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Abstract
Heparanase is an endoglucuronidase that cleaves heparan sulfate chains of proteoglycans. In many
malignancies, high heparanase expression and activity correlate with an aggressive tumor
phenotype. A major consequence of heparanase action in cancer is a robust up-regulation of
growth factor expression and increased shedding of syndecan-1, a transmembrane heparan sulfate
proteoglycan. Substantial evidence indicates that heparanase and syndecan-1 work together to
drive growth factor signaling and regulate cell behaviors that enhance tumor growth,
dissemination, angiogenesis and osteolysis. Pre-clinical and clinical studies have demonstrated
that therapies targeting the heparanase/syndecan-1 axis hold promise in blocking the aggressive
behavior of cancer.
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Introduction
Heparanase is a multi-functional molecule whose expression is closely associated with
enhanced aggressive behavior of many types of tumors [1-4]. Heparanase drives tumor
progression by up-regulating the expression and bioavailability of several key growth factors
that flood the tumor microenvironment. Additionally, heparanase upregulates expression of
the heparan sulfate-bearing proteoglycan syndecan-1 and also promotes its shedding from
the cell surface. Shed syndecan-1 binds to the tumor-derived growth factors, concentrates
them within the tumor microenvironment and potentiates their signaling activity. This
coordinated action of heparanase and syndecan-1 provides a powerful mechanism to
enhance tumor growth, angiogenesis, invasion and metastasis. In this review, we discuss the
mechanisms regulating formation of the heparanase/syndecan-1 axis, its impact on tumor
behavior and novel therapeutic strategies being employed to attack this axis with the goal of
diminishing the growth and spread of tumors.
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Effect of the heparanase/syndecan-1 axis on growth factor signaling
There is increasing evidence that heparanase, by regulating the structure and function of
heparan sulfate proteoglycans (HSPG), can regulate growth factor signaling and cell
behavior [5-9]. The heparanase/syndecan-1 axis has been shown to augment signaling
cascades in both tumor and host cells (i.e. endothelial cells, fibroblasts, immune cells) within
the tumor microenvironment. Two of the best studied examples of growth factors strongly
regulated by the heparanase/syndecan-1 axis are hepatocyte growth factor (HGF) and
vascular endothelial growth factor (VEGF).

HGF, also known as scatter factor, is a potent signaling molecule that signals exclusively via
its interaction with c-met, a tyrosine kinase receptor. HGF is a mitogen that mediates
mesenchymal-epithelial interactions [10] and regulates several critical biological processes
[11, 12]. In cancers, aberrant HGF signaling has been reported to drive angiogenesis [13],
cell migration and survival [14]. Among cancers, some of the highest levels of HGF are seen
in multiple myeloma [15, 16]. HGF controls several aspects of myeloma disease including,
cell proliferation, apoptosis [17], adhesion to matrix [18], and osteolytic bone disease [19].
Moreover, an elevated level of HGF in the serum of myeloma patients is associated with
poor prognosis [20].

Interestingly, both heparanase and syndecan-1 regulate HGF function. Heparanase
dramatically enhances expression of HGF by myeloma cells [21], and myeloma cell surface
syndecan-1 binds strongly to HGF and this facilitates HGF-enhanced myeloma tumor cell
growth [22]. The heparan sulfate chains of cell surface syndecan-1 bind to HGF, sequester it
at the cell surface, and thereby elevate its availability for interacting with the c-met receptor
[23]. In addition, shed syndecan-1 also binds to HGF and complexes of the two molecules
are detected in the serum of myeloma patients [24]. Evidence suggests that shed syndecan-1/
HGF complexes also stimulate c-met signaling in osteoblasts [24]. This elevates receptor
activator of nuclear factor kappa-B ligand (RANKL) secretion and subsequent osteoclast
activation providing at least one mechanism for the link between HGF and osteolysis in
myeloma patients [21]. HGF is also a potent angiogenic factor and its binding to syndecan-1
may augment this activity within the myeloma bone marrow [13].

