INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
800-521-0600

UMI
THE HELMINTHS PARASITIC IN THE AMPHIBIA AND REPTILIA

OF HOUSTON, TEXAS, AND VICINITY

by

P. D. Harwood

Offered to the Faculty of The William Marsh Rice Institute as a thesis in part fulfillment of the requirements for the degree of Doctor of Philosophy.

June 1931

32-5820

U. S. Civil Service Commission
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Platyhelminthes</td>
<td>4</td>
</tr>
<tr>
<td>Trematoda</td>
<td>4</td>
</tr>
<tr>
<td>Polystoma</td>
<td>4</td>
</tr>
<tr>
<td>Heronimus</td>
<td>9</td>
</tr>
<tr>
<td>Hematosoma</td>
<td>10</td>
</tr>
<tr>
<td>Megalodiscus</td>
<td>14</td>
</tr>
<tr>
<td>Auridistomum</td>
<td>16</td>
</tr>
<tr>
<td>Lesocoelium</td>
<td>17</td>
</tr>
<tr>
<td>Brachycoelium</td>
<td>20</td>
</tr>
<tr>
<td>Glyphelmis</td>
<td>27</td>
</tr>
<tr>
<td>Haematoleechus</td>
<td>30</td>
</tr>
<tr>
<td>Renifer</td>
<td>35</td>
</tr>
<tr>
<td>Lechriorchis</td>
<td>41</td>
</tr>
<tr>
<td>Dasymetra</td>
<td>44</td>
</tr>
<tr>
<td>Nanodistomum</td>
<td>46</td>
</tr>
<tr>
<td>Gorgodera</td>
<td>48</td>
</tr>
<tr>
<td>Telorchis</td>
<td>50</td>
</tr>
<tr>
<td>Prostenes</td>
<td>54</td>
</tr>
</tbody>
</table>
Cestoda... 58
Proteocephalus................................. 58
Oochoristica...................................... 63
Dicrocheta....................................... 71
Cylindrotaenia................................. 74
Cysticercus.......................... 75
Nematelminthes................................. 76
Nematoda................................. 76
Rhabdias.. 76
Ophidascaris................................. 77
Polycellophus................................. 78
Falcaustra...................................... 79
Cruzia... 83
Pharyngodon..................................... 84
Cosmocercoides............................... 86
Atractis.. 88
Kalicephalus................................. 90
Osmerodocruzia............................... 95
Physaloptera................................. 98
Thubunase....................................... 101
Camallanus..................................... 102
Spiroxyx.......................... 103
Capillaria................................. 106
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthocephala</td>
<td>109</td>
</tr>
<tr>
<td>Neoechinorhynchus</td>
<td>109</td>
</tr>
<tr>
<td>Table of Parasites Encountered</td>
<td>110</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>115</td>
</tr>
<tr>
<td>Explanation of Plates</td>
<td>121</td>
</tr>
</tbody>
</table>
Pseudemys elegans — H p. 4.

- Terrapene carolina triunguis H. pl.
- Kinosternum subrubrum hypsopus.
- Ranea arvalis — H – 15
- Pseudacris triseriata — H – 15
- Triturus meridionalis — H – 15
- Eurycea mitchelli — H – 26
- Rana — H. 23

Heterodon — H. 87

Natricis sup. don
Natricis s. — fasciata H – 40
Heterodon platyrhyina H – 41

Lampropeltis getulus hocardi
Fasciata, a 6 acura H – 62

? Elaeth in situ — himalayense H. 71
Plumynosoma convolutum H. 73
Potamophis striatula.
17. Culuber constructor flaviventer
18. Strangulus figus
19. Pituophis catenifer
20. Mammanus fasciata
21. Lampropeltis siderea
22. Rana sylvatica
23. Bufo terrestris
24. Gastrophrynus areolata
25. Culuber consticto flaviventer
26. Culuber flagellum
27. Pituophis catenifer catenifer
28. Lampropeltis siderea
29. Lampropeltis getulus holbrooki
30. Flammnofthia forsteri

Page 88 Correct
INTRODUCTION

Our knowledge of the helminths parasitic in the amphibians and reptiles of North America is still very limited. Leidy, Stafford, Cort, Stunkard, and Walton have made the most important contributions to our knowledge of this group of worms, but many other authors have contributed important papers. The writer has been engaged in the collection and study of the parasites of the above mentioned vertebrate groups of this region for the past two and one-half years. Over five hundred host animals representing forty-nine species have been examined. All adult parasitic worms, other than leeches, were collected and preserved for study. Usually the encysted forms were neglected, but one interesting cysticercoïd is described below.

Since the method of fixation may greatly alter the appearance of flatworms, the technique used for preservation and preparation for study is outlined carefully below. Because flattening may change the proportions and relationships of the various organs, this procedure was seldom used. However, as flattened specimens may show certain characters which are concealed in normal preparations, a few flattened preparations were made when a sufficient quantity of material was available, but they were not used for measurements or figures in the following paper unless otherwise stated.
It is necessary to obtain flatworms in a relaxed condition if they are to be satisfactory for study. As all the cestodes and many of the trematodes will die in a few hours if left in plain water, this expedient was used whenever possible. Most of the trematodes which would not die readily in water were relaxed by violent shaking, a method which has often been recommended by other authors. A few were relaxed by placing the dish containing them in contact with an ice-salt mixture. After relaxation the worms were merely straightened out in a glass dish and fixed. If only a very small quantity of the fixative is added at first, the weight of the animal will prevent it from coiling, and covering it with a glass slide is unnecessary. This obviates the possibility of unintentional flattening. Additional care is necessary with the tapeworms to prevent distortion thru stretching. I usually picked the worm up by the end opposite the head, and carefully lowered it on to the bottom of a shallow glass dish. If this is done slowly no stretching results, and the worm may be laid out straight with the aid of a camel's hair brush. The usual fixatives may then be applied. I used Bouin's, corrosive sublimate and acetic acid, or formalin.

After fixation was completed, and the fixative removed, the worms were stained and mounted in toto for study. I used either carmalum or Delafield's haematoxylin. Whenever necessary, sections of flat-
worms were made.

The nematodes were fixed in four per cent formalin that had been previously heated to 70° C. For study they were merely removed from the preservative and cleared in phenol. Afterwards they were placed either in the original preservative or in 70% alcohol.

There is no universal agreement among helminthologists as to the exact status of many of the major groups that are used in systematic classification. The writer has not the experience to properly judge the value of the various systems, and therefore, he has followed systems that have been proposed in some of the more recent general works. The classification of the trematodes is based on Faust's "Human Helminthology", that of the cestodes on Southwell's "Fauna of British India: Cestodes," and that of the nematodes on Baylis' and Daubeney's "A Synopsis of the Families and Genera of Nematoda". The host names employed are those which are used in "A Check List of North American Amphibians and Reptiles, 2nd edition", by Stejneger and Barbour.

This work has been done under the direction and criticism of Dr. A. C. Chandler, for whose interest and suggestions I wish to express my sincere appreciation. I am further indebted to him for the use of his private library of reprints. Many other acknowledgements are made in various places in the following paper.

Type specimens of all new species are to be deposited in the United States National Museum.
Phylum Platyhelminthes
Class Trematoda
Subclass Monogenea
Order Polypisthocotylea Odhner, 1912
Family Polystomidae van Beneden, 1858
Genus Polystoma Zeder, 1800

Worms of this genus have long been known to be parasitic in North American turtles, but Stunkard (1917) has suggested that they are not co-generic with Polystoma integratum, the type of the genus. Ward (1917) erected for them a new subgenus, Polystomoides. I have found four species of polystomes belonging to Ward's subgenus, and I believe that one of them is new.

Polystoma hassalli Goto, 1899

This trematode has been found in the urinary bladder of Kinosternon subrubrum hippocrepis and Chalydra serpentina in the vicinity of Houston, Texas, and in the former species at Huntsville, Texas.

Polystoma orbiculare Stunkard, 1916

A polyforme, which I assign to this species, was found in the bladder of several specimens of Pseudemys elegans taken at Houston, Texas. Some of the material exceeds in size the limits given by Stunkard (1917) for P. orbiculare, but the relative size of the organs remains constant,
and there can be very little doubt that my material is identical with Stunkard's. In respect to size, these larger specimens resemble Polystoma inferne and Polystoma spinulosum MacCallum (1918) rather closely, but because my material shows many intermediate types I believe that both species may prove to be synonymous with P. orbicularis, as Stunkard (1924) has already suggested.

Polystoma terrapenis new species

Fig. 1

Specific diagnosis: Polystoma; small polystomes of a flattened, ovoid shape. The body length varies from 1.9 to 2.5 mm. and the width varies from 0.72 to 0.82 mm. The caudal disk is circular, from 0.64 to 0.8 mm. in diameter, and the six suckers are nearly equally spaced. The suckers are of the usual form and in the bottom of each there is a small hook. The suckers are 0.18 to 0.2 mm. in diameter. Sometimes the larval hooks may be found on the disk, but otherwise there are no hooks present. The larval hooks are about 20 μ long.

The oral sucker is 0.26 to 0.28 mm. long and 0.29 to 0.36 mm. wide. It is followed immediately by the pharynx which is 0.13 to 0.17 mm. long and 0.19 to 0.22 mm. wide. Even in whole mounts a short esophagus may be distinguished. The intestinal ceca extend nearly to the posterior end, and are of the usual type.

The testis is located in the middle of the body. It is 0.3 to 0.33 mm. long by 0.23 to 0.28 mm. wide. The vas deferens passes forward on the ovarian side of the body, median and dorsal to the ovary. The terminal
portion of the tube is enlarged to form a seminal vesicle. The cirrus sac is 82 to 90 \(\mu \) in diameter. The genital coronet contains 16 hooks.

The ovary is lateral in position, nearly spherical, and from 67 to 85 \(\mu \) in diameter. The ootype is median, ventral and caudal to the ovary. As usual it receives the two vitello-vaginal ducts. From it the genito-intestinal canal could be seen extending to the intestinal cecum of the ovarian side. A few nuclei around the ootype appear to represent Mehlić gland. The vitellaria are extensively developed in the lateral fields but they leave the intracecal space relatively free. The lateral fields converge just posterior to the pharynx and again posterior to the most anterior pair of suckers of the caudal disk. Between these lines the vitellaria extend only slightly beyond the median border of the intestinal ceca. The vaginae open at the lateral margins of the body, on the level of or slightly anterior to the ovary. The sides of the body are sharply indented at this point. The egg is 0.18 to 0.22 mm. in diameter.

No specific characters were observed in the excretory system.

Type host: Terrapene carolina triangula.

Type locality: Houston, Texas.

Habitat: Bladder.

This species is very similar to P. orbiculare and P. floridanum, but it is a smaller worm and the vitellaria do not crowd into the intracecal area posterior to the testis as they do in P. orbiculare and P. floridanum. Furthermore the pharynx and cirrus sac are much smaller in P. terrapenis.
Polystoma megacotyle Stunkard, 1916

In spite of slight differences from this form as described by Stunkard (1917) I am referring a number of specimens from the mouth of *Pseudemys elegans* to this species. Stunkard's material consisted of three specimens from the mouth of *Chrysemys marginata* from Creston, Iowa. A fourth specimen from the mouth of the same host Stunkard described as type and sole specimen of another species *Polystoma microcotyle*. While the differences between the two forms were distinct they were not very great, and my material shows many intermediate forms.

My material consists of eight adult specimens, and only the length of the great hooks consistently varies from Stunkard's description. The length of the great hooks varies from 140 to 190 μ in my material, while Stunkard gives only one measurement, 116 μ, for both *P. megacotyle* and *microcotyle*. Stunkard lists, as the distinguishing characters between *P. megacotyle* and *P. microcotyle*, the number of hooks in the genital coronet, and the size of the caudal suckers.

For *P. megacotyle* he gives 36 and 42 for the number of hooks in the genital coronet of the two specimens counted. For *P. microcotyle* he gives 32. In my material the number varies from 29 to 37. Stunkard does not give the size of the caudal sucker of *P. megacotyle*, but by measuring the figure we arrive at 0.4 mm. as the probable diameter of the caudal suckers. The diameter of the caudal suckers of *P. microcotyle* is given as 0.28 mm. The diameter of the caudal suckers in my material varies from 0.3 mm. to 0.45
mm. The range of variation in my material is so great that specific distinction between *P. megacotyle* and *P. microcotyle* seems unlikely. This seems even more unlikely when Stunkard's limited material is taken into consideration.
Subclass Digenea
Order Prosostomata Odhner, 1905
Suborder Monostomata Zeder, 1800
Family Heronimidae Ward, 1913
Genus Heronimus MacCallum, 1902

This genus is known only from the lungs of North American turtles.

Heronimus chelydrae MacCallum, 1902

Since MacCallum described this worm it has been reported from many hosts other than *Chelydra serpentina*. At Houston, Texas, it has been found in the lungs of *Kinosternon subrubrum* *hippocrates*, and *Pseudemys elegans*. Only the former host is new.
Suborder Strigeata La Rue, 1926
Superfamily Schistosomatoidea Stiles and Hassall, 1926
Family Spirorchididae Stunkard, 1921
Subfamily Spirorchinae Stunkard, 1921
Genus Henotosoma Stunkard, 1922

This genus was established in 1922 by Stunkard for Spirorchis chelydrae MacCallum and Henotosoma haematobium Stunkard. MacCallum (1926) rejected it but neglected to say why. Although undoubtedly closely related to Spirorchis, it seems to be worthy of recognition as a distinct genus, with characters as defined by Stunkard (1923).

Henotosoma chelydrae (MacCallum 1922)

Four specimens of this fluke were taken from the heart of a snapping turtle captured near Houston, Texas. Comparison of my specimens with the descriptions of H. haematobium Stunkard and of H. chelydrae MacCallum left me in some doubt as to which of the two my specimens should be referred. Comparison with some specimens of H. haematobium kindly supplied by Dr. Stunkard showed that my forms are not identical with these. They differ in having more closely packed and more deeply lobed testes, which are the characters which Stunkard pointed out as essential differences between his H. haematobium and the specimen which was sent to him by MacCallum as representative of H. chelydrae. From MacCallum's description it is not possible to differentiate the two species. My specimens are, therefore, referred to Henotosoma chelydrae.
Suborder Amphistomata (Rud., 1801) Bojanus, 1817
Superfamily Paramphistomatoidea Stiles and Goldberger, 1910
Family Paramphistomatidae (Fischer, 1901) Stiles
and Goldberger, 1910
Subfamily Diplodiscinae Cohn, 1904

This subfamily was founded in 1904 by Cohn to include the three genera Diplodiscus, Opisthodiscus, and Catadiscus. The history of the North American members of this group began somewhat previous to this time, for both Stafford and Leidy had reported the presence of Diplodiscus suclavatus in North American frogs. Stafford (1905) separated the North American form from the European and named it Diplodiscus temperatus. No other representatives of this group were described from North America until Chandler (1923) proposed the genus Megalodiscus for a new species which he discovered in the rectum of Amphiuma means. Billmeyer (1924) added Megalodiscus ranophilus from the rectum of the common leopard frog to Chandler’s genus. Since this time some little doubt has been thrown on the validity of Megalodiscus, but no thorough discussion of the problem has been forthcoming. Chapin (1926) believed that Megalodiscus ranophilus was identical with Diplodiscus temperatus. Curt (1926) agrees with Chapin, and in addition states his belief that Megalodiscus should be considered a synonym of Diplodiscus. Hunter (1930) places Megalodiscus americanus in the genus Diplodiscus. On the other hand Holl (1923) expresses himself as follows, "The writer
has not seen any specimens of Megalodiscus, but believes that future work will show that there are a number of species, belonging to this group, in North America." Poche (1926) lists Megalodiscus with the Diplodiscinae. Fukui (1929) rejects Megalodiscus, stating that the differences cited are not of generic value. However, he includes Diplodiscus temperatus in forms having a single testis in contrast to those having two, and thereby confuses the whole group. Neither in my own material nor in any available descriptions have I found any reference to D. temperatus having any tendency whatsoever toward fusion of the testes.

The above account briefly indicates the uncertainty and disagreement that exists among investigators concerning the validity of Megalodiscus. A comparison of Megalodiscus americanus with other North American forms shows a striking resemblance. Thus Diplodiscus temperatus possesses the small sucker in the center of the acetabulum, although it is very inconspicuous in many adult specimens. The acetabulum although relatively a smaller structure than in Megalodiscus americanus is, nevertheless, as wide or wider than the body. The testes are conspicuously smaller. In other respects the differences are very minor, and as the differences already pointed out are of specific rather than generic value, there can be little doubt, but that these two forms are co-generic. I agree with Chapin (1926) that Megalodiscus ranophilus Millizer is synonymous with Diplodiscus temperatus Stafford. Diplodiscus intermedius Hunter seems to be a valid species, in many respects intermediate between
the above mentioned forms.

Holl (1928) has described a new species of this group from *Triturus viridescens*. Apparently the basis for including his form in the genus *Opisthodiscus* is the presence of a small sucker in the center of the acetabulum and the absence of black concretions in the excretory system. I have already shown that the first character is common to other North American forms of this group, while in my collection there exist examples of *Diplodiscus temperatus* with conspicuous granules in the excretory ducts, while other specimens lack these. On the other hand Holl's description of *Opisthodiscus americanus* shows some important differences from *Opisthodiscus diplodiscoides*, the type of *Opisthodiscus*. The type species lacks an esophageal bulb, the oral sucker and pharyngeal pockets are relatively extremely large, the intestinal ceca are asymmetrical, and the ovary is median and between the testes. Holl's species possesses none of these characters, but is on the other hand similar to the other North American forms of the group that have been placed in the genera *Diplodiscus* and *Megalodiscus*. It, therefore, becomes necessary to transfer Holl's species to one of these two genera. Indeed, on comparing some specimens of *Opisthodiscus americanus*, which Dr. Holl kindly sent me, with some barely mature examples of *Diplodiscus temperatus*, which were taken from local frogs, I find it impossible to separate the two forms, and I therefore consider Holl's species to be identical with *Diplodiscus temperatus*.

It appears, from what has been said above that all of the American
species of this group (temperatus Stafford, including ranophilus Millzner and americanus Holl; americanus Chandler, and intermedius Hunter) are co-generic. If, however, these species be compared with Diplodiscus subclavatus, the type species of Diplodiscus, important differences appear. In D. subclavatus the testes are single except in very young animals; the vitellaria extend in two groups from the pharyngeal region to the caudal end of the intestinal ceca; and the posterior sucker has a cavity in its center instead of a prominence with special musculature. In the North American forms there is never any indication of fusion of the testes; the vitellaria are arranged in two or four compact groups with the most anterior follicles scarcely reaching the level of the anterior testis; and the posterior sucker has a prominence with special musculature. These seem to me to be rather fundamental differences, and justify the placing of the North American forms in a separate genus. The name Megalodiscus Chandler (1923) proposed for his species, americanus, is available for these North American forms. Diplodiscus temperatus Stafford, therefore, becomes Megalodiscus temperatus (Stafford), and Diplodiscus intermedius Hunter becomes Megalodiscus intermedius (Hunter). Megalodiscus americanus stands as type of the genus. Ophiosdiscus americanus Holl and Megalodiscus ranophilus Millzner fall into synonymy with M. temperatus.

Genus Megalodiscus Chandler, 1923

Megalodiscus americanus Chandler, 1923

A single specimen taken from the rectum of Rana sphenoecephala is tentatively referred to this species. The testes are relatively some-
what larger than any of Chandler's specimens of M. americanus and they overlap more. These are minor differences, and in view of the limited material and wide host ranges known to exist among amphistomes, there seems to be no justification for its separation into a new species.

Megalodiscus temperatus (Stafford 1905)

Stafford described this species from frogs. It is widely distributed in these animals in eastern North America. I have taken it from Rana sphencephala, Rana catesbeiana, Rana arvalis, Rana clamitans, and Pseudacris triseriata, at Houston, and from the first two hosts mentioned and Hyla cinerea in Huntsville, Texas.

The above account besides adding to our locality records, adds four new hosts.

