
The HERMIT in the Tree

Mechanizing Program Transformations
in the GHC Core Language

Neil Sculthorpe, Andrew Farmer, and Andy Gill

Information and Telecommunication Technology Center
The University of Kansas

Lawrence, USA
{neil,afarmer,andygill}@ittc.ku.edu

Abstract. This paper describes our experience using the HERMIT tool-
kit to apply well-known transformations to the internal core language of
the Glasgow Haskell Compiler. HERMIT provides several mechanisms to
support writing general-purpose transformations: a domain-specific lan-
guage for strategic programming specialized to GHC’s core language, a
library of primitive rewrites, and a shell-style–based scripting language
for interactive and batch usage.
There are many program transformation techniques that have been de-
scribed in the literature but have not been mechanized and made avail-
able inside GHC — either because they are too specialized to include in a
general-purpose compiler, or because the developers’ interest is in theory
rather than implementation. The mechanization process can often reveal
pragmatic obstacles that are glossed over in pen-and-paper proofs; under-
standing and removing these obstacles is our concern. Using HERMIT,
we implement eleven examples of three program transformations, report
on our experience, and describe improvements made in the process.

Keywords: GHC, mechanization, transformation, worker/wrapper

1 Introduction

HERMIT (Haskell Equational Reasoning Model-to-Implementation Tunnel) [4]
is a recently implemented plugin for the Glasgow Haskell Compiler (GHC) [5]
that provides an interactive interface for applying transformations directly to
GHC’s internal intermediate language. This plugin is part of a larger HERMIT
toolkit, a Haskell framework that is being developed with the aims of supporting
equational reasoning and allowing custom optimizations to be applied without
modifying either GHC or the Haskell users’ source code.

There are a wide variety of transformation techniques for optimizing func-
tional programs. Many such transformations have been implemented, and many
are used by modern compilers. However, there are also techniques that have
been described on paper but not mechanized, either because the transformation
is too specialized to include as an optimization in a general-purpose compiler,



or because the developers’ interest is in theory rather than implementation. We
want to implement these more specialized transformations using the custom op-
timization capabilities of HERMIT.

We believe there is a lot to be learned from mechanizing program transforma-
tions. The mechanization process can often reveal obstacles that do not appear
in pen-and-paper proofs, either because of implementation-specific details, or
because the pen-and-paper proofs gloss over details that may seem obvious to a
human, but are less obvious to a machine.

This paper reports on our experience using HERMIT to mechanize optimiza-
tion techniques, using the worker/wrapper [7, 25], concatenate vanishes [29] and
tupling [1, 9] transformations as case studies. We first introduce these transfor-
mations (§2), then we overview HERMIT and what it offers to the mechanization
process (§3). We then give an extended example of using HERMIT to specifically
apply tupling (§4), then discuss our general experience using HERMIT on our
11 examples (§5). Finally we discuss related work (§6), and draw conclusions
from our mechanization efforts (§7).

Whereas the previous HERMIT publication [4] described HERMIT itself,
this paper describes HERMIT in use, on a suite of examples. The main con-
tribution of this work is pragmatic — showing by example that the HERMIT
system is sufficiently mature to be able to encode and apply well-understood
transformation techniques, in the context of the full power of GHC. We report
on our experience, the obstacles that arose during mechanization, and our ap-
proaches to overcoming them, including a new combinator for tree traversal:
any-call. Additionally, we demonstrate that it is straightforward to augment
HERMIT with new specialized transformations as needed.

At this stage of our investigations we are explicitly concerned with mecha-
nization rather than formal proof; for example, a number of the transformations
we use have pre-conditions that HERMIT does not verify. We return to this
shortcoming in §5.1, and for now observe that correctness and mechanization
are both important, but independently challenging.

2 Transformations for Mechanization

This section overviews the program-transformation techniques that we chose as
case studies. While mechanizing these techniques we observed that the concate-
nate vanishes transformation, and our main tupling transformation, are instances
of the worker/wrapper transformation. A proof of the former, and an informal
sketch of the latter, are given in the extended version of this paper, which is
available on the first author’s webpage.

2.1 Concatenate Vanishes

The concatenate vanishes transformation (CV) [29] is a technique for increasing
the efficiency of programs that make repeated use of list concatenation. Consider
the following standard definition:



(++) :: [a ]→ [a ]→ [a ]
[ ] ++ bs = bs
(a : as) ++ bs = a : (as ++ bs)

The time complexity of this definition is linear in the length of its first argument,
but constant in the length of its second argument. Thus, while ++ is associative,
(as ++ bs) ++ cs will evaluate less efficiently than as ++ (bs ++ cs). The essence
of CV is to exploit this observation to restructure programs using repeated con-
catenation into a more efficient form.