Heparanase has also been shown to stimulate VEGF secretion by both carcinoma and
myeloma cells [25, 26]. Secreted VEGF forms a complex with shed syndecan-1 that
positively modulates VEGF receptor signaling via activation of the extracellular regulated
kinase (ERK) signaling pathway leading to enhanced endothelial invasion and angiogenesis
[26]. Treatment of the VEGF-syndecan-1 complex with heparinase III, a bacterial enzyme
that degrades heparan sulfate chains, or immunodepletion of the complex blocks the
enhanced phosphorylation of ERK. This points to shed syndecan-1 as a key mediator of
heparanase-enhanced signaling and invasion of endothelial cells. Shed syndecan-1 in
addition to presenting VEGF to endothelial cells can also activate αvβ3 integrin, a key
regulator of endothelial activation and angiogenesis [26-28]. It is intriguing to speculate that
syndecan-1, which engages the αvβ3 integrin on endothelial cells and is essential for its
activation, is also playing a secondary role in providing VEGF to enhance this activation
mechanism. VEGF bound to syndecan-1, rather than to other HSPGs in the matrix, would be
most effective at integrin activation as it would be directly supplied by syndecan-1 to
VEGFR2 complexed with the integrin at the cell surface. Central to this process of VEGF
signaling and integrin activation is the up-regulation of syndecan-1 shedding by heparanase.

Biology and mechanisms of syndecan-1 shedding
The core protein sequence for syndecan-1 is comprised of three major domains, i) an
extracellular domain bearing the glycosaminoglycan chains (GAGs) that are predominantly
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heparan sulfate, ii) a short transmembrane domain, and iii) a highly conserved cytoplasmic
domain [29] (Fig. 1). Proteolytic cleavage of the extracellular domain in a region near the
plasma membrane of the cell releases a soluble form of the proteoglycan containing intact
heparan sulfate chains [30]. Because the heparan sulfate chains within the ectodomain often
contain bound ligands (e.g., growth factors) that promote signaling, it forms an autocrine
signaling complex that upon shedding is transformed into a powerful paracrine regulator of
cellular function [31]. The shed form of syndecan-1 can either remain soluble or bind and
accumulate within the extracellular matrix [32]. Cells constitutively shed low levels of
syndecan-1 but various stimuli such as chemokines, growth factors, bacterial virulence
factors and insulin trigger signaling pathways that elevate the expression and/or activity of
proteases to accelerate shedding [31, 33].

Syndecan-1 shedding is regulated by several known mechanisms. Phosphorylation of
tyrosine residues present in the cytoplasmic domain [34] and the interaction of Rab5 with
the cytoplasmic domain [35] have been shown to control cleavage of the ectodomain. In
addition, it was recently demonstrated that the GAG chains of syndecan-1 are active
modulators of its shedding in epithelial cells and in different tumor cell lines [36]. Reduction
in the GAG content of syndecans renders their core protein highly susceptible to cleavage by
metalloproteases. Reducing the amount of heparan sulfate either by addition of recombinant
human heparanase or by addition of bacterial heparinase III elevates syndecan-1 shedding
dramatically [37]. There are several potential means by which heparan sulfate chains of
syndecan-1 may regulate its shedding. These include: i) physically blocking sheddases from
accessing the cleavage sites, ii) stabilizing the core protein in a conformation that is less
susceptible to proteolysis, and/or iii) helping to maintain the syndecan-Rab5 complex.