The material from the various hosts presented such a variety of appearances that I at first thought a number of species were present, but on careful examination it was impossible to find any constant character by which to separate any new species. The five specimens from Pseudacris triseriata were barely 1 mm. long, yet eggs were present in the uterus of one specimen. However these small specimens were proved to be Megalodiscus temperatus, by comparison with young individuals from other hosts.
Suborder Distoloma Zeder, 1800

Superfamily Echinostomoidea Faust, 1929

Family Auridistomidae new family

This family is proposed for the subfamily Auridistominae Stunkard (1924). Stunkard included the subfamily in the Telorchidae, but various authors have claimed that the two groups were not sufficiently closely related to be included in one family. Odhner (1910, see Stunkard 1924) suggested that Auridistomum is related to the echinostomes, and in the arrangement of the genital organs it is almost identical with some of the echinostome group (Rhopalies) from the opossum.

Genus Auridistomum Stafford, 1905

Only the type species is referred to this genus.

Auridistomum chelydrae Stafford, 1900

Two examples of this species were collected from two snapping turtles, Chelydra serpentina, at Houston, Texas.
Superfamily Dicrocoeloidea Faust, 1929
Family Dicrocoeliidae Looss, 1907
Genus Mesocoeium Odhner, 1911

This genus is known by many species from Asia, Africa and Australia, but so far as I am aware, there is no previous record from America.

Mesocoeium americanum new species
(Fig. 2)

Specific diagnosis: Mesocoeium: -- Body length 1.2 to 2 mm., maximum width 0.5 to 0.7 mm. When properly relaxed before fixing and not flattened, the body is widest in the region of the intestinal fork, rounds anteriorly, and tapers gradually posteriorly. The cuticula is thin, and in the cephalic region it contains numerous short spines.

The oral sucker is subterminal and nearly circular in outline. The diameter varies from 0.21 to 0.27 mm. The acetabulum in young specimens lies at the end of the first third of the body, but due to the distention of the posterior region with eggs it is relatively more cephalad in the older specimens. It is 0.13 to 0.2 mm. in diameter. The ratio between the acetabulum and the oral sucker varies somewhat, but usually falls between 3:5 and 3:4. The prepharynx is very short and in whole mounts is often obscured. The pharynx is nearly globular and measures 63 to 105 μ in diameter. It is very close to one half the diameter of the acetabulum.

The esophagus is short, seldom equaling the diameter of the pharynx.

The ceca curve sharply laterad then turn caudad and run parallel to the
lateral margins. In young specimens they nearly reach the middle of the body, but in fully matured specimens they do not extend far beyond the end of the first third of the body.

The genital organs lie close in the fork of the intestine. The ovary is posterior to the testes on the left side, and its cephalic margin nearly always lies anterior to the posterior margin of the acetabulum. It is somewhat irregular in shape, but usually more or less ovoid with the tip directed medio-caudal. It varies from 0.084 by 0.092 to 0.140 by 0.180 mm. The ootype and Mehlis' gland lie medio-caudal of the ovary. On the caudal margin of these structures there is a small yolk reservoir; at this point a seminal receptacle empties, and Laurer's canal leaves. The seminal receptacle is a simple sac lying posterior to the yolk reservoir. Laurer's canal runs medio-caudal, loops back on itself and finally opens on the median, dorsal surface at the level of the yolk reservoir. The extensive coils of the uterus fill the body posterior to the genital field and to some extent invade the genital field itself. In unflattened specimens they usually obscure the ootype and Mehlis' gland, and often extend lateral beyond the ceca. The eggs measure 20-31 μ by 33-44 μ. The vitellaria reach cephalad to the middle of the oral sucker and caudal to the ends of the ceca. They only slightly overlap the ceca and are mostly lateral to them. In the esophageal region the vitellarian fields widen considerably.

The testes lie anterior to the ovary, but only slightly so. The testis of the ovarian side is the more anterior of the two. They are somewhat irregular in shape, due apparently to pressure from the intestinal
ceca, the acetabulum and the female genital system. They are of approximately equal size and vary from 0.070 by 0.105 to 0.14 by 0.15 mm. The vasa efferentia leave from the medio-cephalic corners and extend to the seminal vesicle in the cirrus sac. The cirrus sac is about 0.150 mm. long and runs caudad from the genital pore, which is median and lies in the region of the intestinal fork. A pars prostatica is present.

The simple capillary excretory vesicle extends from the terminal excretory pore to a point slightly behind the seminal receptacle.

Type host: *Storaria dakeyi*.

Other hosts: *Leioliopisma laterale*, and *Eumeces fasciatus*.

Habitat: Intestine.

Type locality: Houston, Texas.

This species is very similar to *Mesocoelium microon* Nicoll (1914) from Australian anurans. The chief difference is that the esophagus is never longer than the pharynx in the present species while it is twice as long in the Australian form. The testes are smaller relative to the acetabulum and the ovary appears to be slightly more anterior relative to this organ. The suckers, pharynx and eggs seem to be a little larger in my species than in Nicoll's.

The record for *Eumeces fasciatus* is based on a single individual, which is so young that there is no indication of either eggs or of vitellaria. However, the ovaries and testes are well developed and occupy the same positions relative to each other and to the acetabulum. The ratios between pharynx, acetabulum, and oral sucker are identical with those for the mature specimens of *Mesocoelium americanum*. However,
in the specimen from *Eumeces fasciatus* the acetabulum is relatively further posterior, being near the middle of the body, and the intestinal ceca are distinctly longer when compared with the length of the body.

Family Brachycoeliidae S. J. Johnston, 1912

Genus Brachycoelium Dujardin, 1845

This genus is known in North America by two species from the vermillion-spotted newt, and one species from a North American snake which died in a London zoo. The following adds three more species.

Brachycoelium hospitale Stafford, 1900

This fluke was described by Stafford (1900) from Canadian salamanders. I refer to it some specimens taken from *Rana sphenoecephala*. Stafford's (1904) later description is for the most part adequate, but my material shows a few variations which need to be mentioned. Stafford gives the ratio of the oral sucker to the acetabulum as 4:3.

In my material this ratio varies from 3:2 to 4:3. The eggs in fully matured individuals fall very close to the dimensions given by Stafford, but in young individuals they are extremely variable in size.

Brachycoelium storeraei new species

(Fig. 3)

Specific diagnosis:—Brachycoelium; Body length 1.19 mm., width 0.25 mm. The cuticula is thin; and very fine spines are imbedded in it in the region of the oral sucker, but these disappear before the middle of the body is reached.
The oral sucker is subterminal and measures 140 \(\mu \) in diameter. The acetabulum measures 84 \(\mu \) by 100 \(\mu \). The ratio of oral sucker to acetabulum, therefore, approximates 3:2. The anterior margin of the acetabulum is 0.42 mm. from the anterior end; it, therefore, lies entirely caudal of the posterior limit of the first third of the body. A very short prepharynx leads to the oval pharynx which measures 38 \(\mu \) by 46 \(\mu \). The esophagus is rather long, measuring about 0.126 mm. At its posterior end lie the two short, divergent ooca, which just reach the acetabulum.

The ovary lies on the right side of the body at the level of the acetabulum. It is a nearly spherical structure 70 \(\mu \) in diameter. The remainder of the ovarian complex could not be made out with certainty, but it is believed that the ootype and Mehlis' gland lie median and dorsal to the ovary. A structure that appears to be a seminal receptacle lies median to the cephalic margin of the ovary. The exact course of the uterus can not be traced. The eggs lie in the posterior portions of the body, behind the ovary but to some extent overlying the testes. Apparently the uterus passes around the left side of the acetabulum to the median genital pore. The genital pore lies just anterior to the acetabulum. The vitellaria are extensively developed. They extend from a line, the width of the pharynx behind that structure, to the level of the testes. They are within the dorsal portions of the body and occupy the median as well as the lateral fields. The eggs are oval, measuring 50 \(\mu \) by 34 \(\mu \).

The testes are not quite symmetrically placed, the right one being slightly caudal to its mate; they measure about 80 \(\mu \) by 47 \(\mu \). They
are slightly obscured by the eggs ventrad and the vitellaria dorsad. The vasa efferentia could not be traced, but a seminal vesicle appears in the cirrus pouch. The cirrus pouch is a "V" shaped structure, with the ventral arm the longer and more distended. It runs cephalo-laterad for a short distance, then loops back in a medio-caudal direction. It ends dorsal to the center of the acetabulum.

The excretory system could not be seen.

Type host: Storeria dekayi.

Habitat: Intestine.

Type locality: Houston, Texas.

This species is easily distinguished from other known species of Brachycoelium by the distribution of the vitellaria. Also the acetabulum is more posterior than in most species, but this is a poor character because of the distention of the posterior end by the egg mass in fully matured individuals.

Brachycoelium sp.

A single poorly prepared specimen taken from the intestine of Opheodrys aestivus is referred to this genus. This is the same host from which Nicoll (1914) described Brachycoelium obesum; but the distribution of the vitellaria is somewhat different from that figured by Nicoll, and consequently it is impossible to refer it to his species.

Brachycoelium meridionalis new species

(Fig. 4)

Specific diagnosis: -- Brachycoelium; a small oval worm, colorless
except where the eggs show through. Length 0.8 to 0.95 mm., width 0.3 to 0.4 mm. The cuticle is thickly studded with small spines in the cephalic regions, but these become more sparse caudad. The oral sucker is subterminal and measures about 0.145 mm. in diameter. The acetabulum lies near the caudal boundary of the first third of the body, and has a diameter varying from 0.125 to 0.138 mm. The ratio of the oral sucker to acetabulum is very close to as 3:2. The pharynx is an oval with the long diameter lying transversely. It measures 38 μ by 50 μ. The esophagus is about twice as long as the pharynx. In fully matured individuals these two structures are often wholly concealed by the transverse band of vitellaria. The intestinal ceca are short pockets, measuring 85 μ by 130 μ. The testes are 105 μ to 115 μ in diameter, and are slightly irregular in outline. They lie on either side of the body, their cephalic margin near the level of the caudal boundary of the acetabulum, but the testis on the ovarian side is slightly posterior to its mate. The genital pore is slightly cephalic to the acetabulum. The cirrus sac which contains the seminal receptacle usually resembles the shape of an inverted comma and usually lies partially beneath the acetabulum.

The ovary is nearly globular, lateral in position, and it lies at the level of the acetabulum. It measures 76 μ to 84 μ in diameter. Mehlis' gland lies medio-caudal to the ovary. The vitellaria lie between the middle of the esophagus and the caudal end of the intestinal ceca. Two yolk ducts become visible at the caudo-lateral limits of the vitellarian follicles and extend in a curve from this point to a small
yolk reservoir, dorsal to Mehlis' gland. The vitellaria extend from
the caudal margin of the oral sucker to the caudal extremities of the
intestinal ceca but not beyond. In the dorsal portions of the worm they
extend in a continuous band from side to side. The uterus fills the
body caudal to the testes. The eggs measure 29 μ by 42 μ.

Type host: Triturus meridionalis.

Habitat: Upper intestine.

Locality: Houston, Texas.

The host, T. meridionalis, is so closely related to T. viridescens
that for some time it was considered to be a variety of the latter.
A species of Brachycoelium, B. hospitale Stafford, has already been
described from T. viridescens in Canada. A form of Brachycoelium, which
seems to be identical with B. hospitale, has been encountered several
times in specimens of Rana sphenoccephala captured locally, but oddly
enough were not found in T. meridionalis. The situation is further com-
plicated by Holl's species, B. trituri from the eastern form of the newt.
Dr. Holl kindly loaned me two specimens of B. trituri from his private
collection. A comparison of this material resulted in the following
observations.

B. meridionalis differs from B. hospitale and B. trituri, by having
a continuous bridge of vitellarian follicles from one side to the other.
It further differs from B. hospitale by having larger intestinal ceca
and the vitellaria do not extend as far caudad.
Brachycoelium davissi new species

(Fig. 5)

Specific diagnosis: Brachycoelium; -- The worms vary from 0.65 mm. to 0.95 mm. in length and from 0.3 to 0.55 mm. in width. Those, whose measurements are equal to the smaller dimensions given, are barely mature and have only a few eggs in the uterus. The body when relaxed is proportionately wider than is the case with other species of Brachycoelium. Usually it is about twice as long as wide. The cuticula is thin and set with small spines in the cephalic region. These disappear about the level of the genital glands.

The oral sucker is subterminal and nearly circular in outline. Its diameter varies from 0.13 to 0.23 mm. It is about twice the size of the acetabulum. In the type the oral sucker is 0.23 mm. in diameter; and the acetabulum is 0.125 mm. in diameter. This in my experience represents the extreme variation from the mean of 2:1. The acetabulum has its cephalic margin 0.32 to 0.42 mm. from the anterior end, and therefore, is wholly behind the caudal limits of the cephalic third of the body.

The prepharynx is lacking and the oval pharynx measures from 42 to 50 μ by 60 to 65 μ, with the long diameter lying transversely. The esophagus is short, being about 30 μ long. From its caudal extremity the intestinal ceca extend almost directly laterad. They are largely obscured by the vitellaria.

The ovary is lateral, but it may lie on either side. It is usually nearly circular in outline, and very variable in size, being relatively larger in younger specimens. It averages 100 μ in diameter. The
ootype and Mehlis' gland, cannot be seen in whole mounts, but in sections plainly show on the latero-dorsal side of the ovary. The seminal receptacle could not be located. The uterus fills the body behind the ovary, partially if not wholly obscuring the testes and Mehlis' gland. The eggs are 29 to 31 µ by 40 to 42 µ. The vitellaria are well developed. They fill the lateral fields from the ovary to the oral sucker, and a band of follicles extends across the body between the oral sucker and the genital pore. As the digestive system is included in this region they make observations on this system difficult in whole mounts. In the median field, the follicles are confined to the dorsal half of the body, but laterad they lie both dorsal and ventral to all other organs.

The testes are level with the acetabulum and posterior to the ovary. The testis on the ovarian side is closely pressed against the ovary, but is, nevertheless, slightly caudal to its mate. The vasa efferentia could not be traced. The genital pore lies at the cephalic margin of the acetabulum. The cirrus sac, containing a seminal vesicle, runs first cephalad, then curves laterad away from the ovary, and its distal end lies at the level of the genital pore.

The excretory vesicle is quite concealed by the uterus in whole mounts, but in sections shows as a characteristic simple sac extending to the caudal limits of the testes.

Type host: Lasioligaster laterale.

Other hosts: Pseudacris triseriata, Hyla cinerea, and Ambystoma microstomum. The parasites from the last two mentioned hosts are both immature, so these two records must be regarded as tentative.
Habitat: The whole length of the intestine, but more frequently in the anterior half.

Type locality: Houston, Texas.

Other locality records: Huntsville, Texas.

Brachycoelium daviesi differs from most other species of *Brachycoelium* in many ways. The body when relaxed is proportionately wider, the esophagus is shorter, and the ovary is cephalic to the acetabulum. It is distinguished from all but *Brachycoelium trituri* by the ratio of the acetabulum to the oral sucker, and from all but *B. storeriae* and *meridionalis* by the presence of a transverse bridge of vitellarian follicles between the lateral fields.

I take great pleasure in naming this trematode after Mr. J. I. Davies of The Rice Institute in recognition of the friendly interest he has taken in this work; and the assistance he has given, particularly in matters involving technique.

Genus Glypthelmins Stafford, 1905

Miller (1930) has carefully redescribed the type species of this genus, *G. quiesca*, and partially revised the genus. He has shown that *Margeana* Cort (1919) is a synonym of Glypthelmins. Since Cort had already placed *Margeana* in the same group with *Brachycoelium*, I refer Glypthelmins to the Brachycoeliidae. The following species is the third of this genus to be described from North American frogs.

Glypthelmins subtropica new species (Fig. 6)

Specific diagnosis: -- Glypthelmins; The body is 1.43 to 2.65 mm. long and 0.44 to 0.92 mm. wide. The cuticula is covered with small
spines except at the extreme anterior end and a part of the posterior
end.

The oral sucker varies from 0.16 by 0.13 mm. to 0.32 by 0.34 mm.,
and the acetabulum varies from 0.1 to 0.16 mm. in diameter. The ratio
of the oral sucker approximates as 5:3 in young specimens, but in fully
mature specimens it is nearer as 1:2. From the cephalic margin of the
acetabulum to the anterior end is from 0.59 to 0.93 mm. The oral sucker
is closely followed by a large muscular pharynx. This structure is al-
ways a little larger than the acetabulum and varies from 0.12 by 0.15
mm. to 0.19 by 0.27 mm. The esophagus is rather short, usually about
the length of the pharynx or slightly longer. The ends of the intesti-
tinal ceca are removed from the extreme caudal end by a distance of about
0.15 to 0.3 mm. On either side a group of glands extends from the middle
of the pharynx to the level of the intestinal fork.

The ovary lies above the right margin of the acetabulum. It is a
globular structure from 0.3 to 0.6 mm. in diameter. It is followed
closely by a small ootype and Mehlis' gland. Lateral to the caudal
margin of these structures lies a seminal receptaculum about half the
size of the ovary. Lauer's canal leaves the female genital system at
the point where it is joined by the transverse vitelline ducts and, after
a short cephalic course, turns abruptly dorsad to open above the acet-
abulum. The vitellaria occupy two lateral fields from slightly caudal
to the intestinal fork to a point the length of the testes caudal to
those structures. Posterior to the acetabulum they extend mesad to the
inner margin of the ceca, but anterior to it they extend entirely across
the worm. The uterus passes posteriorly in transverse loops, ventral
to the testes and between the intestinal ceca. Caudal to the ceca they
spread out the entire width of the body. The ascending loops follow
the same course to the level of the ovary, where the uterus passes to
the left of the acetabulum and terminates in a metraterm 50 μ long.
The eggs vary from 33 μ by 17 μ to 46 μ by 25 μ.

The testes are symmetrically placed and a little more than their
diameter behind the ovary. They are globular or oval structures, and
measure 0.3 by 0.5 mm. or over. The vas efferens of the right side
passes cephalad, ventral to the seminal receptaculum and ootype, but
bends sharply mesiad behind the ovary. It meets its fellow and enters
the cirrus sac. The vas efferens of the opposite side follows much the
same course. The cirrus sac, which contains a seminal vesicle, is an
elongate structure curving from the genital pore to the right of the
acetabulum and terminating at the caudal border of the ovary. The genital
pore is located about half way between the acetabulum and the intestinal
fork.

The excretory pore lies at the extreme caudal tip of the body.
The vesicle extends forward, forks at the posterior margin of the testes
and the two arms extend forward to the level of the genital pore. The
anterior arms are relatively small.

Type host: Rana catesbeiana.

Other hosts: Rana sphenosephala.

Habitat: Intestine.

Type locality: Houston, Texas.

Other locality records: Huntsville, Texas.
This distome most closely resembles *Glypthelmins quista* but it may readily be distinguished from this form by the transverse band of vitellaria, the location of the testes behind the transverse vitelline duct, and the tendency of the uterus to pass ventral to the testes rather than between them.

Family Plagiorchidae Lühe, 1901
Subfamily Plagiorchinae Lühe, 1909
Genus Haematoloechus Looss, 1899
Syn. Pneumonoeces Looss, 1902.

Concerning the status of these two names, *Haematoloechus Looss* and *Pne umonoeces Looss*, Cor t (1915) writes as follows: "... In 1902 on account of Stål's hemipteran genus *Haematoloecha* established in 1874 Looss (1902:732) changed the generic name *Haematoloech us* to *Pneumonoeces*. He did this influenced by Bramm's (1901:55) contention that if family or subfamily names are formed from generic names which differed only in endings, they would be identical. This seems to me to be a logical application of the rule of priority and I shall accept the later name *Pneumonoeces".

Cort's opinion in this matter is not illogical, but unfortunately the International Code specifically states that a generic name is not to be considered preoccupied when it differs only in ending from a genus already published. As examples the genera Picus and Pica are cited. Therefore, the earlier name *Haematoloechus* must be used. This is unfortunate because the later name has been used exclusively since it was proposed by Looss nearly thirty years ago.
Cort (1915) adequately summarizes our knowledge of this group in North America previous to that date. Since then Irwin (1929) has added one more species, and two are described below.