CV can be summarized as follows. Given a function that returns a list1,

f :: a → [b ]
f a = expr

where expr is an expression that may contain f and a, define a new function
that returns a list-to-list function (known as a difference list [10]):

f ′ :: a → [b ]→ [b ]
f ′ a bs = expr ++ bs

Then redefine the original function f as:

f :: a → [b ]
f a = f ′ a [ ]

The efficiency gains (if any are possible) are then achieved through refactoring
the definition of f ′: first by applying the associativity and unit laws of ++, and
then by folding [2] the definition of f ′ to eliminate any recursive calls to f .

2.2 Tupling Transformations

Tupling transformations come in several forms. The main one we consider in this
paper involves transforming a recursive function that repeatedly solves subprob-
lems into one that uses tabulation, a form of dynamic programming optimization
where each subproblem is only solved once, and the solutions to subproblems are
only stored as long as needed [16, 1, 15]. We will refer to this particular tupling
transformation as TT.

As an example, consider the call tree for the Fibonacci function, in Fig. 1a.
Computing fib n requires computing fib(n − 1) and fib(n − 2), but computing
fib(n − 1) also requires computing fib(n − 2). We would like to avoid this du-
plication by exploiting sharing, such that our transformation results in the call
graph in Fig. 1b.

In general, to perform TT on a function f , we define a function t whose
body is an n-ary tuple of the n calls to f that share a common recursive call.
By case-splitting on the arguments to t , we establish base cases for well-founded
recursion. The recursive case of t is then calculated by selectively unfolding calls

1 For clarity of presentation we assume the function is in uncurried form, but CV is
valid for functions that take any number of arguments; see [29].



fib n

fib(n− 2)

fib(n− 4)fib(n− 3)fib(n− 3)

fib(n− 1)

fib(n− 2)

(a)

fib n

fib(n− 2)

fib(n− 4)fib(n− 3)

fib(n− 1)

(b)

Fig. 1: Call graphs for fib, illustrating duplicated computation.

to f to expose the common recursive call. All distinct calls to f are let-bound,
introducing sharing, which is the goal of the transformation. These let-bound
calls are themselves grouped into an n-ary tuple, which can be folded into a call
to t , leaving t recursively defined. Finally, f is redefined non-recursively in terms
of t . This is demonstrated in detail for the Fibonacci function in §4.

2.3 Worker/Wrapper Transformation

The worker/wrapper transformation (WW) [7, 25] is a technique for improving
the efficiency of a recursive program by changing the data type being operated
on. The idea is to factorize a program prog :: a into a more efficient worker
program work :: b, and a wrapper function wrap :: b → a that converts the result
into a value of the original type.

The first step is to ensure that the program is expressed as the least fixed
point of a non-recursive function f , which may involve rewriting as follows (where
expr is an expression that may contain prog):

prog = expr ⇒ prog = let f = λprog → expr
in fix f

Next comes the key step: choosing a more efficient data type. Once chosen, we
define conversion functions between the two types:

unwrap :: a → b
wrap :: b → a

These conversion functions are required to satisfy the property that

fix (wrap ◦ unwrap ◦ f ) ≡ fix f

and often satisfy the stronger property wrap ◦ unwrap ≡ id . It is then valid to
redefine the original program as follows (this is called WW factorization):

prog = wrap work

The definition of work can be derived in a number of ways [25]. Typically, we
start from either work = fix (unwrap ◦ f ◦ wrap) or work = unwrap prog , and
then simplify the definition using any laws specific to the types a and b.



In practice, Haskell programs are typically defined using general recursion,
rather than a fixed-point operator. Consequently, using the WW transformation
often involves the following sequence of steps: introduce fix ; perform WW fac-
torization; eliminate fix . To factor out this repetition, we define an additional
transformation that comprises the three steps, converting a generally recursive
function into a non-recursive function that calls a recursive worker (we call this
the WW split):

prog = let f = λprog → expr
prog = expr ⇒ in let work = unwrap (f (wrap work))

in wrap work

3 HERMIT

This section briefly overviews the HERMIT toolkit; for more details consult [4].

3.1 GHC Core

GHC recently added support for custom compiler plugins that can be inserted
amid GHC’s optimization passes [5]. HERMIT uses this mechanism to provide
a transformation system for GHC Core, GHC’s internal intermediate language.

GHC Core is an implementation of System F�
C [27, 30], which is System F [21]

extended with let-bindings, constructors, type coercions and algebraic and poly-
morphic kinds. Fig. 2 shows HERMIT’s representation of GHC Core, omitting
a few constructors that aren’t used in this paper.

3.2 User Interface

HERMIT provides several interfaces at different levels of abstraction. In this
paper we will use just one of those interfaces: a read-eval-print loop (REPL).

The REPL allows navigation over a GHC Core abstract syntax tree (AST),
displaying the current sub-tree via a choice of pretty printers. The REPL pro-
vides a statically typed monomorphic functional language with overloading. Most
commands construct a rewrite from AST to AST, and the result of executing
such a command is the newly transformed AST. Historic versions of the AST
are maintained, and it is possible to step back and forth through the history of
ASTs, or create branches to explore alternative transformation sequences. That
is, HERMIT provides a version-control tree, where each node of the tree is an
AST. When the user has finished applying transformations, she selects one of
the ASTs for GHC to compile, and the rest are discarded. We give an extended
example using the REPL in §4.