Shed syndecan-1 in cancer
Shed syndecans have been detected in a number of tumor types and represent a novel
therapeutic target [38, 39]. High levels of shed syndecan-1 have been reported in cancers of
lung [40], Hodgkin’s lymphoma [41], and multiple myeloma [42]. Levels of serum
syndecan-1 are a prognostic marker in lung cancer [40]. In myeloma, a high level of
syndecan-1 in the serum is an independent predictor of poor prognosis for patients [43] and
a reliable prognostic factor at different phases of the disease [44]. In cancers like multiple
myeloma, the tumor cells constitutively shed high levels of syndecan-1 and are probably the
major source of soluble syndecan-1 in this disease [45]. However, in breast cancer shed
syndecan-1 is derived largely from the stromal fibroblasts present in the tumor [46, 47].
Shed syndecan-1 elevates the in vitro proliferation of T47D breast carcinoma cells [48]. In
contrast, over-expression of a soluble form of syndecan-1 promoted an invasive phenotype
but concomitantly inhibited the proliferation of MCF-7 breast cancer cells [49]. Synthetic
peptides that mimic regions of soluble syndecan-1 have also been shown to enhance the
invasion of tumor cell lines [50]. The earliest evidence that shed syndecan-1 can promote
tumor growth in vivo came from studies using ARH-77 human lymphoblastoid cells [51].
When these cells were engineered to express soluble syndecan-1 and injected into human
bone implanted in immunodeficient mice (SCID-hu model) they grew more aggressively
and disseminated faster than their control-transfected counterparts. The soluble syndecan-1
from the ARH-77 cells accumulated extensively within the interstitial matrix of the human
bone marrow. This closely resembles the pattern of syndecan-1 staining seen in myeloma
patients where shed syndecan-1 becomes trapped in the bone marrow matrix and within the
regions of marrow fibrosis [32]. Interestingly, the soluble form of syndecan-1 did not affect
ARH-77 cell proliferation in vitro suggesting that the major effect of shed syndecan-1 in
vivo is in regulating cross-talk between the tumor and host cells that promotes growth and
dissemination of the tumor cells.
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Heparanase regulates syndecan-1 shedding and function
Up regulation of heparanase expression or addition of exogenous recombinant heparanase to
myeloma cells stimulates syndecan-1 expression and shedding [37, 52]. Mechanistically,
this enhanced shedding of syndecan-1 is due at least in part to heparanase-mediated
activation of ERK signaling which leads to increased expression of MMP-9, a sheddase of
syndecan-1 [6]. ERK activation by heparanase in myeloma cells is highly dependent on the
heparan sulfate degrading activity of heparanase [6], although in other cell types, ERK
signaling can be activated by latent heparanase that is devoid of enzymatic activity [53]. In
myeloma cells the primary mediator of heparanase induced ERK activation is the insulin
receptor signaling pathway [5]. In this pathway, heparanase plays a dual role by
upregulating the phosphorylation of insulin receptors and by enhancing PKC activity. PKC
in turn upregulates the expression of insulin receptor substrate-1 (IRS-1), the principal
intracellular substrate of insulin receptor tyrosine kinase activity. IRS-1 is the most upstream
molecule in the signal transduction cascade mediated by insulin, IL-4 and IGF-1. IRS-1
docks with the insulin receptor and undergoes phosphorylation and phospho-IRS1 engages
multiple downstream signaling molecules resulting in ERK phosphorylation. These findings
provide the first evidence for cooperation between heparanase expression and ERK
activation in regulating expression of a protease that leads to shedding of syndecan-1. It is
interesting that in multiple myeloma the activation of ERK requires the enzyme activity of
heparanase. This suggests that stimulation of signaling occurs as the result of the clipping of
heparan sulfate chains by heparanase. But how the trimming of syndecan-1 by heparanase
can activate the insulin receptor is not clear. We speculate that heparanase remodeling of
syndecan-1 heparan sulfate triggers clustering of the proteoglycan at the cell surface forming
a molecular complex that enhances phosphorylation of the insulin receptor and stimulates
PKC activity. Interestingly, one study has shown that heparanase facilitates the clustering of
syndecan-1 and syndecan-4 on the surface of human glioma cells and thereby initiates
signaling cascades that involve Rac1, Src and the PKC pathway resulting in enhanced cell
adhesion and spreading [54]. Clustering of syndecan-1 and 4 is mediated by the heparin
binding domains present in heparanase and this clustering does not require the heparan
sulfate degrading activity of the enzyme.