Haematoloechus floeadae new species

(Fig. 7)

Specific diagnosis: -- Haematoloechus; Flukes of medium size; the body is elongate, flattened, pointed toward the anterior end but rounded behind. The largest specimen in my possession is 10 mm. long; the average, however, are about half that long. The smallest specimen measures 4.4 mm. and seems to be fully mature. The width varies from 1.2 to 1.6 mm. The cuticula is smooth and entirely without spines. It is extremely thin, never being over 4 μ in thickness.

The large oral sucker measures from 3.6 to 4.4 mm. in diameter. The ratio between the oral sucker and the pharynx is nearly as 1:2, but the pharynx is often a little smaller. However, the ratio does not fall below as 2:5. The ratio of the oral sucker to the acetabulum falls very close to as 1:3. The acetabulum is only slightly anterior to the middle of the body. In a worm measuring 5.4 mm. long the acetabulum is 2.4 mm. from the anterior end. The esophagus in properly expanded specimens is somewhat longer than the pharynx. The wide ceca extend to the posterior end of the body.

The ovary lies beside the acetabulum and is irregularly lobed. It is from 0.65 to 0.83 mm. in length and from 0.32 to 0.45 mm. in width. The vitellarian follicles are arranged in from 19 to 24 groups of irregular size.
and shape. It is difficult to count the individual follicles in each group, but they seem to range from one to two dozens. The uterus is arranged much like that of *Haeomatocephalus parviplaxus* Irwin. There are a few loops at the anterior end of the ovary, then the uterus turns caudal, passes between the testes, and after a series of loops in the posterior end of the body there are the usual longitudinal folds outside the intestinal ceca, and then the uterus follows the same route cephalad to the genital pore in the pharyngeal region. There is a little difference in the lengths of the longitudinal folds in my material. They may extend only to the cephalic border of the posterior testis or to the cephalic border of the anterior testis. Not infrequently the uterine fold on the ovarian side of the body is somewhat shorter than its mate. The eggs vary from 21 by 17 µ to 17 by 13 µ.

The testes are oval elongate bodies, somewhat irregular in outline. Not infrequently they are pointed at the anterior end. The two overlap for half their length. The posterior testis is usually slightly larger. It measures from 0.8 to 1.2 mm. in length and from 0.34 to 0.7 mm. in width. The anterior testis is from 0.7 to 1.1 mm. in length, and from 0.32 to 0.65 mm. in width. The size of the testes show but very little correlation with the size of the worm. The distance of the posterior testis from the posterior end varies too much to be of any use as a character. The seminal vesicle is a large oval sac lying beside the ovary. The genital field is approximately two fifths of the length of the body, but here again the variation is so great that the character must be of very doubtful use. In a worm 5.5 mm. long the genital field measures but 1.3 mm. while in a
worm 5.25 mm. long the genital field measures 2.2 mm.

Type host: Rana catesbeiana.

Other host: Rana clamitans.

Habitat: Lung.

Type locality: Houston, Texas.

This species most closely resembles Haematoloechus parviplexus (Irwin), but it may be distinguished from that form by the smaller pharynx, the larger acetabulum, the smooth cuticula, the smaller egg, and the longer longitudinal folds of the uterus.

H. breviplexus also has a smooth cuticula, but in this species it is exceptionally thick whereas in P. floedae it is very thin. The present species also differs from H. breviplexus in size, relatively smaller acetabulum, and the unlobed testes.

Haematoloechus uniplexus new species

(Fig. 8)

Specific diagnosis: -- Haematoloechus; The body is an elongated oval, slightly pointed at the anterior end. It measures 4.25 by 0.7 mm. The cuticula is smooth and without spines.

The oral sucker is 0.22 mm. in diameter. Its ratio to the pharynx is as 2:3, and its ratio to the acetabulum is close to as 1:3. The pharynx is 0.14 mm. in diameter, and the acetabulum is 0.08 mm. in diameter. The length of the esophagus is equal to about 2/3 the diameter of the pharynx. From it the intestinal ceca extend to the posterior end of the body.
The ovary lies beside the acetabulum. It is an elongate, irregularly lobed structure with its long axis parallel to the long axis of the body. The uterus, after a few folds just anterior to the ovary, turns toward the posterior end. It follows the usual course with the usual confusion of loops and windings to the posterior end of the body. The longitudinal folds outside of the intestinal ceca are very poorly developed. There is a short loop on the left side of the body extending only to the caudal margin of the posterior testis. There is no loop of the uterus on the right side of the body. From the posterior end of the body, the uterus follows the usual course forward to the genital pore, which lies in the pharyngeal region. The vitellarian follicles are so closely grouped that it is very difficult to form an accurate opinion of the number of follicles per group. There seems to be 9 or 10 follicles per group and about 21 groups. On the left hand side of the body the follicles cease at the level of the cephalic margin of the caudal testis. On the right hand side there are three groups of follicles, below this point. The eggs vary from 21 by 17μ to 17 by 13μ.

The testes are elongate bodies, with entire margins that overlap slightly. The anterior testis measures 0.5 mm. by 0.16 mm. and the posterior one 0.48 by 0.16 mm. The caudal testis is somewhat more than its own length from the caudal tip of the body. The seminal vesicle lies beside the ovary. The length of the genital field exclusive of the vitellaria equals slightly more than one third of the total body length.

Type host: *Rana sphenoccephala*.

Type locality: Houston, Texas.

Habitat: Lung.

This form closely resembles *Haematolechus floesdae* described above, but
from that form it is easily distinguished by the short longitudinal uterine loop, of which there is only one, its unsymmetrical character, the ratio between the oral sucker and the acetabulum, and the position of the testes relative to each other.

The above description of *Haematoloechus uniplexus* is based on a single specimen. No more examples were found although more than a score examples of the host were examined. Because of the limited material and the great variation known to exist among species of *Haematoloechus*, this form must be regarded as a species inquirenda, until more material becomes available.

It is possible that it is an example of *Haematoloechus floadae* that is somewhat malformed by residence in an unsuitable host, but this seems hardly likely.

Subfamily Reniferinae Pratt, 1902

Genus *Renifer* Pratt, 1902

Of the species originally included in this genus only the type, *Renifer ellipticus*, remains. Since that time several species have been described in the genus from North American snakes, but many of them have been removed to other genera. At present the genus includes, besides the type, the following North American species: -- *Renifer acatabularis* Crow, *R. kansensis* Crow, *R. ancirodontis* MacCallum, *R. septicus* MacCallum, *R. ophiboli* MacCallum, and *R. matricis* MacCallum. The unnamed *Renifer* species described by Job (1919) seems to belong to *Lechriorchis*.

Renifer texanus new species

(Fig. 9)

Specific diagnosis: -- *Renifer*; body with parallel sides, rounded at
each end, 1.83 to 2.2 mm. long by 0.75 to 0.85 mm. wide. The cuticula is very thickly beset with spines in the anterior region, but more sparsely so in the posterior region.

The oral sucker is subterminal with the mouth directed ventrad. It is 0.27 to 0.35 mm. in diameter. No prepharynx is present, and therefore, the pharynx lies directly above the caudal margin of the oral sucker. The esophagus is short, about equal to the diameter of the pharynx. The ceca barely reach the testes. The acetabulum lies anterior to the middle of the body. It is a large structure measuring about 0.46 mm. in diameter.

The testes are large, more or less oval structures, lying a short distance behind the acetabulum. They may be arranged either symmetrically or obliquely. They vary from 0.23 by 0.3 mm. to 0.22 by 0.4 mm. The vasa efferentia could not be traced. The cirrus sac which contains the seminal vesicle extends diagonally across the body from the left cephalic margin of the acetabulum. The genital pore is situated near the lateral body margin, slightly behind the middle of the oral sucker.

The ovary is a globular structure, lying on the left side, dorsal to the caudal half of the acetabulum. It is about 0.2 mm. in diameter. Mehlis' gland and the ootype lie on the midline and slightly caudal to the ovary. Laurer's canal was not located. The uterus is a much coiled structure, running caudad between the testes; after filling the body behind the testes with its coils it returns anteriorly by the same course. It passes dorsal to the center of the acetabulum, loops to the left, and runs parallel and ventral to the cirrus sac throughout the length of that organ. The eggs measure 40 μ by 21 μ. The vitellaria are lateral and
are divided by the acetabulum into two fields on each side. The posterior fields extend from the middle of the testes to the middle of the ovary. The anterior fields extend from the intestinal fork to the level of the tip of the cirrus sac. They usually overlie the ceca, but do not extend median to them.

Host: *Heterodon contortrix*.

Habitat: Mouth.

Locality: Houston, Texas.

The above description is based on five specimens of flukes taken from two snakes. *Renifer ellipticus* is recorded from this same host, but the two forms are easily distinguished by the location of the genital pore and the division of the vitellaria.

Renifer texanus seems to be most closely related to *Renifer acetabularis* Crow, but the cirrus sac in that form does not cross the median line, nor reach the acetabulum, and there is an esophagus present.

Renifer kansensis Crow, 1913

Renifer kansensis Crow and *R. ancistrodontis* MacCallum are both described from specimens taken from the mouth of copperhead snakes; *Agkistrodon mokasen*. *R. ancistrodontis* is described as having the genital pore on the right side, while in *R. kansensis* it is described on the left side. Since helminthologists seem to be rather careless about considering the inverting power of the microscope, this character may be due to an error. Other differences between Crow's and MacCallum's species are:
the lobation of the testes, the ratio of the oral sucker to the acetabulum, the position of the caudal end of the cirrus sac, and the location of the genital pore. With the exception of the last named difference the variation in my material is practically as great as the differences noted. Crow (1913) describes the genital pore as being on the left side, at the level of the posterior margin of the pharynx; MacCallum (1921) as being on the right side, in advance of the intestinal fork. In my material the genital pore is on the right side, at the level of the pharynx. There seems to be no way of settling this point definitely without the specimens, therefore, I refer my material to R. kansasensis and regard R. ancistrodontis as a species inquirenda.

Renifer aniarum (Leidy, 1890)

(Fig. 10)

Leidy (1890) described this parasite under the name of Distomum aniarum, but since that time the form seems to have been ignored by helminthologists. Leidy's description, while in many points very inadequate from the standpoint of modern taxonomy, nevertheless, is sufficiently detailed so that there can be little doubt as to the specific identity of his parasites and of my material from the same host. Since Leidy's description is so brief, the species is redescribed and figured below.

Specific diagnosis: -- Renifer; small worms with their sides parallel, rounded at both ends or pointed at the posterior end, length 2.25 to 3.5 mm., width 0.7 to 1.1 mm. The cuticula is well armed with spines in the anterior regions, but posteriorly the spines are weak and scattered.
The oral sucker is subterminal, circular in outline, and the mouth opening points cephalo-ventrad. The diameter varies from 0.3 to 0.42 mm. The acetabulum lies close to the center of the body and has a diameter of 0.46 to 0.66 mm. It is, therefore, about one and one-half times the diameter of the oral sucker. A short prepharynx is followed by a globular or oval pharynx 0.13 to 0.16 mm. in diameter. The length of the esophagus equals about twice the diameter of the pharynx. The intestinal diverticula reach to the testes.

The testes are oval or circular in outline, and the margins may be slightly irregular. They are usually symmetrically placed, but they may be oblique. They measure from 0.16 by 0.2 to 0.38 by 0.36 mm. The vasa efferentia may either join as they enter the cirrus sac or enter separately. The cirrus sac, which contains the seminal vesicle and pars prostatica, extends from a point, slightly to the left of the median line and posterior to the intestinal fork, diagonally across the body to the genital pore, which lies on the right side at the level of the oral sucker.

The ovary is a globular structure, which lies on the left side, posterior to the acetabulum but anterior to the testes. Its diameter varies from 0.145 to 0.180 mm. The ootype and Mehlis' gland lie median and usually slightly caudal to the ovary. A short oviduct may or may not be discernable in whole mounts. A small yolk reservoir is present, but the spermatozoa are stored in the ovarian end of the uterus. The uterus with many loops and coils descends between the testes, nearly to the caudal end, returns by the same course to the caudal end of the cirrus sac, where the loops cease, and the uterus runs parallel and caudal to the cirrus sac to the genital pore.

The eggs vary from 32 μ by 20 μ to 42 μ by 25 μ. The vitellaria are
divided into two groups by the acetabulum. The anterior groups extend from
the pharynx to points a little caudal of the cephalic margin of the acetab-
ulum. They usually overlap the intestinal ceca to some extent. The posterior
groups begin a little cephalic to the ovary and extend to the testes. They
are fairly compact and usually lie outside the intestinal ceca.

Type host: *Matrix sipedon*.
Other hosts: *Matrix sipedon fasciata*.
Habitat: Mouth.
Type locality: ?
Other locality records: Houston, Texas.

This form is apparently very similar to *Renifer matricis* LacCallum,
from the mouth of *Matrix taxispilata*. The description of this species is in
many ways misleading. The name is not stated to be new and in the first
paragraph in the description, Dr. MacCallum seems to confuse this worm with
certain species of trematodes, that are known only from birds, and are usually
referred to the genus Prostogonimus. Dr. MacCallum states that *Renifer
matricis* possesses a seminal reservoir, but as this is not known in any other
species of Renifer it seems doubtful. Differences which seem to justify the
separation of MacCallum's form from Leidy's are the distribution of the an-
terior groups of vitellaria, the presence of a prepharynx, a relatively
larger acetabulum and the position of the genital pore on the opposite side
of the body.

Genus Lechriorchis Stafford, 1905

Liss Sumwalt (1926) has reviewed the status of this genus, and she has
carefully pointed out the discrepancies and possible errors of past authors.
Because of differences in the intestinal ceca and in the location of the genital pore, she has suggested that the genus should be divided. It probably is very fortunate that this suggestion has not yet been acted upon, for a new species which is described below possesses the clasped ceca of one group, and the submedian genital pore of the other group.

Lechriorchis validus Nicoll, 1911

Four specimens of distomes that I collected from the lung of the hog-nosed snake, *Heterodon contortrix* (= *H. platyrhinus*), are referred to the above species. These specimens differ in some particulars from Dr. Nicoll's description of the types, but in my opinion the differences admit of other explanations than the erection of a new species. Dr. Nicoll states that the esophagus is 3/4 the length of the pharynx, while in my material the esophagus, though variable in length, is always longer than the pharynx. However, in one of Dr. Nicoll's figures of *L. validus* the esophagus is distinctly the longer. Again Dr. Nicoll states that the genital pore is on the left side of the body while in my material it is on the right. In all other particulars my specimens agree exactly with Dr. Nicoll's description, and therefore, I tentatively refer them to his species. Manter (1927) has reported this species from the body cavity of the blue racer, *Coluber constrictor flaviventris*.

Lechriorchis lampropeltis new species

(Fig. 11)

Specific diagnosis: —*Lechriorchis*; the body is flat on the ventral surface but convex above. When the uterus is distended with eggs the body out-
line in dorso-ventral view is oval, but when the eggs have been evacuated
the body constricts suddenly behind the testes and ends in a blunt digitiform
process. The cuticula is thin cephalad, but caudad it becomes nearly
10 μ thick. Cephalad the spines are thin and weak or absent, but caudad
they are much stronger and project about one-third their length beyond the
surface of the cuticula. This is a surprising reversal of the usual dis-
tribution of spines. The body is 5 mm. long and 1.15 mm. wide.

The oral sucker is subterminal, and it measures about 0.46 mm. in
diameter. The acetabulum lies wholly behind the caudal limit of the first
third of the body, and it measures 0.65 mm. in diameter. The pharynx,
preamended by a very short prepharynx, measures 0.2 mm. in diameter. The esopha-
phagus equals in length the diameter of the pharynx. The intestinal ceca
probably should clasp between the testes, but the left cecum passes directly
dorsal to the testis of that side. The ends of the ceca lie very close to
the caudal margins of the testes.

The genital pore lies at the level of the intestinal fork and about 1/3
the distance from the median line toward the right lateral margin. The
large cirrus sac runs diagonally across the body to the median line where
it turns directly caudad and ends above the center of the acetabulum or
slightly posterior to that point. The vasa efferentia could not be traced.
The testes lie a little less than half the diameter of the acetabulum pos-
terior, to that organ. The right testis is a little in advance of its mate
and measures 0.5 by 0.3 mm. The left testis is about the same size. The
margins are entire or slightly lobate.

The ovary is a small oval organ lying on the median line, immediately
behind the acetabulum. It measures 0.3 mm. by 0.16 mm. The few eggs that
remained in the uterus at the time of fixation have collected in the region of the ovary and obscure all observations on Mehlis' gland and the ootype. The uterus consists of the usual descending and ascending limbs. The descending limb has the thicker walls, but the walls of both limbs are filled with small wrinkles which doubtlessly straighten out when the uterus is filled with eggs. In the present condition of the specimen the uterus only extends to a point about 2/3 of the way from the testes to the caudal end, but before the evacuation of the eggs the uterus nearly filled the posterior end. Cephalic to the ovary the uterus lies on the right side of the cirrus sac. The metraterm is very poorly differentiated. The eggs are about 38 μ long by 20 μ wide. The vitellarian follicles are very weakly developed, but there can be no question of sexual maturity because the uterus was filled with a mass of dark brown eggs when the worm was found. It is possible that the reproductive activities of the worm have very nearly exhausted the yolk material. Traces of the vitellaria may be found from a point midway between the genital pore and the acetabulum to the middle of the testes.

The excretory pore is subterminal; and the bladder may be traced cephalad until it is obscured by the uterus. Apparently the bladder forks somewhere posterior to the ovary as a branch of the excretory system can be seen on either side from the level of the ovary to the middle of the acetabulum. Smaller branches of the excretory system are given off on the median edge of these lateral branches, but no such branches could be seen on the lateral edges nor on the main bladder. It is, however, impossible to say that they are not there, because other organs interfere with observations.

Type host: *Lampropeltis getulus holbrooki*.

Habitat: Esophagus.

Type locality: Houston, Texas.
The above description is based on a single specimen from the esophagus of the speckled king snake. Perhaps its most outstanding peculiarity lies in the distribution of spines. These become larger and more numerous as one approaches the caudal end. The clasper intestinal ceca further differentiates this form from all known species of Lechriorchis except *L. primus*, the type, and *L. plesientera*. Because of Miss Sumwalt's (1926) excellent description, it is easy to find a number of characters to differentiate the latter species from *L. lampropeltis*. In *L. lampropeltis* the genital pore is displaced toward the lateral margin, the pharynx is slightly larger, the intestinal ceca are shorter, and the cirrus sac is median instead of lateral in position. It is by no means so easy to find valid distinctions from *L. primus* because of Stafford's very brief description. Even the distribution of the spines is not a certain character because Stafford merely states that his material was spinose, without making any remarks on the distribution. However, if we interpret Stafford's remark on the location of the genital pore to mean that this structure is median in position, then the present form is distinguished by the location of that structure. Other differences are a slightly larger oral sucker, slightly smaller testes, the right testis in advance, smaller eggs, and position of the cirrus sac relative to the median line.

Dasymetra conferta Nicoll, 1911

I have a total of 26 specimens of this fluke taken from the mouth of 2 specimens of *Matrix sipeder fasciata*, Houston, Texas. This genus was established in 1911, to receive a single species, described at that time from the mouth of *Matrix rhombifer*. To my knowledge there is no further
reference to this species in the existing literature. Therefore, the
above account adds a new host species, and also gives the first definite
locality record for this species of trematode as Dr. Nicoll's material
was from a North American snake dying in the Gardens of the Zoological
Society of London.

There are two points in which my material shows slight differences
from Dr. Nicoll's description. On page 684 Dr. Nicoll writes as follows,
"The cirrus pouch is short and stout; in some cases almost globular....As
already mentioned, the latter [cirrus] was exserted in every case, so that
the arrangement depicted in fig. 3 (Pl XXVIII) must be regarded as hypo-
thetical." In my material there are specimens with both exserted and with-
drawn cirrus. In the former condition the cirrus pouch is quite as Dr.
Nicoll has described it, but in the latter condition it is considerably more
elongate. In a typical case it is an elongated sac curving to the left
of the acetabulum and just reaching the caudal border of that structure.
In the caudal end of the cirrus sac is a coiled seminal vesicle, of the
usual type for this group. Again it appears that Dr. Nicoll has neglected
to consider the inverting character of the compound microscope as the
ovary is on the left rather than the right side of the body. The pharynx
is not globular but oval with the long axis located transversely. Its
anterior margin is typically lobate. It measures on the average 0.24 by
0.38 mm.
Genus Lanodistomum Stafford, 1905

Stafford founded this genus for a single species *L. occultum*. The genus is poorly defined and has not been recognized again until Price (1930) pointed out that Plagitura Holl (1928) was a synonym of Lanodistomum. In the following discussion I show that other forms should also be referred to this genus.

