, the sky

background signal is three orders of magnitude larger at ≈30 000 DN per bin. This is an

excellent result, demonstrating that there is a large margin for possible degradation of CCD

performance resulting from radiation damage. It is also noted that measured values of dark

current at +20°C are substantially lower than the manufacturer’s quoted typical value.

9.2. Instrument Commissioning Phase

To avoid possible contamination of sensitive optical surfaces by condensable material from

spacecraft thruster firings, the HI doors remained closed until after the final attitude ma-

noeuvres prior to lunar swing-by and heliocentric orbit insertion for each spacecraft.

The HI-A door was opened on 13 December 2006, two days before STEREO-A lunar

swing-by. The first-light images are shown in Figures 33(a) and (b). They are of outstand-
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Figure 33 (a) HI-1A first-light image and (b) HI-2A first-light image from 13 December 2006. (c) HI-1B

first-light image and (d) HI-2B first-light image from 11 January 2007.

ing quality, with the F-corona, Venus, the Milky Way, several clusters, and numerous stars

visible.

The HI-1A image is 20° across and the Sun is 4° to the right of the frame. The F-coronal

intensity is only 10−10B⊙ at 4°, which in itself is a remarkable demonstration of the perfor-

mance of the instrument. Venus in HI-1A is saturated, causing the CCD full well capacity

to be exceeded and excess charge to bleed up and down the columns, as seen in the image.

The HI-2 image is 70° across with the Sun 18.7° off the right-hand edge. Here we are

seeing the F-coronal intensity at levels of only 10−12B⊙, although the coronal profile can be

followed right across the field of view. The bright semicircular rings on the right-hand side

are images of the internal baffle edges, illuminated primarily by stray light from the Earth.

The HI-B door was deployed on 11 January 2007, and the first-light images showed

spectacular views of Comet McNaught (Fulle et al., 2007). The final lunar swing-by and

heliocentric insertion of STEREO-B was on 21 January 2007.

Figures 33(c) and (d) show first-light images from HI-B. In this case the Sun is off the

left-hand edge of the frames. At this early stage in the mission the spacecraft attitude was
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not aligned with the ecliptic, resulting in the appearance of the F-corona at an angle in the

images. Although the coma of Comet McNaught in HI-1B is saturated, fine structure in the

tail is clearly visible.

Following deployment of the doors, the temperature of the entire instruments dropped

over a time scale of ∼12 hours. CCD temperatures around –80°C were achieved, giving

very low dark charge and high tolerance to radiation damage effects, as discussed in Sec-

tion 9.1.1. The in-orbit thermal performance of the instruments is described in more detail

in Section 9.2.1.

After door opening, the mission entered the instrument commissioning phase. The syn-

optic observing sequences were tested and optimised, resulting in the final values given in

Table 10 (see Section 9.3). In addition, a number of instrument performance tests and cal-

ibrations were carried out, including calibration LED exposures, spacecraft rolls designed

so that the HI-A and HI-B cameras viewed the same regions of sky for intercalibration, and

stray-light off-point tests.

In the stray-light off-point tests, the spacecraft attitude was offset from nominal pointing

in a series of steps in HI pitch ranging from 1.5° towards the Sun to 1° away from the Sun,

enabling the stray-light rejection of the forward baffle to be verified. The results obtained

are discussed in Section 9.2.2.

In the course of instrument commissioning, and during the early science mission oper-

ations phase, two issues related to the instrument on-orbit performance became apparent.

Firstly, as can be seen in Figure 33 of this paper and in Figure 14 of Brown, Bewsher, and

Eyles (2009), the PSF of HI-2B is somewhat broader and more asymmetric than that of HI-

2A, resulting in the images of stars being more spread out. In fact this focusing problem was

known about before launch, but because of programmatic constraints, together with the fact

that it was not expected to impact significantly on the primary science objective of imaging

CMEs, it was not deemed necessary to take any remedial action prior to launch. The cause

of the problem is most likely a manufacturing or assembly error in the HI-B lens assembly,

resulting in incorrect spacing of some of the lens elements – tests using external corrector

lenses placed in front of the camera during spacecraft-level testing produced no significant

improvement in the imaging performance, indicating that the problem is not due to a simple

error in the setting of the focal distance between the lens assembly and the CCD.