There are multiple ways in which heparanase may regulate the function of syndecan-1 and
other heparan sulfate proteoglycans. Heparanase degradation of heparan sulfate chains can
initiate signaling cascades either by exposing cryptic sites on the heparan sulfate chains or
on the core protein of HSPGs. This facilitates a close interaction of the binding partners with
HSPGs. In melanoma cells heparanase stimulates FGF2 signaling by degrading the cell
surface heparan sulfate chains [55]. Modification of heparan sulfate chains by heparanase
enhances binding of FGF2 to cell surfaces and leads to stimulation of ERK and FAK
phosphorylation [55]. High-affinity FGF2 binding and signaling require heparan sulfate
chains of a minimum size and with some preference for specific structural features of the
heparan sulfate. Depending upon the extent of heparan sulfate degradation by heparanase,
sequences on the heparan sulfate chains, which bind to either FGF2 or FGFR, could be
removed or cryptic sites could be revealed [56, 57]. Heparanase therefore can modify
cellular heparan sulfate to support FGF2-stimulated signaling, potentially through modifying
heparan sulfate structures to alter interactions with either FGF2 or FGFR, or both.
Moreover, interplay between heparanase and syndecan-1 is required for renal tubular cells to
undergo FGF2-induced epithelial mesenchymal transition [58].

The cleavage of heparan sulfate chains by heparanase does not merely stimulate syndecan-1
shedding but may “de-protect” the syndecan from recognition by other proteins [36]. As
discussed above, an example of this is enhanced MMP-mediated release of syndecan-1 from
the cell surface when heparan sulfate chains have been trimmed by heparanase [6]. Another
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example is the binding of lacritin, a prosecretory epithelial mitogen found in the tear ducts
that bind directly to the syndecan-1 core protein, but only after heparan sulfate chains have
been trimmed by heparanase [9]. This is highly specific for syndecan-1 and other syndecan
family members like syndecan-2 or syndecan-4 cannot bind lacritin. The novel step in this is
that the binding necessitates prior partial or complete removal of heparan sulfate chains of
syndecan-1 by endogenous heparanase. Modification of the N-terminal domain of
syndecan-1 therefore facilitates its interaction with the C-terminal mitogenic domain of
lacritin [9]. Thus heparanase modification of syndecan-1 transforms a widely expressed
HSPG into a highly selective surface binding protein. Further, cleavage of heparan sulfate
chains can alter membrane localization of the proteoglycan, consequently altering the
availability of heparan sulfate to interact with signaling molecules. This has been
demonstrated with syndecan-1 and glypican, whose localization in the plasma membrane is
affected by removing heparan sulfate chains [59, 60].

Nuclear function of heparanase and syndecan-1
In addition to their extracellular localization, both heparanase and syndecan-1 have been
shown to be present within the nucleus of cells. Heparanase in the nucleus of cells is
enzymatically active [61]. Nuclear heparanase is associated with increased cell
differentiation [62]. Furthermore, heparanase localization within the nucleus also dictates its
function. In brain metastatic breast cancer, heparanase localizes to the nucleolus after
stimulation by epidermal growth factor (EGF) [63]. In the nucleolus, heparanase enhanced
DNA topoisomerase I activity, which subsequently increased cellular proliferation.
Moreover, heparanase preferentially associated with euchromatin, a lightly packed form of
chromatin where gene transcription typically occurs, in T lymphocytes [64]. The data
suggests that heparanase in the nucleus of the T lymphocytes can modulate histone H3
methylation through its interaction with a transcriptional complex [64]. The cellular
localization of heparanase can also serve as a predictor of prognosis in some cancers. This
has been demonstrated in head and neck cancers as well as gastric and esophageal cancers,
where nuclear localization of heparanase predicted a favorable outcome for patients, but its
cytoplasmic localization correlated with a poor outcome [65-67].