Lanodistomum occultum Stafford, 1905

This is the type species of the genus and was reported originally from two hosts, *Dictyostylus viridescens* and *Rana virescens*. The description, however, was based solely on material from the former host. In his discussion of the species Stafford states that its habitat in the newt was unknown to him, but certain forms, which he had found encapsuled in the muscles of the frog, appeared to be the same although slightly less mature. My material of this species consists of four specimens two of which were found in *Triturus viridescens* (= *Dictyostylus viridescens*) at Elizabethtown, New York, and two from *Triturus meridionalis* at Houston, Texas. In both cases they were in the intestine, and while the Texas specimens, one of which is figured, were barely mature, the New York specimens were fully mature. All differences noted between the two lots of material could easily be explained on the basis of age differences or individual variation. When these forms were compared with Stafford's description of *L. occultum* and Holl's description of *Plagitura gale-andra*
no differences of importance could be noted. It is, therefore, probable that *Plagitura salamandra* Hall, 1928, should fall as a synonym of *Nanodistomum occultum* Stafford, 1905.

At the close of the discussion on *Nanodistomum occultum* Stafford makes the following statement, "The worms bear many resemblances to Mr. 86 from the snake of which indeed they may be the young." From my experience (outlined above) it seems probable that *H. occultum* was described from material in its definitive host; but it is only possible at this time to suggest a probable relationship between the type material and the specimens which Stafford found encysted in the frog. "Mr. 86" is described in the same paper as *Zeugorchis aequatus*, a parasite of the garter snake. *Z. aequatus* is poorly described, and while it seems to be specifically distinct from *H. occultum*, I am unable to find valid generic differences. Furthermore, if we examine Miss Sumwalt's excellent description of *Zeugorchis syntomentosa*, the only other species referred to the genus Zeugorchis, we are still unable to find generic differences. Therefore, Zeugorchis appears to be a synonym of Nanodistomum, and it is possible that the encysted forms from the frog are the young of *Z. aequatus*. Accordingly *Zeugorchis aequatus* Stafford, 1905, becomes *Nanodistomum aequatum* (Stafford, 1905); *Zeugorchis syntomentosa* Sumwalt, 1926, becomes *Nanodistomum syntomentosa* (Sumwalt, 1926), and *Nanodistomum occultum* Stafford, 1905 (= *Plagitura salamandra* Hall, 1928) stands as type of the genus.
Family Gorgoderidae Looss, 1901
Subfamily Gorgoderinae Looss, 1899
Genus Gorgodera Looss, 1899

The bladder flukes of North American frogs were very ably revised by Cort (1912). Since that time only one paper has appeared concerning North American forms.

Gorgodera ampicava Looss, 1899

I have taken many specimens of Gorgodera from the bladder of *Rana catesbeiana* both in Houston, and Huntsville, Texas. Although this fluke is known to have a wide host range, I have been unable to find it in any other local species of frogs. Huberlet (1920) has described *Gorgodera circava* from the bladder of *Rana catesbeiana* in Oklahoma. This fluke differs from *G. ampicava* in ratio of the oral sucker to the acetabulum, the number of vitellarian follicles, the lobation of the ovary, and the possession of an ejaculatory pouch. The number of vitellarian follicles and the lobation of the ovary are in my material very variable characters. Furthermore the ratio of the oral sucker to the acetabulum in my material covers the entire
range reported for both *Gordogera amplicava* and *G. circava*. The variations, however, showed a strange chronological sequence. In the early part of my collecting I killed my specimens by pouring fixative over them, after the manner recommended by Guberlet. Later I discovered that *Gordogera* flukes could be shaken from the bladder easily if the dish containing them was first thoroughly chilled by exposure to an ice-salt mixture. The degree of cold also completely relaxed the flukes, and they could then be killed with any cold fixative. The flukes killed by the latter method always possessed acetabula more than 2.5 times the size of the oral sucker, while many of those killed by the former method possessed relatively smaller acetabula. I was unable to distinguish any differences in the male genital system in my material, but as the ejaculatory pouch has not been mentioned in earlier descriptions, it cannot be regarded as certainly absent. Therefore, it seems to me that *Gordogera circava* is a synonym of *Gordogera amplicava*.
Superfamily uncertain

The following family can not be referred definitely to any of the known superfamilies. Some authorities suggest that it is related to the Opisthorchiidae, and others believe it to be more closely related to the Plagiorchiidae.

Family Telorchidae Stunkard, 1924

Genus Telorchis Locke, 1899

The majority of the North American members of this genus are parasitic in turtles. The most important papers dealing with them are; Barker and Covey (1911), Goldberger (1911), and Stunkard (1916). Chandler (1923) has described a species from the Amphiuma, and it is the first species known from an Amphibian.

Telorchis texanus new species

(Fig. 13)

Specific diagnosis: -- Telorchis; the fully matured specimens in my material are 6.6 to 3.24 mm. long and 0.43 to 0.7 mm. wide. The greatest width is usually in the region of the acetabulum. The spines are very thick in the cephalic region, but caudal they become progressively thinner until they quite disappear near the testes. The oral sucker is 0.12 to 0.16 mm. in diameter, the acetabulum is the same size and is usually about 1/6 of the body length from the anterior end. The prepharynx is very short being less than 100 μ long. The pharynx is circular; and its diameter is from 0.9 to 1.1 mm. The esophagus is moderately long, measuring from 0.13 to 0.2 mm. in length. The intestinal ceca extend nearly to the posterior end.
The ovary is spherical and lies on the midline or just to the left; it is usually anterior to the middle of the body, but its exact relative location is subject to some little variation. This point will be discussed more fully below. The shell gland and ootype lie immediately behind the ovary; and in favorable specimens Laurer's canal may be seen extending directly to the dorsal wall. The uterus extends posterior on the left side and anterior on the right. The metraterm is straight and measures from 0.67 to 0.8 mm. long, or very nearly 1/2 the distance from the genital pore to the ovary. The vitellaria are arranged in lobes between the intestinal ceca and the lateral margins of the body. The follicles are arranged in groups with from 20 to 40 follicles per group. The most cephalic extent of the vitellaria is about the level of the caudal end of the metraterm. Their length is to the length of the body as 2:5. They extend about 3/4 of the total distance from ovary to the anterior testis. The eggs vary from 34 μ to 17 μ to 34 μ by 21 μ.

The testes are oval and of about equal size. They vary in size from 0.42 by 0.3 mm. to 0.2 by 0.12 mm. The caudal testis is removed from the posterior end by a distance greater than its diameter. The cirrus sac is shorter than the distance from the genital pore to the ovary. It is from 1.5 to 1.2 mm. long and contains a seminal vesicle that is from 0.36 to 0.43 mm. long.

Type host: Pseudemys elegans.

Habitat: Intestine.

Type locality: Houston, Texas.

The position of the ovary in the body has frequently been used as a
criterion for separating different species in the genus Telorchis. From a study of my material which consists of fully mature worms and worms which are barely mature, as is shown by their undeveloped vitelline glands and weakly outlined ovary and testes, has demonstrated that the position of the ovary may vary widely according to the age of the specimen. In one individual, which is 3.3 mm. long and fully mature, the ovary is 3.2 mm. from the anterior end. In another individual, 3 mm. long but sexually mature as shown by the presence of eggs in the uterus, the ovary is 1.5 mm. from the anterior end. From analogy with the nematodes this variation might be expected. In these worms it has been found that the anterior region of the worm changes but little after reaching sexual maturity, while the posterior end may enlarge considerably due to the pressure of the enormous number of eggs. So it might be expected that the posterior region of a Telorchis worm would enlarge relatively more rapidly, after reaching sexual maturity, than the anterior end, since the former is essentially a sac for holding the genital organs.

Telorchis tewanus resembles most closely Telorchis corti described by Stunkard in 1916. The differences which seem to justify the erection of a new species are; the longer esophagus, more than twice as long as in \(T. corti \), the longer metraterm, and the distribution of the vitellaria which begin at a point more cephalic than in \(T. corti \).

Telorchis bairdi new species

(Fig. 14)

Specific diagnosis: -- Telorchis; sexually mature worms are 2.9 to 2.95 mm. in length, and 0.33 to 0.36 mm. in width. The cuticular spines at the
anterior end are very fine, scarcely distinguishable even with the aid of an oil immersion objective, the rows are less than 1 \(\mu \) apart.

The oral sucker is usually wider than long, it varies from 72 \(\mu \) to 96 \(\mu \) in length and from 38 \(\mu \) to 114 \(\mu \) in width. The acetabulum is small and circular in outline. It measures 34 \(\mu \) in diameter. It is from 0.46 to 0.5 mm. from the anterior end. A prepharynx is lacking and the pharynx is a globe measuring 40 to 53 \(\mu \) in diameter. The esophagus is of medium length, varying from 63 to 34 \(\mu \). The intestinal ceca extend beyond the testes, and nearly to the posterior end.

The ovary is globular in outline and lies on either side of the body. It is from 30 to 111 \(\mu \) in diameter and in my material is slightly caudal to the first third of the body length. The shell gland and ootype lie immediately behind the ovary. The ascending and descending coils of the uterus do not cross, but frequently they overlie the intestinal ceca. The metraterm is thrown into numerous waves. The eggs measure 32 by 20 \(\mu \). The vitellaria lie outside the intestinal ceca. Their furtherest anterior extent is the level of the anterior margin of the ovary. Their furtherest caudal extent is usually about the diameter of the anterior testis, cephalic to that organ.

The testes are usually circular in outline, lying adjacent to each other, and of about equal size. They measure 0.13 mm. in diameter. The cirrus sac is much coiled and stops well short of the ovary. It extends thru four fifths of the ovarian-genital pore distance. The vas deferens is not coiled.

Type host: *Sternotherus carinatus.*

Habitat: Intestine.

Type locality: Huntsville, Texas.
This form resembles *Telorchis medius* Stunkard (1916) very closely. It is, however, a slightly smaller form, the esophagus is less than half as long as in Stunkard's species, the testes lie in juxtaposition, and the uterus overlies the intestinal ceca. Other differences which may be of importance if checked carefully with a larger supply of material are: the size and shape of the acetabulum, the distribution posteriorly of the vitellaria, and the positions in the body of the acetabulum and ovary.

The above description is based on four specimens taken from a single turtle which was given to me by Dr. Don. O. Baird of the Sam Houston State Teachers College. I have, therefore, proposed to name it in his honor.

Telorchis robustus Goldberger, 1911

This species was first described by Goldberger (1911), and redescribed by Stunkard (1916). I have nothing to add to the description as revised by Stunkard. My specimens that are referred to this species come from the intestine of 2 examples of *Pseudemyx elegans*, taken in Houston and Rosenberg, Texas.

Genus Protenes Barker and Covey, 1911

The genus *Protenes* is very closely related to *Telorchis*, from which it differs only in the position of the genital pore. The first known species was described by Stafford (1902) as *Telorchis angustus*, and the second by Barker and Covey (1911) as *T. leptus*. These authors established for their species and Stafford's the sub-genus *Protenes*. Stunkard (1916) raised *Protenes* to generic rank. The following adds the third species to this genus.
Protones chapmani new species

(Fig. 15)

Specific diagnosis: -- Protones; one worm measures 3 mm. long by 0.4 mm. maximum width, and the other is 3.1 mm. by 0.5 mm. The body is of relatively even breadth, the widest part being in the region of the ovary. Very small spines are buried in the cuticula. Near the oral sucker these spines are about 3 \(\mu \) long and arranged in rows about 3 \(\mu \) apart. Caudad the rows are further apart; at the level of the genital pore they are about 5 \(\mu \) apart and at the level of the ovary 10 \(\mu \) apart. Beyond the ovary the rows become even further apart until near the caudal and the spines disappear. The cuticula is about 2 \(\mu \) thick.

The acetabulum is from 0.77 to 0.38 mm. from the anterior end; that is, about \(\frac{1}{4} \) the body length. It is circular and is 0.11 mm. in diameter. The oral sucker is slightly larger and somewhat oval, the transverse diameter being the longer. It measures 0.13 by 0.15 mm. in one specimen and 0.13 by 0.17 mm. in the other. The prepharynx is very short being but 3 to 10 \(\mu \) long. The pharynx varies from 76 \(\mu \) by 90 \(\mu \) to 72 \(\mu \) by 32 \(\mu \). It is longer in the transverse diameter. Curiously, the pharynx of one specimen seems to be perfectly normal while that of the other seems to be divided into quadrants as described by Barker and Covey (1911) for Protones lentus. The length of the esophagus varies appreciably. In one specimen it is 0.13 mm. long and in the other only 0.12. Oddly the small specimen has the longer esophagus. The intestinal ceca end in the posttesticular region near the caudal end of the body.

The ovary is 1.14 to 1.03 mm. from the cephalic end and 0.3 to 0.28 mm. from the acetabulum. Therefore, it is slightly caudal to the end of the
first third of the body length. It measures 0.12 by 0.09 mm. The structure in this region is very similar to that described by Barker and Covey. A short oviduct leads to the ootype directly caudal to the ovary, a well-developed Mehlis' gland surrounds the ootype while just at its caudal boundary it is joined by the common vitelline duct. A small vitelline reservoir is present. Laurer's canal leaves at this point and in the one specimen, in which it could be traced with certainty, extended laterad, to open on the dorsal surface 84 μ below the ovary, at the median edge of the intestinal ceca of the left side. The other specimen was mounted with the ventral side uppermost; and while the actual pore of Laurer's canal could not be seen, the duct could be traced to the same position. No seminal reservoir could be seen although the location was searched with an oil immersion objective. The upper part of the uterus and the proximal portion of Laurer's canal were filled, in both specimens, with a deeply staining mass, in appearance not unlike the tangled mass of spermatozoa in the seminal vesicle. This may be the storage place for the spermatozoa in the female system of this fluke, but it is possible that the mass, in part at least, consists of a waste product from Mehlis' gland. The uterus extends caudad in undulating coils on the left hand side of the body to the testes, then turns cephalad, and returns on the right side of the body. Cephalic to the ovary there are very few waves in the uterus. The metraterm is but poorly differentiated. The vitellaria are extra cecal in the lateral fields. Their most cephalic extent is slightly more than the width of the ovary posterior to that structure, and the most caudal extent is slightly more than the long diameter of the testis cephalic to the anterior testis.
The testes lie in the posterior region in juxtaposition. They are oval bodies with the longest diameter in the transverse direction. They are of about equal size and measure 0.13 to 0.14 by 0.15 to 0.17 mm. The caudal testis is about twice its long diameter from the caudal end. As is usual for this genus the genital pore is in advance of the acetabulum, dorsal in position and near the lateral margin. In opposition to the other two known species, the cirrus sac and uterus of this species pass ventral to the right intestinal ceca and both open in the common genital pore near the right hand margin of the body. The cirrus sac is from 0.46 to 0.42 mm. long and contains in its caudal portion an elongate seminal vesicle.

The excretory system is identical with that of Prosthenes leptus.

Type host: Pseudemys elegans.

Habitat: Intestine.

Type locality: Fin and Feather Club Lake, Rosenberg, Texas.

This species most closely resembles Prosthenes leptus Barker and Covey, but from this form it is readily distinguished by the location of the genital pore on the opposite side of the body, the location of the opening of Laurer's canal, and slight differences in the length of the cirrus sac and the location of the ovary and acetabulum. Apparently it is also a slightly larger form.

The two specimens upon which the above description is based were found in company with several examples of Telorchis texanus, in a turtle which Mr. T. S. Chapman sent me from Rosenberg, Texas.
Classa Cestoda

Order Eucestoda Southwell, 1930

Superfamily Proteocephaloidea Southwell, 1930

Family Proteocephalidae La Rue, 1911

Genus Proteocephalus Weinland, 1858.

The unsettled condition of the classification of this genus has been thoroughly discussed by other authors, and the writer has neither the material nor the experience to make any worthwhile suggestions on the subject. Leggitt (1927) lists the species and gives tables for their determination. It is sufficient to state here that all of the following species definitely belong to Woodland's (1925) Crepidobothrium group, or as it has been more generally known in the past, La Rue's (1914) genus Ophiotrema.

Proteocephalus magnus (Hannum, 1925)

The original description of this species is based on a single specimen from the intestine of Rana catesbeiana from Oklahoma. I encountered a tapeworm in the same host at Huntsville, Texas, and because of a number of differences between that worm and Hannum's description of P. magnus I at first believed it to be a distinct species. Later, however, I found three tapeworms in the intestine of Rana clamitans, at Houston, Texas; and the variations exhibited by these three worms are such that only one important difference remains to be explained. Hannum states that the shell gland is represented by only a few unicellular glands which are clustered about the caudal portion of the ootype, while in all of my material a well developed shell gland, which practically envelops the coils of the oviduct,
is always present. However, I have noticed in other closely related forms that the shell gland soon loses its property of retaining stains, and therefore, a portion of it may easily be overlooked in a specimen that has been kept in a preservative for some time. Aside from this point there is such a close correspondence between my material and Hannum's description that specific identity seems quite certain.

Variations in my material which are strikingly greater than those recorded in the original description are as follows: the testes vary from 93 to 190 per segment; the main excretory ducts frequently run thru the middle of the testicular fields; the vagina usually opens anterior to the cirrus, but it may open beside or posterior to the cirrus; and the specimen from Rana catesbeiana is only 22 cm. long. The three specimens from Rana clamitans are about 65 cm. long, but a true terminal segment is still present. The genital pore is commonly farther anterior than Hannum describes, frequently lying between the caudal borders of the first sixth and first fourth of the lateral margins, but occasionally it is as far caudal as the union between the first and middle thirds of the segment. Furthermore, in Hannum's figure the genital pore is distinctly anterior to caudal border of the first third of the lateral margin.

This marked extension of the limits of variation of P. magnus suggests the possibility that it may be synonymous with P. filaroides La Rue. When one considers the widely separated hosts, the remaining differences appear insignificant, but the writer has not seen any specimens of P. filaroides and, therefore, hesitates to draw any definite conclusions.
Proteocephalus faranciae (MacCallum, 1922)

Fig. 16

My material, which is referred to this species, consists of fragments of a tapeworm taken from the intestine of *Farancia abacura*. The snake had been run over by an automobile when found and a portion of the intestine badly mutilated. Judging by the scoleces found there were five tapeworms in the snake, three of them Ophiotaenias, and two Cochoristicas, belonging to a species that is described below.

MacCallum's (1922) original description of this tapeworm is based on a number of immature specimens, and is therefore, quite inadequate. The points of interest mentioned in his paper are: strobila 1 mm. wide, genital pore irregularly alternating, head 0.60 mm. wide, suckers 0.2 mm. in diameter, a slight eminence (fifth vestigial sucker?) present. This is admittedly not sufficient for certain identification, but since my material is from the same host species and agrees very closely with the characters given by MacCallum, I refer it to his species. A description of the material is given, as it is possible to make out some structures not mentioned by MacCallum, but this description is admittedly somewhat incomplete, because of the mutilated condition of the material.

Specific diagnosis: Proteocephalus; a flat white tapeworm. The length can best be estimated by a single piece, with scolex attached, which measured 13 cm. The last segment of this piece was barely mature. Maximum width about 1.3 mm. at the level of the first mature segments. The scolex is 0.5 mm. wide. It bears a vestigial fifth sucker besides the usual four. The four suckers are about 0.2 mm. in diameter. The neck is about the same
width as the scolex and about 5 cm. long. The first segments are much broader than long and in them the rudiments of the genital organs are already present. They mature very slowly, however, and no mature segments are encountered until very near the end of the long piece mentioned above.