3.3 Extendability

HERMIT is designed to facilitate the addition of new transformations. There are
three methods of doing this: writing a script to combine existing transformations,



data ModGuts = ModGuts { :: [CoreBind ], ...}
data CoreBind = NonRec Var CoreExpr | Rec [CoreDef ]

data CoreDef = Def Var CoreExpr

data CoreExpr = Var Var | Lit Literal | Type Type
| App CoreExpr CoreExpr | Lam Var CoreExpr
| Let CoreBind CoreExpr | Case CoreExpr Var Type [CoreAlt ]

type CoreAlt = (AltCon, [Var ],CoreExpr)

Fig. 2: GHC Core.

leveraging the GHC RULES mechanism [20], or adding an internal primitive. We
used all three methods extensively while mechanizing our examples.

Scripting is the least powerful method, as it can only construct transforma-
tions by sequencing HERMIT-shell commands. However, it does allow transfor-
mations to be named and abstracted, as scripts can be called by other scripts.

RULES allow Haskell source files to be annotated with directed rewrite rules.
HERMIT exposes any such rules as rewrite commands, allowing the user to
selectively apply them as desired. This provides a lightweight mechanism for
adding transformations that cannot be expressed in terms of existing commands,
albeit limited to those that can be expressed by RULES.

Adding an internal primitive is the most powerful method, and our experience
has been that typically new transformations can be constructed fairly easily out
of the large suite of low-level congruence combinators and strategic traversals
provided by HERMIT and its underlying strategic-programming library, KURE
(see [4, 24]). The main drawback of this approach is that it requires additions to
the HERMIT source code, and consequently recompilation of the package.

4 Example: Fibonacci Tupling

In this section we demonstrate the mechanization process in detail by performing
TT on the Fibonacci function using the HERMIT REPL. Starting with the clear
but inefficient (exponential time) definition over Peano naturals,

data Nat = Z | S Nat

fib :: Nat → Nat
fib Z = Z
fib (S Z) = S Z
fib (S (S n)) = fib (S n) + fib n

we transform it into the following efficient (linear time) definition:

fib′ :: Nat → Nat
fib′ n = fst (work n)

where work :: Nat → (Nat ,Nat)
work Z = (Z, S Z)
work (S m) = let (x , y) = work m in (y , x + y)



As TT is an instance of WW, we will make use of our existing WW infras-
tructure. Following [26], we choose the more efficient data type to be a function
that returns a tuple of consecutive Fibonacci numbers, and define wrap and
unwrap as follows:

wrap :: (Nat → (Nat ,Nat))→ Nat → Nat
wrap h = fst ◦ h

unwrap :: (Nat → Nat)→ Nat → (Nat ,Nat)
unwrap h n = (h n, h (S n))

Trivially, the wrap ◦ unwrap ≡ id precondition holds.
Placing the definitions of fib, wrap and unwrap into a file Fib.hs, we load the

file into HERMIT, give some initialization commands (see §5.1), and zoom to
the definition of fib using the consider command:

hermit "Fib.hs"

hermit> set-pp-expr-type Show ; flatten-module ; consider ’fib

fib = λ ds � case ds of wild

Z � Z

S ds � case ds of wild

Z � S Z

S n � (+) (fib (S n)) (fib n)

We can now see the GHC Core that has been generated.
The next step is to apply the WW split. We have written a script for this

transformation (see §5.1), which we load and apply with the load command:

hermit> load "WWSplitTactic.hss"

fib = let f = λ fib ds � case ds of wild

Z � Z

S ds � case ds of wild

Z � S Z

S n � (+) (fib (S n)) (fib n)

rec work = unwrap (f (wrap work))

in wrap work

As we will need this definition of work later, we save it under the name origwork
using the remember command:

hermit> consider ’work ; remember origwork

work = unwrap (f (wrap work))

We now need to η-expand the body of work so that we can unfold unwrap:

hermit> 0 ; eta-expand ’n

hermit> any-call (unfold ’unwrap)

λ n � (,) Nat Nat (f (wrap work) n) (f (wrap work) (S n))

There are several things to note here. Numbers designate a child node to descend
into, with 0 designating the right-hand-side of the definition in this case (the sole
child, as variables and literals are not considered to be children). any-call is a



higher-order command that applies its argument everywhere it can succeed in the
current sub-tree (we discuss this further in §5.4). Finally, the tuple constructor
is polymorphic, and thus takes two type arguments (both Nat in this case).