As a result of the degraded PSF of HI-2B, the attitude solutions obtained using the back-

ground stars in each image (see Brown, Bewsher, and Eyles, 2009) are not as good as they

are for the other cameras although they are still completely acceptable – the mean squared

deviation between the positions of observed stars and their predicted catalogue positions, av-

eraged over all acceptable images, is 1.48 image pixels for HI-2B compared to 0.78 image

pixels for HI-2A. The degraded PSF has a negligible effect on the primary science objec-

tives of the mission since CMEs are diffuse structures that do not show detail at the level

of the basic instrumental PSF. However, work is ongoing to model and correct for the PSF,

although this is a complex problem because of its asymmetry and variability over the field

of view.

The second instrument performance issue that has become apparent is that there are occa-

sional and random discontinuities in the pointing of HI-1B relative to the spacecraft attitude

solutions, by up to ∼0.1° – 0.2°. These discontinuities usually manifest themselves as steps

in a plot of pointing attitude against time, although in a small proportion of HI-1B images

the pointing discontinuities occur during the exposures, resulting in star images that are

smeared, trailed, or even split. The origin of these sudden changes in pointing is uncer-

tain – the on-orbit environment should be highly stable, both thermally and mechanically.

The most plausible explanation is that since HI-B is facing into the direction of motion of
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Table 9 Summary of prelaunch thermal predictions and on-orbit measured temperatures [°C].

Subsystema Prelaunch predictions On-orbit measurementsc

Cold case Hot case HI-A HI-B

Structure −69 to −53 −56 to −33 −70 to −23 −68 to −29

HI-1 CCD −84 −81 −83 −80

HI-2 CCD −83 −80 −80 −76

HI-1 lens barrelb −28 −28 −15 −29

HI-2 lens barrelb −28 −28 −15 −15

CEB internal −18 −6 −13 −13

Wax actuator −74 −61 −72 −71

aOperational requirements apply to all items shown, with the exception of the wax actuator.

bHeaters used to control lens barrel temperatures.

cMeasurements taken in January 2007, when spacecraft were almost in their final heliocentric orbits.

STEREO-B, impacts by dust particles on the instrument may be perturbing the pointing of

the camera relative to the spacecraft. The degraded PSF of HI-2B has to date prevented any

definitive conclusions being reached as to whether the pointing discontinuities also affect

this camera (i.e., whether the alignment of the entire instrument is being perturbed or just

the HI-1B camera).

The procedure described in Brown, Bewsher, and Eyles (2009) of using the background

stars in each image to derive an attitude solution for that image essentially avoids any prob-

lems in data analysis owing to the pointing discontinuities – in essence the HI cameras are

used as star trackers and the images become self-calibrating. Only in a very small proportion

of images (a few percent) where the star images are significantly smeared is it not possible

to obtain improved attitude solutions in this way – these images are flagged as “bad” and

will not normally be used for science data analysis.

9.2.1. Instrument Thermal Status after Door Deployment

Table 9 shows early on-orbit temperature measurements for the two instruments, together

with the prelaunch predictions reproduced from Table 6. All the measured temperatures

satisfy the requirements stated in Table 4, within acceptable margins. All CCD temperatures

are close to the design value of −80°C. The setpoint for the lens barrels is higher than that

used in prelaunch predictions. The temperatures shown were achieved by using only the

operational heater circuits.

For HI-B, although the HI-1 lens barrel temperature is within the requirements in Table 4,

the available heater power was not sufficient to raise its temperature to the −15°C setpoint.