Several studies have demonstrated localization of heparan sulfate or heparan sulfate
proteoglycans in the nucleus [68-71]. Here the heparan sulfate chains of proteoglycans can
regulate expression of different genes, possibly by regulating the level of histone
acetylation. One study demonstrated that free glycosaminoglycan chains can decrease
histone acetylation by 50% [72]. The uptake of these glycosaminoglycans by tumor cells is a
selective process; and their inhibition of histone acetylation is dependent upon heparan
sulfate chain length and sulfation pattern [72, 73]. This indicates that there is some degree of
specificity rather than just random inhibition by heparan sulfate. Syndecan-1 has been
shown to be present in the nucleus of both mesothelioma and myeloma tumor cells [70, 74].
In mesothelioma, nuclear translocation of syndecan-1 was linked to specific points of the
cell cycle indicating that syndecan-1 may have a specific function during cell division
through interactions with microtubule structures [70]. Because the heparan sulfate chains
present on the core protein of syndecan-1 bind a myriad of growth factors and regulatory
proteins, it is likely that syndecan-1 transports cargo to the nucleus. In fact, studies have
indicated that fibroblast growth factor-2 (FGF-2) binds to heparan sulfate proteoglycans and
translocates to the nucleus [71, 75]. Additionally, syndecan-1 co-localizes with FGF-2 and
heparanase in the nucleus of mesothelioma cells [76]. Furthermore, cell surface heparan
sulfate chains have been implicated in the cellular uptake and nuclear translocation of
several molecules including heparanase [61].
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The heparanase/syndecan-1 axis functions very uniquely within the nucleus. Active
heparanase enzyme decreases the level of nuclear syndecan-1 and thereby removes the block
exerted by syndecan-1 on histone acetyl transferase enzyme (HAT) [74, 77]. This was first
demonstrated in myeloma, where the elevation of heparanase expression in myeloma tumor
cells is coupled with the loss of syndecan-1 in the nucleus resulting in an increase in HAT
activity. This increase in HAT activity upon heparanase expression correlates with increased
expression of several genes known to promote an aggressive tumor phenotype [77]. The
precise mechanism behind how heparanase regulates nuclear levels of syndecan-1 is still
unknown. One possibility is that heparanase modifies syndecan-1 in a manner that results in
loss of syndecan-1 ability to translocate to the nucleus. The mechanism of action of
heparanase/syndecan-1 axis on tumor cells and the microenvironment is summarized in Fig.
2.

An emerging role for heparanase and syndecan-1 in exosome biogenesis
and function

In addition to the mechanisms described above, heparanase and syndecan-1 appear to play
important roles in regulating exosomes, lipid bilayer-bound extracellular vesicles 30-100 nm
in diameter. Exosome secretion is upregulated as tumors become increasingly aggressive,
and the cargo contained within exosomes, including proteins, mRNA and miRNA, can
provide an important mechanism for intercellular communication between tumor and host
cells [78, 79]. For example, exosomes derived from tumor cells have been shown to promote
immune evasion [80], angiogenesis [81] and metastasis [82, 83]. Interestingly, a number of
different heparan sulfate proteoglycans have been found in exosomes derived from various
tissues (Table 1). Delivery to recipient cells of these exosomes bearing heparan sulfate
proteoglycans along with their binding partners (e.g., FGFs, VEGF, and HGF) may
represent an important means of heparan sulfate-assisted signaling. In addition, syndecan-1
plays a key role in regulating the formation of exosomes through the interaction of the
syndecan-1 cytoplasmic domain with both syntenin and ALIX to form a complex that
supports the budding of intraluminal vesicles within endosomal membranes [84]. This study
also revealed that heparan sulfate was essential for robust exosome biogenesis. Heparanase
has been found in exosomes isolated from ascites fluid of ovarian cancer patients [85], and
recent work in our lab has shown that heparanase significantly upregulates exosome
biogenesis and alters the protein composition and function of exosomes secreted by
myeloma tumor cells (unpublished observation). Although the mechanism by which
heparanase enhances exosome biogenesis is unknown, it is reasonable to speculate that
remodeling of the heparan sulfate chains of syndecan-1 by heparanase enhances formation
of the syndecan-1-syntenin-ALIX complex which in turn drives exosome biogenesis. Given
the potential importance of exosomes in regulating the progression of cancer and other
diseases, it will be important to further explore how heparanase and syndecan-1 participate
in regulating the formation and function of exosomes.