Next we case-split on n to establish a base case for work :

hermit> 0 ; case-split-inline ’n

case n of n

Z � (,) Nat Nat (f (wrap work) Z) (f (wrap work) (S Z))

S a � (,) Nat Nat (f (wrap work) (S a)) (f (wrap work) (S (S a)))

Now we selectively unfold f in three of the four places it is called2:

hermit> { 1 ; any-call (unfold ’f) }
hermit> { 2 ; 0 ; 1 ; any-call (unfold ’f) }
hermit> simplify

case n of n

Z � (,) Nat Nat Z (S Z)

S a � (,) Nat Nat (f (wrap work) (S a))

((+) (wrap work (S a)) (wrap work a))

We move into the second case alternative for the remainder of the derivation.
In the second tuple component, we unfold the saved definition of work :

hermit> 2 ; 0 ; { 1 ; any-call (unfold origwork) }
(,) Nat Nat (f (wrap work) (S a))

((+) (wrap (unwrap (f (wrap work))) (S a))

(wrap (unwrap (f (wrap work))) a))

This creates an opportunity for fusing wrap and unwrap via the worker/wrapper
precondition, which we encoded in the source file as a GHC RULES pragma:

{-# RULES "precondition" ∀ x . wrap (unwrap x ) = x #-}

hermit> any-call (unfold-rule precondition)

(,) Nat Nat (f (wrap work) (S a))

((+) (f (wrap work) (S a)) (f (wrap work) a))

Now the duplicated computation of f (wrap work) (S a) is evident. We name
each distinct call to f by introducing let bindings, float the lets outside of the
tuple, and then fold the duplicated computation of y :

hermit> { 1 ; 1 ; let-intro ’x }
hermit> { 0 ; 1 ; let-intro ’y }
hermit> innermost let-float

hermit> any-call (fold ’y)

let x = f (wrap work) a

y = f (wrap work) (S a)

in (,) Nat Nat y ((+) y x)

2 Curly braces denote scoping: within a scope it is impossible to navigate above the
node at which the scope starts, and when the scope ends the cursor returns to the
starting node.



These steps caused us to wish for better navigation capabilities for moving into
case alternatives and tuples, as the use of numbers is unclear and brittle. We
think that this will be especially problematic as examples grow in size.

We now combine x and y into a case-analyzed tuple,

hermit> let-tuple ’xy

case (,) Nat Nat (f (wrap work) a) (f (wrap work) (S a)) of xy

(,) x y � (,) Nat Nat y ((+) y x)

thereby exposing the opportunity to fold unwrap:

hermit> any-call (fold ’unwrap)

case unwrap (f (wrap work)) a of xy

(,) x y � (,) Nat Nat y ((+) y x)

All that remains is to fold our saved definition of work . This results in a
definition with no calls to f , and no conversions via wrap and unwrap:

hermit> any-call (fold origwork)

case work a of xy

(,) x y � (,) Nat Nat y ((+) y x)

Zooming out to see all of fib, we notice that f is now dead code. This would
be removed by GHC’s optimizer, but for presentation purposes we do so here.
We also unfold the remaining call of wrap:

hermit> top ; consider ’fib

hermit> innermost dead-let-elimination

hermit> any-call (unfold ’wrap) ; simplify

fib = let rec work = λ n � case n of n

Z � (,) Nat Nat Z (S Z)

S a � case work a of xy

(,) x y � (,) Nat Nat y ((+) y x)

in λ x � fst Nat Nat (work x)

We now have the efficient version of fib, and so tell GHC to resume compilation:

hermit> resume

5 User Experience

In this section we discuss our experience using HERMIT to mechanize our suite
of transformations. After selecting the three transformation techniques, we chose
the following representative examples from the literature as our suite, and mech-
anized them using HERMIT:

– WW: CPS [7], Last [26], Reverse [7, 4], Memoization [7], Unboxing [7, 18]
– CV: Flatten [29, 11], Quicksort [29], Reverse [29, 11]
– Tupling: Fibonacci [2, 1, 26], Mean [9], Towers of Hanoi [16, 3]

Our resulting scripts are bundled with the HERMIT package, and are summa-
rized in Table 1. The Fibonacci script presented in §4 should provide the reader
with a point of comparison.



Script Number of HERMIT Commandsa Scripts
Name Rewrites Strategy Combinators Navigation Total Called

WWSplit 12 0 8 20 –
CPS 13 4 10 27 WWSplit
Last 10 1 8 19 WWSplit
Reverse 21 16 7 44 WWSplit
Memoisation 6 2 6 14 WWSplit
Unboxing 15 7 10 32 WWSplit

ConcatVanishes 23 8 5 36 –
Flatten 1 0 2 3 ConcatVanishes
Quicksort 3 1 2 6 ConcatVanishes
Reverse 1 0 2 3 ConcatVanishes

Fibonacci 21 12 21 54 WWSplit
Hanoi 34 21 36 91 WWSplit
Mean 19 5 27 51 –

a Rewriting commands are those that modify the syntax tree, navigation commands
focus the cursor onto specific nodes, and strategy combinators modify rewrites to
apply them in some systematic manner.

Table 1: HERMIT script sizes.