This was not unexpected since spacecraft-level thermal testing before launch showed a sim-

ilar anomaly, which is believed to be due to a thermal short or leak that has developed be-

tween the lens barrel and housing. The HI-1B lens barrel setpoint was lowered to −29.5°C,

which is entirely satisfactory and in no way compromises the optical performance.

9.2.2. Stray-Light Off-Point Calibration Results

A stray-light off-point calibration was performed on HI-A on 30 January 2007. Exposures

were taken at various spacecraft off-point angles up to 1.5° towards the Sun, and up to 1.0°
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Figure 34 Measured F-coronal intensity plotted against angle from Sun centre for (a) HI-1A and (b) HI-2A.

(c) and (d) Residual intensities after subtracting the fitted profiles. The colours of the data points plotted

indicate the spacecraft off-point angles as follows: black is nominal pointing; green, blue, orange, and red

indicate off-point angles of 0.25°, 0.5°, 0.75°, and 1.0° towards the Sun, respectively; purple and brown

indicate off-points angles of 0.5° and 1.0° away from Sun, respectively. The continuous black line in the

upper plots corresponds to the fitted power-law profile.

away from the Sun in HI pitch, relative to nominal pointing. Visual inspection of the images

indicated no evidence of any increase in stray light up to 1.0° offset towards the Sun. At 1.0°

offset, and to a much greater extent at 1.5° offset, there was a substantial amount of stray

light and ghost images evident in both HI-1 and HI-2.

For each off-point, the F-coronal intensity was measured at eight locations across the

centerline of the field of view. The values obtained are plotted against distance from the Sun

centre (allowing for the off-point angle) in Figures 34(a) and (b). A power-law profile D−n

(where D is angular distance from Sun centre and n is a constant index) was fitted to the

data points corresponding to nominal pointing, and Figures 34(c) and (d) show the residuals

after the fitted profile is subtracted from the data points.

If the stray-light intensity does not change with off-point angle, then all the data points

should lie on the same curve. This is clearly the case for all off-points except for −1.0°

and to a much smaller extent −0.75°, where the measured values lie significantly above the

fitted profiles.

The following conclusions are drawn:

– There is at least 0.5° margin in the pointing alignment of HI-1A relative to the Sun direc-

tion.

– In the nominal case, the stray-light level in HI-1A is less than about 2% of the F-coronal

background across the entire field of view; a similar limit applies to HI-2A.

– The dramatic decrease in stray-light rejection between 1.0° and 1.5° offset towards the

Sun is as expected based on the geometry of the forward baffles, corresponding to the

loss in effectiveness of the first baffle stage.
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Table 10 The exposure and

summed image timing

parameters for normal synoptic

observations.

HI-1 HI-2

Individual exposure time 40 seconds 50 seconds

Exposure cadence 60 seconds 60 seconds

Number of images summed 30 99

Total exposure time 1200 seconds 4950 seconds

Exposure sequence duration 30 minutes 99 minutes

Summed image cadence 40 minutes 2 hours

Observing duty cycle 50% 69%

Results for HI-B off-point calibrations were broadly similar except that the margin in the

pointing alignment was a little smaller, about 0.3°.

9.3. HI Science Mission Operations

The science operations phase for HI commenced at the beginning of April 2007, although

observations of scientific importance were made before this time (e.g., Fulle et al., 2007;

Harrison et al., 2008). Science operations are relatively simple for HI since the instrument

performs a continuous synoptic, or monitoring, observing program. The details of this pro-

gram were refined during the commissioning phase and the final values arrived at for the

exposure times, cadences, etc. are given in Table 10.

The factors determining the choice of values are as follows:

– The overall telemetry allocation available to HI corresponds to an average of two 1024 ×

1024 binned images per hour.

– The respective plate scales of the HI-1 and HI-2 cameras and the consequent time evolu-

tion of propagating structures result in the choice of 40-minute and 2-hour cadences for

the summed images.

– The exposure sequence duration is chosen so that the drift of the star field through the

field of view (≈2.5 arc-min hour−1) corresponds to ≈1 image bin, thereby ensuring that

the star images are not significantly smeared over the sequence.