When first mature the segments are somewhat longer than broad, measuring 1.35 mm. by 1.3 mm. They gradually elongate as they mature until they measure 3.35 mm. by 1 mm. when the testes first begin to degenerate. The genital pore lies between the caudal border of the first sixth and the first third of the lateral margin of the segment. It is relatively further forward in the younger segments. The cirrus is very stout and usually protrudes; the ejaculatory duct is straight. The cirrus sac measures 0.23 to 0.32 mm. in length and 0.09 to 0.11 mm. in width. From the median end of the cirrus sac the coils of the vas deferens reach to the mid-line. The testes are very numerous and are crowded between the uterus and the vitellaria. There are from 390 to 420 testes per segment, and about 60% of these are on the aporal side. The testes vary from 0.09 to 0.32 mm. in diameter. The vagina usually opens posterior to the cirrus sac, but segments in which it opens anterior to that structure are not uncommon. It lies ventral to the cirrus sac, but it curves dorsal over the vas deferens and lies on the dorsal side of the uterus. The bilobed ovary extends nearly across the caudal end of the segment. The proximal portion of the oviduct is enlarged to form the so-called oocyst. The oviduct makes two or three turns in the interovarian space before running anteriorly to the uterus. These coils of the oviduct form the ootype and are surrounded by a very diffuse shell gland, that can not be seen readily in whole mounts.
The uterus extends from the ovary up the midline to the cephalic boundary of the segment. It has from 30 to 50 diverticula on each side. The vitellaria occupy the typical position for the genus.

In a sectioned mature segment a very weakly developed layer of longitudinal muscle fibers could be seen. The relationship between these and the genital organs is in every way normal for the genus Proteocephalus as defined by Woodland (1925). Ripe segments are lacking.

Type host: *Farancia abacura*.

Habitat: Intestine.

Localities: New York Zoological Gardens; and Houston, Texas.

The most striking character of this worm is the large number of testes. The only rival in this respect is *P. gerrardii* (Baird) from which it differs in the shape of the suckers.

Proteocephalus sp.

An immature specimen of this genus was removed from the intestine of *Anolis carolinensis*. Although several specimens of the host have been examined, this tapeworm has not been encountered a second time. Because no mature segments are present no description is attempted.

Proteocephalus sp.

A single tapeworm of this genus, but without mature segments has been removed from the intestine of *Terrapene carolina triunguis*.
Superfamily Taenioida Zwicka, 1841
Family Anoplocephalidae Cholodkowsky, 1902
Genus Cochoristica Lühe, 1898

This rather large genus has hitherto been known from all of the principle land masses except North America, but I have found it common in a number of species of snakes and lizards in Texas and have found it advisable to recognize five distinct species. As in many other tapeworm genera classification is difficult because of the paucity of characters and the great individual variation that exists in the few characters present. The classification of the forms considered below is further complicated by the limited material, and should more material become available, it may be necessary to combine some of the forms that are here treated separately.

Cochoristica naticis new species

Fig. 17

Specific diagnosis: Cochoristica; a flat, white, worm. The total length is about 13 cm. The scolex is 0.5 to 0.6 mm. in diameter. The suckers vary from 0.16 by 0.22 mm. to 0.22 by 0.3 mm. They are, therefore, very large oval structures, with their long diameters lying parallel with the long axis of the worm. The neck is 0.3 to 0.35 mm. wide and from 1 to 2 mm. long. When the segments first appear they are very short.

The mature proglottids appear some 30 to 40 mm. from the scolex. They vary considerably in shape, but are usually somewhat longer than wide.
Extreme measurements for my material are 0.75 mm. long by 0.80 mm. wide and
0.105 mm. long by 0.7 mm. wide. The genital pore lies at the caudal border
of the first fourth of the proglottid or slightly posterior to that level.

The cirrus sac is an oval structure that measures from 0.65 by 0.22 mm. to
0.9 by 0.13 mm. A much coiled vas deferens, that acts also as a seminal vesicle,
extends mes ad from the inner end of the cirrus sac nearly to the median line.

The testes lie in the caudal portions of the proglottid, but extend cephalad
to or slightly beyond the caudal boundary of the ovary. There are from 50 to
70 testes in each segment. The vagina opens into the genital atrium just caudal
to the cirrus sac. As in other members of the genus it remains on the caudal
side of the male ducts. Before reaching the median line the vagina curves caudal
between the halves of the ovary and ends in a small seminal receptacle, lying
ventral to the shell gland. The bilobed ovary and the vitellaria crowd the small
shell gland between them. The ovarian complex is an oval mass measuring 0.3
by 0.6 mm. The sexual ducts pass between the main tubes of the excretory sys-
tem. The ripe segments are about twice as long as broad. The eggs are scat-
tered singly in capsules. They are 42 μ in diameter; and their embryos are
20 μ in diameter.

Type host: *Hatria rhombifera*.

Habitat: Intestine.

Locality: Houston, Texas.

This form most closely resembles *O. zonuri* Baylis, but it is a more slender
form with more elongate segments. In *O. zonuri* the scolex is 0.9 to 1 mm.
wide and the maximum width is 3 mm. In *O. matricie* the scolex is only 0.6
mm. wide and the maximum width is less than 1 mm. There are structural dif-

ferences in the distribution of testes, size of cirrus pouch, and other minor features.

Cochoristica anolis new species.

(Fig. 13)

Specific diagnosis: -- Cochoristica; a white flat tapeworm, with conspicuous segmentation. The total length of a specimen with ripe segments is 70 mm. and the maximum breadth about 1 mm. The scolex is 0.35 mm. broad and distinctly marked off from the neck. The suckers are relatively very large measuring 0.16 by 0.30 mm. The neck is 0.35 mm. wide and about 2 mm. long. As usual the first segments are wider than long.

The first mature segments appear about 20 mm. from the scolex, and they are about 0.95 mm. long by 0.35 mm. wide. The genital pore lies close to the caudal end of the first fourth of the proglottid. The cirrus sac is from 0.16 to 0.145 mm. long by 0.11 to 0.09 mm. wide. The vas deferens runs mesiad to a point directly above the ovary and then turns caudad. The testes lie almost entirely caudal to the ovary, but caudal and lateral to the vitellaria. There are from 20 to 35 testes in each proglottid, and the testes are about 0.3 mm. in diameter. The ovary is distinctly bilobed and about 0.35 mm. wide. Directly caudal to it lies the shell gland and the vitellaria in the order named. The vitellaria measure 0.145 by 0.13 mm. A small seminal receptacle lies dorsal to the shell gland, and from this structure the vagina runs cephalad. At the cephalic margin of the ovary the vagina curves laterad. The sexual ducts pass between the longitudinal ducts of the excretory system, which is much branched and forms a network in each proglottid.
The ripe proglottids are usually a little more than twice as long as broad. Within them the eggs are scattered singly in capsules. The eggs are about 6μ in diameter and the embryos 46μ.

Type host: *Anolis carolinensis*.

Habitat: Intestine.

Locality: Houston, Texas.

The above description is based on a single tapeworm and therefore, gives no idea of the variation that may occur between different individuals of the same species. It is very similar to *O. fibrata* meggitt, but it differs from this form in the size of the cirrus pouch and in the smaller number of testes. It is also closely related to the species from *Eumeces* described below under which the relationship of these forms is more fully discussed.

Cochoristica eumecis new species

(Fig. 19)

Specific diagnosis: -- *Cochoristica*; a flat white tapeworm with distinct segmentation. The total length is 103 mm., but there are no fully ripened segments present. The scolex is 0.5 mm. wide, and distinctly marked off from the neck. The suckers are large, but not so large relatively as in *Cochoristica anolis*. They measure 0.22 by 0.26 mm. The neck is about 0.35 mm. wide, and about 2 mm. long. It is rather difficult to tell just where segmentation begins, but as usual the first segments are much broader than long.

The mature segments first appear about 65 mm. from the scolex and continue thru about 35 mm. before the eggs appear, and the sex organs begin to degenerate. In this worm the mature segments are somewhat broader than long. Extreme
measurements are 0.8 to 0.9 mm. in length and 1.13 to 1.2 mm. in breadth. The genital pore lies at the end of the anterior fourth or fifth of the lateral margin. The cirrus sac is an elongate oval, measuring from 0.26 to 0.15 mm. in length and from 0.06 to 0.07 mm. in breadth. From its inner end a much coiled vas deferens runs medially to disappear as it reaches the ovary. The testes lie caudal and lateral to the ovary and vitellaria. Frequently they extend cephalad nearly to the anterior border of the ovary, but occasionally they only reach the middle of the ovary. There are from 40 to 55 testes in each proglottid. The ovary lies rather far forward in the segment, its anterior margin lying at the level of the genital pore. It is a bilobed structure about 0.4 mm. wide. Behind it lie the shell gland and vitellaria in the order named. A small seminal receptacle lies directly dorsal to the shell gland. From it the vagina runs, at first anteriorly between the lobes of the ovary and then curves toward the lateral margin. The genital ducts pass between the lateral excretory tubes and dorsal to the nerve.

No fully ripe segments are present so it is impossible to make any statements concerning them.

Type Host: Eumeces fasciatus.

Habitat: Intestine.

Locality: Houston, Texas.

This description like the preceding is based on a single specimen. It therefore, becomes necessary to regard this as a species inquirenda until more material is available for study. The differences noted between this form and
the preceding lie in the number and distribution of the testes, the shape of
the cirrus sac, the relatively broader segments, and the relatively smaller
suckers. Most of these differences are the same as those pointed out as the
important differences between C. fibrata and C. anolis. I do not, however,
regard C. eumecis as identical with C. fibrata, because of the difference in
the number and distribution of the testes. Unfortunately Meggitt does not men-
tion the scolex in his description so it is impossible accurately to compare
this structure in the two species. Presumably, however, the scolex of C.
fibrata is the same as that of C. agamae since Meggitt was unable to satis-
factorily distinguish his form from C. agamae as described by Baylis. There-
fore, we may surmise that the suckers of C. fibrata are similar to C. agamae
and smaller than those of C. eumecis. It is admitted that these morphological
differences are scarcely great enough to separate species, in a group as
variable as tapeworms of the genus Cochoristica. However, if any two of the
above mentioned forms are to be combined it promptly becomes necessary to refer
three of them to the same species. The result would be that forms from
a Burmese amphibian and North American lizards would be referred to a single
species. The identity of these forms seems very unlikely, so it appears best
for the present to consider all three as separate species although their
characters are rather unsatisfactory.

Cochoristica americana new species

(Fig. 20)

Specific diagnosis: -- Cochoristica: This is a flat white worm, with distinct
segmentation; the total length is 40 mm., but no ripe segments are present. The scolex is 0.5 mm. wide, but it is not distinctly marked off from the neck. The suckers are small and circular; they measure 0.16 mm. in diameter. Segmentation first appears about 3 mm. from the scolex.

Mature segments appear about 25 mm. from the scolex. Even in the last segments available the uterus has not commenced to develop. The mature segments are about 1.1 mm. long and 0.85 mm. broad. The genital pore lies slightly caudal to the first fourth of the lateral margin. The cirrus pouch is large measuring 0.2 by 0.09 mm. From it the coiled vas deferens extends medially. The testes lie beside and behind the female glands. The most anterior of the testes lie behind the middle of the ovary. There are from 35 to 40 testes in each segment. They frequently overlie one another slightly, especially in the younger segments. The ovary is a bilobed structure, lying in the caudal portion of the first half of the segment. It is about 0.35 mm. wide. Behind it lie the shell gland and vitellaria, in the order named. The sex ducts pass between the longitudinal excretory tubes.

Type host: *Farancia abacura*.

Habitat: Intestine.

Locality: Houston, Texas.

This form is very similar to *O. anolis* and *O. amecia*; from the former it is distinguished by the greater number of testes, and from the latter by the lesser number of testes. It differs from both species in having much smaller suckers. There are also differences in the size of the cirrus sac and the position of the genital organs.
Cochoristica elaphis
(Fig. 21)

Specific diagnosis: -- Cochoristica; A slender white, semi-translucent tapeworm. Length 65 to 75 mm. The scolex is about 0.35 mm. wide and bears four circular suckers about 0.145 mm. in diameter. The neck is not sharply marked off from the scolex. It seems to be 5 or 6 mm. long.

The mature segments are nearly square, about 0.75 mm. each way. The genital pore is slightly posterior to the end of the first fourth of the lateral margin. The cirrus sac is 0.145 mm. long by 0.068 mm. wide. The vas deferens is a much convoluted structure extending mesiad to the ovary where it vanishes. The testes are very variable. The extreme counts are from 30 to 53. They overlap each other and the shell gland so that counting is more difficult than usual. The ovary is a bilobed structure lying near the center of the segment. It is about 0.3 mm. broad. Behind it lie the shell gland and vitellaria. The vitellaria are more extensive than usual. Not only do they underlie the testes but they extend laterad as far as or further than the ovary. The vagina starts from a seminal receptacle dorsal to the shell gland, and runs first cephalad, then curves laterad around the lobe of the ovary, and finally opens into the genital atrium just posterior to the cirrus sac. Both genital ducts pass between the lateral tubes of the excretory system.

The ripe segments are about one and one half times as long as broad, and are crowded throughout with eggs. The eggs measure about 50 \(\mu \) in diameter and the embryos about 34 \(\mu \).
Type host: *Elaphe obsoleta lindheimeri*.

Habitat: Intestines.

Locality: Houston, Texas: (Houston Zoological Gardens).

The snake from which the type material was taken died in the Houston Zoological Gardens. Presumably it was captured somewhere in the vicinity of Houston; but the exact locality is unknown. It had refused to eat during several weeks of captivity, and this fact may have affected the tapeworms somewhat. The worm most closely resembles *Oochoristica americanus* described above. Like this form the testes are distributed in more than one layer, but in *O. elaphis* the vitellaria are much more extensive and underlie the testes. Furthermore, *O. elaphis* seems to be a much smaller and more delicate form.

Diochetos new genus

Generic diagnosis: -- Linstowinae with relatively few elongate segments.

Mature segments two to six times as long as broad. Genital pores alternate irregularly and the sexual ducts pass dorsal to the single lateral excretory duct. The dorsal excretory ducts and secondary ramifications are usually absent except at the extremities of young worms. Testes very numerous with a tendency to arrangement in two lateral fields. Ovary median and very small. About the anterior two fifths of a mature segment is unoccupied by the sex glands. Uterus breaks up into capsules each of which contains a single egg. The capsules are evenly distributed but very sparse. Adults parasitic in lizards of the genus *Phrynosoma*. The above diagnosis is based on a single species, and will doubtless have to be modified if other species are discovered.
Diocheto phrynosomatis new species

(Figs. 22 and 23)

Specific diagnosis: -- Diochetos: a flat white tapeworm, composed of relatively few elongate segments. The total length varies from 55 to 70 mm. The scolex is 0.4 to 0.6 mm. wide, and the suckers are only 0.145 to 0.16 mm. in diameter. There is no line of demarcation between the neck and the scolex. Segmentation becomes apparent about 2 mm. from the scolex; and almost immediately the rudiments of the sex organs appear.

The mature segments are 15 or 20 mm. from the scolex. They vary considerably in length but are always much longer than broad. In my material segments in which the uterus has not yet developed may be as much as 6 times as long as broad; younger segments which seem to be perfectly mature are not quite 3 times as long as broad. Extreme measurements are 1 by 6.1 mm. for the older segments and 1 by 2.45 mm. for the younger. The genital pore lies between the end of the first fifth and the end of the first third of the lateral margin. The cirrus sac is an oval measuring from 0.13 by 0.22 to 0.18 by 0.3 mm. The vas deferens lies directly posterior to the median end of the cirrus sac. It is at first much coiled, but straightens before reaching the level of the ovary. There are from 125 to 180 testes in each segment. These lie almost wholly posterior to the ovary but in nearly every segment a few lie cephalic to that organ. They tend to group themselves in two elongate lateral fields.

The ovary lies slightly anterior to the center of the segment. It is bilobed and relatively small, about 0.25 mm. wide. Behind it lie the vital-
laria and shell gland in the usual positions.

The ripe segments are four to six times as long as broad and the eggs are scattered sparsely throughout. The eggs are 55 μ in diameter and the embryos are 30 μ in diameter.

The excretory system is very unusual. Fig. 23 is a diagramatic reconstruction of a terminal segment of a young worm studied in sections. At the caudal end of the terminal sterile segment there is the usual median bladder and pore. Four excretory tubes of approximately equal size, one pair dorsal to the other, leave the bladder but very quickly come together to form a single pair of tubes. These again split apart and come together again, a process that is repeated several times. By the time the end of the terminal fourth of the segment is reached, however, the dorso-ventral splitting ceases, and the tubes are single on each side throughout the rest of the segment.

At irregular intervals throughout the worm, however, the tubes split again into dorsal and ventral parts for short distances, and in one instance such a split forms a loop through which the reproductive ducts pass. There are also some branch tubes which form anastomoses in the median portion of the worm, but these are rather infrequent. A scolex with about 3 mm. of neck was sectioned and throughout this area the usual dorsal and ventral excretory ducts were present. It is evident, therefore, that the single pair of tubes existing throughout the greater part of the worm represents a fusion of dorsal and ventral vessels, this fusion being not quite complete.

Type host: Phrynosoma cornutum.

Habitat: Intestine.

Type locality: Houston, Texas.
Other locality records: Anderson, Texas.

Because of the peculiar structure of this tapeworm it is not necessary to compare it with any known species. The most interesting feature of the worm is the excretory system which in this worm shows such extreme variations.

Family Neratoeniidae Lühe, 1910
Genus Cylindrotaenia Jewel, 1916

This genus was founded by Miss Jewel for a single species, taken from the intestine of various North American amphibians. More recently Joyeux reports it from South Africa, and Johnston from Australia.

Cylindrotaenia americana Jewel, 1916.

Specimens taken from Acris cryllus, Hyle squirella, Pseudacris triseriata and Leiopolisma laterale are referred to this species. It is perhaps a little surprising to find an amphibian cestode in a reptile, but in every detail of the anatomy the worms from Leiopolisma laterale matched Miss Jewel's description, and the measurements fell within the variations which she recorded.

It is interesting at this time to recall Joyeux's (1924) comparison between his material from African amphibians and Miss Jewel's description. The discrepancies which Joyeux noted are so great that specific identity seems very unlikely, particularly since a form discovered from an American reptile appears so similar.
Cysticercus sp.
(Figs. 24 and 25)

A larval cestode was encountered three times, twice in Leioloquadra laterale and once in Eumeces fasciatus. It was found lying free in the body cavity or entangled in the mesenteries; in all three cases it was present in great abundance. The cyst is a white globular structure about 0.6 mm. in diameter and exhibits very little movement when removed to a dish of water. The unarmed scolex lies entirely free within a thin walled blastogena, and it occupies nearly the entire cavity within the cyst wall. This type of larval form corresponds to the group of cysticercoids which Villot (1892) designated by the name Homicercus. The known members of this group include the larval forms of certain species of Anomotaenia. The unarmed scolex and the occurrence of the cysts in lizards suggests the possibility of this form being the larval stage of an Oochoristica.
Phylum Nemathelminthes
Class Nematoda
Order Ascaroidea Railliet and Henry, 1915
Family Rhabdiasidae Railliet, 1915

This family is not recognized by Baylis and Daubney (1926), but it seems to the author that their peculiar life history and the structure of the parasitic form justifies creation of a family for this group of worms.

Genus Rhabdias Dujardin 1845

The presence of members of this genus in the lungs of North American frogs has long been known, but until recently they were regarded as specifically identical with R. bufo nov. of European amphibia. Two other species of Rhabdias have recently been described from South America, which brings the total number of species from the Americas up to three. Two of these three species were found locally.

Rhabdias ranae Walton, 1929

This parasite has been found in the lungs of Rana catesbeiana and Rana sphencephala which were captured in the region of Houston, Texas and from the former host at Huntsville, Texas.

Rhabdias vellardi Pereira, 1928

Parasites referred to this species have been taken from the lungs of the following snakes: Heterodon contortrix, Storeria dekayi, Potamophis striatulus,
and Thermophilis proximus. Two differences were noted between Pereira’s description and my material, but it is believed that both may be explained without the erection of a new species. The measurements of the cephalic glands were found to be approximately ten times as great in my material as those given by Pereira, but on comparison with the figure, it became at once apparent that Pereira had misplaced the decimal. The uterus in my material was often empty and in no case did it contain as many as a dozen eggs. But since the uteri are never distended, as they are in Pereira’s figures, I considered this difference too small for the erection of a new species.