5.1 Worker/Wrapper

WW was the first transformation that we mechanized. Introducing fix , the first
step of WW, was not a transformation originally provided by HERMIT, nor was
it definable in terms of other HERMIT commands. However, using the existing
HERMIT infrastructure, it was straightforward to add a new rewrite for this
task. Adding a rewrite to eliminate fix was unnecessary, as that can be achieved
by using HERMIT’s existing unfold command.

We chose to encode WW factorization using GHC RULES. Thus no modifi-
cation to HERMIT was required, we just included the following pragma in the
source code of each example, along with appropriate wrap and unwrap functions:

{-# RULES "ww" ∀ f . fix f = wrap (fix (unwrap ◦ f ◦ wrap)) #-}

This use of GHC RULES works, but is clunky to use, being specific to each wrap
and unwrap. We are currently working on creating a HERMIT command that
takes wrap and unwrap functions as parameters, thereby avoiding the need to
repeat this rule for every specific wrap and unwrap.

We encoded the WW split as a HERMIT script that calls WW factorization.
That is, it assumes the existence of an appropriate ww rule in the source file.
This is even more clunky, and we likewise intend to replace this script with a
paramaterized HERMIT command.

HERMIT does not yet have a mechanism for checking preconditions, so it is
up to the user to ensure that factorization is used only when the WW precon-
dition holds. This is not ideal, and providing some mechanism within HERMIT
for verifying pre-conditions, or at least for recording which pre-conditions have



been assumed during the transformation, is an obvious next step in its develop-
ment. Furthermore, as well as the danger of the HERMIT user incorrectly using
a rule, it is also possible that the GHC optimizer may apply a rule (which is
the intended purpose of GHC RULES after all). We addressed this using GHC’s
phase annotations, which allow the user to specify which optimization phases
the rule is eligible to be applied in. Inconveniently, these annotations required
at least one phase to be specified, but patching the GHC parser to accept zero
phases was trivial. This patch will be included in the GHC 7.8 release.

Another issue is that, unlike in a Haskell source file, the top-level bindings
are not treated as a mutually recursive group. During type checking (before gen-
erating GHC Core), a dependency analysis separates the bindings into minimal
recursive groups and orders these groups by their dependencies [17, §6.2.8]. This
can be problematic when applying GHC RULES, as some of the variables in the
rule may not be in scope. To address this, we added a flatten-module rewrite
that combines the top-level binding groups into a single recursive group, thereby
ensuring that all variables that can appear in a rule will be in scope.

Other than these issues, we found mechanizing the WW examples to be
straightforward uses of HERMIT’s basic transformations and GHC RULES. A
detailed walk-through of the Reverse example, in the spirit of §4, can be found
in our earlier description of HERMIT [4].

We also encountered some unexpected behavior involving type-level universal
quantification. GHC Core passes around type arguments explicitly; thus when a
call is made to a polymorphic function, the type argument has to be provided.
For example, the Core generated from last has the following type and structure:

last :: ∀ τ . [τ ]→ τ
last = Λ τ → λ as → ...last τ ...

However, we discovered that if the type signature of a top-level polymorphic
function is omitted in the source code, GHC generates different Core. Specifically,
it performs the static-argument transformation [22], producing an outer non-
recursive polymorphic function, and an inner recursive monomorphic function.
That is, the type is fixed outside the recursion, avoiding the need to provide the
type as an argument to each recursive call.

last :: ∀ τ . [τ ]→ τ
last = Λ τ → let last :: [τ ]→ τ

last = λ as → ...last ...
in last

This difference, which is not noticeable at the level of Haskell source code, is
significant enough to allow a GHC rule to fire in one case and not another. For
example, WW factorization only fires for monomorphic functions, not polymor-
phic ones. In our opinion, HERMIT’s ability to interactively display information
on selected fragments of GHC Core was most helpful in understanding why the
rule was not firing. Indeed, we believe that experimenting with and debugging
GHC RULES is a potential application of the HERMIT system.



5.2 Concatenate Vanishes

Mechanizing CV proved straightforward. The main step can be expressed as
WW factorization, so most of the transformation proceeded in the same manner
as in §5.1. Mechanizing Flatten and Quicksort proved very similar to Reverse,
with only a few differences in the basic rewrites required to simplify the resultant
worker function. It was not necessary to add any new functionality to HERMIT.

Encouraged by the similarity of the three HERMIT scripts, we wrote a single
generic script that works for all three examples, using HERMIT’s higher-level
commands. For this we did need to add a new command to HERMIT. The
issue was that case-floating (taking a function applied to a case expression and
applying it to each case alternative instead) is only valid if the function is strict:

f (case x of
a1 → e1
a2 → e2
...
an → en)

⇒

case x of
a1 → f e1
a2 → f e2
...
an → f en

As HERMIT lacks a mechanism for verifying preconditions (§5.1), it is the user’s
responsibility to ensure that case-floating is only applied to strict functions. This
was fine when considering each example in isolation, as we explicitly stated when
and where to float a case. But as this differed between examples, the usage in
the generic script was potentially unsafe. To address this, we added a command
that floats case (and let) expressions, but only past a specific function that it
takes as a parameter. Again, adding this was straightforward.