– The individual image exposure times are chosen from dynamic range considerations. In

the case of HI-1 the brightest region of the F-corona corresponds to about 60% of the

dynamic range there are usually no saturated star images, although Venus and Mercury,

if present, are significantly saturated. For HI-2 there are typically ∼2 – 10 saturated star

images in the field of view (in addition to any planets that are present).

In addition to the 36 summed images taken for HI-1 and 12 for HI-2 every 24 hours, one

full-resolution (2048 × 2048 pixels) single exposure is normally taken with each camera for

performance monitoring.

Momentum dumps are performed at approximately 6- to 8-week intervals on each space-

craft to off-load the reaction wheels in the attitude control system. This operation interrupts

normal observations, although camera calibration images are taken at these times. Synoptic

observations are also interrupted occasionally for spacecraft high-gain antenna calibrations

and calibration rolls for the SCIP instruments. However, with the exception of these occa-

sional interruptions the synoptic observing program detailed here is performed continuously

throughout the mission.
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9.4. STEREO Space Weather Beacon Data

The synoptic observing programme images from the SECCHI instruments are available on

the various Web sites with a latency of 2 – 3 days. To facilitate space weather forecasting,

the STEREO spacecraft have a Space Weather Beacon mode, which is a continuous, real-

time, low-data-rate (633 bits per second) transmission of highly compressed data from the

STEREO instruments.

In the case of HI, one summed image from each camera is sent every 2 hours via the

beacon mode. The images are 256 × 256 binned and highly compressed.

10. Data Processing and Analysis

Data from the SECCHI instruments aboard STEREO, including the Heliospheric Imagers,

are available for downloading from several Web sites, including the UK Solar System Data

Centre (UKSSDC), based at RAL (http://stereo.rl.ac.uk). The HI data are available in two

forms: Level 0.5 and Level 1.

Level 0.5 (L0.5) data are raw, uncalibrated instrument images that have been extracted

from the down-linked spacecraft telemetry and made available in the Flexible Image Trans-

port System (FITS; Wells, Greisen, and Harten, 1981) file format. The image is a 2D array of

the appropriate size, and there is a header that contains a large number of keywords to spec-

ify all the instrument and spacecraft parameters relevant to the observation. Additionally, in

the case of summed HI science images there is an extended header, which is a table giving

parameters of the individual exposures in the image sequence (e.g., the exposure times and

durations for the individual exposures). The full definition of the L0.5 keywords is given in

ftp://louis14.nrl.navy.mil/pub/secchi/ssw/doc/FITS_keywords.pdf.

Level 1 (L1) data have been processed using SECCHI_PREP, which is an IDL routine

available in the SolarSoftWare distribution (Freeland and Handy, 1998). SECCHI_PREP

reads in L0.5 images and then applies the latest image correction and calibration procedures

for all the SECCHI instruments. The procedures applied to HI images are described in the

subsequent sections.

The effects of the image processing performed by SECCHI_PREP (Section 10.1), fol-

lowed by the background subtraction (Section 10.2), are illustrated in Figure 35.

10.1. Processing of HI images by SECCHI_PREP

There are options for enabling and disabling various functions, but in the default case SEC-

CHI_PREP performs the following operations on L0.5 data to produce L1 files:

– Remove the cosmic-ray scrubbing values (see Section 5.3) from the final row of the image,

replacing the values in these bins with values from the adjacent row.

– Identify saturated columns and missing data blocks, and insert appropriate data values.

– Apply the correction for shutterless readout of the cameras.

– Apply a flat-field correction to the image.

– Correct the pointing and optics parameter values in the headers.