Family Ascaridae Cobbold, 1864
Subfamily Ascarinae Travassos, 1913
Genus Ophidascaris Baylis, 1921

Ophidascaris sp.

A single female nematode, which was taken from the stomach of Coluber constrictor flaviventris is referred to this genus. The mouth has a very different appearance from that figured by Walton, (1927) for Ophidascaria labia-terapillosa from the same host, and therefore, the parasite is thought to be long to another species. A brief description of the worm is given, to aid in its later classification.

Length, 90 mm., cuticular striations about 60 μ apart, but not very conspicuous. The three lips each bear two papillae. Interlabia are present. The esophagus is 4.9 mm. long. The nerve ring and excretory pore are 0.75 and 0.85 mm. from the anterior end respectively. The vulva is in the posterior
part of the body about 60 mm. from the lips. The eggs are apparently unfertilized and measure 85 \(\mu \) in diameter. The tail is very short and blunt. It is 0.3 mm. long.

Genus Polydelphis Dujardin, 1845

Polydelphis sp.

Two males and three females, all immature, were taken from the body cavity of Coluber constrictor flaviventris. The location is very unusual for a worm of this group, but as the snake had been dead for 24 hours before it was examined, it is possible that the parasites had migrated from their typical habitat, in the intestine, much after the manner of Ascaris lumbricoides. These parasites could not be identified with any known Polydelphis species, and because of the immature condition of the worms it is believed better not to name them at this time. However, a brief description is added to aid in their future classification.

When alive the worms are a light yellow color. The cuticula is marked with numerous fine longitudinal striations.

Male: Length 35 to 40 mm.; width about 0.7 mm. The esophagus is 2.5 mm. long. The nerve ring is 1.2 mm. from the anterior end. The tail is 0.135 mm. long and ends in a short spike about 25 \(\mu \) long. The spicules are equal, 0.4 mm. long, and 25 \(\mu \) wide. There are two pairs of lateral papillae placed just anteriorly to the base of the tail spike, and two rows of papillae running from behind the anus anteriorly. These rows are very irregular and 44 papillae could be counted in one row, but only 23 in the other.
Female: In only one specimen were the female genital organs sufficiently
developed to count the number of uteri. A description of this one is given.
Length 53 mm. Esophagus 2.6 mm. long. Nerve ring and excretory pore 1.2 and
1.85 mm. respectively from the anterior end. The vulva is 24.5 mm. from the
anterior end, and from it the ovjector runs posteriorly for 0.35 mm. before
giving rise to four uteri by dichotomous branching.

Polydelphis anoura has been reported from several North American snakes,
and by Baylis (1921) is doubtfully reported from the above mentioned host.
The spicules, however, clearly separate this form from *P. anoura*.

Family *Kathlaniidae* Travassos, 1913
Genus *Falcaustra* Lane, 1915

This genus has been considered a *synonym* of *Spironoura* by many
recent authors. *Spironoura*, as erected by Leidy (1856), contained two species,
S. gracile, type, from the stomach of *Emys serrata*, and *S. affine* from the cecum
of *Cistudo carolina*. Only the latter species has subsequently been found and
redescribed. Boulenger (1923) redescribed it under the name of *Falcaustra*
chapini, but Chapin found it to be the only parasite present in the ceca of box
turtles in the vicinity of Washington, D. C., and on the strength of this evi-
dence suggested that it was identical with *Spironoura affine*. He further sug-
gested that *Falcaustra* Lane should be considered a synonym of *Spironoura* Leidy,
but since Leidy's species *gracile* is the type, and this form has not since been
studied, it would seem premature to dispose of the genus *Falcaustra* as a synonym
of *Spironoura*. This opinion is further supported by an observation which *Wal-
ton* (1927) made on the existing Leidy collection of nematodes. For these reason
the genus Falcaustra is here retained.

Falcaustra affine (Leidy 1856)

Worms which I have taken from the ceca of several specimens of Terrapene carolina triunguis agree very closely with the description given by Boulenger except for size. As none of Boulenger's material was fully mature this discrepancy is rather to be expected. In my material males 10 mm. long and females 11.5 mm. long were not uncommon.

Falcaustra procera (Canavan, 1929)

I have taken specimens which agree very closely with Canavan's description of this species from the rectum of Pseudemys elegans. Only in the length of the male tail is there a conspicuous difference. Canavan gives the total length as 13 mm. and the length of tail as 1.4 mm. But the tail of a specimen 13.3 mm. long in my collection measures only 0.75 mm. However, if one measures the male tail figured by Canavan one finds that its length falls very close to 0.3 mm.

Canavan considers his species to be most closely related to Falcaustra testudinis Baylis and Daubney, but I find it very difficult to distinguish it satisfactorily from S. affine. As I have stated above, fully matured specimens of S. affine are much larger than those which Boulenger described. Between these larger specimens and S. procera I could find only slight differences in lengths of the esophagus and of the tail. These are certainly sufficient to warrant the erection of a subspecies, but I have some little doubt if they are of full specific value. The following table gives the more important measurements and
represents the extremes found in measuring five examples of each sex of each species:

<table>
<thead>
<tr>
<th></th>
<th>Falcaustra affine</th>
<th></th>
<th>Falcaustra procera</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>σ</td>
<td>³</td>
<td>σ</td>
</tr>
<tr>
<td>Total length</td>
<td>8.55-10.3</td>
<td>11.3-11.4</td>
<td>8.7-13.7</td>
</tr>
<tr>
<td>Length of esophagus</td>
<td>2.3-2.54</td>
<td>2.54-2.6</td>
<td>1.75-2.2</td>
</tr>
<tr>
<td>Length of tail</td>
<td>0.37-0.5</td>
<td>0.75-0.85</td>
<td>0.55-0.73</td>
</tr>
</tbody>
</table>

Ratio of the length of tail to the length of esophagus: 1:5 to 1:6.3, 1:3 to 1:3.4, 1:3 to 1:3.3, 1:1.7 to 1:2.5

Falcaustra chelydrae new species

(Fig. 26)

Specific diagnosis: -- Falcaustra: A slender white nematode with a finely striated cuticula. The mouth is surrounded by three large lips each of which bears two forked papillae. The esophagus consists of three parts, a pharynx, a cylindrical midportion, and a terminal hourglass shaped bulb. The tail of both sexes is sharply pointed.

In the male the body is 10 to 12.5 mm. long and about 0.4 mm. wide. The pharynx is about 0.10 mm. long and the entire esophagus varies from 2 mm. to 2.25 mm. in length. The hourglass shaped bulb is 0.39 to 0.44 mm. long and 0.22 to 0.24 mm. wide. The nerve ring and excretory pore are about 0.44 and 1.3 mm. respectively from the anterior end. The tail measures from 0.42 to 5.5 mm. in length. The spicules are 3.4 to 3.9 mm. long, about 40 μ wide near the anterior end and plainly cross striated. The gubernaculum is about 0.17 mm. long.
The papillae are very similar in arrangement to those of *S. affinis*. There are two ventral pairs placed slightly beyond the middle of the tail, and at the same level a post anal pair. There are three ventral pairs, placed close together just caudal to the cloacal opening, and again at the same level a subdorsal pair. There are three pairs of preanal papillae, but in this species they are not evenly spaced. The anterior two pairs of these rows are farther apart than the posterior two pairs. A precloacal sucker is plainly outlined by the musculature, but it does not possess a cuticular rim.

In the female the body is from 12.5 to 13.75 mm. long, and from 0.5 to 0.55 mm. wide. The pharynx is about 0.13 mm. long and the esophagus is 2.33 to 2.52 mm. long. The hour glass shaped bulb measures from 0.4 to 0.51 mm. by 0.28 to 0.26 mm. The nerve ring and excretory pore are 0.45 and 1.3 mm. respectively from the anterior end. The vulva is 8.5 to 9 mm. from the anterior end, and therefore, lies close to the cephalic end of the caudal third of the body.

The tail is from 0.6 to 0.75 mm. long.

Type host: Chelydra serpentina.

Other hosts: Amyda ferox.

Habitat: Rectum.

Type Locality: Houston, Texas.

Other locality records: Whitehall, N. Y.

This species very closely approximates in size and in many structures *Falcaustra affinis* and *proceras*, but from these it is easily distinguished by the extremely long spicules.
Falcaustra catesbeiana Walton, 1929

This is a very common parasite of the bullfrog, Rana catesbeiana, both at Houston and at Huntsville, Texas.

Genus Cruzia Travassos, 1917

This genus contains only two species Cruzia tentaculata from marsupials and Cruzia mexicana from a lizard. It is characterized chiefly by an intestinal diverticulum, and there exists considerable difference of opinion as to its proper systematic position. Some authors include it in the Kathlaniidae, while others place it in a separate family, Cruziiidae. I have followed the former course, because the presence or absence of the diverticulum does not seem to me to be a character of sufficient importance for the erection of a family.

Cruzia tentaculata Rudolphi, 1819

Twelve of the fourteen specimens of Terrapene carolina triunguis which were examined were found to be infested with this worm. The finding in a turtle of a worm which has hitherto been known only as a parasite of opossums is indeed surprising, but I have compared it with examples taken from Didelphys virginiana by Dr. A. C. Chandler, and no significant differences could be found. It is of further interest that the percentage of infection for the turtle host is much higher in this region than is the percentage for the opossum.

Family Oxyuridae Cobb, 1864
Subfamily Oxyurinae Hall, 1916
Genus Pharyngodon Diesing, 1861

This genus has been unknown in North America until very recently. Walton (1929) described *P. bratrachiensis* from the tadpoles of *Rana pipiens*. However, Walton had only female specimens on which he based his description, and while they are very similar to the females of Pharyngodon, they show certain peculiarities not found in other members of the genus.

With this possible exception, the genus is represented only in lizards. The excretory pore and the vulva are unusually posterior in position, and the plugs in the eggs are in the inner instead of the outer membrane. Most of these differences were pointed out by Walton, and while they do not necessitate the removal of the worm from the genus, at this time, the discovery of the male may make such a change necessary.

Pharyngodon warneri new species

(Figs. 27 & 28)

Specific diagnosis: -- Pharyngodon; white, stout nematodes, usually showing marked cross striations of the cuticula near the cephalic end but gradually growing fainter caudad. The esophagus has the characteristic bulb, and just behind that structure, the excretory pore opens on the ventral surface.

Male: Length 2.25 to 3 mm.; width 0.15 to 0.17 mm. The esophagus is 0.5 to 0.51 mm. long and the bulb measures 34 to 92 μ by 103 to 116 μ. The nerve ring is 0.16 to 0.2 mm. from the anterior end, and the excretory pore 0.8 to 1.1 mm. The male tail ends rather bluntly, and is 0.1 to 0.125 mm. long. The cloacal opening is surrounded by the usual three pairs of papillae. The pedicles of the preanal pair are dome-shaped. The next pair caudad has long
stout pedicles, while those of the caudal pair are very much bent. Both of the
more caudal pairs are included in the caudal alae. No spicule could be seen,
and if present it must be imperfectly cutinized. A well developed genital
cone is present and is about 17 µ long. A cuticular fold, starting at the
base of the cone overlies a part of its ventral surface. The distal end of the
fold is emarginate and at either side more or less pointed.
The internal male genital organs are of the ordinary type. A seminal vesicle
is preceded by the single testis, whose most cephalic extent is about 0.2 mm.
posterior to the excretory pore.

Female: Body length 3.4 to 4.6 mm.; width 0.13 to 0.2 mm. The esophagus
is 0.55 to 0.7 mm. long; the nerve ring and the excretory pore are from 0.16
to 0.18 and from 0.9 to 1.05 mm. respectively from the anterior end. The eso-
phagus ends in a characteristic bulb from 0.114 to 0.125 mm. wide and from
0.125 to 0.14 mm. long; (the length includes the narrow anterior neck of the
bulb). The vulva, as in most members of this genus, follows immediately after
the excretory pore. It is from 1 to 1.2 mm. from the lips. The vagina extends
along the ventral body wall about 0.75 mm., then crosses over and gives rise
to the two divergent uteri, which in turn give rise to the ovaries. Because
of the excessive number of eggs in the uteri, it is impossible to trace out their
convolutions accurately in whole mounts. The female tail is unusual for the
genus, for instead of narrowing abruptly just behind the anus it tapers gradu-
ally to a sharp point. It is 0.5 to 0.7 mm. long. The eggs have the usual
plugs in either end; they vary from 125 µ by 34 µ to 130 µ by 36 µ.

Type host: Cnemidophorus sexlineatus.

Habitat: Rectum.
Type locality: Huntsville, Texas.

This species belongs to that group of the genus Pharyngodon in which the caudal papillae are included in the caudal membrane. These include Pharyngodon hindlei, mamillatus, spinicauda, inermicauda, and tiliquae. From all of these, as well as from Pharyngodon batrachiensis, known only by females, it is distinguishable by the shape of the female tail. Further the species is separated from P. mamillatus and inermicauda by the width of the lateral alae; from P. spinicauda and tiliquae, by the lack of a support for the anterior margin of the bursa, and from P. hindlei by the latter's conspicuous spicule.

Two of the four six-lined race runners examined were heavily parasitized by this worm. Race runners are rare about Houston, but are very common at Huntsville, Texas, where these specimens were collected. I am greatly indebted to Dr. S. D. Warner of the Sam Houston State Teachers' College for assistance given me while collecting in that locality, and I propose to name this species in his honor.

Cosmocercoides Wilkie, 1930

This genus was erected for two species of Oxyuridae from Japanese amphibians. It is distinguished from Cosmocerca by the absence of true plectanes and by the presence of a ring of tubercles about the base
of the large papillae. No mention is made in the description of the genus Oxysonatium, yet this genus can only be distinguished from Cosmocercoidea by the presence in the latter of the above-mentioned tubercles. In certain specimens, which I have obtained from the blue-tailed skink, and which are described more fully below, these tubercles may be lacking. Since the worms from this host are all very small and appear to retain juvenile characters after reaching sexual maturity, it seems likely that they are in an unsuitable host. However, until more knowledge concerning their relationship to the normal members of the species is obtained it seems best to recognize Cosmocercoidea as a genus for those forms possessing cuticular tubercles about the base of certain large papillae.

Cosmocercoidea dukes (Hall, 1928)

As Wilkie has suggested, the above species should be transferred to his new genus Cosmocercoidea. Hall's type material came from Triturus viridescens, which does not occur in this vicinity; but I have found the same species of parasite very common in other hosts. Unfortunately I was not aware until recently of Hall's species and I described this worm separately under the name of Oxysonatium variabilis. Although it is an extremely variable form, there can be no doubt but that Hall and I described the same species, and as Hall's name has priority it must stand. Accordingly Oxysonatium variabilis Harwood, 1930, falls as a synonym of Cosmocercoidea dukes Hall, 1928.

In the paper referred to (Harwood, 1930) I have recorded this species
from a considerable number of amphibians and reptiles and several others have been added since. The complete host list is now as follows: Triturus viridescens, Triturus meridionalis, Ambystoma microstomum, Ambystoma talpoideum, Hyla squirella, Pseudacris triseriata, Rana areolata, Rana palustris, Rana sphenopehala, Rana sylvatica, Rana clamitans, Rana catesbeiana, Bufo valliceps, Bufo terrestris, Gastrophryne areolata, Ophisaurus ventralis, Leiolopisma laterale, Eumeces fasciatus, Heterodon contortrix, Storeria dekayi, Hierurus fulvius, Terrapene carolina triangula and Terrapene ornata. It may be noted that the majority of these hosts are mainly terrestrial. R. catesbeiana is the most nearly aquatic host, but only one very light infection was encountered in 20 specimens of this frog examined. In the laboratory cultures the larvae do not develop in saturated soil.

An interesting variation of this species has been obtained from Eumeces fasciatus. The worms from this host are unusually small, the males being only 1.65 to 2.2 mm. long. The spicules are variable, often being unequal. In one worm the long spicule was 0.233 mm. long and the other only 0.166 mm. long. The large papillae are often without the cuticular tubercles around them. All of these characters appear, though seldom in such a pronounced manner, in immature worms from Bufo valliceps, a common host. However, the worms from E. fasciatus are mature, as is shown by the presence of fertile eggs in the females. The females from this host are also very small.

Family Atractidae Travassos, 1920 (?)

Genus: Atractis Dujardin, 1845

This is a genus of very small worms that are parasitic in reptiles.
Only one species, A. opeature Leidy has previously been described from America. The following account contains the description of a second species which is parasitic in the three toed box turtle.

Atractis carolinae new species

(Fig. 29)

Specific diagnosis: -- Atractis; a very small, white, parasitic worm. Body cylindrical, and tapering at either end. Tail of both sexes sharply pointed. Cuticular striations faint and 1 to 2 μ apart. Mouth surrounded by six lips, each of which bears two papillae-like protuberances at the distal end and two more just proximal to them. The esophagus is divided into two equal parts and ends in the usual bulb.

Male: Length 2.3 to 2.85 mm.; width 63 μ to 80 μ. The esophagus is 0.48 to 0.55 mm. long and the bulb measures 75 to 80 μ long by 63 to 75 μ wide. The nerve ring and excretory pore are 0.35 to 0.38 and 0.375 to 0.415 mm. respectively from the anterior end. The tail is 0.33 mm. long. The spicules are very unequal, the long one being 0.333 to 0.340 mm. long, and the short one only 75 to 84 μ long. The long spicule is well cutinized, conspicuously cross striated and about 10 μ wide. The short spicule is but lightly cutinized and unmarked. The gubernaculum is 60 to 80 μ long and notched near the anterior end. There is a row of five papillae, placed close together on either side of the anus. The fourth from the cephalic end of this row is at the exact level of the anus. There may be four more pairs of postanal papillae, but they are not always present.

Female: Length 2.5 to 2.95 mm.; width about 85 μ. Esophagus 0.47 to
0.57 mm. long, its bulb measuring 71 to 80 μ long by 63 to 71 μ wide. The nerve ring and the excretory pore are 0.25 to 0.30 mm. and 0.355 to 0.395 mm. respectively from the anterior end. The vulva is only 63 to 85 μ in front of the anus. The tail is 0.5 to 0.55 mm. long.

Type host: Terrapene carolina triunguis.

Habitat: Rectum.

Locality: Houston, Texas.

These nematodes were always present in large numbers in the rectum of the host, but they are so small that at first they were passed over as larval forms of other nematodes present in the same host. Possibly other investigators have encountered this same form, and have disregarded it for the same reason.

This species may easily be separated from Leidy's A. ocreatura by size, structure of lips, size of spicules, and number of papillae.

Order Strongyloidea Weinland, 1858

Family Diaphanocephalidae Travassos, 1919

Genus Kalicephalus Molin, 1861

The worms belonging to this genus are very widely distributed, but many of them are imperfectly known, having been inadequately described by earlier workers; and as yet no redescriptions are available. Only two species, K. coronellae and K. parvus Ortlepp (1923) have been adequately described from North America. MacCallum (1922) described a new species of nematode, Strongylus boae, from the stomach of the Boa constrictor. He lists also a number
of other snakes, many of them North American species, as hosts to this parasite. His description is very general, and it would be impossible to determine the genus of the worm were it not for the excellent figure which leaves no doubt but that the worm belongs to the genus Kalicephalus. The name *boea* is already preoccupied in this genus, and as both Molin and Blanchard have described worms of this genus from the *Boa constrictor*, MacCallum's trophotype, it seems best to let MacCallum's species sink into synonymy.

I have collected two species of this genus from Texas snakes and both of them appear to be new. However, I have followed Ortlepp's example and have disregarded Molin's species which have not been redescribed, as none of my worms are from the same hosts and as his descriptions are too brief for purposes of modern taxonomy.