Our generic CV script makes heavy use of GHC RULES, which encode the
monoid laws for ((++), [ ]) and ((◦), id), and a monoid homomorphism between
them. We also used a rule to encode the fusion law relating the conversion
functions between lists and difference lists [7]. This rule also has a precondition,
and currently its usage in the generic script is unsafe in general (although in
each specific example it is used safely). We are working on adding a rewrite to
HERMIT that will allow us to restrict this rule to situations where the pre-
condition is met, in a similar manner to the case-floating previously discussed.

Note that we do not claim that our generic script would work for any CV
example; indeed we are quite confident it would not. Its purpose was just to
test how well HERMIT copes with abstracting from multiple similar examples.
HERMIT is designed as an interactive system where transformations are user-
guided; we do not aim nor expect to be able to fully automate transformations
in general. What we do aim for is to make HERMIT commands as robust as
possible, in an effort to minimize the changes required if the source code changes,
and more abstract commands help in this regard.

5.3 Tupling Transformations

The tupling examples motivated several new capabilities in HERMIT. Recall
that in the Fibonacci example (§4) we established a base case for work by case-
splitting on a variable. This functionality required us to create a new rewrite,



case-split-inline3, that performs the following transformation (where C1..Cn

are the constructor patterns of type T ):

expr [x :: T ] ⇒

case x of
C1 → expr [C1 / x ]
C2 → expr [C2 / x ]
...
Cn → expr [Cn / x ]

This rewrite was straightforward to implement using capabilities provided by
the HERMIT API. It exposes an issue, however, when dealing with primitive
types. For example, the only constructor for the Int type is I #, which wraps
a primitive unboxed integer, rendering case-splitting rather unproductive. One
could imagine an alternative rewrite that accepts a literal value as the case
to introduce, rather than enumerating the constructors. However, implementing
this rewrite would require modifying the HERMIT REPL parser to parse Haskell
values (or at the very least, Haskell literals), and so remains future work.

The tupling examples use the fold/unfold equational-reasoning technique [2].
When using fold/unfold, it is common to need access to past definitions of func-
tions; a non-issue when working on paper (one simply looks up the page), but
one that we needed to address. While the HERMIT kernel maintains a record of
every version of the AST, we found it preferable to provide a command remember

that explicitly saves a definition, rather than dig through the kernel’s history.
This also allows fold/unfold to be a lower-level notion that does not assume the
existence of a version-control history, and means a definition can be saved and
then applied within a single composite rewrite.

Our implementation of fold performs a straightforward structural compari-
son of two expressions, attempting to instantiate one in terms of the other, and
thus is currently limited to folding syntactically α-equivalent expressions. This
was the most challenging new rewrite to add because it traverses two ASTs in
lockstep, and therefore cannot use much of the automation provided by KURE.

Exposing fold opportunities required a new rewrite let-tuple that combines
the right-hand sides of multiple non-recursive let-bindings into a tuple, which is
then scrutinized by a case statement to project out the original bindings:

let v1 = e1

v2 = e2

...
vn = en

in expr

⇒ case (e1, e2, ..., en) of
(v1, v2, ..., vn)→ expr

The only complication in encoding this rewrite was locating GHC’s tuple con-
structor, as the name (, ) is used at both the type and value level, and in GHC
Core they share the same name space. There is also a more general need to
improve name lookup, as currently the source code has to explicitly import con-
structors for them to be visible to HERMIT.

3 There is also a case-split command, which does not inline x in the alternatives.



Terminology Description Example

To inline To replace a value with its definition. (λx → (+) x 4) (g x )

To inline in the context of (zero or more) let xn = g x
To apply arguments, and perform beta-reduction in (+) xn 4

(to let-binding) on all the arguments. (where n is unique)

To apply, then attempt safe/cheap
To unfold substitution on all the new let-bindings (+) (g x ) 4

introduced by the application.

Table 2: Inlining terminology and usage examples.

We found the Towers of Hanoi example to be substantially similar to the
Fibonacci example, and it did not require any new capabilities beyond those we
had already added. The Mean example on the other hand did require a handful
of new transformations. However, these were simple local rewrites (such as let-
floating) that had been omitted from HERMIT’s suite of local transformations,
and were straightforward to encode using KURE.

5.4 Observations on Inlining

Initially, it was unclear how best to provide function inlining. We found that
the inline rewrite was in practice often followed by the general-purpose clean-
up command bash [4]. Among other things, bash performs beta-reduction and
inlining repeatedly, and thus was serving as a crude way of unfolding a definition.
However, in some cases this was undesirably reducing the content of the inlined
function or its arguments. Consider the following bindings:

f = λx → (+) x 4

e = f (g x )

What should the result of inlining f in the right-hand-side of e be? After con-
sideration, we settled on three distinct rewrites, summarized in Table 2.