10.1.1. Saturated Columns and Missing Data Blocks

When the signal from a bright object, such as a planet, exceeds the full well capacity of

a pixel, the excess charge bleeds into adjacent pixels in the same column, causing verti-

cal columns of saturated pixels. Bleeding of excess charge horizontally across columns is

http://stereo.rl.ac.uk
ftp://louis14.nrl.navy.mil/pub/secchi/ssw/doc/FITS_keywords.pdf
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Figure 35 An image from HI-1A taken on 25 January 2007, illustrating the effects of various stages of

image processing: (a) the raw image, (b) SECCHI_PREP has been used to apply corrections for shutterless

operation and the flat field, (c) the residual “blooming” caused by saturation around the planets Venus and

Mercury has been removed, and (d) the background has been subtracted to reveal a CME.

inhibited by the channel stops in the CCD structure, although in extreme cases where the

saturated column reaches the output register the charge may then bleed across the register

and up into the adjacent columns.

Since the presence of saturation anywhere in a column invalidates the shutterless cor-

rection (see next section), all data in the column must be regarded as potentially invalid.

SECCHI_PREP identifies this situation and marks all pixels accordingly by replacing the

pixel ADU values with NaN. SECCHI_PREP also identifies missing blocks in an image

(from telemetry dropouts) and inserts appropriate values in these pixels.

10.1.2. Correction for Shutterless Readout

Mainly because of mechanical accommodation constraints, the HI cameras do not have shut-

ters and since the CCDs are full-frame format they remain exposed to the sky scene during

the image readout process, and also during the clear process prior to each exposure. Since
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Figure 36 Drawing illustrating

image smearing during the

readout process, resulting from

the shutterless operation of the

HI cameras.

the readout time of an image in particular is not insignificant compared with the typical

exposure times, this results in some smearing of the images during the readout.

Consider CCD pixel (n,m) as shown in Figure 36. After an exposure time T exp, the image

is read out by transferring each line in turn into a horizontal output register and then clocking

each pixel serially out of the horizontal register. If the line transfer time during the readout

is T read, then there will be a “pseudo exposure” of duration T read at every line position down

the column, under the pixel location. Hence, in addition to the nominal exposure of the pixel

there will be (m − 1) exposures of duration T read. This means that there will be a gradient

of effective exposure time increasing vertically up the image and also, since these additional

exposures are to different regions in the sky scene, there will be a vertical smearing of the

resultant image. Bright objects such as stars or planets will have vertical “trails” above their

locations in the image.

In addition, prior to each exposure the CCD is cleared by clocking residual charge down-

wards into a “dump drain” in a similar manner to the image readout, albeit at a faster rate.

Consequently, for pixel (n,m) we must also add contributions from the (2048 − m) loca-

tions above the nominal location, each with an exposure time T clear corresponding to the line

transfer time during the clear process. This causes vertical smearing and trailing of stars in

the opposite direction.

In practice, T read dominates over T clear, their values being 2350 and 124 µs, respectively,

in the nominal camera readout mode. The total time to read out an image, including over-

heads, is approximately 4.837 seconds.

Expressing this mathematically, the total response R for pixel (n,m) is given by

R(n,m) =
[

T exp × I (n,m)
]

+

2047
∑

y=m+1

[

T clear × I (n, y)
]

+

m−1
∑

y=0

[

T read × I (n, y)
]

,

where the count rate for pixel (x, y) is given by I (x, y). This can be expressed rather more

succinctly by the matrix relationship

R = TI,
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where T is a (2048 × 2048) matrix filled with the value T exp along the diagonal, the value

T read in all elements above the diagonal, and T clear in all elements below the diagonal. Hence,

the image that is read out may be corrected for the effects of the shutterless operation of the

camera by the matrix multiplication

I = T−1R.

It should be noted that the corrected image I has units of count rate (i.e., ADU s−1),

rather than total signal in ADU. Indeed, since the effective exposure time varies by nearly

5 seconds down the CCD it is not meaningful to convert the image to total signal.