Kalicephalus agkistrodontis new species

(Fig. 30)

Specific diagnosis: *Kalicephalus;* a light orange or yellow colored nematode, with a smooth cuticula. The mouth capsule is typical for the genus. The dorsal gutter extends about half the distance into the mouth capsule. The esophagus is distinctly thickened in the posterior half. The nerve ring encircles the esophagus about one-third of the distance from its anterior end. The excretory pore is very faintly indicated and usually lies at the level of the thickest portion of the esophagus. The intestine is an inconspicuous tube among the reproductive organs and glands.

Male: Body length varies from 6.5 to 9.5 mm.; the width from 0.2 to 0.3 mm. The buccal capsule is 0.13 to 0.16 mm. long, and of approximately the
same width at the base. The esophagus is 0.31 to 0.34 mm. long; the nerve
ring is 0.22 to 0.28 mm. from the anterior end, and the excretory pore 0.33
to 0.4 mm. The spicules are long, slender and alate. They are 0.46 to 0.58
mm. long and about 10 µ wide at the anterior end. The alae are transversely
striated. A well cutinized gubernaculum is present, but its size is some-
what variable. It measures from 0.11 to 0.155 mm. in length, and about 15 µ
at the widest point near the anterior end. The genital cone is 0.13 to 0.145
mm. long and 0.09 to 0.11 mm. wide at the base. The bursa is obliquely trun-
cated; its rays are of the usual pattern. The common trunk of the dorsal ray
usually bifurcates near its middle and each branch almost immediately divides
again. The inner rays are again divided for from one half to one third their
length.

Female: The total length varies from 10 mm. to 13.75 mm.; width 0.26
to 0.33 mm. The mouth capsule is 0.16 to 0.13 mm. long and at the base about
as broad as long. The esophagus is 0.35 to 0.47 mm. long. The nerve ring and excretory pore are 0.23 to 0.32 and 0.4 to 0.51 mm. respectively from the an-
terior end. The vulva is 7 to 9.13 mm. from the anterior end, and is there-
fore in the posterior part of the body. The vulva divides the body in the
ratio of 1.6 to 2; the lips of the vulva are very prominent, measuring about
0.11 mm. in length. The uteri are divergent, and therefore, this species falls into Ortlepp's group A. The remainder of the female genital system is
quite typical for the genus. The eggs measure 67 to 75 µ by 38 to 46 µ.
The tail varies in length from 0.3 to 0.4 mm., and it ends bluntly.

Type host: Agkistrodon mokasen.

Other hosts: Heterodon contortrix, Pituophis sayi, Natrix rhombifera,
N. sipedon fasciata, Lampropeltis getulus holbrooki, Thamnophis proximus, and Micrurus fulvius.

Habitat: Stomach.
Locality: Houston, Texas.

This parasite closely resembles Kalicephalus coronellae, which Ortlepp found in the stomach of a North American snake (Coronella triangular) dying in the Zoological Gardens of London. K. agkistrodonis is a much smaller form; the buccal capsule is more elongate; the female tail is much shorter (in actual measurement, but about the same proportionately); the spicules and gubernaculum are both shorter, in actual measurements, and the gubernaculum is shaped differently.

Kalicephalus agkistrodonis flagellus

Subspecies diagnosis: These worms differ from the typical variety in the following respects; they are smaller, the males vary from 6.3 to 7 mm., the females from 6.72 to 8.15 mm. The female tail is shorter measuring 0.28 to 0.32 mm. in length. The inner rays of the dorsal ray are divided for less than 1/5 their length and in one specimen there is no bifurcation at all.

Type host: Coluber flagellum.

Other host: Coluber constrictor flaviventris.

Habitat: Stomach.
Locality: Houston, Texas.

This subspecies is based on two males and three females from C. flagellum and a single male from C. constrictor. The differences mentioned above are believed to be too great to go unnoticed, and yet they are too variable and too
near the type to justify the erection of a new species.

Kalicephalus rectiphilus new species

(Fig. 31)

Specific diagnosis: -- Kalicephalus; a yellowish cylindrical worm, with a faintly striated cuticula. The striations are about 2 μ apart. A large mouth, of a shape typical for the genus, is separated from the rest of the body by a slight constriction. The esophagus is short, and constricted where the nerve ring encircles it at the level of the union between the first and second thirds. The excretory pore is usually slightly below the widest part of the esophageal bulb.

Male: Length 5.3 to 5.7 mm., width 0.2 mm. The mouth capsule is 0.17 to 0.18 mm. long and 0.18 to 0.2 mm. wide. The esophagus is 0.22 to 0.23 mm. long. The nerve ring and excretory pore are 0.28 and 0.33 mm. respectively from the anterior end. The spicules are 0.28 to 0.3 mm. long and provided with narrow, transversely striated alae. They are about 10 μ wide near the anterior end. There is a well cutinized gubernaculum, about 0.13 mm. long and only about 3 μ wide in lateral view, with a definite hook present near the anterior end. The bursa is obliquely truncate and, with the exception of the dorsal ray, typical for the genus. The main trunk of the dorsal ray is very short. It bifurcates immediately after the separation of the externo-dorsal rays, and almost at once the two branches again bifurcate. The inner rays are again bifid near the tip. The pattern of the dorsal ray is, therefore, very similar to that of Diaphanocephalus galeatus.
Female: Body length 6.9 to 7.7 mm.; maximum width 0.22 to 0.26 mm. The mouth capsule is 0.2 to 0.22 mm. long and 0.22 to 0.24 mm. wide. The esophagus is 0.25 to 0.23 mm. long. The nerve ring and excretory pore are 0.23 to 0.3 and 0.36 to 0.4 mm. from the anterior end. The vulva is 4 to 4.3 mm. from the anterior end and divides the body in the proportions of 1.2 to 1.4 : 1. The ovijectors and uteri are divergent. The eggs measure 63 to 71 µ by 13 to 22 µ. They are in a very early stage of development when deposited. The female tail is 0.25 to 0.38 mm. long and ends very bluntly.

Type host: Coluber constrictor flaviventris.

Habitat: Rectum.

Locality: Houston, Texas.

The above description is based on two males and three females taken from the rectum of a blue racer. Like the preceding species it belongs to the group of Kalicephalus worms with divergent uteri. It is easily distinguished from K. coronellae Orlepp and K. angistrodontis by the smaller size, the shorter esophagus and spicules, the shape of the gubernaculum, the shape of the dorsal ray, the position of the vulva and the blunt female tail.

Genus Oswaldocruzia Travassos, 1917

A representative of this genus has been known from North America since the time of Joseph Leidy. It is now known by the name of O. leidyi Travassos, but, as Steiner (1924) has already pointed out, it is impossible as yet to satisfactorily distinguish this form from certain species described earlier. Recently Walton has reported several other species from this continent.
Oswaldocruridae pipiens Walton, 1929

(Figs. 32-35)

The features which are used to differentiate Oswaldocruridae pipiens Walton and O. leidyi Travassos are not satisfactory in view of the variation present in my material. Walton (1929) lists, "size, possession of distinct cervical alae, and decidedly different dorsal ray pattern", as the important differences between these forms. The difference in size between O. pipiens and O. leidyi is only an apparent one since neither Walton nor Steiner record any variation in their measurements, while in my material the variation is nearly as great as the range between their measurements. The dorsal ray pattern is also variable. Of three males taken from Terrapene carolina triumviris, two had a pattern similar to that figured by Walton (1929) for O. pipiens while one was similar to that figured by Steiner (1924) for O. leidyi, and of two males from a specimen of Leiopisma laterale, one had a pattern similar to O. pipiens, and the other a pattern similar to O. leidyi. My material from other hosts is limited, but among these there is also a great variation of the dorsal ray pattern. The remaining character mentioned by Walton, the cervical alae, is always present in my material. Steiner mentions lateral alae, but he does not mention the cervical alae. Therefore, we may presume that they were absent in his material. It is, however, well to remember that Steiner published before Morishita (1926) had attached such great systematic importance to the cervical alae. For the present, therefore, it seems advisable to retain both pipiens and leidyi as separate species distinguishable by the presence or absence of cervical alae. Since the size variations are not mentioned
by either Walton or Steiner, it seems advisable to give those which I have found in my material.

Male: Length 6 to 10.75 mm.; width 0.35 to 0.65 mm. The esophagus is 0.35 to 0.5 mm. long. The cuticular expansions at the anterior end are 75 to 120 µ long; and the head is 38 to 55 µ wide. The nerve ring and excretory pore are 0.140 to 0.190 mm. and 0.3 to 0.375 mm. respectively from the anterior end. The spicules are 0.16 to 0.25 mm. long and 25 to 34 µ wide.

Female: Length 9.5 to 13.55 mm.; breadth 0.55 to 0.85 mm. The esophagus is 0.3 to 0.6 mm. long. The cuticular expansions at the anterior end are 35 µ to 125 µ long; and the "head" is 40 to 55 µ wide. The nerve ring and excretory pore are 0.160 to 0.225 mm. and 0.3 to 0.375 mm. respectively from the anterior end. The vulva is 6 to 9.5 mm. from the anterior end and divides the body as 1.8 to 2.6 is to 1. The female tail is 0.26 to 0.32 mm. long. The eggs are 42 to 50 µ wide by 75 to 88 µ long.

From the above list of measurements it will be seen that my largest female is smaller than the average recorded by Walton, but as environment makes large differences in the size of nematodes I do not consider this significant.

I have taken these worms from *Bufo terrestris*, *Bufo valliceps*, *Rana palustris*, *Rana sphencephala*, *Leioloipisma laterale*, *Eumeces fasciatus*, *Terrapene carolina triunguis* and *Terrapene ornata* at Houston, Texas, and from *Hyla cinerea*, *Rana sphencephala*, *Sceloporus undulatus*, and *Leioloipisma laterale* from Huntsville, Texas, and from *Rana sylvatica* at Crown Point, New York.
Order Filarioidea Reinland, 1853
Family Spiruridae Orley, 1835
Subfamily Physalopterinae Stossich, 1893
Genus Physaloptera Rudolphi, 1819

Of this large and widely distributed genus there has been until very recently only one well described species, Physaloptera phrynosoma, from North American cold blooded hosts. Walton (1927) has added several other species to this list.

Recently Schultz (1927) has erected a new genus, Skrjabinaptera, for those species of Physaloptera with unequal spicules, and with a single, median, external tooth on each lip. If this genus is accepted, probably both of the species mentioned below should be transferred to it. Schultz's paper is not available, and I am greatly indebted to Dr. Sinitzen for sending me the complete diagnosis of Skrjabinaptera as published by Schultz.

Physaloptera squamatae new species
(Fig. 36)

Specific diagnosis: -- Physaloptera, group didelphys; a slender, white, nematode with very finely striated cuticula, reflexed over the lips. The lips are dome shaped, and each bears a large outer tooth. No other teeth are present. The nerve ring lies near the union of the fourth and last fifth of the muscular portion of the esophagus. The cervical papillae lie near the posterior end of the muscular esophagus and the excretory pore is slightly further posterior.

Male: Length 7.4 to 9.2 mm.; width 0.3 to 0.4 mm. The muscular portion
of the esophagus is 0.2 to 0.25 mm. long, and the glandular portion is 1.43 to 2 mm. long. The nerve ring and excretory pore are 0.200 to 0.250 mm. and 0.4 mm. respectively from the anterior end. The cervical papillae are about midway between these two structures. The tail is 0.28 to 0.35 mm. long. The spicules are subequal, but as the two vary independently either the left or right may be the shorter. They are only 0.155 to 0.175 mm. long. The left spicule is well cutinized and about 10 μ wide near the anterior end. It widens a very little beyond its middle and ends in a moderately sharp point. The right spicule is poorly cutinized and about 13 μ wide at its base. Beyond the middle it widens to a maximum of 25 μ, then tapers to a sharp point. The usual caudal alae are present and are supported by four pairs of circum-cloacal papillae. The inner surface of the alae is decorated with raised longitudinal ridges. There are three papillae on the cephalic cloacal lip, and two pairs of papillae on the caudal lip. Three pairs of papillae are evenly spaced between the cloaca and the tip of the tail.

Female: Length 9 to 14.2 mm.; width 0.35 to 0.4 mm. The muscular esophagus is 0.27 to 0.33 mm. long, and the glandular esophagus is 1.7 to 2.8 mm. long. The nerve ring and excretory pore are 0.25 to 0.28 and 0.3 to 0.45 mm. respectively from the anterior end. The cervical papillae are about half way between these two structures. The vulva lies slightly behind the caudal limits of the first third of the body; it is non-protuberant and from it the vagina runs caudad for 1.35 mm. The two uteri are convergent. The eggs measure 25 μ by 42 μ. The female tail is 0.33 to 0.5 mm. long and ends bluntly. The pores of the caudal glands are situated very near the tip of the tail.
Type host: *Leiophilus lateralis*.

Other host: *Askeptodon mokasen*.

Habitat: Stomach.

Locality: Houston, Texas.

The host distribution of this species seems at present to be rather unusual, since it includes a snake and a lizard. It was this that suggested the specific name "*squamatae*". However, the parasite was not present in a very high per cent of the hosts examined, and doubtlessly, it will be found in other reptiles of these groups.

In the structure of the mouth region this species closely resembles *P. phrynosoma*, but it is readily distinguished in both sexes by the structure of the caudal regions.

Physaloptera phrynosoma Corte, 1922

This parasite has been taken from the stomach of *Phrynosoma cornutum* both at Houston, Texas, and Anderson, Texas. Judging by these and other records it is a frequent and widespread parasite of *Phrynosoma* species.

Thubunaea Seurat, 1914

This small genus is closely related to *Physaloptera*. Hitherto, it has been known by only three species, one from Africa, and the other two from South America. The following account adds a new species, and extends the known geographic range of the genus to North America.
Thubunae leiolopiscus new species
(Fig. 37)

Specific diagnosis: -- Thubunaea; a white worm with a very finely striated cuticle. The lips exhibit the usual three teeth, and around the base of the lips there is a slight thickening of the cuticle that is reminiscent of the cephalic collarette of the closely related genus, Physaloptera. The nerve ring lies near the cephalic margin of the last fifth of the muscular esophagus, and the cephalic papillae lie at about the same level. The excretory pore lies near the union of the two parts of the esophagus.

Male: Length 3.7 to 9.9 mm., width 0.21 to 0.3 mm. The vestibule is about 42 μ long, the muscular esophagus 0.21 to 0.27 mm. long, and the glandular esophagus 1.55 to 1.75 mm. long. The nerve ring and excretory pore are 0.210 and 0.250 to 0.265 mm. respectively from the anterior end. The male tail is 0.145 to 0.22 mm. long. The caudal alae are well developed, and as usual for the genus, the inner side of the alae is strongly tuberculated. This makes the papillae very difficult to distinguish, and I am far from certain that the three pairs of stalked papillae and the five pairs of sessile papillae that are figured are the only ones present. However, those papillae which are figured could be seen fairly clearly. The spicules are unusually well cutinized for this genus. The right spicule is longer than the left, but the ratio varies in different individuals. The measurements are 34 to 93 μ for the right spicule and 50 to 72 μ for the left spicule.

Female: Length 13.5 to 14.3 mm. width 0.31 to 0.34 mm. The vestibule is 0.2 to 0.24 mm. long, the muscular esophagus 0.31 to 0.34 mm. long, and the
glandular esophagus 2.36 to 2.45 mm. long. The nerve ring and excretory pore are 0.285 and 0.310 to 0.340 mm. respectively from the anterior end. The vulva is 1.4 to 1.6 mm. from the anterior end. From it the vagina runs posteriorly for about 1.3 mm., where it divides into the two convergent uteri. The egg-filled uteri occupy the middle third of the body. Following the uteri there are two elongate sacs, the seminal receptacles, which are about 0.5 mm. long, and 0.11 mm. wide. The ovaries lie coiled in the body, caudal to the seminal receptacles. The eggs measure 23 μ by 38 μ. The female tail is blunt and only 0.11 to 0.13 mm. long.

Type host: Leiolopisma laterale.

Habitat: Stomach.

Locality: Houston, Texas.

Two immature specimens of Thubunaea taken from the stomach of Acris gryllus may belong to this species. They possess a short vestibule, three teeth on the lips, and a cephalic collarette as the above species does, but as the sexual organs have not yet begun to develop, it is impossible to be sure of their identity.

This species is easily separated from Thubunaea pudica and T. perkarri, by the well cutinized spicules and the cephalic collarette.

Family Camallanidae Railliet and Henry, 1915

Genus Camallanus Railliet and Henry, 1915

This genus is represented in North America by several species, that are parasitic in fishes and turtles. For our purposes only those parasitic in the latter hosts need be considered. Several species have been erected by
Leidy, Magath, and MacCallum for these forms, but in the present state of our knowledge it seems best to include them all under one species.

Camallanus trispinosus (Leidy, 1851)

A number of nematodes taken from turtles are tentatively referred to this species. The hosts are *Chelydra serpentina*, *Kinosternon subrubrum hippocrepis*, *Pseudemys elegans*, *Deirochelys reticularia* (?), and *Amyda ferox* (?) from Houston, Texas; and *Chrysemys picta* from Newfane, N. Y. The worms from *Deirochelys reticularia* are all females, and those from *Amyda ferox* are immature, and therefore, these two records must be regarded as doubtful. Among the worms of my material there seems to be a variation in the length of the spicules that is associated with the host. These spicule measurements are given below.

<table>
<thead>
<tr>
<th>Host</th>
<th>No. of specimens</th>
<th>Length of long spicule</th>
<th>Length of short spicule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chelydra serpentina</td>
<td>5</td>
<td>580 - 650</td>
<td>264 - 300</td>
</tr>
<tr>
<td>Kinosternon subrubrum hippocrepis</td>
<td>5</td>
<td>542 - 615</td>
<td>310 - 263</td>
</tr>
<tr>
<td>Pseudemys heiroglyphica</td>
<td>5</td>
<td>667 - 771</td>
<td>310 - 340</td>
</tr>
<tr>
<td>Pseudemys elegans</td>
<td>5</td>
<td>833 - 880</td>
<td>215 - 245</td>
</tr>
<tr>
<td>Chrysemys picta</td>
<td>5</td>
<td>750 - 835</td>
<td>210 - 220</td>
</tr>
</tbody>
</table>

The above table shows that in length of spicules my parasites fall closer to *Camallanus americanus* Magath than to *C. trispinosus* Leidy. However, Walton (1927) has shown that the supposed differences in the mouth capsules
of these forms are not reliable, which is substantiated by my material; and
the spicules vary so widely as to be of little systematic value in this case.
Furthermore, as the spicules are very difficult to measure, there is the pos-
sibility that Leidy's measurements are inaccurate. For these reasons it seems
best to allow Magath's name to sink into synonymy as Walton has already
suggested.

Family Gnathostomidae Railliet, 1895
Subfamily Spiroxyinæ
Genus Spiroxyx Schneider, 1866

At present three species of this genus are known to parasitize North
American reptiles. These are Spiroxyx constricta (Leidy), S. contorta
(Rudolphi), and S. amydae Cobb. Furthermore, Walton (1927) states that
S. contorta (Leidy) is not synonymous with S. contorta (Rudolphi), but Leidy's
description seems to me to be too inadequate to warrant any definite conclusion
on this point. Two species of Spiroxyx are represented in my collection, and
one of them has not been reported before from North America.

Spiroxyx contorta (Rudolphi 1819)

Walton (1927) reports finding representatives of this species in the
existing Leidy collection. The specimens which he refers to this species were
taken from the stomach of Chrysemys picta. I have taken a Spiroxyx which I
tentatively refer to this species, from Pseudemys elegans and Deirochelys rati-
cularia at Houston, Texas and from Sternotherus odoratus at Huntsville, Texas. These worms agree very closely with the description of *S. contorta* (Rudolphi) given by Baylis and Lane (1930) except that they all possess a thickened, cuticular at the base of the lips on both the dorsal and ventral aspect. The cephalic margin of each plate bears three protuberances which closely resemble papillae when the worm is viewed from the lateral aspect.