Building on this decision, we found KURE’s traversal combinators [4, 24]
insufficient for our needs: specifically, it was difficult to include as many ar-
guments as possible when unfolding curried functions, while at the same time
ensuring termination of unfolding. This is not an issue with inline, only apply

and unfold. To address this, we invented a traversal strategy to support apply
and unfold called any-call, which visits nodes in an order that maximizes the
number of arguments provided to an inlined function, as well as traversing any
arguments before performing the apply/unfold. We have used any-call in our
examples, as it is now our standard traversal combinator for working with apply
and unfold.

When inlining case wildcard binders, there is a choice between using either
the case scrutinee, or the pattern matched by the current case alternative. For
example, consider the following situation:

case expr of wild
pat → ... wild ...



If we inline wild on the right-hand-side of the case alternative, should we re-
place it with expr or pat? HERMIT initially did the former, but in practice we
found that we usually wanted the latter. We thus modified the inline rewrite
accordingly, and added a rewrite inline-scrutinee to provide the old behavior.

6 Related Work

There are several refactoring tools for Haskell programs, including the Haskell
Refactorer (HaRe) [14], the Programming Assistant for Transforming Haskell
(PATH) [28], the Ulm Transformation System (Ultra) [8], and the Haskell Equa-
tional Reasoning Assistant (HERA) [6]. The key distinction of HERMIT from
these systems is that they operate on Haskell source code, or some variant
thereof, whereas HERMIT operates on GHC Core, midway through the com-
pilation process. The principal advantage of this approach is that GHC Core
is a small language, having stripped away all of Haskell’s syntactic sugar. This
makes HERMIT simpler to use, implement and maintain, as there are far fewer
cases to consider. Other advantages are that this automatically supports GHC
language extensions, as GHC compiles them to GHC Core, and that inserting
HERMIT inside the GHC optimization pipeline allows transformations to be
intermixed with GHC’s optimization passes. However, a disadvantage is that
HERMIT cannot output Haskell source code.

More generally, there are a wide variety of refactoring tools for other lan-
guages. However, unlike HERMIT, most do not support higher-order commands
and the scripting of composite refactorings [12]. One exception is Wrangler [13],
a refactoring tool for Erlang, which has recently added such support [12].

One can also use proof assistants such as Coq or Agda to mechanize program
transformations interactively. However, this requires modeling the syntax and
semantics of the object language, encoding the program in that model, and then,
after transformation, transliterating the result back into the object language
before it can be compiled and executed. Even were we to ignore GHC language
extensions, or consider only a limited subset of Haskell 98, the presence of partial
values and lazy semantics mean we cannot simply define our programs directly
in the total languages provided by such proof assistants, but instead have to
model Haskell’s domain-theoretic setting of continuous functions over pointed ω-
complete partial orders [23]. We emphasize that one of the aims of the HERMIT
project is to make transforming Haskell programs easy for the user: we do not
want familiarity with domain theory and proof assistants to be prerequisites.

7 Conclusions and Future Work

Our experience thus far has been that it is viable to mechanize basic program
transformations, and that performing the transformations in HERMIT is no
more complicated than on paper. However, while encoding our examples we re-
peatedly found it necessary to add additional transformations, and higher-level



transformation strategies. This is unsurprising, as the HERMIT system is still
in an early stage of development. What remains to be seen is whether, as we
try more complex examples, we continue to need to add new transformations, or
whether those we have now will scale. In general, we found adding new transfor-
mations to HERMIT to be a fairly simple procedure, whether by building them
from HERMIT’s existing low-level transformations, or by using GHC RULES.
More challenging has been verifying the correctness of these transformations,
and debugging our HERMIT programs when they fail to do as we expect.

Working within GHC has proved convenient. GHC Core has already been
type checked before HERMIT acts on it, making all type information available.
Much implementation effort was saved by using existing GHC functions such as
substitution and variable de-shadowing, and safety checks such as the Core Lint
pass [19], which ensures that the resultant code is type-correct and well-scoped.

More work is now needed. We have mechanized a collection of small examples
as a proof of concept, but we need to try transforming larger real-world programs.

Acknowledgements

We thank Ed Komp for his work on implementing the HERMIT system, Ja-
son Reich for suggesting the Mean example, and the anonymous reviewers for
their constructive comments and feedback. This material is based upon work
supported by the National Science Foundation under Grant No. 1117569.