Although this procedure normally completely removes the effects of the shutterless read-

out, there are two limitations to its validity. Firstly, if there is a cosmic-ray hit on the CCD

during the exposure this will produce a bright region without the trailing along the associated

column(s) during the readout. Applying the shutterless correction will then produce a dark

trail in the columns. This is not an issue for the summed science images since cosmic-ray

hits are removed efficiently by the onboard scrubbing, but the effect is noticeable in single-

exposure images. Secondly, if saturation occurs anywhere in a column then the signal in the

affected pixels does not represent the true incident light intensity, so again the correction is

not valid.

10.1.3. Flat-Field Corrections and Photometric Conversions

To apply a flat-field correction to the L1 images, SECCHI_PREP multiplies the L0.5 image

by a calibration image (after performing the shutterless correction). Deviations from uniform

response may occur for the following reasons:

– There can be variation in the efficiency of the optics across the field of view owing to

changes in transmission of the optical elements and coatings, geometrical aperture ef-

fects, and vignetting. These effects, which generally produce large-scale variations, were

characterised to a certain extent during prelaunch calibrations (see Section 8.4.2).

– CCDs generally show pixel-to-pixel variations in response, typically of the order of a

few percent. These contribute a small-scale variation; in general there is no significant

large-scale nonuniformity in CCD response.

– Debris, such as dust particles, on the CCD will cause nonuniformity of response, generally

on fairly small spatial scales (although condensation of volatile materials may cause large-

scale effects).

As of October 2008, SECCHI_PREP applies the large-scale geometrical corrections de-

scribed in Section 8.4.2. These are reasonable in the circular part of the field of view but are

significantly in error in the corners, because the optics suffer significant vignetting in these

regions, whilst the corrections have simply been extrapolated (since there were no applica-

ble data from the prelaunch calibrations). In addition, there is a correction to the response

in rows 512, 1024, and 1536 of the CCD, corresponding to the so-called stitch lines. During

the manufacturing process, the CCD pixel structure is photo-composed by replicating four

times over a basic pattern of 512 × 2048 pixels, resulting in nonuniformity of response at

the joints. There is no photometric conversion implemented at present.

At the time of writing, work is ongoing to use the response to stars drifting through the

fields of view to produce improved large-scale flat-field corrections, together with photomet-

ric response calibrations (Bewsher et al., in preparation). Small-scale flat-field corrections

will follow later.
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10.1.4. Updating of Pointing and Optics Parameters

Until recently (August 2008), the pointing attitude parameters in the FITS headers were

derived from the spacecraft attitude solutions, together with refined prelaunch values for

the offsets between the HI telescopes and the spacecraft reference axes. This has not been

entirely satisfactory for the following reasons:

– Although the Sun-pointing (+X) spacecraft axis is maintained pointing accurately to-

wards Sun centre by the SECCHI GT, the roll angle about this axis is derived from the

spacecraft star trackers and inertial measurement unit and is subject to significant errors

and uncertainty.

– Images from HI-1B show occasional and irregular discontinuities in pointing, by up to

0.1° – 0.2° (see Section 9.2).

The background stars in the HI images are now used to obtain optimised attitude so-

lutions for all cameras on an image-by-image basis (Brown, Bewsher, and Eyles, 2009).

Typically, between 20 and 80 stars are used in the optimisations and good solutions are ob-

tained for the overwhelming majority of images (with an average error in residuals of fitted

star positions of <1 image pixel, except for HI-2B where it is <2 image pixels). This re-

moves the uncertainties in the solutions derived from spacecraft pointing and the effects of

the pointing discontinuities in HI-B.

Since August 2008, SECCHI_PREP updates the pointing keywords in the L1 image

headers using the attitude solutions obtained from the background stars (where available).

Updated values for the optical parameters f p and µ (see Section 8.4.1), which were obtained

as a result of the star fitting, are also inserted in the L1 headers.

10.2. Background Subtraction

After the images have been corrected and calibrated using SECCHI_PREP, the F-coronal

background must be removed to reveal transient features such as CMEs. This is possible

because the F-coronal background is essentially constant on time scales characteristic of

the evolution of CMEs. Two alternative approaches are used to remove the background: the

“running difference” method and the subtraction of a mean coronal background measured

over a sequence of images.