Spyroxys gangatica Baylis and Lane, 1920

A number of parasites found in the stomach of *Amyda ferox* are referred to this species. *Trionyx gangaticus* is the trophotype of this species while *Amyda ferox* is the trophotype for *S. amydae* Cobb (1928). However, Cobb states that there are only four teeth on each lip ("eight odontia in the pharynx"), while all of my material plainly shows six teeth on each lip. I could not find any differences between my material and the description of *S. gangatica* that could not be accounted for on a basis of individual variation.
Order Trichinelloidea Hall, 1916

Family Trichinellidae Stiles and Crane, 1910

Subfamily Trichurinae Ranson, 1911

Genus Capillaria Zeder, 1800

This large and cosmopolitan genus has species parasitic in all the principle vertebrate groups, but in North American reptiles and amphibians only a single form, *C. recurva*, from the American crocodile, has been reported. The following account adds two new species.

Capillaria serpentina new species

(Figs. 33 and 39)

Specific diagnosis: -- Capillaria; a slender, white worm, with an unstriated cuticula. The females are 12 to 14 mm. long and 88 to 103 / wide (no males were encountered). The esophagus is 4 or 5 mm. long, and runs for the greater part of its length thru the usual row of circular cells. These cells are peculiar in that some are clear, and others are crowded with many fine granules. The clear and granulated cells occur in alternating groups composed of from two to five cells each. The anterior 0.5 or 0.6 mm. of the esophagus are not encircled by cells. Presumably the nerve ring occurs in this region, but it could not be located, even with the use of an oil immersion lens. The intestine narrows rather suddenly at the beginning of the rectum which is about 0.5 mm. long. The anus is terminal and opens between two liplike protuberances, of which the ventral one is the smaller.

The genital system is of the usual type for the genus, with the vulva a
short distance posterior to the posterior end of the esophagus. Only the eggs call for additional comment. They have two shells, the outer of which seems to be membranous and somewhat wrinkled. The inner one, which is much heavier, contains the usual plug in the end and seems to be slightly constricted at the middle. Both of the egg coverings are colorless. The eggs measure 67 to 72 μ by 25 to 34 μ.

Type host: Chelydra serpentina.

Habitat: Rectum.

Type locality: Houston, Texas.

The above description is based on two female specimens taken from the common snapping turtle. It seems to be remarkably similar to Capillaria recurva Solger 1877, from the American crocodile. Both parasites are from reptilian hosts that inhabit fresh waters, but differences appear that make specific identity seem unlikely. C. chelydrae is only 1/5 as large and has a colorless intestine and egg covering, whereas in C. recurva the intestine is yellowish to dark brown and the eggs are also colored. Furthermore Solger does not mention any peculiar mottling of the esophagus.

Capillaria heterodontis new species

(Figs. 40-42)

Specific diagnosis: -- Capillaria; a very slender white nematode, with a smooth cuticula. The length of the male varies from 16.5 to 22.5 mm., and the maximum width from 45 to 80 μ. The esophagus is 7 to 11.5 mm. long and does not show any very exact correlation with the total length. The posterior end bears a
small bursalike expansion of the cuticula, which is supported by a short sharp tail on the dorsal side. The spicule is 2.55 to 3.25 mm. long and blunt at the tip. The spicule sheath is without spines, and therefore, this worm belongs to the subgenus Capillaria (Zeder) Travassos (1915).

Length of the female varies from 24 to 26 mm., the width from 100 to 115 μ. The esophagus measures from 7.4 to 8.4 mm. in length. The anus is sub-terminal, and the body ends bluntly. A rectum from 0.35 to 0.3 mm. long shows plainly. The vulva is from 0.12 to 0.18 mm. posterior to the end of the esophagus. The eggs are typical for the genus and seem to be enclosed in two shells with a plug at each end. The outer shell is thin but smooth. They measure 45 to 55 μ long by 25 to 30 μ wide.

Type host: Heterodon contortrix.

Locality: Houston, Texas.

Habitat: Rectum.

This species is easily distinguished from the other two Capillaria from North American reptiles by its size and by the shape of the caudal end of the female. The males of the other two species are unknown.
Class Acanthocephala

Order Neoechinorhynchata Faust, 1929

Family Neoechinorhynchidae Ward, 1917

Genus Neoechinorhynchus Stiles and Hassall, 1905

This genus is represented in North America by a number of species that are parasitic in fishes and turtles. There appears to be only one member of the genus parasitic in North American reptiles.

Neoechinorhynchus emydis (Leidy, 1852)

This common parasite of terrapins has been encountered several times in the intestine of Pseudemys elegans. Frequently these worms were so numerous as to fill the lumen of the undistended intestine.
Table of Parasites Encountered Listed Systematically by Hosts

<table>
<thead>
<tr>
<th>Host</th>
<th>No. examined</th>
<th>Parasite</th>
<th>% infected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triturus meridionalis</td>
<td>8</td>
<td>Cosmocercoides dukae</td>
<td>62.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brachycoelium meridionalis</td>
<td>37.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nasocoelium americanum</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manodistomum occultum</td>
<td>12.5</td>
</tr>
<tr>
<td>Ambystoma microstomum</td>
<td>4</td>
<td>Cosmocercoides dukae</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brachycoelium davisi</td>
<td>25</td>
</tr>
<tr>
<td>Ambystoma talpoideum</td>
<td>4</td>
<td>Cosmocercoides dukae</td>
<td>25</td>
</tr>
<tr>
<td>Siren lacertina</td>
<td>1</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>Bufo terrestris</td>
<td>2</td>
<td>Cosmocercoides dukae</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oswaldocruze pipiens</td>
<td>50</td>
</tr>
<tr>
<td>Bufo valliceps</td>
<td>49</td>
<td>Cosmocercoides dukae</td>
<td>77+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oswaldocruze pipiens</td>
<td>4+</td>
</tr>
<tr>
<td>Acris gryllus</td>
<td>32</td>
<td>Cylindrotaenia americana</td>
<td>16-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thuburnae leiolopismae?</td>
<td>6+</td>
</tr>
<tr>
<td>Pseudacris triseriata</td>
<td>26</td>
<td>Cosmocercoides dukae</td>
<td>62-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cylindrotaenia americana</td>
<td>7+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brachycoelium davisi</td>
<td>7+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Megalodiscus temperatus</td>
<td>7+</td>
</tr>
<tr>
<td>Hyla cinerea</td>
<td>4</td>
<td>Oswaldocruze pipiens</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brachycoelium davisi</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Megalodiscus temperatus</td>
<td>25</td>
</tr>
<tr>
<td>Hyla squircella</td>
<td>11</td>
<td>Cosmocercoides dukae</td>
<td>18+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cylindrotaenia americana</td>
<td>9+</td>
</tr>
<tr>
<td>Hyla versicolor</td>
<td>1</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>Host</td>
<td>No. Examined</td>
<td>Parasite</td>
<td>% infected</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
<td>---------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Rana areolata</td>
<td>8</td>
<td>Megalodiscus temperatus</td>
<td>37.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Cosmocercoides dukaee</td>
<td>25</td>
</tr>
<tr>
<td>Rana catesbeiana</td>
<td>20</td>
<td>Falcaustra catesbeianaee</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gorgodera explicavae</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Haematoloechus floedae</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Megalodiscus temperatus</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rhabdias raeae</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glypthelming subtropica</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cosmocercoides dukaee</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proteocephalus magnoe</td>
<td>5</td>
</tr>
<tr>
<td>Rana clamitans</td>
<td>5</td>
<td>Megalodiscus temperatus</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cosmocercoides dukaee</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Haematoloechus floedae</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proteocephalus magnoe</td>
<td>20</td>
</tr>
<tr>
<td>Rana palustris</td>
<td>1</td>
<td>Oswaldocruzia piniens</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cosmocercoides dukaee</td>
<td>100</td>
</tr>
<tr>
<td>Rana sphenoecheala</td>
<td>27</td>
<td>Megalodiscus temperatus</td>
<td>37+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cosmocercoides dukaee</td>
<td>37+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rhabdias raeae</td>
<td>29+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brachcoelium hospitale</td>
<td>22+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oswaldocruzia piniens</td>
<td>18+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Megalodiscus americanae</td>
<td>4-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Haematoloechus uniplex</td>
<td>4-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glypthelming subtropica</td>
<td>4-</td>
</tr>
<tr>
<td>Gastrophryne areolata</td>
<td>6</td>
<td>Cosmocercoides dukaee</td>
<td>662/3</td>
</tr>
</tbody>
</table>

Reptilia

<table>
<thead>
<tr>
<th>Host</th>
<th>No. Examined</th>
<th>Parasite</th>
<th>% infected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anolis carolinensis</td>
<td>30</td>
<td>Cochoristica anolis</td>
<td>3+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proteocephalus sp.</td>
<td>3+</td>
</tr>
<tr>
<td>Sceloporus undulatus</td>
<td>3</td>
<td>Oswaldocruzia piniens</td>
<td>33+</td>
</tr>
<tr>
<td>Host</td>
<td>No. examined</td>
<td>Parasite</td>
<td>% Infection</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------</td>
<td>-----------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Phrynopsornia cornutum</td>
<td>7</td>
<td>Dioechotes phrynosophatia</td>
<td>57 +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physaloptera phrynosophatia</td>
<td>43 -</td>
</tr>
<tr>
<td>Ophisaurus ventralis</td>
<td>4</td>
<td>Cosmocercoides dukae</td>
<td>25</td>
</tr>
<tr>
<td>Gnemidophorus sexlineatus</td>
<td>4</td>
<td>Pharyngodon varneri</td>
<td>50</td>
</tr>
<tr>
<td>Leiolopisma laterale</td>
<td>11</td>
<td>Cylindrotaenia americana</td>
<td>37 -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brachycoelium davisi</td>
<td>23 +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thubunacchileiopismus</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monocelium americanum</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oswaldecruze pipiens</td>
<td>5 -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physaloptera aquamatae</td>
<td>4 -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cosmocercoides dukae</td>
<td>4 -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cysticercus sp.</td>
<td>2 -</td>
</tr>
<tr>
<td>Eumces fasciatus</td>
<td>9</td>
<td>Oswaldecruze pipiens</td>
<td>22 +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cochoristisca aumacios</td>
<td>11 +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monocelium americanum</td>
<td>11 -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cysticercus sp.</td>
<td>11 +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cosmocercoides dukae</td>
<td>44 +</td>
</tr>
<tr>
<td>Eumces sentenriionalis</td>
<td>1</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>Farancia abacura</td>
<td>1</td>
<td>Cochoristisca americana</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proteoschaphalus faranciae</td>
<td>100</td>
</tr>
<tr>
<td>Heterodon contortrix</td>
<td>4</td>
<td>Kalicephalus ackistrodonitis</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cosmocercoides dukae</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lechriorchis validus</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Renifer texanus</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rhabdiae vellardi</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Capillaria heterodontis</td>
<td>25</td>
</tr>
<tr>
<td>Opheodrys aestivalis</td>
<td>7</td>
<td>Brachycoelium sp.</td>
<td>14 +</td>
</tr>
<tr>
<td>Coluber constrictor flaviventris</td>
<td>2</td>
<td>Kalicephalus ackistrodonitis</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>flagellum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ophidiaearis sp.</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polydelphis sp.</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kalicephalus rectiphilus</td>
<td>50</td>
</tr>
<tr>
<td>Host</td>
<td>No. Examined</td>
<td>Parasite</td>
<td>% Infection</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------</td>
<td>-----------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Coluber flagellum</td>
<td>2</td>
<td>Kalicaphalus agkistrodontis flagellus</td>
<td>50</td>
</tr>
<tr>
<td>Elaphe obsoleta</td>
<td>1</td>
<td>Oochoristica elaphis</td>
<td>100</td>
</tr>
<tr>
<td>Lindheimerii</td>
<td>1</td>
<td>Kalicaphalus agkistrodontis</td>
<td>100</td>
</tr>
<tr>
<td>Pituophis savi</td>
<td>1</td>
<td>Kalicaphalus agkistrodontis</td>
<td>100</td>
</tr>
<tr>
<td>Lampropeltis calligaster</td>
<td>3</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>Lampropeltis getulus</td>
<td>3</td>
<td>Kalicaphalus agkistrodontis</td>
<td>33.3</td>
</tr>
<tr>
<td>Holbrooki</td>
<td>3</td>
<td>Lechiorchis lampropeltis</td>
<td>33.3</td>
</tr>
<tr>
<td>Natrix rhombifera</td>
<td>2</td>
<td>Oochoristica matricis</td>
<td>50</td>
</tr>
<tr>
<td>Natrix gipedon fasciata</td>
<td>6</td>
<td>Kalicaphalus agkistrodontis</td>
<td>50</td>
</tr>
<tr>
<td>fasciata</td>
<td>6</td>
<td>Renifer aniarum</td>
<td>50</td>
</tr>
<tr>
<td>Dasytrema conferta</td>
<td>33+</td>
<td>Kalicaphalus agkistrodontis</td>
<td>17-</td>
</tr>
<tr>
<td>Storerie dekayi</td>
<td>6</td>
<td>Cosmocercoides dukae</td>
<td>83+</td>
</tr>
<tr>
<td>Mesococulum americanum</td>
<td>33+</td>
<td>Brachycaelium storericus</td>
<td>17-</td>
</tr>
<tr>
<td>Rhabdias vallardi</td>
<td>17-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potamophis striatulus</td>
<td>7</td>
<td>Rhabdias vallardi</td>
<td>43-</td>
</tr>
<tr>
<td>Thermophis proximus</td>
<td>7</td>
<td>Kalicaphalus agkistrodontis</td>
<td>57+</td>
</tr>
<tr>
<td>Rhabdias vallardi</td>
<td>43-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micrurus fulvius</td>
<td>3</td>
<td>Kalicaphalus agkistrodontis</td>
<td>33+</td>
</tr>
<tr>
<td>Cosmocercoides dukae</td>
<td>33+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ackistrodon no-</td>
<td>14</td>
<td>Kalicaphalus agkistrodontis</td>
<td>100</td>
</tr>
<tr>
<td>Kasen</td>
<td>14</td>
<td>Renifer kensensis</td>
<td>14</td>
</tr>
<tr>
<td>Physaloptera squamatae</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Host</td>
<td>No. Examined</td>
<td>Parasite</td>
<td>% Infection</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------</td>
<td>------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Sternotherus carinatus</td>
<td>2</td>
<td>Telorchis bairdi</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spiroxyz contorta</td>
<td>50</td>
</tr>
<tr>
<td>Kinosternon subrubrum hippocrepis</td>
<td>16</td>
<td>Heronimus chelydrae</td>
<td>31+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Camallanus trispinosus</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polystoma hassali</td>
<td>12.5</td>
</tr>
<tr>
<td>Chelydra serpentina</td>
<td>9</td>
<td>Falcaustrea chelydrae</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Camallanus trispinosus</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polystoma hassali</td>
<td>33+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Auristostomum chelydrae</td>
<td>22+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Henotogama chelydrae</td>
<td>14+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Capilaria serpentina</td>
<td>14+</td>
</tr>
<tr>
<td>Terrapene carolina triumguis</td>
<td>14</td>
<td>Falcaustrea effine</td>
<td>92+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cruzia tentaculata</td>
<td>92+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Atristis carolinae</td>
<td>92+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cosmocercoides dukae</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oswaldocruzia piciens</td>
<td>15+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polystoma terrapanes</td>
<td>8-</td>
</tr>
<tr>
<td>Terrapene ornata</td>
<td>2</td>
<td>Cosmocercoides dukae</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oswaldocruzia piciens</td>
<td>50</td>
</tr>
<tr>
<td>Pseudemys elegans</td>
<td>16</td>
<td>Camallanus trispinosus</td>
<td>87.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nasaechinorhynchus emydias</td>
<td>69-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polystoma magacotyle</td>
<td>44-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spiroxyz contorta</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polystoma orbiculare</td>
<td>19-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Falcaustrea procera</td>
<td>19-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Telorchis texanus</td>
<td>19-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Telorchis robustus</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heronimus chelydrae</td>
<td>6+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proteneas chapmani</td>
<td>6+</td>
</tr>
<tr>
<td>Daiochelys reticularia</td>
<td>1</td>
<td>Camallanus trispinosus</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spiroxyz contorta</td>
<td>100</td>
</tr>
<tr>
<td>Achyra ferox</td>
<td>4</td>
<td>Spiroxyz gangeticus</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Falcaustrea chelydrae</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Camallanus trispinosus</td>
<td>50</td>
</tr>
</tbody>
</table>
LITERATURE CITED

Cort, W. W. 1919. A New Distome from Rana aurora. Univ. of Calif.

Ortlepp, R. J. 1923. Observations on the Nematode Genera Kalicephalus, Diaphanocephalus, and Occipitodontus g. n., and on the Larval Development of Kalicephalus philodryadus sp. no. J. Helminthol.,

Schultz, 1927. Die Familie Physalopteridae Leiper, 1908, und die Prinzipien Klassifikation. In Sammlung Helminthologischer Arbeiten by Prof. Dr. K. I. Shirjabin, Moscow. 1927, pp. 305.

Steiner, G. 1924. Some Nemas from the Alimentary Tract of the Carolina

EXPLANATION OF PLATES

Plate I
(Scale equals 0.5 mm.)

Figure 1. Polystoma terrapenis: ventral view.

Figure 2. Mesocoelium americanum: ventral view, somewhat flattened.

Figure 3. Brachycoelium storeriae: ventral view.

Figure 4. Brachycoelium meridionalis: dorsal view.

Figure 5. Brachycoelium daviesi: ventral view.

Figure 6. Glyphotelmis subtropica: ventral view with the vitellaria drawn in.

Figure 7. Haematolechus floedae: dorsal view.

Plate II
(Scale equals 0.5 mm.)

Figure 3. Haematolechus uniplexus: ventral view with vitellaria drawn in.

Figure 9. Renifer texanus: ventral view.

Figure 10. Renifer aniarum: ventral view.

Figure 11. Lechriorchis lampropeltis: ventral view.

Figure 12. Lanodistomum occultum: ventral view.

Figure 13. Telorchis texanus: ventral view.

Figure 14. Telorchis bairdi: ventral view.

Figure 15. Protoenes chapmani: dorsal view.
Plate III
(Scale equals 0.5 mm.)

Figure 16. *Proteoccephalus farancias*: mature segment.

Figure 17. *Oochoristica matricis*: mature segment.

Figure 18. *Oochoristica anolis*: mature segment.

Figure 19. *Oochoristica eumecis*: mature segment.

Figure 20. *Oochoristica americanus*: mature segment.

Figure 21. *Oochoristica elaphis*: mature segment.

Figure 22. *Diochetos pharynosomatis*: mature segment.

Plate IV
(Scale on Figs. 28-29 equals 0.1 mm.; on all others scale equals 0.5 mm.)

Figure 23. *Diochetos pharynosomatis*: a reconstruction of the excretory system of a terminal segment.

Figure 24. Oblique section thru a Cysticercus sp.

Figure 25. Oblique section thru same Cysticercus sp. but showing the suckers.

Figure 26. *Falcaustra chelydrae*: posterior end of male, but showing only a portion of the spicule.

Figure 27. *Pharyngodon warneri*: caudal end of female.

Figure 28. *Pharyngodon warneri*: caudal end of male.

Figure 29. *Atractis caroliniae*: caudal end of male.
Plate V

(Scale on Fig. 36 equals 0.5 mm.; on all others scale equals 0.1 mm.)

Figure 30. Calicephalus agkistrodontis: lateral view of the cephalic extremity.

Figure 31. Calicephalus rectiphilus: bursa.

Figure 32. Oswaldocruzia piniens: dorsal ray pattern of a specimen from Leiophilopsia laterale.

Figure 33. Oswaldocruzia piniens: dorsal ray pattern of a specimen from Leiophilopsia laterale.

Figure 34. Oswaldocruzia piniens: dorsal ray pattern of a specimen from Terrapene carolina triunguis.

Figure 35. Oswaldocruzia piniens: dorsal ray pattern of a specimen from Terrapene carolina triunguis.

Figure 36. Physaloptera squamatae: caudal extremity of the male.

Figure 37. Thubuna leiophilopsia: caudal extremity of the male, ventral view.

Figure 38. Capillaria cheiwarae: vulva region of the female.

Figure 39. Capillaria cheiwarae: caudal extremity of the female.

Figure 40. Capillaria heterodontis: caudal extremity of the male.

Figure 41. Capillaria heterodontis: caudal extremity of the female.

Figure 42. Capillaria heterodontis: eggs.