Therapeutic strategies to target the heparanase/syndecan-1 axis
Because of the importance of the syndecan-1/heparanase axis in driving cancer, therapeutic
agents that disrupt this axis could potentially be useful in the clinic. Due to its multiple
functions in driving the aggressive behavior of many tumor types, heparanase has received
substantial attention as a therapeutic target while syndecan-1 presents a more difficult
molecule to exploit therapeutically.

Several approaches hold potential for inhibition of heparanase including use of modified
heparins, small molecule inhibitors and function-blocking monoclonal antibodies. Heparin is
an inhibitor of heparanase enzyme activity, but cannot be used at high concentrations as an
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anti-tumor drug because of its anti-coagulant activity. Thus, modified heparins or heparin
mimics have been developed and have taken on many forms with predictably wide-ranging
results [86]. A comprehensive overview of heparin mimics as drugs has recently been
published [87]. Here we will focus on several heparin mimics that were developed with an
eye on their ability to inhibit heparanase enzyme activity. These have been tested in
preclinical models and have moved, or are moving toward human trials in patients with
cancer.

PI-88 is a phosphosulfomannoligosaccharide obtained by hydrolysis of yeast mannan that
yields a heterogeneous mixture of highly sulfated di- to hexasaccharides [88]. This
compound has anti-heparanase and anti-angiogenic activity presumably due to its binding to
heparanase and to binding factors such as VEGF. PI-88 does have some anti-coagulant
activity and in human subjects can cause thrombocytopenia, thrombosis, injection site
hemorrhage and other bleeding problems [89]. However, it is reasonably well-tolerated and
is efficacious against some cancers, most notably hepatocellular carcinoma [89]. The clinical
development of PI-88 was initiated by Progen Pharmaceuticals Ltd. and was recently
licensed to Medigen Biotechnology Corporation which is now conducting a prospective
randomized, double blinded, multicenter, phase III trial in subjects with hepatitis virus-
related hepatocellular carcinoma after surgical resection. A second generation of anti-
heparanase compounds developed by Progen, including PG545, showed promise in
preclinical studies using murine models of breast, prostate, liver, lung, colon, head and neck
cancers and melanoma [90]. PG545 is a fully sulfated, synthetic tetrasaccharide that is
homogenous in composition [91]. Recent studies demonstrated that PG545 inhibited both
heparanase activity and expression and blocked tumor growth and metastasis in animal
models [92]. Unfortunately, phase I trials in humans had to be halted due to an unexpected
reaction at the site of injection so the future prospects for this drug remain unknown.

SST0001 (formerly designated as G4000) is a modified heparin that is 100% N-acetylated
and 25% glycol split [86, 93] and has a molecular mass averaging 20 kDa. N-acetylation
renders it non-anticoagulant and glycol splitting appears to enhance its affinity for
heparanase where it affectively blocks heparanase enzyme activity [53]. SST0001 in pre-
clinical models has been shown to have efficacy against Ewing’s sarcoma, myeloma and
pancreatic cancer [94-97]. Pharmacodynamic studies indicate that SST0001 effectively
inhibits heparanase activity in vivo and can regulate levels of growth factors (e.g., HGF,
VEGF) and inhibit angiogenesis [96]. Moreover, SST0001 works well in combination with
dexamethasone against myeloma tumors growing in mice [96]. Importantly, SST0001 is not
toxic to cells growing in vitro. This suggests that its anti-tumor effects in vivo are due to
disruption of the tumor promoting effects that heparanase has within the tumor
microenvironment. Sigma-tau Research Switzerland S.A. recently initiated a phase I clinical
trial of SST0001 in patients with advanced multiple myeloma. Another glycol-split heparin
compound similar to SST0001 is M402. M402 is smaller than SST0001, having a molecular
mass averaging 6 kDa [98]. In addition, it differs from SST0001 in that it was not N-
acetylated and thus may have broader activity in binding growth factors than does SST0001.
Nonetheless, given that M402, SST0001, PG545 and PI-88 are all highly sulfated, it is likely
that they all have biological activity beyond inhibition of heparanase enzyme activity. M402
showed efficacy in a melanoma model of experimental metastasis and in spontaneous
metastasis using the 4T1 murine mammary carcinoma model [98]. A phase 1/2 proof-of-
concept clinical trial of M402 in combination with gemcitabine in patients with advanced
metastatic pancreatic cancer was begun in July 2012.