The running difference method simply involves taking the difference between each image

and the preceding one, on a pixel-by-pixel basis. This provides a simple “quick look” way of

searching for coronal transients – propagating CMEs are revealed as bright regions followed

by adjacent dark regions – although it is not compatible with quantitative photometry.

The coronal background signal can be calculated by taking the minimum intensity mea-

sured in each pixel over a sequence of images. Stars drift across the field of view (typically

by ≈1 image pixel between consecutive synoptic images) and so do not appear in the back-

ground image. Larger scale features, such as the Milky Way, require a longer sequence of

images. Appropriate time scales for the calculation of a mean background vary from 1 day

to several days, up to a maximum of 27 days.

To calculate and then subtract a valid background it is necessary that the measured coro-

nal background signal remains constant over the time scale involved. This implies that the

instrument pointing attitude must be stable relative to the large-scale coronal structure. Two

specific problems arise for the HI data:

– The spacecraft roll angle may change relative to the ecliptic. This applies particularly to

STEREO-B early in the mission. The effect is that the F-corona rotates across the field of

view, thereby invalidating attempts to calculate and subtract a constant background.
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– The pointing discontinuities of HI-1B have a similar effect. The gradient of the F-corona

along the ecliptic is such that an error of only 1/3 of a pixel in pointing will leave a resid-

ual background signal comparable with the intensity of the transient solar wind features.

These effects can be allowed for by correcting the pointing attitudes of the images in the

sequence before determining the minimum for each pixel (i.e., the images are first shifted

and rotated into a fixed orientation relative to the large-scale corona). Procedures to do

this by using the optimised attitude solutions obtained from the background star fields are

currently being developed, and background estimates over a range of time scales from 1 day

up to 27 days are being derived.

11. Results

The HI instruments have been operational since early 2007 and have already detected nu-

merous CMEs, as evidenced by the HI event list, which is maintained on the RAL STEREO

Web site (http://stereo.rl.ac.uk).

In addition, many outstanding discoveries and serendipitous observations relevant to the

additional scientific objectives of the mission have been made, including the following:

– the discovery of the atomic ion tail of Comet McNaught (Fulle et al., 2007),

– a direct observation of the interaction between a CME and a comet (Comet Encke), lead-

ing to the complete disconnection of the comet’s plasma tail (Vourlidas et al., 2007),

– observations of the structure of the solar wind, in particular the first direct white-light

images of corotating interaction regions in the interplanetary medium (Rouillard et al.,

2008; Sheeley et al., 2008a, 2008b),

– the first observation of the planetary impact of a CME by the STEREO spacecraft con-

firmed by in situ measurements by the magnetometer aboard the Venus Express spacecraft

(Rouillard et al., 2009), and

– stellar variability studies (Bewsher et al., in preparation).

One of the first CMEs to be observed by HI was an event seen in HI-1A between

14:00 UT on 24 January and 04:00 UT on 25 January 2007. The event was first observed

by LASCO C2 and C3 and was followed through HI-1A out to about 50R⊙ (in the plane of

the sky) over a total period of 15 hours. Unfortunately, there was a data gap on HI-1A after

04:00 UT, but the event was detected subsequently by HI-2A and later by SMEI on 26 –

28 January. At the time of the observations both STEREO spacecraft were still very close

to the Earth, with viewing locations only just outside the Sun – Earth line. Consequently, the

event was not observed by the HI-B instruments.

Detailed analysis of this event, including comparison with other instruments and brief de-

scriptions of other early CME events observed by HI, was reported by Harrison et al. (2008).

Here we present the essential observations to demonstrate that HI is easily meeting its re-

quirements specifications in terms of CME detection.

Figure 37 shows an image of the event from HI-1A early on 25 January, the image being

the sum of 25 exposures, each of 24-second duration. The raw image was first corrected for

the shutterless operation of the camera and then the F-coronal background was removed, as

described in Section 10. The background was determined by taking the minimum intensity

for each image pixel over a number of similar images around the same time.