References

1. Bird, R.S.: Tabulation techniques for recursive programs. ACM Computing Surveys
12(4), 403–417 (1980)

2. Burstall, R.M., Darlington, J.: A transformation system for developing recursive
programs. Journal of the ACM 24(1), 44–67 (1977)

3. Chin, W.N., Khoo, S.C., Jones, N.: Redundant call elimination via tupling. Fun-
damenta Informaticae 69(1–2), 1–37 (2006)

4. Farmer, A., Gill, A., Komp, E., Sculthorpe, N.: The HERMIT in the machine: A
plugin for the interactive transformation of GHC core language programs. In: 2012
ACM SIGPLAN Haskell Symposium. pp. 1–12. ACM, New York (2012)

5. GHC Team: The Glorious Glasgow Haskell Compilation System User’s Guide,
Version 7.6.2 (2013), http://www.haskell.org/ghc

6. Gill, A.: Introducing the Haskell equational reasoning assistant. In: 2006 ACM
SIGPLAN Haskell Workshop. pp. 108–109. ACM, New York (2006)

7. Gill, A., Hutton, G.: The worker/wrapper transformation. Journal of Functional
Programming 19(2), 227–251 (2009)

8. Guttmann, W., Partsch, H., Schulte, W., Vullinghs, T.: Tool support for the in-
teractive derivation of formally correct functional programs. Journal of Universal
Computer Science 9(2), 173–188 (2003)

9. Hu, Z., Iwasaki, H., Takeichi, M., Takano, A.: Tupling calculation eliminates multi-
ple data traversals. In: 2nd ACM SIGPLAN International Conference on Functional
Programming. pp. 164–175. ACM, New York (1997)



10. Hughes, R.J.M.: A novel representation of lists and its application to the function
“reverse”. Information Processing Letters 22(3), 141–144 (1986)

11. Hutton, G.: Programming in Haskell. Cambridge University Press (2007)
12. Li, H., Thompson, S.: A domain-specific language for scripting refactoring in Er-

lang. In: 15th International Conference on Fundamental Approaches to Software
Engineering. pp. 501–515. Springer, Berlin (2012)

13. Li, H., Thompson, S., Orosz, G., Tóth, M.: Refactoring with Wrangler, updated:
Data and process refactorings, and integration with Eclipse. In: 7th ACM SIG-
PLAN Erlang Workshop. pp. 61–72. ACM, New York (2008)

14. Li, H., Thompson, S., Reinke, C.: The Haskell refactorer, HaRe, and its API.
Electronic Notes in Theoretical Computer Science 141(4), 29–34 (2005)

15. Liu, Y.A., Stoller, S.D.: Dynamic programming via static incrementalization.
Higher-Order and Symbolic Computation 16(1–2), 37–62 (2003)

16. Pettorossi, A.: A powerful strategy for deriving efficient programs by transfor-
mation. In: 1984 ACM Symposium on LISP and Functional Programming. pp.
273–281. ACM, New York (1984)

17. Peyton Jones, S.: The Implementation of Functional Programming Languages.
Prentice Hall (1987)

18. Peyton Jones, S., Launchbury, J.: Unboxed values as first class citizens in a non-
strict functional language. In: 5th ACM Conference on Functional Programming
Languages and Computer Architecture. pp. 636–666. Springer, London (1991)

19. Peyton Jones, S., Santos, A.L.M.: A transformation-based optimiser for Haskell.
Science of Computer Programming 32(1–3), 3–47 (1998)

20. Peyton Jones, S., Tolmach, A., Hoare, T.: Playing by the rules: rewriting as a prac-
tical optimisation technique in GHC. In: 2001 ACM SIGPLAN Haskell Workshop.
pp. 203–233. ACM, New York (2001)

21. Pierce, B.C.: Types and Programming Languages. MIT Press (2002)
22. Santos, A.: Compilation by Transformation in Non-Strict Functional Languages.

Ph.D. thesis, University of Glasgow (1995)
23. Schmidt, D.A.: Denotational Semantics: A Methodology for Language Develop-

ment. Allyn and Bacon (1986)
24. Sculthorpe, N., Frisby, N., Gill, A.: The Kansas University Rewrite Engine: A

Haskell-embedded strategic programming language with custom closed universes,
(in preparation)

25. Sculthorpe, N., Hutton, G.: Work it, wrap it, fix it, fold it. Journal of Functional
Programming 24(1), 113–127 (2014)

26. Sculthorpe, N., Hutton, G.: Work it, wrap it, fix it, fold it (extended version)
(2014), http://dx.doi.org/10.1017/S0956796814000045, extended version of [25]

27. Sulzmann, M., Chakravarty, M.M.T., Peyton Jones, S., Donnelly, K.: System F
with type equality coercions. In: 3rd ACM SIGPLAN Workshop on Types in Lan-
guage Design and Implementation. pp. 53–66. ACM, New York (2007)

28. Tullsen, M.: PATH, A Program Transformation System for Haskell. Ph.D. thesis,
Yale University (2002)

29. Wadler, P.: The concatenate vanishes. Tech. rep., University of Glasgow (1989)
30. Yorgey, B.A., Weirich, S., Cretin, J., Peyton Jones, S., Vytiniotis, D., Magalhães,

J.P.: Giving Haskell a promotion. In: 7th ACM SIGPLAN Workshop on Types in
Language Design and Implementation. pp. 53–66. ACM, New York (2012)