Now that multiple heparin mimics have reached clinical trials in humans, it will be
interesting to see which, if any, of the strategies have resulted in a clinically relevant drug.
For those that show safety and tolerability in phase I studies, the challenge will be to
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determine when during the progression of cancer is the best time to begin their
administration, and how to use them in combination with other treatments. If these heparin
mimics do disrupt the tumor microenvironment in human cancers, they may be effective in
combination with drugs that target tumor cells. This strategy would effectively target both
the host environment and the malignant cell itself. Interestingly, heparanase appears to play
an active role in inflammatory conditions and kidney dysfunction and thus inhibitors of
heparanase may be of therapeutic use in diseases such as colitis, sepsis [99], autoimmune
diabetes [100] and diabetic nephropathy [101].

Although proteoglycans are more difficult to target therapeutically than is heparanase,
several approaches have shown promise. One possibility is to interfere with normal
assembly of glycosaminoglycan chains on the core proteins of proteoglycans using
hydrophobic aglycones. These aglycones, depending on their structure, can drive formation
of antiproliferative glycosaminoglycans or inhibit glycosaminoglycan synthesis or
proteoglycan synthesis [73, 102, 103]. This can result in inhibition of tumor growth and
angiogenesis [73, 102]. Another approach is to generate fragments of heparan sulfate that
have anti-tumor activity. This is accomplished by using bacterial enzymes to degrade
heparan sulfate in vitro followed by administration of these fragments to animals bearing
tumor. This approach has been successful in blocking tumor growth in murine models of
melanoma and myeloma [57, 95]. Both of these studies used a pool of degraded heparan
sulfate but did not identify the specific structures within that pool having anti-tumor activity.
Precise identification of these anti-tumor structures within heparan sulfate could provide
clues in how to better prepare heparin mimics that will effectively inhibit tumor growth and
progression.

Recent studies have revealed that syndecan-1docks with integrins and the IGF1 receptor to
form a ternary complex that activates integrin signaling [104, 105]. This docking occurs
through a specific region of the syndecan-1 core protein extracellular domain including
amino acids 92-119. Synstatin, a synthetic peptide composed of amino acids 92-119 of the
syndecan-1 core protein, inhibits angiogenesis and blocks growth of carcinomas in vivo
[104]. This growth inhibition in vivo is likely due at least in part to inhibition of αvβ3
integrin signaling required for endothelial cell migration and angiogenesis. It will be
interesting to determine if targeting both arms of the syndecan-1/heparanase axis using
synstatin in combination with heparin mimics will have additive or synergistic effects in
murine models of cancer. Recent advances in RNAi technology also offer an opportunity to
perturb the expression of key molecules or the signaling pathway in the syndecan-1/
heparanase axis. Finally, recent studies have shown the potential for expressing specific
micro RNAs, such as miRNA-1258 which blocks heparanase expression and diminishes
metastasis of breast cancer cells [106].