The quality of the background-subtracted image is outstanding and demonstrates the ef-

fectiveness of the image processing, with stars down to 12th to 13th magnitudes visible.

There is no evidence of the brighter stars “trailing”, demonstrating the efficiency of the

http://stereo.rl.ac.uk
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Figure 37 A HI-1A image taken on 25 January 2007. The image is 20° across and the Sun is 4° off the

right-hand edge. The F-coronal background has been subtracted to reveal a CME expanding across the

right-hand side of the image. Stars down to 12th to 13th magnitudes are visible, together with the bright

images of Venus (near bottom left) and Mercury.

shutterless correction. Pixel values in the saturated columns associated with Venus and Mer-

cury have been replaced with average values from adjacent columns (since the saturated

columns do not contain any valid data). The structure of the CME expanding away from

the east limb of the Sun at around 600 km s−1 is clearly visible. The presence of Venus and

Mercury in the field of view graphically demonstrates the potential for combining remote

sensing observations with in situ measurements.

Figure 38(a) shows the profile of the raw intensity measured across the central row of the

HI image, before subtraction of the F-coronal background. The profile is dominated by the

F-coronal signal with small spikes resulting from stellar images.

Figure 38(b) shows a plot of the residual signal after the coronal background has been

subtracted. A number of stars are visible but the peak of the CME front is clearly visi-

ble above a slowly varying residual component of the F-corona, which has not been com-

pletely subtracted out. In Figure 38(c) the median of the central 25 rows of the background-
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Figure 38 (a) The intensity profile plotted across the central row of the HI image, before subtraction of the

F-coronal background, (b) the same plot after subtraction of the background, and (c) the profile of the median

of the 25 central rows across the background-subtracted image.

subtracted image is plotted. Here the spikes from stellar images are removed and the struc-

ture of the CME stands out very prominently above the residual F-coronal signal. The struc-

ture near the right-hand edge of the profile (close to the Sun) is probably associated with

streamer belts in the K-corona superimposed on the residual F-corona.

Both Figures 38(b) and (c) show that the peak intensity of the CME is ≈2.3 ADU s−1

and that structure associated with the CME is clearly distinguishable down to at least

≈0.2 ADU s−1. Referring back to Figure 38(a) we can see that the corresponding F-coronal

signal in this part of the image is about 50 ADU s−1 and so the peak intensity of the CME

front is 4.5% of the coronal background, and features ≈0.5% of the background are visible.

Crucially, we have demonstrated that we can readily detect CME features down to less than

1% of the F-coronal intensity. These measurements were made at about 40R⊙ (in the plane

of the sky). In terms of solar brightness, it is estimated that the peak intensity in the CME

is ≈7.5 × 10−14B⊙ and the data demonstrate that we can detect features down to less than

10−14B⊙ at these distances from the Sun (Harrison et al., 2008).

12. Summary and Conclusions

We have described the design, development, and operation of the Heliospheric Imagers,

unique instruments that are now operating successfully in orbit aboard the two NASA

STEREO spacecraft. Meticulous attention to detail in the design, development, and manu-
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facturing have enabled the demanding requirements specifications to be achieved, including

rejection of solar background light to levels of ∼10−13 to 10−14B⊙.

A careful programme of ground tests and calibrations at both the subsystem and the

instrument level, together with in-orbit verifications, has demonstrated that the requirements

have been met. The early CME results demonstrated the ability to extract the CME signal at

less than 1% of the F-coronal background.

In addition to observations of CMEs and solar transient events, the HI instruments have

already made a number of other highly significant scientific observations.

At the time of writing (September 2008) the total separation angle between the STEREO

spacecraft at the Sun is approximately 70° and the mission is entering the optimum phase

for observations of CMEs propagating along the Sun – Earth line using the HI instruments

at the two widely separated viewing points.
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