Summary
Although it is well known that heparanase and syndecan-1 individually can regulate the
behavior of tumors, it has recently become clear that these two molecules work in concert to
drive tumor progression. Heparanase not only enhances syndecan-1 expression, it also
dramatically influences syndecan-1 location by increasing its shedding from the cell surface,
altering its position on the plasma membrane and diminishing its abundance in the nucleus.
In addition, heparanase upregulates expression of growth factors such as HGF and VEGF
which then bind to syndecan-1 heparan sulfate forming a complex that protects the growth
factor from degradation; retains the growth factor within the tumor microenvironment and
potentiates interaction of the growth factor with its high affinity signaling receptor.
Heparanase and syndecan-1 both, and perhaps by working together, drive exosome
biogenesis and regulate exosome function. In addition, both heparanase and syndecan-1 are
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retained as cargo within exosomes where they again may act together to influence the
behavior of cells within the tumor microenvironment and distally within niches that may
nurse the growth of metastasizing cells. Due to the decades of prior work on heparanase and
proteoglycans, the field has moved closer to the exciting possibility of translating basic
findings into new cancer therapies. Several drug candidates, designed to block heparanase or
syndecan-1 function are now in various stages of pre-clinical and clinical investigation with
the potential to significantly blunt tumor progression.
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Abbreviations

EGF Epidermal growth factor

ERK Extracellular regulated kinase

FAK Focal adhesion kinase

FGF2 Fibroblast growth factor 2

FGFR Fibroblast growth factor receptor

GAG Glycosaminoglycans

HAT Histone acetyl transferase

HGF Hepatocyte growth factor

HSPG Heparan sulfate proteoglycan

IGF Insulin-like growth factor

IRS-1 Insulin receptor substrate-1

MMP-9 Matrix metalloproteinase-9

PKC Protein kinase C

RANKL Receptor activator of nuclear factor kappa-B ligand

SDC-1 Syndecan-1

VEGF Vascular endothelial growth factor

VEGFR2 Vascular endothelial growth factor receptor 2
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Figure 1.
Schematic model of syndecan-1 structure – Syndecan-1 core protein consists of three major
domains, 1) a long extracellular domain that bears the heparan sulfate (HS) and chondroitin
sulfate (CS) chains at distinct sites, 2) a short transmembrane domain, and 3) a cytoplasmic
domain that is highly conserved among different syndecans.
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Figure 2.
Model of the heparanase/syndecan-1 axis in cancer – The model shows the series of
molecular events triggered by heparanase in tumor cells that establishes the heparanase/
syndecan-1 axis. When heparanase is elevated in tumors the following events occur, (1)
Levels of active ERK (P-ERK) are elevated in the cells. (2) P-ERK up-regulates the cellular
expression of VEGF and MMP-9. HGF is also elevated in these cells but via signaling
pathways that are independent of P-ERK. (3) With the increase in heparanase expression,
syndecan-1 levels in the nucleus are diminished leading to an increase in the levels of
acetylated histone H3. This facilitates the transcription of MMP-9 and VEGF. (4) Due to
heparanase activity, the HS chains of syndecan-1 (SDC-1) on the cell surface are trimmed
leading to enhanced cleavage of the core protein by MMP-9 which is now present in
abundance. (5) The heparan sulfate chains of the shed syndecan-1 bind and complex with
growth factors including HGF and VEGF whose expression is also stimulated by the
expression of heparanase. (6) Shed syndecan-1 bearing the growth factors binds to
extracellular matrix proteins (e.g., fibronectin, collagens) and sequesters these growth
factors in the tumor microenvironment as well as at distal sites. (7) Shed syndecan-1 binding
potentiates the signaling of the bound growth factors. This results in a strong, sustained
downstream signaling in the host cells (e.g., stromal cells, endothelial cells), priming the
microenvironment to support aggressive tumor growth.
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Table 1

Heparan sulfate proteoglycans found in exosomes

Molecule Cell / Tissue/ Biological Fluid of origin

Heparanase Ovarian cancer ascites [85]

Syndecan-1 Bladder cancer cells [107], colorectal cancer cells [108], urine [109]

Syndecan-4 Hepatocytes [110], colorectal cancer cells [108], saliva [111]

Glypican-1 Saliva [111]

Glypican- 4 Reticulocytes [112], saliva [111]

Glypican- 5 Mast cells [113]

Perlecan Embryonic fibroblasts [114], bladder cancer cells [107], colorectal
cancer cells [108], colon cancer cell lines [110], saliva [111],
urine [109]

*Table created using information from exocarta.org, an exosome content database
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